特殊的平行四边形期末复习

合集下载

新北师大版数学九年级上特殊平行四边形复习()省公开课获奖课件说课比赛一等奖课件

新北师大版数学九年级上特殊平行四边形复习()省公开课获奖课件说课比赛一等奖课件

互平分”这一性质能够得出直角三角
形旳一种常用旳性质:直角三角形斜
边上旳中线等于斜边长旳二分
__________.
之一
┃知识归纳┃
5.矩形旳鉴定 (1)有一种角是直角旳__平__行__四__边__形___ 是矩形; (2)有三个角是直角旳___四__边__形____是 矩形; (3)对角线相等旳___平__行__四__边__形___是矩 形.
2.菱形旳鉴定措施 (1)有一组邻边相等旳___平__行__四__边__形___ 是菱形(定义); (2)对角线相互垂直旳__平__行__四__边__形____ 是菱形; (3)四边相等旳____四__边__形_____是菱形.
┃知识归纳┃
辨析:四边形、平行四边形、菱形关系如图:
┃知识归纳┃
3.菱形旳面积 (1)因为菱形是平行四边形,所以菱形 旳面积=底×高; (2)因为菱形旳对角线相互垂直平分, 所以其对角线将菱形提成4个全等旳三 角形,故菱形旳面积等于两对角线乘 积旳二分之一.
┃知识归纳┃
6.正方形旳性质 (1)正方形旳四个角都是___直__角___,四条 边___相__等____; (4)正方形旳对角线 ___相__等___且相互垂 直平分; (5)正方形既是轴对称图形,又是中心 对称图形,对称轴有_____四____条,对 称中心是对角线旳交点.
┃知识归纳┃
7.正方形旳鉴定 (1)有一组邻边相等旳_相__等___是正方形; (2)对角线___垂__直_____旳矩形是正方形; (3)有一种角是直角旳__菱__形__是正方形; (4)对角线___相__等_____旳菱形是正方形. [注意] 矩形、菱形、正方形都是平行四边 形,且是特殊旳平行四边形.矩形是有一 种内角为直角旳平行四边形;菱形是有一 组邻边相等旳平行四边形;正方形既是矩 形,又是菱形.

《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题. 【知识网络】【要点梳理】 要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】 类型一、矩形1、(常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明: (1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论. 【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,22AC+=.6810∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC FC DF +=,解得x =85,BF =DE =3.4,则DEF 1=DE AB 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F . (1)求证:△AEF≌△DEB; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线, ∴AE=DE,BD=CD , 在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=12(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C;【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=12BC,GN=12AD,∴EG=12(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.类型三、正方形5、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.【巩固练习】一.选择题1.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°3.(武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.32B232.75D24. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是()A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.207.(桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是_______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于_______.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.(昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.三.解答题17.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.18.(无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.(崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】一.选择题1.【答案】C;【解析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.2.【答案】B;【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.3.【答案】D;4.【答案】D;5.【答案】A;6.【答案】B;【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.7.【答案】B;【解析】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF∥CG,EG∥CA,求出∠BEG =∠B,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可. 10.【答案】24;11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+ 12.【答案】4;【解析】根据菱形的性质得出OA =OC ,根据三角形的中位线性质得出OE =12AB ,代入求出即可.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.【答案】13; 【解析】设BD =x ,1412,62x x ⨯==,所以边长=222313+=. 15.【答案】832cm ;43cm ;【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,BD =2AE = 43cm .16.【答案】6.【解析】∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形, ∵两张纸条的宽度都是3,∴S 四边形ABCD =AB×3=BC×3, ∴AB=BC,∴平行四边形ABCD 是菱形,即四边形ABCD 是菱形. 如图,过A 作AE⊥BC,垂足为E , ∵∠ABC=60°,∴∠BAE=90°﹣60°=30°, ∴AB=2BE,在△ABE 中,AB 2=BE 2+AE 2, 即AB 2=AB 2+32, 解得AB=2, ∴S 四边形ABCD =BC•AE=2×3=6.故答案是:6.三.解答题17.【解析】证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C, ∵在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS ), ∴BF=BE . 18.【解析】 证明:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD⊥BC,且BD=CD , ∵AE∥BC,CE∥AD,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形;(2)∵四边形ADCE 是矩形, ∴OA=OC,∴OD 是△ABC 的中位线,∴OD∥AB 且OD=12AB. 19.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB=CB ,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°, 在△ABE 和△CBE 中,,∴△ABE ≌△CBE (SAS ), ∴AE=CE .(2)解:点E 在BD 的中点时,四边形AFBE 是正方形;理由如下:由折叠的性质得:∠F=∠AEB ,AF=AE ,BF=BE , ∵∠BAD=90°,E 是BD 的中点, ∴AE=BD=BE=DE , ∵AE=CE ,∴AE=BE=CE=DE=AF=BF ,∴四边形AFBE 是菱形,E 是正方形ABCD 对角线的交点, ∴AE ⊥BD ,∴∠AEB=90°,∴四边形AFBE是正方形.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA =∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF. 即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.A DB EFOC。

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.

专题03特殊平行四边形综合各市好题必刷(期中复习压轴满分)(原卷版)

专题03特殊平行四边形综合各市好题必刷(期中复习压轴满分)(原卷版)

阶段性复习压轴专题满分攻略专题03 特殊平行四边形综合各市好题必刷一.选择题(共18小题)1.(2022春•开福区校级期中)矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角2.(2022•岳麓区校级开学)如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF等于()A.B.C.D.8 3.(2022•薛城区校级模拟)如图,在▱ABCD中,BM是∠ABC的平分线交CD 于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1B.2C.3D.44.(2022春•姑苏区校级期中)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形5.(2022春•东莞市校级期中)如图,在△ABC中,点D、E分别是边AB,BC 的中点.若△DBE的周长是6,则△ABC的周长是()A.8B.10C.12D.14 6.(2022•宝应县一模)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.6 7.(2022春•广丰区校级期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28B.32C.18D.25 8.(2022秋•吉安县期中)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形9.(2022秋•胶州市校级月考)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°10.(2022•睢阳区模拟)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°11.(2022春•玉林月考)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11 12.(2022春•任城区期末)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.(2021秋•东平县期末)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3 14.(2023•河北模拟)如图,在四边形ABCD中,给出部分数据,若添加一个数据后,四边形ABCD是矩形,则添加的数据是()A.CD=4B.CD=2C.OD=2D.OD=4 15.(2022•费县校级二模)如图,菱形ABCD的对角线AC、BD相交于点O,=48,则OH的长过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD为()A.4B.8C.D.6 16.(2022•庆云县模拟)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是17.(2022春•铜官区期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5 18.(2022春•梁溪区月考)如图,已知A(3,6)、B(0,n)(0<n≤6),作AC ⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.二.填空题(共19小题)19.(2022秋•济阳区月考)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF ∥CD交AD于F,则阴影部分的面积是.20.(2022春•海淀区校级期中)如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于.21.(2022春•让胡路区校级期中)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.22.(2022•南山区校级一模)菱形的两条对角线长分别是6和8,则菱形的边长为.23.(2022春•满洲里市校级期末)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.24.(2022•城关区一模)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.25.(2022春•工业园区校级期中)如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为.26.(2021秋•朝阳区校级期末)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.27.(2022春•盐池县期末)如图,在正方形ABCD中,E在AB上,BE=2,AE =1,P是BD上的动点,则PE和P A的长度之和最小值为.28.(2021秋•绥棱县期末)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.29.(2022春•北京期中)如图:已知AB=10,点C、D在线段AB上且AC=DB =2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.30.(2022春•梅江区期末)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN ⊥AC于点N,连接MN,则线段MN的最小值为.31.(2022秋•迎泽区校级月考)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.32.(2021秋•泾阳县期末)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF =.33.(2022秋•南海区校级月考)如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB 的最小值等于.34.(2022春•鼓楼区期末)如图,在▱ABCD中,点D是定点,点A、C是直线l1和l2上两动点,l1∥l2,且点D到直线l1和l2的距离分别是1和4,则对角线BD长度的最小值是.35.(2022•薛城区模拟)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则△BCG的周长为.36.(2022•肇东市校级三模)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是.37.(2022春•工业园区校级期末)如图,矩形ABCD中,AB=6,AD=3,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是.三.解答题(共14小题)38.(2022•滨城区校级一模)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.39.(2022•隆昌市校级二模)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.40.(2022春•衡山县期末)如图,△ABC中,点O是边AC上一个动点,过O 作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.41.(2023•河北模拟)已知,如图,在△ABC中,∠ABC=90°,BD是△ABC 中线,F是BD的中点,连接CF并延长到E,使FE=CF,连接BE、AE.(1)求证:△CDF≌△EBF;(2)求证:四边形AEBD是菱形;(3)若BC=8,BE=5,求BG的长.42.(2022•萧山区开学)如图,在△ABC中,D、E分别是AB、AC的中点,BE =2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.43.(2022春•九龙坡区校级期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.44.(2022春•双台子区期末)如图,点O是线段AB上的一点,OA=OC,OD 平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.45.(2022春•汶上县期末)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.46.(2022春•天山区校级期末)如图,在Rt△ABC中,∠BAC=90°,D是BC 的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.47.(2022•龙华区校级一模)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.48.(2022春•阳新县期末)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.49.(2021秋•临沂期末)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.50.(2022秋•铁西区月考)如图,已知四边形ABCD是正方形,AB=4,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连CG.(1)求证:四边形DEFG是正方形;(2)求AE2+CE2的最小值.51.(2022•湘潭县校级模拟)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.。

2019-2020北师大版九年级数学(上)期末单元复习第1章特殊的平行四边形1(解析版)

2019-2020北师大版九年级数学(上)期末单元复习第1章特殊的平行四边形1(解析版)

第1章特殊的平行四边形一.选择题(共8小题)1.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1 B.2 C.3 D.42.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若AB=4,∠BAD=60°,则△OCE的面积是()A.4 B.2C.2 D.3.如图,在正方形OABC中,点A的坐标是(﹣3,1),则C点的坐标是()A.(1,3)B.(2,3)C.(3,2)D.(3,1)4.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.55.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.1446.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.7.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.48.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8 B.10 C.10.4 D.12二.解答题(共10小题)9.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.10.如图,点E,F为菱形ABCD对角线BD的三等分点.试判断四边形AECF的形状,并加以证明.11.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=5,AB=6,求菱形ADCF的面积.12.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.13.如图,在△ABC中,BD是AC的垂直平分线.过点D作AB的平行线交BC于点F,过点B 作AC的平行线,两平行线相交于点E,连接CE.求证:四边形BECD是矩形.14.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.15.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.16.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.17.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.18.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:①当BE=时,四边形BECD是矩形,试说明理由;②当BE=时,四边形BECD是菱形.参考答案与试题解析一.选择题(共8小题)1.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1 B.2 C.3 D.4【分析】利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直平分的四边形是菱形,错误;②一组对边平行,一组对角相等的四边形是平行四边形,正确;③有一个角是直角的平行四边形是矩形,错误;④对角线平分、相等且垂直的四边形是正方形,错误;⑤每一条对角线平分每一组对角的四边形是菱形,正确,故选:B.2.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若AB=4,∠BAD=60°,则△OCE的面积是()A.4 B.2C.2 D.【分析】由已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.【解答】解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵∠BAD=60°,∴DH=4×=2,∴S菱形ABCD=4×2=8,∴S△CDA=S菱形ABCD=4,∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=×S△CDA=×4=,故选:D.3.如图,在正方形OABC中,点A的坐标是(﹣3,1),则C点的坐标是()A.(1,3)B.(2,3)C.(3,2)D.(3,1)【分析】作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE =CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,则OD=1,CD=3,得出C(1,3).【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,则∠AEO=∠ODC=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),故选:A.4.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.5【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AH,即可得出AH的长度.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==5.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.144【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,点E、F为线段BD的两个三等分点,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72;6.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.7.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4【分析】利用矩形的性质求得线段AC的长即可求得BD的长.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.8.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8 B.10 C.10.4 D.12【分析】由矩形和菱形的性质可得AE=EC,∠B=90°,由勾股定理可求AE的长,即可求四边形AECF的周长.【解答】解:如图所示,此时菱形的周长最大,∵四边形AECF是菱形∴AE=CF=EC=AF,在Rt△ABE中,AE2=AB2+BE2,∴AE2=1+(5﹣AE)2,∴AE=2.6∴菱形AECF的周长=2.6×4=10.4故选:C.二.解答题(共10小题)9.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.10.如图,点E,F为菱形ABCD对角线BD的三等分点.试判断四边形AECF的形状,并加以证明.【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,OB=OD,再求出OE=OF,然后根据对角线互相垂直平分的四边形是菱形即可.【解答】解:四边形AECF是菱形,理由如下:连接AC交BD于点O,如图所示:∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∵点E,F为菱形ABCD对角线BD的三等分点,∴BE=EF=DF,∴OE=OF,∴四边形AECF是平行四边形,又∵AC⊥BD,∴四边形AECF是菱形.11.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=5,AB=6,求菱形ADCF的面积.【分析】(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;(2)根据条件可证得S菱形ADCF=S△ABC,结合条件可求得答案.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.12.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=6,再由三角函数即可得出AD的长.【解答】证明:(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=12,∴AC⊥BD,OD=OB=BD=6,∵∠ADB=30°,∴cos∠ADB=,∴AD=.13.如图,在△ABC中,BD是AC的垂直平分线.过点D作AB的平行线交BC于点F,过点B 作AC的平行线,两平行线相交于点E,连接CE.求证:四边形BECD是矩形.【分析】求出∠BDC=90°,根据平行四边形的判定得出四边形ABED是平行四边形,关键平行四边形的性质得出AD=BE,根据平行四边形的判定得出四边形BECD是平行四边形,根据矩形的判定得出即可.【解答】证明:∵BD是AC的垂直平分线∴AD=DC,BD⊥CA,∴∠BDC=90°,∵由题意知:AB∥DE,AD∥BE∴四边形ABED是平行四边形,∴AD=BE,∴DC=BE,又AC∥BE即DC∥BE∴四边形BECD是平行四边形,∴四边形BECD是矩形.14.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.【分析】(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.15.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.【分析】(1)根据矩形的性质先证明四边形AECF是平行四边形,然后证明∠EAC=∠ACE 得出AE=CE,从而可证得四边形AECF是菱形;(2)首先设BF=x,则FC=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2,求出x的值,得出FC,再根据菱形面积计算方法即可求得答案.【解答】证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=2016.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.【分析】易证四边形BNDM是平行四边形;根据AB=BF,运用AAS可证明Rt△ABM≌Rt△FBN,得BM=BN.根据有一邻边相等的平行四边形是菱形得证.【解答】证明:∵两个完全相同的矩形纸片ABCD、BFDE,根据矩形的对边平行,∴BC∥AD,BE∥DF,∴四边形BNDM是平行四边形,∵∠ABM+∠MBN=90°,∠MBN+∠FBN=90°,∴∠ABM=∠FBN.在△ABM和△FBN中,∴△ABM≌△FBN,(ASA).∴BM=BN,∴四边形BNDM是菱形.17.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A 停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.18.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:①当BE= 2 时,四边形BECD是矩形,试说明理由;②当BE= 4 时,四边形BECD是菱形.【分析】(1)先证明△EBF≌△DCF,可得DC=BE,可证四边形BECD是平行四边形;(2)①根据四边形BECD是矩形时,∠CEB=90°,再由∠ABC=120°可得∠ECB=30°,再根据直角三角形的性质可得BE=2;②根据四边形BECD是菱形可得BE=EC,再由∠ABC=120°,可得∠CBE=60°,进而可得△CBE是等边三角形,再根据等边三角形的性质可得答案.【解答】(1)证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)解:①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,故答案为:2;②BE=4,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=4.故答案为:4.。

《平行四边形》期末复习 —初中数学课件PPT

《平行四边形》期末复习 —初中数学课件PPT
∴△ODE≌△FCE(AAS). (2)∵△ODE≌△FCE,∴OD=FC. ∵CF∥BD,∴四边形ODFC是平行四边形. 在矩形ABCD中,OC=OD,∴ ODFC是菱形.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.

浙教版八下数学平行四边形期末总复习练习和能力提升测试(附详细的解答过程)

浙教版八下数学平行四边形期末总复习练习和能力提升测试(附详细的解答过程)

浙教版八下期未总复习练习--一平行四边形1.□ABCD 的对角线交于O ,AC =12cm,BD =5cm,△OAB 的周长为15.5cm,则CD 的长度等于( ).A.7cm B.8cm C.9cm D.9.5cm2.一个多边形的内角和是540°,则这个多边形是( ) A 、三角形 B 、四边形 C 、五边形 D 、六边形 3.下列说法中,错误的是( )A 、平行四边形的对角线互相平分B 、对角线互相平分的四边形是平行四边形C 、 平行四边形的对角相等D 、对角线互相垂直的四边形是平行四边形 4.如图,在ABC 中,AB=AC=5,D 是BC 上的点,DE ∥AB 交AC 于E,DF ∥AC 交AB 于点F,那么四边形AFDE 的周长是( )A 、5B 、10C 、15D 、20 5.在四边形ABCD 中,AD ∥BC ,若ABCD 是平行四边形,则还应满足( ). A.∠A+∠C=180° B.∠B+∠D=180° C.∠A+∠B=180° D.∠A+∠D=180°6.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、 F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( ) A.20cm B.202cm C. 203cm D.25cm 7.下列图形中,面积最大的是( )A .边长为3cm 的正方形B .一组邻边的长分别是1cm 、3cm 的平行四边形C .对角线长分别为4cm 和1cm 的菱形D .中位线长为2cm ,高为2cm 的梯形 8.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).A.150°B.125°C.135°D.112.5°9、如图所示,四边形ABCD 中,DC ∥AB ,BC=1, AB=AC=AD=2.则BD 的长为 ( ) A. 14 B. 15 C. 23 D. 3210.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。

人教版八年级数学下册期末复习资料《平行四边形》复习题

人教版八年级数学下册期末复习资料《平行四边形》复习题

八年级数学期末复习资料《平行四边形》期末复习题一、知识点:1. 平行四边形的性质: 边:_________________ 角:________________ 对角线:_____________2. 平行四边形的判定: 边:___________________________ ___________________________ ___________________________ 角:____________________________ 对角线:______________________3. 三角形中位线定理二、巩固练习1.在□ABCD 中,∠A =70°,AD=3cm,CD=2BC,则∠B =______,□ABCD 的周长是_________2. 已知□ABCD 的周长是36,其中AB 长8,则CD=________,AD=________ 3、已知O 是□ABCD 的对角线的交点,AC=10cm ,BD=18cm ,AD=12cm ,则 △BOC 的周长是 。

4.平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

5.如右图,平行四边形ABCD 中,对角线AC 、BD 交于点O , 点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ______ 6. 如右图,D 、E 、F 分别为△ABC 各边的中点,则图中的 平行四边形有 个7、在△ABC 中,AB=6cm ,AC=8cm ,BC=12cm ,D 、E 、F分别是各边中点,则△DEF 的周长= 8.已知:在ABCD 中,∠A 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,则BC 的长为_________9.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。

2020-2021学年八年级数学下学期期末复习:1.4 特殊平行四边形【知识梳理+真题演练】(人教

2020-2021学年八年级数学下学期期末复习:1.4  特殊平行四边形【知识梳理+真题演练】(人教

专题1.4 特殊平行四边形知识归纳 知识点1:菱形1. 定义:一组邻边相等的平行四边形叫做菱形.2. 性质:菱形的四条边相等,两条对角线互垂直平分,且每一条对角线平分一组对角.3. 判定方法:①一组邻边相等的平行四边形是菱形;①对角线互相垂直的平行四边形是菱形;①四条边都相等的四边形是菱形.4. 设菱形对角线长分别为l 1,l 2,则S 菱形=21l 1l 2.1.(2020•荆门)如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .502.(2020•黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4:1B .5:1C .6:1D .7:13.(2020•牡丹江)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ①x 轴且AD =4,①A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)4.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.125B.52C.3D.55.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD 上一点,连接OE,若OE=CE,则OE的长是()A.2B.52C.3D.46.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.√13D.67.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.968.(2020•贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.329.(2020•福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:①BAE=①DAF.10.(2020•滨州)如图,过①ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:①PBE①①QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.11.(2020•郴州)如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.12.(2020•连云港)如图,在四边形ABCD中,AD①BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.知识点2:矩形1.定义:有一个内角是直角的平行四边形叫做矩形.2.性质:矩形的对角线互相平分且相等,四个角都是直角.3.判定方法:①有三个角是直角的四边形是矩形;①对角线相等的平行四边形是矩形;①有一个角是直角的平行四边形是矩形.4. 设矩形的长和宽分别为a,b,则S矩形=ab.1.(2020秋•西安期末)如图,矩形ABCD的对角线AC、BD相交于点O,①ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3B.4C.2D.32.(2020春•漳州期末)如图,将矩形纸片右侧部分的四边形ABCD沿线段AD翻折至四边形AB′C′D的位置.若①DAB=56°,则①1的度数是()A.34°B.56°C.58°D.68°3.(2020春•复兴区期末)如图,在矩形ABCD中,AC、BD相交于点O,AE平分①BAD交BC于点E,若①CAE=15°,则①BOE的度数为()A.60°B.75°C.72°D.90°4.(2019秋•崂山区期末)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE①BD,垂足为点E,AE=5,且EO=2BE,则OA的长为()A.B.C.3D.5.(2020春•新乐市期末)如图,在①ABC中,点D在BC上,DE①AC,DF①AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若①BAC=90°,则四边形AEDF是矩形C.若AD①BC且AB=AC,则四边形AEDF是菱形D.若AD平分①BAC,则四边形AEDF是矩形6.(2020秋•太原期末)如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.①ABC=90°B.AC=BD C.AD=AB D.①BAD=①ADC7.(2020秋•紫金县期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC8.(2020春•南宁期末)如图,在△ABC中,∠ACB=90°,D是AB的中点,且DC=AC,则∠B的度数是()A.25°B.30°C.45°D.60°9.(2020•聊城)如图,在①ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.10.(2020•遂宁)如图,在①ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:①BDE①①F AE;(2)求证:四边形ADCF为矩形.11.(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF①AB,OG①EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.知识点3:正方形1. 正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形.2. 正方形的性质(1)正方形既有矩形的性质,又有菱形的性质.(2)正方形的四个角都是直角,四条边相等.(3)正方形的对角线相等且互相垂直平分.3. 正方形的判定方法(1)有一组邻边相等的矩形是正方形.(2)对角线互相垂直的矩形是正方形.(3)有一个角是直角的菱形是正方形.(4)对角线相等的菱形是正方形.4. 平行四边形、矩形、菱形与正方形之间的联系1.(2020秋•大东区期末)如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则①CDE的度数为()A.20°B.22.5°C.25°D.30°2.(2020春•十堰期末)如图,在正方形OABC中,点B的坐标是(6,6),点E、F分别在边BC、BA 上,OE=3.若①EOF=45°,则F点的纵坐标是()A.2B.C.D.13.(2020春•漳州期末)如图,在正方形ABCD中,BF①CE于点F,交AC于点G,则下列结论错误的是()A.①BCG①①CDE B.AG=BE C.①OBG=①OCE D.①ABG=①AGB 4.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:①BAE①①CDE;(2)求①AEB的度数.5.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE =DF,连接AE和BF相交于点M.求证:AE=BF.。

第五单元 平行四边形和梯形(期末复习讲义)四年级数学上册(人教版)

第五单元 平行四边形和梯形(期末复习讲义)四年级数学上册(人教版)

人教版四年级数学上册期末复习重难点知识点第五单元平行四边形和梯形同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:平行与垂直1.在同一个平面内,不相交的两条直线叫做平行线。

2.在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

3.ɑ与b互相平行,记作ɑ∥b,读作ɑ平行于b。

4.两条直线相交成直角,就说这两条直线互相垂直;其中一条直线是另一条直线的垂线;这两条直线的交点叫垂足。

5.直线ɑ与b互相垂直,记作ɑ⊥b,读作ɑ垂直于b。

知识点二:画垂线一靠,二移,三画,四标。

知识点三:点到直线的距离1.点到直线的距离是垂直线段最短。

2.从直线外一点到这条直线所画的垂直线段的长度,叫做这点到这条直线的距离。

3.与两条平行线相互垂直的线段的长度都相等。

知识点四:画垂线的实际应用1.先画长;2.再用画垂线的方法画出两条宽(等长的边);3.最后连接两条宽(边)。

知识点五:认识平行四边形1.平行四边形的对边互相平行,且相等。

2.平行四边形的对角相等。

3.两组对边分别平行的四边形,叫做平行四边形。

4.从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

知识点六:平行四边形的特性1.平行四边形容易变形,具有不稳定性。

2.平行四边形在实际生活中的一些应用。

知识点七:认识梯形、平行四边形的关系1.只有一组对边平行的四边形叫做梯形。

特殊梯形:两个腰相等的等腰梯形;有一个角是直角的直角梯形。

2.长方形、正方形、平行四边形和梯形这几种四边形之间的关系:重点:1.掌握平行和垂直的特点并能描述平行与垂直两种位置关系;2.掌握画垂线的步骤并能画出一条已知直线的垂线;3.理解点到直线的距离,并理解两条平行线之间的垂直线段都相等;4.掌握长方形的画法,按照题目的要求正确画出长方形,应用垂直于平行知识解决实际问题。

2021-2022学年鲁教版八年级数学上册《第5章平行四边形》期末综合复习题(附答案)

2021-2022学年鲁教版八年级数学上册《第5章平行四边形》期末综合复习题(附答案)

2021-2022学年鲁教版八年级数学上册《第5章平行四边形》期末综合复习题(附答案)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 2.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④3.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1cm B.2cm C.3cm D.4cm5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.186.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6B.8C.10D.127.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个8.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等9.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.510.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.211.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形12.七边形有()条对角线.A.11B.12C.13D.1413.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.614.一个多边形的内角和是900°,这个多边形的边数是()A.7B.8C.9D.1015.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.16.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为.17.平行四边形两邻角的比是3:2,则这两个角的度数分别是.18.已知▱ABCD中,∠C=2∠B,则∠A=度.19.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)20.已知△ABC中,D、E分别是AB、AC边的中点,则=.21.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是.22.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.23.若正多边形的内角和是1080°,则该正多边形的边数是.24.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.25.如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.26.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.27.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF=.证明:参考答案1.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE∥DF;C、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;D、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF.故选:B.2.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.3.解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.4.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.5.解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:C.7.解:(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;正确;(2)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形;正确;(3)∵AB∥CD,∴∠A+∠D=180°,∵∠DAB=∠DCB,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形;正确;(4)可能是等腰梯形,所以错误;(5)∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵AO=CO,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形;正确;(6)此题可以是等腰梯形;错误.故选:B.8.解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.9.解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选:C.10.解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:D.11.解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.12.解:当n=7时,=14.故选:D.13.解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.14.解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A.15.解:∵平行四边形ABCD的周长是18∴AB+BC=18÷2=9∵三角形ABC的周长是14∴AC=14﹣(AB+AC)=5故答案为5.16.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为:14cm或16cm.17.解:可设平行四边形的两邻角为3x,2x,则可得3x+2x=180°,解得这两个角的度数分别为108°,72°,故答案为:108°,72°.18.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠C+∠B=180°,∵∠C=2∠B,∴2∠B+∠B=180°,解得:∠B=60°,∴∠C=120°,∴∠A=120°,故答案为:120.19.解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).20.解:由D、E分别是AB、AC边的中点,可得DE为△ABC的中位线,所以=.故答案为.21.解:∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×12=6.故答案是:6.22.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.23.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.24.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.25.证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴AO=CO BO=DO,∵AE=CF,∴AO﹣AE=CO﹣CF,即EO=FO,∴四边形BEDF为平行四边形.26.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.27.解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.。

北师大版数学八年级下册期末复习(六) 平行四边形

北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。

期末复习 《平行四边形》常考题与易错题精选(50题)(原卷版)

期末复习 《平行四边形》常考题与易错题精选(50题)(原卷版)

期末复习- 《平行四边形》常考题与易错题精选(50题)一.平行线之间的距离(共3小题)1.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A.12cm B.12cm C.24cm D.24cm2.下列说法中,正确的是( )A.在同一平面内,两条不重合的直线的位置关系是平行或垂直B.在平面内经过一点有且只有一条直线与已知直线垂直C.如果两条直线被第三条直线所截,那么内错角相等D.两条平行线间的距离是指从一条直线上的一点到另一条直线的垂线段3.如图,直线AB、CD被直线EF所截并分别交于点G、H,AB∥CD,GO⊥CD于点O,∠EGB=45°.(1)求证:∠GHO=45°.(2)若HO=5cm,求直线AB与直线CD的距离.二.三角形中位线定理(共6小题)4.如图,△ABC中,D,E分别是AB,AC边上的中点,点F在DE上,且∠AFB=90°,若AB=10,BC =16,则EF的长为( )A.3B.5C.6D.85.如图所示,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…依此类推,第2006个三角形的周长为( )A.B.C.D.6.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是( )A.8B.9C.10D.127.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.8.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD 和EF.(1)求证:DE=CF;(2)求EF的长.9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=20°,求∠PFE的度数.三.平行四边形的性质(共7小题)10.如图,在平面直角坐标系中▱OABC的顶点O,A,B的坐标分别是(0,0),(5,0),(2,3),则点C的坐标是( )A.(﹣2,2)B.(﹣2,3)C.(﹣3,3)D.(﹣3,2)11.如图,在平行四边形ABCD中,过点B作BE⊥CD交CD延长线于点E,若∠A=40°,则∠EBC的度数为( )A.40°B.50°C.60°D.70°12.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.20B.21C.22D.2313.已知:如图,四边形ABCD是平行四边形,P,Q是对角线BD上的两个点,且BP=DQ.求证:PA=QC.14.已知:如图,E,F是平行四边形ABCD的对角线AC上两点,AF=CE,求证:DF=BE,DF∥BE.15.如图,在▱ABCD中,E是BC边上一点,连接AB、AC、ED.若AE=AB,求证:AC=DE.16.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C 作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=70°,∠EAD=3∠EAO,求∠BCA的度数.四.平行四边形的判定(共5小题)17.如图,下列条件不能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.AB=CD,AD=BCC.∠ABC=∠ADC,∠BAD=∠BCD D.AO=CO,BO=DO18.四边形ABCD的对角线AC、BD交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.∠BAD=∠BCD,∠ABC=∠ADC B.∠ABC=∠ADC,AB∥CDC.AB∥CD,OB=OD D.AB=CD,OA=OC19.如图,在四边形ABCD中,点E、F分别是对角线AC上任意两点,且满足AF=CE,连接DF,BE、若DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.20.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.21.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连接CE.求证:四边形ADCE是平行四边形.五.平行四边形的判定与性质(共4小题)22.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.23.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.24.如图所示,点E在四边形ABCD的边AD上,连接CE,并延长CE交BA的延长线于点F,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC;(2)若AD∥BC,求证:四边形ABCD为平行四边形.25.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.六.菱形的性质(共2小题)26.如图,菱形ABCD的对角线AC、BD相交于点O,若AC=16,BD=8,则菱形ABCD的边长为( )A.4B.C.8D.1027.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若OA=3,EF=2,则菱形ABCD的边长为( )A.2B.2.5C.3D.5七.菱形的判定(共3小题)28.下列说法错误的是( )A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直的四边形是菱形C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半D.直角三角形斜边上的中线等于斜边的一半29.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE,CF.求证:四边形AECF是菱形.30.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.八.菱形的判定与性质(共4小题)31.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形.(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8.①求菱形ABCD的面积.②求四边形ABED的周长.32.如图,在△ABC中,BD平分∠ABC,BD的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)求证:四边形BGDE是菱形;(2)若∠ABC=30°,∠C=45°,ED=6,求CG的长.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C 作CE⊥AB交AB延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若CE=3,∠ADC=120°,求四边形ABCD的面积.34.在平行四边形ABCD中,对角线AC、BD交于点O,过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE、DF.(1)如图1,求证:四边形EBFD是菱形;(2)如图2,∠ABC=90°,AE=EO,请直接写出图中的所有等边三角形.九.矩形的性质(共2小题)35.如图,矩形ABCD的对角线AC,BD交于点O,点E,F分别是OB,OC上的点,且OE=OF,连接AE,DF.求证:∠EAD=∠FDA.36.如图,已知矩形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE 与DE相交于点E.(1)求证:四边形CODE是菱形;(2)若AB=6,∠AOB=60°,求四边形CODE的周长.一十.矩形的判定(共4小题)37.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点B作BE∥AC,且BE=AC,连接EC,求证:四边形BECO是矩形.38.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,且AF=DF.(1)求证:△AFE≌△DFB;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足什么条件时,四边形ADCE是矩形.39.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.40.如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.一十一.矩形的判定与性质(共4小题)41.在菱形ABCD中,两条对角线相交于点O,F是边CD的中点,连接OF并延长到E,使FE=OF,连接CE,DE.(1)求证:四边形OCED是矩形;(2)求证:OE∥BC.42.如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.43.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.44.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.一十二.正方形的性质(共5小题)45.如图,在正方形ABCD中,E,F分别为AB、AD上的点,且AE=AF,点M是EF的中点,连接CM、CF、CE.求证:CM⊥EF.46.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF.AE与BF交于点O.猜想:AE 与BF的关系,并给出证明.47.如图,在正方形ABCD中,AB=24cm.动点E,F分别在边CD,BC上,点E从点C出发沿CD边以1cm/s的速度向点D运动,同时点F从点C出发沿CB边以2cm/s的速度向点B运动(当点F到达点B 时,点E也随之停止运动),连接EF.问:在AB边上是否存在一点G,使得以B,F,G为顶点的三角形与△CEF全等?若存在,求出两三角形全等时BG的长;若不存在,请说明理由.48.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.49.如图,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.一十三.正方形的判定与性质(共1小题)50.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连接BD,交EF于点Q,求证:DQ•BC=CE•DF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、性质:
项目 四边形 对边 角 对角线 对称性
平行且相等
平行四边形
对角相等 邻角互补
互相平分
中心对称图形
平行且相等
矩形
四个角 都是直角 对角相等 邻角互补 四个角
相等且互相平分 互相垂直平分,且每一 条对角线平分一组对角 互相垂直平分且相等,每 一条对角线平分一组对角
中心对称图形 轴对称图形 中心对称图形 轴对称图形 中心对称图形
(1)求证:四边形AEFD是平行四边形
F
(2)△ABC增加一个条件
时,
D E A
四边形AEFD是矩形;△ABC增加
一个条件
时,四边形AEFD是菱形。
B C
(3)当△ABC满足什么条件时, 以A、E、F、D为顶点的四边形 不存在?
3、△ABC中,点O是AC边上的一个动点,过点O作直 线MN∥BC, ,设MN交∠BCA的平分线于点E,交∠BCA的外 角平分线于点F. (1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是矩形?并证明 你的结论.
A D
A、 4 3cm
4 2cm B、
30° 6 30°
2X
3
E
6
C、3 3cm
D、8cm
B
X
F
C
3、现将这张矩形的纸对折再对折,然后 沿着图中的虚线剪下,打开,得到的是 (B )
A、平行四边形
C、矩形
B、菱形
D、正方形 D
A
O
C
B
若展开后的菱形纸片ABCD中,两条对 角线AC= 4 3,BD= 4 。 (1)求菱形ABCD的面积; 1 4 34 8 3 2 D (2)求菱形ABCD的高;
A
D
B
C
A
M B
O
E3
1 2 4
6F 5
N
C
D
4、 如图,矩形纸片ABCD中,AB=3厘米,BC=4厘 米,现将A、C重合,使纸片折叠压平,设折痕为EF。 试确定重叠部分△AEF的面积。
G A
3 4-X 1
F

B
2
X
E
4-X
C
2、矩形ABCD中,AB=3,BC=4,P是边AD 上的动点,PE⊥ ,PF ⊥ BD, ∥AC OD,PF ∥ OA,
菱形
平行 且四边相等 平行 且四边相等
正方形
都是直角
轴对称图形
三、判定方法:
四边形 1、定义:两组对边分别平行 平行四边 形 3、一组对边平行且相等
条件
2、两组对边分别相等 4、对角线互相平分
1、定义:有一角是直角的平行四边形 矩形 2、对角线相等的平行四边形 3、三个角是直角的四边形 1、定义:一组邻边相等的平行四边形 2、对角线互相垂直的平行四边形 3、四条边都相等的四边形 1、定义:一组邻边相等且有一个角是直角的平行四边形 正方形
(1)在△ACD中,试求AC边上的高。 (2)求PE+PF的值。
P E O F C
A
O
D
B
探究题:如图,正方形ABCD中有一个小正 方形AEFG,点E、G分别在AB、AD上,点F 在正方形ABCD的内部,(1)试说明线段 BE与DG之间的大小关系和位置关系。
D C
G
F
E A B
例4.已知正方形ABCD
8 3 4 2 3
4
60°
A
30°
2 3
2
(3) 求∠ADC的度数。
o
C
120°
B
4、如果想得到一个正方形,该怎 么剪?并解释你这样做的道理。
D
A
O B
C
4、已知正方形ABCD
(1)若一条对角线BD长为2,求这个正 方形的周长、面积。 2 4 2
(2)若E为对角线上一点,连接EA、 EC。EA=EC吗?说说你的理由。 (3)若AB=BE,求 ∠ AED的大小。 112.5°
B C A E
D
1、如图,两张等宽的纸条交叉重叠在一起, 猜想重叠部分的四边形ABCD是什么形状? 说说你的理由。
A
F
D
E
B C
2、如图,以正方形ABCD的一边AD为边 向外作等边三角形ADE,则∠BED等于 ( )
(A)30° (C)45° (B)37.5° (D)50°
B
A
E C D
2、如图,△EFC是△ABC饶点C顺时针旋转 60°得到的图形,△DBF是△ABC饶点B逆时针 旋转60°得到的图形
菱形
2、有一组邻边相等的矩形 3、有一个角是直角的菱形
1、如图,一张矩形纸片ABCD,对角线 AC,BD相交于点O。已知BC=4cm, AC=6cm,则AB=2 5 cm,△ABO的周 长为6 2 5 cm。
A D
O
6
C
B
4
2、如图,一张矩形纸片ABCD,沿AF折叠, 使点若点 B落在 CD边上。若∠ AFB=55 °,那么 B恰好落在 CD的中点 E处, ∠ FEC= 已知 CD为6cm 20,则 °。 AF等于( A )
相关文档
最新文档