弹性力学基础.ppt
合集下载
第三章 各向异性弹性力学基础
判定依据是非零应力状态下,材料的弹性 应变能位正值,应变能应是应变(或应力)的 正定二次型。 1 W S ij i j 2
W 为 i 的正定二次型的充要条件是矩阵 S
的所有主要主子式大于零,即:
S11 0,
S11
S12
S 21 S 22
0, , det Sij 0
即:
S11 S 21 S 21 0 0 0
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:2 12 4而 1 4 在x3变向时要变号,为保证W相同, 则有
S14 0
同理: S14 S 24 S 34 S 46 0
S15 S 25 S 35 S 56 0
独立常数减少为13个,即
S11 S12 S 22 S13 S 23 S 33 对 称 0 0 0 S 44 0 0 0 S 45 S 55 S16 S 26 S 36 0 0 S 66
Cij C ji 刚度矩阵 Sij S ji 柔度矩阵
*
各向异性体的弹性应变能为:
1 1 W C ij i j S ij i j 2 2
拉-拉耦合 (泊桑效 应)
拉剪耦 合
C11
C22
C33 C44 C55
二、有一弹性对称面(13个弹性常数)
弹性对称面:沿这些平面的对称方向弹性性 能是相同的。 材料主轴(或弹性主轴):垂直于弹性对称 面的轴。
W 为 i 的正定二次型的充要条件是矩阵 S
的所有主要主子式大于零,即:
S11 0,
S11
S12
S 21 S 22
0, , det Sij 0
即:
S11 S 21 S 21 0 0 0
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:2 12 4而 1 4 在x3变向时要变号,为保证W相同, 则有
S14 0
同理: S14 S 24 S 34 S 46 0
S15 S 25 S 35 S 56 0
独立常数减少为13个,即
S11 S12 S 22 S13 S 23 S 33 对 称 0 0 0 S 44 0 0 0 S 45 S 55 S16 S 26 S 36 0 0 S 66
Cij C ji 刚度矩阵 Sij S ji 柔度矩阵
*
各向异性体的弹性应变能为:
1 1 W C ij i j S ij i j 2 2
拉-拉耦合 (泊桑效 应)
拉剪耦 合
C11
C22
C33 C44 C55
二、有一弹性对称面(13个弹性常数)
弹性对称面:沿这些平面的对称方向弹性性 能是相同的。 材料主轴(或弹性主轴):垂直于弹性对称 面的轴。
弹性力学知识基础
上述6个方程称几何方程
u v w
唯一确定
{ε }
{f}
但
{ε }
不唯一确定
原因:刚体位移不能确定。
第三节 物理方程
当材料是均匀、连续、各向同性,应力与应变成正比 (小变形),即广义虎克定律
ε x = [σ x − µ (σ y + σ z )] E ε y = [σ y − µ (σ z + σ x )] E ε z = [σ z − µ (σ x + σ y )] E = τ xy G , γ yz = τ yz G , γ zx = τ zx G
T
(1-2)
2、平衡微分方程 、
∂σ x τ yx τ zx + + + ∂y ∂z ∂x ∂ σ y τ xy τ zy + + + ∂x ∂z ∂y ∂ σ z + τ yz + τ xz + ∂y ∂x ∂z
F F F
Vx
=0 =0 =0
Vy
Vz
反映了物体内的应力场所须满足的静力关系, 或者应力分量的关系。
(1-9)
γ xy
其中: E
G
弹性模量 切变模量 泊松比
µ
G = E [2(1 + µ )]
解(1-9)式, 得物理方程:
{σ } = [D]{ε }
{σ } = σ xσ yσ zτ xyτ yzτ zx
T
(1-10)
{ε } = ε xε yε zγ xyγ yzγ zx
a、正应力虚功: 正应力 虚位移 虚功 b、切应力虚功
x方向
有限元课件-第2讲-矩阵分析及弹性力学基础
有限元的离散化过程
总结词
离散化是有限元方法的核心步骤之一,它涉及到将连 续的物理系统划分为有限个离散的单元。离散化的精 度和单元类型的选择对求解结果的精度和计算效率有 很大的影响。
详细描述
离散化的过程通常需要根据所处理的问题和所用的数 学模型来确定。在离散化过程中,需要将连续的求解 区域划分为有限个小的单元,每个单元可以有不同的 形状和大小。同时,还需要确定每个单元的节点和边 界条件,以便建立整个系统的方程组。离散化的精度 越高,求解结果的精度就越高,但计算量也会相应增 大。因此,需要在精度和计算效率之间进行权衡。
过程求解。
LU分解
LU分解是将一个矩阵分解为一个 下三角矩阵和一个上三角矩阵的乘 积。
迭代法
迭代法是一种求解线性代数方程组 的方法,通过不断迭代逼近解。
弹性力学中的基本矩阵
弹性矩阵
弹性矩阵是表示弹性力学中应 力与应变之间关系的矩阵。
刚度矩阵
刚度矩阵是表示结构刚度的矩 阵,用于有限元分析中。
质量矩阵
02
矩阵分析基础
矩阵的定义与运算
矩阵的定义
矩阵是一个由数字ቤተ መጻሕፍቲ ባይዱ成 的矩形阵列,表示为矩 形阵列的括号中的数字
。
矩阵的加法
矩阵的加法是将两个矩 阵的对应元素相加。
矩阵的数乘
数乘是指一个数与矩阵 中的每个元素相乘。
矩阵的乘法
矩阵的乘法仅适用于满 足特定条件的两个矩阵
。
线性代数方程组的求解
高斯消元法
高斯消元法是一种求解线性代数 方程组的方法,通过消元和回代
平衡方程
描述了物体在受力平衡状 态下的应力分布。
几何方程
描述了物体在受力后产生 的应变。
弹性力学基础
• (1)判断键盘中有无键按下 • 将全部行线置低电平,列线置高电平,然后检测列线的状态,只要有
一列的电平为低,则说明有键按下,如列线全部为高电平,则说明没 有键被按下。
上一页 下一页 返回
[任务5.1]键盘接口设计
• (1)判断键盘中有无键按下 • (2)去除键的机械抖动 • (3)如有键被按下,则寻找闭合键所在位置,求出其键代码 • (4)程序清单
• 1.并行输出 • 如图5-8所示,这是一个由单片机的P1口驱动1位LE D显示器的电路。 • 2.串行偷出 • 电路如图5-9所示,采用串行输出可以大大节省单片机的I/O口资源。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
• 5. 2. 3静态显示电路的软件结构
• 图5-8所示的并行输出的1位共阴LE D静态显示电路比较简单,程序 也不复杂。
• 5. 2. 4动态显示电路的结构及原理
• 动态显示就是逐位轮流点亮各位LE D显示器(即扫描)。动态显示电 路是单片机中应用最为广泛的显示方式之一。适用于LE D显示器较 多的场合。电路如图5-10所示。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
2.1 弹性力学概述
• 本章主要介绍弹性力学的基本概念,用解析法求解简单弹性力学问题 的基础知识,其中主要包括弹性力学基本方程以及边界条件表达式等。 掌握这些弹性力学的基础知识对后续有限单元法的学习非常重要。此 外,为了更好地理解机械结构有限元分析的基本原理以及将来能对分 析结果更好地进行评价和理解,本章还介绍了应变能、虚位移、虚功 及最小势能原理。
• 弹性力学的研究方法决定了它是一门基础理论课程,因此,直接把解 的困难性。由于经典的解析方法很难用于工程构件分析,因此探讨近 似解法是弹性力学发展的特色。近似求解方法,如差分法和变分法等, 特别是随着计算机的广泛应用而发展起来的有限单元法为弹性力学的 发展和解决工程实际问题带来了广阔的前景。
一列的电平为低,则说明有键按下,如列线全部为高电平,则说明没 有键被按下。
上一页 下一页 返回
[任务5.1]键盘接口设计
• (1)判断键盘中有无键按下 • (2)去除键的机械抖动 • (3)如有键被按下,则寻找闭合键所在位置,求出其键代码 • (4)程序清单
• 1.并行输出 • 如图5-8所示,这是一个由单片机的P1口驱动1位LE D显示器的电路。 • 2.串行偷出 • 电路如图5-9所示,采用串行输出可以大大节省单片机的I/O口资源。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
• 5. 2. 3静态显示电路的软件结构
• 图5-8所示的并行输出的1位共阴LE D静态显示电路比较简单,程序 也不复杂。
• 5. 2. 4动态显示电路的结构及原理
• 动态显示就是逐位轮流点亮各位LE D显示器(即扫描)。动态显示电 路是单片机中应用最为广泛的显示方式之一。适用于LE D显示器较 多的场合。电路如图5-10所示。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
2.1 弹性力学概述
• 本章主要介绍弹性力学的基本概念,用解析法求解简单弹性力学问题 的基础知识,其中主要包括弹性力学基本方程以及边界条件表达式等。 掌握这些弹性力学的基础知识对后续有限单元法的学习非常重要。此 外,为了更好地理解机械结构有限元分析的基本原理以及将来能对分 析结果更好地进行评价和理解,本章还介绍了应变能、虚位移、虚功 及最小势能原理。
• 弹性力学的研究方法决定了它是一门基础理论课程,因此,直接把解 的困难性。由于经典的解析方法很难用于工程构件分析,因此探讨近 似解法是弹性力学发展的特色。近似求解方法,如差分法和变分法等, 特别是随着计算机的广泛应用而发展起来的有限单元法为弹性力学的 发展和解决工程实际问题带来了广阔的前景。
弹性力学基础 应力应变
上式就是空间问题的应力边界条件,它表明应力分
量的边界值与面力分量之间的关系。
过一点任意斜面的正应力与切应力
问题2:求经过该点的任何斜面上的正应力和切应力? 平面ABC上的正应力sn即为
上面所求的全应力p向法线方向 n的投影:
s n lp x mpy npz 平面ABC上的切应力tn则由
2 yz 2 xz
s x t xy t xz I 3 t yx s y t yz t zx t zy s z
过一点任意斜面的主应力与主方向
s I1s I 2s I 3 0
3 2
主应力特征方程有三个实数根,s1,s2,s3 分别表示这
三个根,代表某点三个主应力,从而确定弹性体内部任 意一点主应力。
弹性体内任意一点的最大正应力为s1,最小正应力为s 3
最大切应力可以通过主应力计算,等于(s 1-s3)/2 。 最大切应力作用平面也可以通过主应力方向得到,其作用 平面通过s 2 应力主方向,并且平分s 1和s 3应力主方向的 夹角(即45°角)。
(t n )极值
(s 1 s 3 ) 2
由泰勒级数展开,求各面应力
空间问题的平衡微分方程
分析问题方法:空间力系和力矩的平衡条件(6个)
F M
x
0,
x
0,
F 0, F 0 M 0, M 0
y z y z
切应力互等定理
平衡微分方程
t yx s x t zx fx 0 x y z t xy s y t zy fy 0 x y z t yz t xz s z fz 0 x y z
空间问题的基本未知量与方程
弹性力学基础(二)
边值问题的提法:
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
FEM-03弹性力学基础(三类方程)
物理方程(cont.)
E 1 1 2
2G 2G 2G D 0 0 0 0 0 0 0 0 0
E G 2 1
0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G
y
v v dy y
u dy y
B' B dy M' v M u dx O A'
v dx x
A
u
u dx x
x
u u x dx A点位移 v v dx x u u dy y B点位移 v v dy y
11
几何方程
1
1
T
1
0 0 0
1 1
1 0 0 0
0 0 0 1 2 21 0 0
0 0 0 0 1 2 21 0
0 0 0 0 1 2 21 0
18
xy
v u xy x y w v yz y z u w zx z x
13
几何方程
u x v y y w z z v u xy x y w v yz y z u w zx z x
z 2 2 z y yz
2
2 yz
2 z 2 x 2 xz 2 2 x z xz
2 x yz xz xy 2 x x y z y z 2 y zx yz xy 2 y y x z x z xy yz zx 2 z 2 z z x y x y
第2讲 矩阵分析及弹性力学基础PPT课件
主子式皆大于0
北京航空航天大学
13
二次型的微商
n
f(x1,x2, ,xn)xTAx aijxixj i,j1
f x
f x1 f x2 f xn
2 2 2
n i1 n i1
n i1
a1i xi a2i xi
ani xi
a11 2a21
an1
北京航空航天大学
19
位移
位移就是位置的移动。物体内任意一点的 位移,用位移在x,y,z坐标轴上的投影u、 v、w表示。
北京航空航天大学
20
应 力—物体内某一点的内力
F3
应力S在其作用截面上的法向 分量为正应力σ,切向分量称 为剪应力,用τ表示。
F1
F2
lim Q S
A0 A
北京航空航天大学
21
N A
Nsin sin
A
Nsin cos
A
显然,点p在不同截面上的应力是不同的。为分析点p的应力状态,即 通过p点的各个截面上的应力的大小和方向,在p点取出的一个无穷小 平行六面体。用六面体表面的应力分量来表示p点的应力状态。
北京航空航天大学
22
一点的应力状态
无穷小正六面体, 六面体的各棱边 边平行于坐标轴
17
外力和内力
体力—分布在物体体积内的力,例如重力 和惯性力。
面力—分布在物体表面上的力,例如接触 压力、流体压力。
➢ 分布力:连续分布在表面某一范围内
➢ 集中力:分布力的作用面积很小时的简化
内力—外力作用下,物体内部相连各部分 之间产生的相互作用力。
北京航空航天大学
18
位移、应力、应变
对变形体受力和变形进行描述的基本变量 位移——物体变形后的形状 应力——物体的受力状态 应变——物体的变形程度
北京航空航天大学
13
二次型的微商
n
f(x1,x2, ,xn)xTAx aijxixj i,j1
f x
f x1 f x2 f xn
2 2 2
n i1 n i1
n i1
a1i xi a2i xi
ani xi
a11 2a21
an1
北京航空航天大学
19
位移
位移就是位置的移动。物体内任意一点的 位移,用位移在x,y,z坐标轴上的投影u、 v、w表示。
北京航空航天大学
20
应 力—物体内某一点的内力
F3
应力S在其作用截面上的法向 分量为正应力σ,切向分量称 为剪应力,用τ表示。
F1
F2
lim Q S
A0 A
北京航空航天大学
21
N A
Nsin sin
A
Nsin cos
A
显然,点p在不同截面上的应力是不同的。为分析点p的应力状态,即 通过p点的各个截面上的应力的大小和方向,在p点取出的一个无穷小 平行六面体。用六面体表面的应力分量来表示p点的应力状态。
北京航空航天大学
22
一点的应力状态
无穷小正六面体, 六面体的各棱边 边平行于坐标轴
17
外力和内力
体力—分布在物体体积内的力,例如重力 和惯性力。
面力—分布在物体表面上的力,例如接触 压力、流体压力。
➢ 分布力:连续分布在表面某一范围内
➢ 集中力:分布力的作用面积很小时的简化
内力—外力作用下,物体内部相连各部分 之间产生的相互作用力。
北京航空航天大学
18
位移、应力、应变
对变形体受力和变形进行描述的基本变量 位移——物体变形后的形状 应力——物体的受力状态 应变——物体的变形程度
各向异性弹性力学课件
建议
开发更先进的实验设备和方法,提高测 试精度和效率
深入研究各向异性材料的微观结构和性 能关系
在实际工程中考虑各向异性材料的性能 特点,确保结构安全和稳定性
06
各向异性弹性力学的案例 分析
案例一:高层建筑结构的各向异性分析
总结词
高层建筑结构的各向异性分析是各向异性弹性力学的重要应用之一,主要研究高层建筑在不同方向上的刚度和强 度表现。
03 02
实验设备与实验方法
01
将样本固定在测试仪上
02
通过计算机控制系统施加不同方向的应力
实时采集数据并进行分析
03
实验结果与分析
实验结果
1
2
不同方向上的弹性模量存在差异
3
应变分布不均匀,与方向相关
实验结果与分析
01
泊松比随方向变化而变化
02
结果分析
03
各向异性材料的弹性性质与晶体结构密切相关
。
各向异性弹性力学的发展历程
03
早期研究
理论发展
应用领域拓展
各向异性弹性力学的研究始于19世纪中 叶,当时主要关注天然材料的各向异性性 质。
20世纪初,随着复合材料和金属材料的 广泛应用,各向异性弹性力学的理论得到 进一步发展和完善。
随着科技的进步,各向异性弹性力学在航 空航天、土木工程、机械制造等领域得到 广泛应用,为解决复杂问题提供了重要的 理论支持。
复杂材料行为
各向异性弹性材料在不同方向上 表现出不同的弹性性质,导致其 力学行为非常复杂,难以用传统
弹性力学理论描述。
缺乏统一理论框架
目前缺乏一个统一的数学理论框 架来描述各向异性弹性材料的本 构关系、边界条件和应力分析。
开发更先进的实验设备和方法,提高测 试精度和效率
深入研究各向异性材料的微观结构和性 能关系
在实际工程中考虑各向异性材料的性能 特点,确保结构安全和稳定性
06
各向异性弹性力学的案例 分析
案例一:高层建筑结构的各向异性分析
总结词
高层建筑结构的各向异性分析是各向异性弹性力学的重要应用之一,主要研究高层建筑在不同方向上的刚度和强 度表现。
03 02
实验设备与实验方法
01
将样本固定在测试仪上
02
通过计算机控制系统施加不同方向的应力
实时采集数据并进行分析
03
实验结果与分析
实验结果
1
2
不同方向上的弹性模量存在差异
3
应变分布不均匀,与方向相关
实验结果与分析
01
泊松比随方向变化而变化
02
结果分析
03
各向异性材料的弹性性质与晶体结构密切相关
。
各向异性弹性力学的发展历程
03
早期研究
理论发展
应用领域拓展
各向异性弹性力学的研究始于19世纪中 叶,当时主要关注天然材料的各向异性性 质。
20世纪初,随着复合材料和金属材料的 广泛应用,各向异性弹性力学的理论得到 进一步发展和完善。
随着科技的进步,各向异性弹性力学在航 空航天、土木工程、机械制造等领域得到 广泛应用,为解决复杂问题提供了重要的 理论支持。
复杂材料行为
各向异性弹性材料在不同方向上 表现出不同的弹性性质,导致其 力学行为非常复杂,难以用传统
弹性力学理论描述。
缺乏统一理论框架
目前缺乏一个统一的数学理论框 架来描述各向异性弹性材料的本 构关系、边界条件和应力分析。
弹性力学基础教学课件PPT
弹性力学基础教学课 件
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,
弹性力学ppt课件
《弹性力学》特点?
本课程较为完整的表现了力学问题的数学
建模过程,建立了弹性力学的基本方程和边 值条件,并对一些问题进行求解。
为什么学《弹性力学》?
弹性力学基本方程的建立为进一步的数值
方法奠定了基础,是学习塑性力学、断裂力 学、有限元方法的基础。
精选课件
4
本书结构
• 第一章 绪论 • 第二章 平面问题基本理论 • 第三章 平面问题的直角坐标解答 • 第四章 平面问题的极坐标解答 • 第五章 差分法 变分法(自学) • 第六章 有限元法解平面问题 • 第七、八章 空间问题的解答(自学) • 第九章 薄板弯曲问题 (自学)
研究对象
结构力学--在材料力学基础上研究杆系结构 (如 桁架、刚架等)。
弹性力学--研究各种形状的弹性体,如杆 件、平面体、空间体、板壳、薄壁
结构等问题。
精选课件
13
研究方法
材料力学——借助于直观和实验现象作一些假定,如 平面假设等,然后由静力学、几何学、物理学三方 面进行分析。
结构力学——与材料力学类同。
位
形
应
面
体
移
变
力
力
力
几何方程
物理方程
图1-10
精选课件
平衡方程
28
§1-3 弹性力学的基本假设
为什么要提出基本假定?
任何学科的研究,都要略去影响很 小的次要因素,抓住主要因素,从而建立 计算模型,并归纳为学科的基本假定。
精选课件
29
弹性力学中的五个基本假定:
关于材料性质的假定及其在建立弹性 力学理论中的作用: (1)连续性--假定物体是连续的。
(4)各向同性--假定物体各向同性。
Image
复合材料力学课件第02章-各向异性弹性力学基础
通过研究复合材料的损伤演化机制和 破坏准则,可以预测和防止在使用过 程中出现的损伤和破坏,提高复合材 料的安全性和可靠性。
优化设计
利用各向异性弹性力学理论,可以对 复合材料的铺层角度、厚度等进行优 化设计,以实现最佳的力学性能和功 能特性。
各向异性弹性力学在其他领域的应用
生物医学工程
在人工关节、牙科植入物等生物医学 工程领域,各向异性弹性力学理论被 用于模拟和预测材料的生物相容性和 力学性能。
边界条件和载荷的复杂性
由于各向异性材料的特性,其边界条件和所受的 载荷也相对复杂,需要细致考虑。
3
数值模拟的困难性
由于各向异性材料的复杂性,数值模拟方法需要 更高的精度和稳定性,以准确模拟其力学行为。
各向异性弹性力学的发展趋势与展望
发展更高效的数值分析方法
针对各向异性材料的特性,发展更高效、精确的数值分析方法, 如有限元法、边界元法等。
详细描述
边界条件和初始条件是确定弹性力学问题解的重要因素。边界条件描述了材料边 界上的应力分布,而初始条件描述了材料在初始时刻的应力状态。这些条件对于 确定材料的响应至关重要。
各向异性弹性常数及其物理意义
总结词
描述各向异性弹性材料的五个独立弹 性常数及其物理意义。
详细描述
各向异性弹性材料的五个独立弹性常数包括三 个主剪切模量G1、G2、G3,一个主压剪切模 量G12,以及一个主压模量K1。这些弹性常数 分别描述了材料在各个方向上的剪切和压缩行 为,对于理解材料的力学性能和预测其响应具 有重要意义。
平衡方程
总结词
描述各向异性弹性材料在受到外力作用时内部应力和应变之间的平衡关系。
详细描述
平衡方程是描述材料内部应力分布的微分方程,它基于连续介质力学原理,即 在一个封闭的体积中,应力矢量的散度为零。平衡方程是建立各向异性弹性力 学方程的基础。
第二章 弹性力学基础1026
2.3弹性力学基本变量
正面(外法线是沿着坐标轴的正方向) 负面(外法线是沿着坐标轴的负方向) 正面上的应力以沿坐标轴正方向为正,沿坐标轴负 方向为负 负面上的应力以沿坐标轴负方向为正,沿坐标轴正 方向为负
正应力以拉应力为正,压应力为负
2.3弹性力学基本变量
剪应力互等定律:作用在两个互相垂直的面上并且垂直于该两面交
x
x
y
y
xy
x y
变形协调条件
它的物理意义是:材料 在变形过程中应该是整 体连续的,不应该出现 “撕裂”和“重叠”现 象发生。
2 2 x y 3u 3v 2 2 2 y x xy yx 2
一般而论, 弹性体内任意一点的体力分量、面力分 量、应力分量、应变分量和位移分量,都是随着该点的 位置而变的, 因而都是位置坐标的函数。
u u ( x, y , z ) v v ( x, y , z ) w w( x, y, z )
2.3弹性力学基本变量
位移与应变的关系
ui ui ij dx j wij dx j
2.3弹性力学基本变量
内力:应力 --外力(或温度)的作用 内力
设作用于 A 上的内力为 Q , 则内力的平均集度,即平均应 力 ,为 Q / A Q lim S A 0 A
这个极限矢量S,就是物体在截面 mn上、P点的应力。
应力就是弹性体内某一点作用于某截面单位面积上的内力
均匀性:也就是说整个物体是由同一种材料组成的。这样,
整个物体的所有各部分才具有相同的物理性质,因而物体的弹性 常 数(弹性模量和泊松系数)才不随位置座标而变。
2.2 弹性力学中关于材料性质的假定
第5章——弹性力学基础
都可为坐标的连续函数,从而在数学推导时可利用连续和极限的 概念,采用微积分、微分方程、微分几何、积分方程、变分等数 学工具对弹性力学进行研究。
2)线性完全弹性假设
当使物体产生变形的外力被除去以后,物体能够完全恢复原形, 而不留任何残余变形。这样,当温度不变时,物体在任一瞬时的 形状完全决定于它在这一瞬时所受的外力,与它过去的受力情况 无关。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系 该假定使本构关系(物理方程)成线性方程。 (物理方程)成线性方程。 脆性材料的物体,在应力未超过比例极限以前,可作为近似的完 全弹性体。塑性材料的物体,在应力未超过屈服极限以前,可作 为近似的完全弹性体。
有限单元法
崔向阳
6
弹性力学的基本假设
五个基本 五个 基本假设 假设
1) 连续性 2) 完全弹性 3) 均匀性 4) 各向同性 5) 小变形
引入假设的主要目的在于希望能利用数学工具来研究弹 引入假设的主要目的在于希望能利用数学工具 来研究弹 性力学。
有限单元法 崔向阳
7
弹性力学的基本假设
1)连续性假设 从宏观上认为物体是连续的,则所有物理量如应力、应变和位移
假想切开物体,截面两边互相作用的力(合力和合力矩),就 是内力。
有限单元法
崔向阳
13
弹性力学中的基本概念
3)应力
定义:截面上某一点处,单位截面面积上的内力值。
应力S在其作用截面上的法向 分量为正应力σ,切向分量称 为剪应力,用τ表示。
有限单元法
崔向阳
14
弹性力学中的基本概念
一点应力的要素: 一点应力的要素: 大小 方向 作用点 作用面
有限单元法 崔向阳
22
2)线性完全弹性假设
当使物体产生变形的外力被除去以后,物体能够完全恢复原形, 而不留任何残余变形。这样,当温度不变时,物体在任一瞬时的 形状完全决定于它在这一瞬时所受的外力,与它过去的受力情况 无关。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系 该假定使本构关系(物理方程)成线性方程。 (物理方程)成线性方程。 脆性材料的物体,在应力未超过比例极限以前,可作为近似的完 全弹性体。塑性材料的物体,在应力未超过屈服极限以前,可作 为近似的完全弹性体。
有限单元法
崔向阳
6
弹性力学的基本假设
五个基本 五个 基本假设 假设
1) 连续性 2) 完全弹性 3) 均匀性 4) 各向同性 5) 小变形
引入假设的主要目的在于希望能利用数学工具来研究弹 引入假设的主要目的在于希望能利用数学工具 来研究弹 性力学。
有限单元法 崔向阳
7
弹性力学的基本假设
1)连续性假设 从宏观上认为物体是连续的,则所有物理量如应力、应变和位移
假想切开物体,截面两边互相作用的力(合力和合力矩),就 是内力。
有限单元法
崔向阳
13
弹性力学中的基本概念
3)应力
定义:截面上某一点处,单位截面面积上的内力值。
应力S在其作用截面上的法向 分量为正应力σ,切向分量称 为剪应力,用τ表示。
有限单元法
崔向阳
14
弹性力学中的基本概念
一点应力的要素: 一点应力的要素: 大小 方向 作用点 作用面
有限单元法 崔向阳
22
第三章-各向异性弹性力学基础
第三章 各向异性弹性力学基础
§3-1 各向异性弹性力学基本方程
基本未知量: 位移分量:u, v, w
应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程: 1、平衡方程
2
x zx ( )2 x y z x yz 2 y zx xy yz ( )2 y z x y zx yz zx xy 2 z ( )2 z x y z xy
C66
剪 - 剪耦 合
§3-2 各向异性弹性力学的本构方程
一、完全各向异性(21个弹性常数)
1 S11 1 S12 2 S13 3 S14 4 S15 5 S16 6
其中Sij为柔度系数,4、5和6即为剪应 力23、31和 12。可见各向异性体一般具有耦 合现象:正应力引起剪应变,剪应力也可以 引起正应变;反之亦然。
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有 E2 G23 2(1 23 )
故只有5个独立常数:
E1 , E2 , 21(或 12), 23) G12 , G (或 23
三、正交各向异性(9个弹性常数)
正交各向异性是指有三个互相正交的弹性主轴 的情况。(有三个互相正交的弹性对称面)
取 x1 , x2 , x3 为三个正交弹性主轴,如图所示:
由 a)、 b)两坐标系中计算的应变能应该 相同,而在两坐标系下:
31 , 12 , 31 , 12(即 5 , 6 , 5 , 6 )变号,可得:
§3-1 各向异性弹性力学基本方程
基本未知量: 位移分量:u, v, w
应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程: 1、平衡方程
2
x zx ( )2 x y z x yz 2 y zx xy yz ( )2 y z x y zx yz zx xy 2 z ( )2 z x y z xy
C66
剪 - 剪耦 合
§3-2 各向异性弹性力学的本构方程
一、完全各向异性(21个弹性常数)
1 S11 1 S12 2 S13 3 S14 4 S15 5 S16 6
其中Sij为柔度系数,4、5和6即为剪应 力23、31和 12。可见各向异性体一般具有耦 合现象:正应力引起剪应变,剪应力也可以 引起正应变;反之亦然。
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有 E2 G23 2(1 23 )
故只有5个独立常数:
E1 , E2 , 21(或 12), 23) G12 , G (或 23
三、正交各向异性(9个弹性常数)
正交各向异性是指有三个互相正交的弹性主轴 的情况。(有三个互相正交的弹性对称面)
取 x1 , x2 , x3 为三个正交弹性主轴,如图所示:
由 a)、 b)两坐标系中计算的应变能应该 相同,而在两坐标系下:
31 , 12 , 31 , 12(即 5 , 6 , 5 , 6 )变号,可得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是弹性力学?
A
弹性力学的基本假设
① 连续性假定:介质连续无间隙地充满整个物体所占据的 空间;(宏观尺度,数学分析等数学工具)
② 均匀性假定:物体中各处的介质是均匀同一的;(不必 亦不可能对每处的介质做材料试验)
③ 各向同性假定:介质各个方向的材料性质相同;(简化 问题)
④ 线弹性假定:弹性阶段,应力和应变是线弹性关系,服 从虎克定律;卸载过程是弹性的
弹性力学变分提法
泛函的极值问题
弹性力学的发展简史
弹性力学理论基础建立期 弹性力学理论的发展成熟期 弹性力学理论发展的深化期
弹性力学的发展简史
弹性力学发展初期(17世纪前)
– 1678,Hook(虎克、胡克,英)发现虎克定律 – 1687,Newton(牛顿、英)建立牛顿力学三大定律
弹性力学基本理论和基本方程的奠基时期(17世纪末— 19世纪)
研究尺度——宏观 研究对象——弹性固态可变形体
弹性:指荷载作用下变形在卸载后可恢复的物性 日常的工程结构和零件
主要任务
研究变形体都遵循的基本规律——基本方程 研究弹性物体的特定物理性质——弹性本构关系
(方程) 研究在给定荷载作用下的弹性物体中任意一点的位
移、变形和应力情况——弹性力学问题
xy yx , yz zy , zx xz ,
σ xxy
zx yz zz
应力平衡方程
x 方向的平衡条件
(
x
x
x
dx)dydz
xdydz
(
yx
yx
y
3. 弹性力学的原理
迭加原理 解答唯一性原理 圣维南原理
荷载——体积力(Body Forces)
体积力——体力
作用在物体内部各质点上的分布力 lim p dp F 体积力集度(密度) V 0 V dV
体积力(集度)是矢量,是 位置坐标 x, y, z 的函数
集中力
分布在微小面积或体积 表面力或体积力
荷载——表面力(Tractions)
表面力——面力
作用在物体表面的分布力;(风力,水压力、 接触力)
lim P dP T 表面力集度(密度) S0 S dS
表面力(集度)是矢量, 是位置坐标 x, y, z 的函数
内力(Tractions)
– 早期对梁的研究 – 1820s,Cauchy(柯西,法)定义了应力、应变等基本概念,建
立了几何方程和平衡方程,将虎克定律推广到三维一般情况
弹性力学理论发展和应用阶段(19世纪—20世纪初)
– 1855,1856,Saint Venant(圣维南,法)解决柱体的弯曲和 扭转问题
– 1881,Hertz(赫兹,德)解出弹性接触的局部应力分布 – 1898,Kirsch(基尔施,德)解出了受拉含圆孔薄板的孔边应
什么是弹性力学?
弹性力学与材料力学的区别
材料力学
弹性力学
除材料力学研究的一维
研究对象
杆、梁、柱、轴等 杆状一维结构
物体外,主要研究二、 三维复杂结构
基本假定多,近似 基本假设少,精确理论,
基本假定 理论,精度低
精度高
求解
形状简单,求解容 形状复杂,求解困难,
易,解答多
解答很少
数学基础 初等数学、微积分 微分方程
力分布 – 能量原理,近似计算方法等得到发展
非线性弹性力学、热弹性力学、粘弹性力学等得到发展 (20世纪)
第二章 弹性力学的基本方程和一般定理
1. 基本概念
荷载(体积力、表面力)、内力、应力 位移、应变
2. 控制方程和边界条件
平衡方面(平衡方程、力学边界条件) 几何方面(几何方程、位移边界条件) 物性方面(本构方程)
弹性力学
杨帆
西南交通大学力学与工程学院
教学参考书
王光钦等,弹性力学,中国铁道出版社,北 京,2004.03
杨桂通,弹性力学简明教程,清华大学出版, 北京,2006.09
徐芝纶,弹性力学,高等教育出版社,北京, 1990.06
第一章 绪 论
1. 弹性力学的任务和研究对象
– 什么是弹性力学? – 弹性力学与材料力学的对比
应力的正向
应力作用面的法 向与坐标正向一 致时,应力的正 向亦与坐标正向 一致
应力作用面的法 向与坐标负向一 致时,应力的正 向亦与坐标负向 一致
应力张量
张量,共9个应力
σ
xx yx
xy yy
xz yz
zx zy zz
可以证明应力张量是对称的,6个独立分量
内力:物体内部的相互作用
Q dQ
T lim
S0 S dS
内力的分解
沿坐标分解
T
lim
S 0
Q S
dQ dS
Txex
Tyey
Tzez
正应力
内力沿截面法线方向的分力
剪应力 内力在截面内的分力
垂直于直角坐标的平面上的应力
共9个应力: xx , xy , xz ; yx , yy , yz ; zx , zy , zz
dy)dxdz
yxdxdz
( zx
zx
z
dz)dxdy
zxdxdy
Fxdxdydz
0
x
x
yx
y
zx
z
Fx
0
绕 z 轴的力矩的平衡条件
( xydydz)dx ( yxdzdx)dy 0 xy yx
2. 弹性力学的基本假定 3. 弹性力学的研究方法 4. 弹性力学的发展简史
什么是弹性力学?
什么是力学?
中国大百科全书:力学是研究物质机械运动规律的科学。 机械运动——物质在时间、空间中的位置变化。
力学的分类
依尺度分类
依物性分类
什么是弹性力学?
“弹性力学”隶属于“变形体力学”中的 “固体力学”分支
⑤ 小变形假定:物体的变形对比物体的几何尺寸很小; (可以在变形前的几何形状和尺寸的基础上研究问题, 可以忽略变形的高阶影响)
⑥ 静态和拟静态假定:忽略时间的影响 ⑦ 无初应力假设:物体的初始状态是自然状态,荷载作用
前物体内部无应力
弹性力学的研究方法
弹性力学的微分问题提法
1、静力学 2、几何学 3、物理学