不等式与不等式组典型例题ppt课件

合集下载

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.

人教版数学七年级下册 不等式与不等式组 课件PPT

人教版数学七年级下册 不等式与不等式组 课件PPT
+ 1 > 0,
②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;

《不等式的性质》不等式与不等式组PPT课件

《不等式的性质》不等式与不等式组PPT课件
不等式基本性质3:不等式的两边都 乘以(或除以)同一个负__数__,不等 号如的果方_a_>改向_b_,变____c__<__0。,那么_a_c_<_b_c_(_或__ac____bc_ )
例1:
我是最棒的 ☞
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
方向不变。
➢如式不果的等a两>式边b,基都c本乘<性0以质(那3或么:除ac以<b)c同(或一ac个负bc数,不)就等是号说的不方等向
改变。
等式性质与不等式性质的区别和联系
• 区别:等式两边都乘以(或除以)同一个数(除数不 为0)时,结果仍相等;不等式两边都乘以(或除以) 同一个数(除数不为0)时,会出现两种情况,若是 正数,不等号方向不改变,若是负数不等号方向要改 变,而且不等式两边同乘以0,结果相等.
5. 8 x 1,两边都乘 7 ,得 _x____87_.
7
8
例 已知a<0 ,试比较2a与a的大小。 解法一:∵2>1,a<0, ∴2a<a(不等式的基本性质3)
解法二: 在数轴上分别表示2a和a的点(a<0), 如图.2a位于a的左边,所以2a<a
∣a∣ ∣a∣
2a
a
想一想:还有其 他比较2a与a的 大小的方法吗?
如果_a_>_b_,那么a±c>b±c _________.
不等式还有什么类似的性质呢? ➢如果 7 > 3
那么 7×5 _>___ 3× 5 , 7÷5 __>__ 3÷ 5 ,
➢如果-1< 3,
那么-1×2<____3×2,
-1÷2__<__3÷2,
不等式基本性质2:不等式的两边都乘以

3-1《不等式与不等关系》课件(共29张PPT)

3-1《不等式与不等关系》课件(共29张PPT)
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.

不等式与不等式组ppt

不等式与不等式组ppt
式的不等式,可以利用积分来求解。通 过对函数进行积分,可以求出函数的值域,从而确定不等式 的解集。
几何法
利用数形结合求解不等式
将不等式转化为两个函数的交点问题,利用数形结合的方法可以直观地求解 不等式。
利用平面几何求解不等式
将不等式转化为平面几何中的问题,利用平面几何的知识可以直观地求解不 等式。
不等式的分类
简单不等式
只包含一个不等号,左右两侧的代数式为一次或二次的简单不等式。
不等式组
多个简单不等式组合在一起,形成的不等式组。
不等式的性质
1 2
可加性
不等式的两边同时加上一个数,不等号的方向 不变。
可乘性
不等式的两边同时乘以一个正数,不等号的方 向不变。
3
可乘方性
不等式的两边同时乘以一个正数的方数,不等 号的方向不变。
车辆调度问题
在交通运输中,需要对车辆进行合理调度,以满足不同客户的需求并降低成 本。不等式组可以用来描述车辆调度中的约束条件,帮助企业制定更加高效 的车辆调度方案。
06
不等式发展方向
不等式理论研究
深入研究不等式的本质和特性,探究不等式的基本原理和证 明方法,推动不等式理论的发展和完善。
研究不等式在数学其他分支的应用,例如代数、分析、几何 等领域,揭示不等式的广泛作用和深刻内涵。
非线性规划的优缺点
非线性规划具有能够处理非线性问题的优点,但需要选 择合适的迭代算法和初始点,否则可能导致求解失败或 局部最优解。
动态规划
动态规划简介
动态规划是一种求解多阶段决策过程的最优解的方法,通过将问题分解为多个子问题,逐 个子问题的求解达到整体问题的最优解。
动态规划的应用
动态规划广泛应用于最短路径、最长子序列、背包问题等优化问题中,也用于求解生产计 划、资源分配等问题。

9不等式与不等式组小结与复习课件(新人教版七年级数学下)

9不等式与不等式组小结与复习课件(新人教版七年级数学下)

3x 1 x 2 4x 3 1 (2) 2 3 6
;
例题
例2.解不等式组
5 x 2 3 x 1 , (3) 1 3 x 1 7 x. 2 2
;

4 x 3 3(2 x 1), 1 3x 1 5 x. 2 2
2 x 1 5 x 1 1
的整数解的个数为( D ) C.3个 D.4个
B.2个
知识回顾
4. 不等式组的解集在数轴上表示出来如图所示, 则这个不等式组为( C )
x 2 x 2 x 2 A. B. x 1 C. x 1 x 1
第9章 不等式与不等式组
知识回顾
A ). 1.“—x不小于—2”用不等式表示为( A.—x≥—2 B.—x ≤—2 C.—x >—2 D.—x <—2 2.若m<n,则下列各式中正确的是( A). A.m-3>n-3 B.3m>3n n m C.-3m>-3n D. 1 > 1
3
3
3.不等式组 A.1个; Nhomakorabea


例3.为执行中央“节能减排,美化环境,建设美 丽新农村”的国策,某村计划建造A、B两种型号 的的沼气池共20个,以解决该村所有农户的燃料 问题.两种型号的的沼气池的占地面积、使用农 户数及造价见下表: 占地面 使用农户数 造价 已知可供建造沼气池的占 型 号 (户/个) (万元/个) 积 (㎡/个) 地面积不超过365㎡,该 A 15 18 2 村农户共有492户. B 20 30 3 (1)满足条件的方案共 有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱?
畅所欲言

谈谈你的收获。

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

《不等式》不等式与不等式组PPT课件

《不等式》不等式与不等式组PPT课件

3.不等式的解集
一个含有未知数的不等式的所有解组成这个不等 式的解集.
注意:不等式的解和不等式的解集是一样的吗?
练习:下列说法正确的是( A ) A. x=3是2x>1的解 B. x=3是2x>1的唯一解 C. x=3不是2x>1的解 D. x=3是2x>1的解集
50千米
A地
使不等式成立的 未知数的值叫做不等式的解
第一步:画数轴; 第二步:定界点;

0


第三步:定方向.
例3. 用数轴表示下列不等式的解集:
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:

-1 0

-1 0



-1 0

-1 0
ห้องสมุดไป่ตู้

总结: ①用数轴表示不等式的解集的步骤: ⑷
第一步:画数轴; 第二步:定界点; 第三步:定方向.
例3 请用适当的式子表示下列问题中的数量关系:
(1)-3小于2.
-3< 2 是
(2)用字母y表示一个数,若y有倒数,则y需满足
什么条件?
y≠0 是
(3)某数a与2的差小于-1 . a-2 <-1 是
(4)数a与b的差为1 .
a-b=1 不是
(5)如图二,天平左盘放3个小球,
右盘放5g砝码,天平倾斜。设每个小
3
收获和体会
不等式的定义 不等式的解 不等式的解集 不等式解集的表示方法
•生活中的问题:如身高、体重、 速度等需要将对象具体数量化, 才能进行交流和判断,不但要 学习研究等量关系,还需学习 和研究不等关系。

不等式的性质不等式与不等式组 优秀ppt课件2

不等式的性质不等式与不等式组 优秀ppt课件2

(2)2+a _____ 2+b (不等式性质____)
(3)-3a _____ -3b (不等式性质____) (4)6a_____6b (不等式性质____)
夯实基础 巩固提高
加减都用性质1,不等号方向不改变 乘除正数性质2,不等号方向还不变 乘除负数性质3,不等号方向要改变
夯实基础 巩固提高
盘点收获 承上启下 凯旋归来话收获
性质1: 不等式两边加上(或减去)同一个数 (或式子),不等号的方向不变; 性质2:不等式两边乘以(或除以)同一个正数, 不等号的方向不变; 性质3:不等式两边乘以(或除以)同一个负数, 不等号的方向改变
盘点收获 承上启下 凯旋归来话收获 三种思想: 类比的思想; 数形结合的思想; 分类讨论的思想
把下列不等式化成 x>a或x<a的形式.
例1:-x+3>5
解:根据不等式的性质1, 将解集用数轴表示为: 两边同时加上-3得: -x+3-3>5-3 -x>2 根据不等式性质3,两边 同时乘以-1得: x<2
夯实基础 巩固提高
把下列不等式化成 x>a或x<a的形式. 并将解集在数轴上表示出来。
纸上觉来终觉浅, 绝知此事要躬行 Have a try!
不访设c>0,则
c c
a+c>b+c
a+c
b b+c
c
a
c
b-c
b
a-c a
a-c>b-c
先学后教 循序渐进
不等式性质1:不等式两边加上(或减去) 同一个数(或式子),不 等号的方向不变; 数学语言:若a>b,则a±c>b±c

人教版数学七年级下册9.3 一元一次不等式组-课件

人教版数学七年级下册9.3 一元一次不等式组-课件

④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,

2.
解不等式组:
1
x
< 3.

2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x

-5,
x
>
-
3
x
>
-5,
x

-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3

人教版七年级数学下册第九章《 9.1.1 不等式及其解集》公开课课件(共39张PPT)

人教版七年级数学下册第九章《 9.1.1 不等式及其解集》公开课课件(共39张PPT)
第九章 不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集
1.用“__>__”或“__<__”表示大小关系的式子叫做不等式,用“__≠__”表示不等 关系的式子也是不等式.
2.使不等式成立的__未知数的值__叫做不等式的解;一般地,一个含有未知数的不等式 的__所有的解__组成这个不等式的解集.求不等式的__解集__的过程叫做解不等式.
21.(16分)阅读下列材料,并完成填空. 你能比较2 0142015和2 0152014的大小吗? 为 了 解 决 这 个 问 题 , 先 把 问 题 一 般 化 , 比 较 nn + 1 和 (n + 1)n(n≥1 , 且 n 为 整 数 ) 的 大 小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜 想得出结论. (1)通过计算(可用计算器)比较下列①~⑦组两数的大小;(在横线上填上“>”“=”或“<”) ①12__<__21;②23__<__32;③34__>__43; ④45__>__54;⑤56__>__65;⑥67__>__76; ⑦78__>__87. (2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系; (3)根据以上结论,请判断2 0142 015和2 0152 014的大小关系. 解:(2)当n=1或2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n
第九章 不等式与不等式组 9.1.2 不等式的性质
4.(4分)平面直角坐标系中,点Q(2,-3m+1)在第四象限,则m的取 值范围是( D ) A.m< B.m>- C.m<- D.m>
5.(3分)在下列不等式的变形后面填上依据: (1)如果a-3>-3,那么a>0;__不等式的性质1__ (2)如果3a<6,那么a<2;__不等式的性质2__ (3)如果-a>4,那么a<-4.__不等式的性质3__

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
a<b => a+c<b+c ,a-c<b-c.
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?

《不等式与不等式组》课件

《不等式与不等式组》课件
By 杜小二
第二十讲
不等式与 不等式组
1.解下列不等式或不等式组,并把 By杜小二 解在数轴上表示出来.
⑴ 2x 3 x 1 < 5x 2 1
26
3
3x+5>5(x-1)

⑵ 4 x 6 6 5.如果不等式3x-m≤0的正整数解是 1,2,3,求m的取值范围.
6.已知x、y为实数,且 y=√x2-4+√x4-2-x2+1 , 求(√-x+4y)x的值.
By 杜小二
7.如果关于x的不等式(2m-n)x+m5n>0①的解为x<10/7,试求关于x 的不等式mx>n②的解.
思考:已知关于x的不等式组
2mx-6>m 6x-5<n
① ②
的解是1<X<2,
求m2-n2的值.
By 杜小二
8.如果关于x的方程 x2+(2m+1)x-4(2m+5)=0有两 个大于3的不相等的实数根, 求实数m的取值范围.
3.已知关于x的不等式组
x-a≥0 3-2x>-1
的整数解共有5个,求a的取值 范围.
By 杜小二
4.m取什么整数时,关于x,y的二 元一次方程组 x+y=2m+7
x-y=4m-3 的解x、y都是正数.
By 杜小二
5.已知关于x的方程(k-1)x2+(2k-1)x+k3=0(k为实数)有两个实数根,求k的 取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的整数解共有6个,则a的取值范围 。
8
2.若关于x的不等式
x 7
m0 2x 1
的整数解共有4个,则m 的取值范围是 。
9
例5.若不等式组
x x
3 m
的解集是x>m,则m的取值范围是 .
10
若不等式组
x 3 x m
的解集是x≥3,则m的取值范围是 .
11
例6.若点A(2-a,a+1)在第二象限,则a的取值
范围是

【练习】
1.在平面直角坐标系中,若点P(m-3,m+1)在
第二象,则m的取值范围是 。
12
例7.若a≠1,则(a-1)x>a-1的解集


【练习】
1.若不等式(a-2)x>a-2的解集为x<1,则
a的范围是

13
例8.若三角形三边分别为 3,1-2a, 8 .则a
的取值范围是

14
x 1
例9.如果
y
2
是方程(ax+by-12)2+︱ax-by+8︱ =0的解,解不等式组
x a 13x 14
b
ax 3 x 3
15
例10.若关于x,y的方程组2xxy3y1 2k 5
的解满足-2<3x-2y≤0,则k的取值范围


16
例11.已知0≤x≤1,若x-2y=6,y的最小值
不等式与不等式典型例题
1
例1.如果不等式组
3 x
2x m
0
有解,则m的取值范围是: 。
2
1.若不等式组
a x
x0 1 0
无解,则a的取值范围是:

3
x 2a b 0 例2.已知不等式组2x 3a 5b 0
的解集为-1<x<6,则a= ,b= .
4
1.已知关于x的不等式组
x 2
ab x a 2b


17
1
b
的解集是3≤x<5,则 的值是 。
a
5
x y m 2 例3.求使方程组 4x 5y 6m 3
的解x、y都是正数,求m的取值范围是 。
6
若关于x、y方程组
2x y 1 3m x 2y 1 m
的解满足够经x+y<0,则m的范围是 。
7
例4.已知关于x的不等式组
x 3
a 0 2x 0
相关文档
最新文档