勾股定理课件PPT
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
《勾股定理》PPT课件图文
ca b
S正
?(a
?
b)2
?
4?
1 2
ab
?
c2 ,
化简得: a 2 ? b 2 ? c 2
方法三:
c
b b-a c
a c
c
S正
?
c2?
4?
1 2
ab
?
(b
?
a)2,
化简得: a 2 ? b2 ? c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在 20米高处的楼层失火
,消防员取来 25米长的云梯救
火,已知梯子的底部离墙的距
ቤተ መጻሕፍቲ ባይዱ
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角 边求斜边
则 a2 ? b2 ? c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为 勾 ,下半部分称为 股 。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理ppt课件
体会数形结合的思想。(重点)
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
第1课时勾股定理微课ppt课件
如图我国古代证明该命题 的“赵爽弦图”.
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
勾股定理ppt课件
人教版八年级(下册)
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
初二数学《勾股定理》PPT课件
如果直角三角形两直角边分别为a, b,斜边为c,那么
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
1.1勾股定理_1PPT课件(沪科版)
2.勾股定理的适用条件: 直角三角形,它反应了直角三角形三边的关系,
即已知直角三角形两边长可求第三边长.对于非直 角三角形问题,可根据图形特征构造直角三角形.
3.由勾股定理的基本关系式: a2+b2=c2可得到一些变形关系式: c2=a2+b2=(a+b)2-2ab= (a-b)2 + 2ab ; a2=c2-b2=(c+b)(c-b)等.
3和4,则第三边长为( D )
A.5
B. 7 C. 5 D.5或 7
知识点 2 勾股定理与图形面积
知2-讲
1.命题:如果直角三角形的两条直角边长分别为a, b,斜边长为c,那么a2+b2=c2.
2.常用证法:利用拼图法,通过求面积来验证;这 种方法以数形转换为指点思想、图形拼补为手段, 以各部分面积之间的关系为根据而到达目的.
知2-讲
(1)如图①,△DEF为直角三角形,正方形 P的
面积为9,正方形Q的面积为15,则正方形
M的面积为________;
知2-讲
(2)如图②,分别以直角三角形ABC的三边长为直径 向三角形外作三个半圆,则这三个半圆形的面积 之间的关系式是________; (用图中字母表示)
知2-讲
(3)如图③,如果直角三角形两直角边的长分别为3 和4,分别以直角三角形的三边长为直径作半圆, 请你利用(2)中得出的结论求阴影部分的面积.
知1-导
探究 在行距、列
距都是1的方格网
中,任意作出几
个 以格点为顶点
的直角三角形,
分别以三角形的各边为正方形的一边,向形外作正方形,
如图.并以 S1, S2与S3分别表示几个正方形的面积.
视察图(1),并填写:
视察图(2),并填写:
知1-导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果三角形的三边长a、b、c满足
a2 + b 2 = c 2
那么这个三角形是直角三角形。
勾股定理
互为逆定理
如果直角三角形两直角边分别为a,b, 斜边为c,那么 a2 + b2 = c2
设AB是△ABC中三边中最长边, 则有:
AC2+BC2<AB2 AC2+BC2=AB2 AC2+BC2>AB2
再见
问题:
如果直角三角形的两条直角边分别 为a、b,斜边为c,那么这三边a、b、 c有什么关系呢?勾股定理揭示了 直角三角形的边与边的关系,那么 如何证明这个定理呢?
学习目标:
1.会通过拼图,用面积的方法说明勾股定理的正 确性。 2.能通过实例应用勾股定理。
自学指导:
1. 阅读教材51-52页,试用两种方法表示大正方 形的面积,得出结论。 2.注意应将例题中的实际问题转化为数学问题, 抽象出直角三角形。
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 理。为了纪念毕达哥拉斯学派,1955年 定理。为了纪念毕达哥拉斯学派,1955 希腊曾经发行了一枚纪念邮票。 年希腊曾经发行了一枚纪念票。
华东师大版
初中数学八年级上册
相传2500年前,毕达哥拉 斯有一次在朋友家里做客时, 发现朋友家用砖铺成的地面中 反映了直角三角形三边的某种 数量关系.
学习目标:
1、会用数格子的方法求正方形的面积。
2、在直角三角形中,已知两边能求第三边。
自学指导:
1、阅读教材48-49页,探索勾股定理的推导 过程。 2、找出勾股定理的内容?
你能写证明过 程吗?
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明, 就把这一证法称为“总统”证法。
1 2 2 1 S梯形= (a+b)(a+b) = (a +b )+ ab 2 2 1 2 1 1 2 S梯形 = c +2 · ab = c +ab 2 2 2
AB AC2 - BC2
1602 1282
96米
答: 从点A穿过湖到点B有96米。
现学现用:
.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
E
H
5
3 2
F
2 5
13
G
假期中,王强和同学到某海岛上去玩探宝游戏,按 照探宝图,他们登陆后先往东走8千米,又往北走2 千米,遇到障碍后又往西走3千米,在折向北走到6 千米处往东一拐,仅走1千米就找到宝藏,问登陆 点A 到宝藏埋藏点B的距离是多少千米?
例题解析
例3 一个零件的形状如左图所示,按规定这 个零件中∠A和∠DBC都应为直角。工人师 傅量得这个零件各边尺寸如右图所示,这个 C 零件符合要求吗? C
13 D D 4 A B 5 12
A 3 B
思考:此时四边形ABCD的面积是多少?
练一练
解释“古埃及人画直角”的理论根据.
解:如图,设每两个结的距离为a(a>0), 则AC=3a,BC=4a,AB=5a.
SP+SQ=SR P Q 图甲 图甲 图乙 1
R C
P的面积 Q的面积 R的面积
1 2
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 ⑵正方形A、B、C的 面积各为多少? 面积有什么关系?
SP+SQ=SR P R Q
P
图乙 “补”
“割”
Q 图甲
图甲 图乙 1 9 P的面积 Q的面积 1 16 R的面积 2 25 SP+SQ=SR
是 ∠ _____0 ; A=90 ____
不是 ____ _____ ; ∠ _____ ; B=900 是 ____
像25,20,15,能够成为直角三角形 三条边长的三个正整数,称为勾股数.
挑战自我
1、请你写出三组勾股数;
2、一组勾股数的整数倍一定是勾股数吗? 为什么?
例题解析
例2 设三角形⊿ABC分别满足下列条件,试 判断各三角形是否是直角三角形:
“弦图”
a
b b c
b
a
最早是由1700 1 多年前三国时 2 因 为(b a ) 4 ab c 2 期的数学家赵 2 爽为《周髀算 c 2ab +(b-a)2 = c2 经》作注时给 出的,他用面 即 2ab + b2 -2ab + a2 = c2 积法证明了勾 所以 a2 + b2 = c2 股定理
提示:先来判断a,b,c三边哪条最长,可以代 m,n为满足条件的特殊值来试,m=5,n=4.则 a=9,b=40,c=41,c最大。
1.能利用勾股定理和勾股定理逆定理解决 简单的实际问题; 2.在学习的过程中注意理论与实际问题的 联系;
3.通过学习提高同学们的空间想象能力.
B
C
1.了解下面题目,再自学课本 第57页例1;
即:在Rt△ABC中,∠C=90°
伽 菲 尔 德 证 法
c2 = a2 + b2
例1 小丁的妈妈买了一部34英寸 (86厘米)的电视机。小丁量了 电视机的屏幕后,发现屏幕只有 70厘米长和50厘米宽,他觉得一 定是售货员搞错了。你能解释这 是为什么吗?
我们通常所说的34英寸 解:∵702+502=7400 或86厘米的电视机,是指 862=7396 其荧屏对角线的长度
所以根据前面的判定方法可知 , 以(1)、(2)两组数为 边长的三角形是直角三角形,而以组(3)的数为边长 的三角形不是直角三角形。
小试牛刀
下面以a,b,c为边长的三角形是不是直角三 角形?如果是那么哪一个角是直角?
(1) a=25 b=20 c=15 (2) a=13 b=14 c=15 (3) a=1 b=2 c= 3
1、按要求作出53页的三角形,并观察是什么三 角形。 2、阅读教材53-54页,理解勾股定理的逆定理。
动手画一画
下面的三组数分别是一个三 角形的三边长a,b,c: 3,4,4; 2,3,4; 3,4,5
(1)这三组数都满足a b c
2 2 2 吗?
(2)它们都是直角三角形吗?
勾股定理的逆定理
A
∵AC 2 +BC 2= 3a 2+ 4a 2=25a 2 AB 2= 5a 2=25a 2 准备好了吗? 2 ∴AC 2 +BC 2=AB 从而 ACB=90
C
B
本节课你有什么收获?
作业:
1.教科书54页,习题14.1 第6题 2.(选做题)已知△ABC的三边分别为a,b,c, 且a=m2-n2,b=2mn,c=m2+n2(m>n,m、n是 正整数), △ABC是直角三角形吗?说明理由。
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记
2 2
2
即直角三角形两直角边的平方和等于 斜边的平方.
结论变形
直角三角形中,两直角边的平方和等于斜边的平方;
c2=a2 + b2 a2=c2 - b2
c a 2 b2
a c 2 b2
c
2
b
b2 =c2 -a2
b c a
2
a
例题分析
例1 .在Rt△ABC中,∠C=90°.
(1) 已知:a=6,b=8,求c; (2) 已知:a=40,c=41,求b; (3) 已知:c=13,b=5,求a;
2.重点了解怎样利用课本 知识解决实际问题.
国家之一。早在三千多年前, 载于我国古代著名的数学著作
《周髀算经》中。 国家多年
小 结:
1、这节课你学到了什么知识? 2 、运用“勾股定理”应注意什么问题?
3、你还有什么疑惑或没有弄懂的地方?
1、课本55页第2、3题。
2、查阅有关勾股定理的历史资料。
3.(选做) 已知等腰直角三角形 斜边的长为2cm,求这个三角形 的周长?
荧屏对角线大约为86厘米 ∴售货员没搞错
例2 如图所示,为了求出湖两岸的A、B两点间的 距离,一个观测者在点C设桩,使三角形ABC恰好为 直角三角形.通过测量,得到AC的长为160米,BC 长为128米.问从点A穿过湖到点B有多远? 解: 在直角三角形ABC中, AC=160米,BC=128米, 根据勾股定理可得
方法 小结
(4) 已知: a:b=3:4, c=15,求a、b.
(1)在直角三角形中,已知两边,可求第三边;
(2)可用勾股定理建立方程.
例题2 : 如图,将长为5.41米的梯子AC
斜靠在墙上,BC长为2.16米,求梯子 上端A到墙的底端B的距离AB.(精确 到0.01米)
解: 在Rt△ABC中∠ABC=90゜,
X
古埃及人曾用下面的方法得到直角
•古埃及人曾用下面的方法得到直角:
用13个等距的结,把一根绳子 分成等长的12段,然后以3个结, 4个结,5个结的长度为边长, 用木桩钉成一个三角形,其中 一个角便是直角。
按照这种做法真能得到一个 直角三角形吗?
1、了解勾股定理的逆定理与勾股定理的互逆性。 2、会通过三角形三边的数量关系来判断它是否为 直角三角形。