几何图形初步知识点总结

合集下载

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点在数学学科中,几何图形是一个重要的概念。

它是描述空间形状和结构的工具,可以帮助我们理解和研究物体的特征和性质。

本文将介绍一些几何图形的初步知识点,帮助读者建立对几何图形的基本认识。

1. 点、线段和射线在几何学中,最基本的图形是点。

点是一个没有大小和形状的位置。

两个点之间可以用线段来连接,线段是由两个端点确定的有限直线段。

线段有长度,并且可以用定理来计算。

类似于线段,射线也有长度,但是只有一个端点,另一端延伸到无穷远。

2. 直线和平面直线是由无限多个点连成的路径,它没有宽度和厚度。

直线可以用两个点确定,并且可以延伸到无限远。

平面是由无限多条直线组成的,它是一个无边无际的表面。

平面可以由三个不共线的点确定。

3. 角角是由两条射线共享一个相同起点而形成的图形。

角可以分为锐角、直角、钝角和平角。

锐角小于90度,直角等于90度,钝角大于90度,平角等于180度。

4. 三角形三角形是由三条线段组成,形成一个封闭的图形。

三角形的特点是三边之和等于180度,而三个内角之和等于180度。

根据边长和角度的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。

5. 四边形四边形是由四条线段组成的封闭图形。

根据边的长度和角的大小,四边形可以分为正方形、矩形、菱形、平行四边形和梯形等。

6. 圆圆是一个封闭的曲线,由一条曲线围成的图形称为圆形。

圆具有许多特性,比如半径、直径和圆心等。

圆的内部的所有点到圆心的距离都相等。

7. 多边形多边形是由多个线段组成的封闭图形。

根据边的数量,多边形可以分为三角形、四边形、五边形等。

多边形的内角和外角之和有一定的关系。

8. 空间几何学除了平面几何学之外,还有空间几何学。

空间几何学研究的是在三维空间中的图形和结构。

例如,立方体、球体等都是三维空间中的几何图形。

以上是关于几何图形初步知识点的简要介绍。

几何图形在日常生活和数学学科中都有广泛的应用。

通过了解和掌握这些基本的知识点,我们可以更好地理解和解决与几何有关的问题。

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点几何图形初步知识点是指对几何图形的基本概念及其特性的基础知识,包括平面图形、空间图形和几何变换。

这些基础知识可以帮助学生学习更多有关几何图形的知识,让他们更好地理解和应用几何图形。

一、平面图形1. 点“点”是最基本的几何图形,它的特征是无宽度,只有位置。

我们可以通过坐标来描述一个点,比如(2,3)。

在数学上,点可以用来构建更大的几何图形。

2. 直线直线是由两个不同的点所确定的,它有一个方向和一个斜率。

直线可以是水平的、垂直的,也可以是任意角度的。

另外,直线也可以通过一个方程来表示,比如y=2x+1,表示一条斜率为2的直线。

3. 圆圆是一种中心对称的几何图形,它有一个圆心和半径,由这两个量可以确定一个圆。

圆也可以通过一个方程,比如x^2+y^2=r^2,来表示,其中r是圆的半径。

4. 三角形三角形是一种基本的几何图形,它由三条直线组成,有三个角,每个角可以有不同的角度,小于180°。

三角形可以根据它的边长和内角来分类,比如直角三角形、等腰三角形和等边三角形。

5. 矩形矩形是一种常见的几何图形,它有四个角,四条边,四个边长都相等。

它可以通过一个方程,比如(x-a)^2+(y-b)^2=r^2,来表示,其中a、b是矩形的中心点,r是矩形的边长。

6. 多边形多边形是一种由多条直线组成的几何图形,每条边都是一个角,其中多边形的角数可以是三角形、四边形、五边形等,多边形的形状可以是凸的,也可以是凹的。

二、空间图形1. 立方体立方体是一种三维的几何图形,它有六个面,八个顶点,每个顶点都有三个边,每个面都有四个边。

立方体可以通过一个方程,比如x^2+y^2+z^2=a^2,来表示,其中a 是立方体的边长。

2. 球球是一种三维的几何图形,它有一个球心,一个球面,球面上有许多点,这些点之间的距离都是一样的。

球可以通过一个方程,比如x^2+y^2+z^2=r^2,来表示,其中r是球的半径。

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点1. 点、线、面- 点:没有大小、只有位置的几何概念。

- 线:由无数个点组成的一维几何对象,分为直线、射线和线段。

- 面:由线围成的二维几何对象,可以是平面或曲面。

2. 角- 角是由两条射线的公共端点(顶点)构成的图形。

- 角的度量单位是度(°),0°到360°之间。

- 常见的角有锐角(小于90°)、直角(等于90°)、钝角(大于90°且小于180°)。

3. 几何图形的分类- 基本图形:如点、线、面。

- 规则图形:具有特定对称性和规律性的图形,如正方形、圆。

- 不规则图形:没有明显对称性或规律性的图形。

4. 面积和体积- 面积:二维图形所占据的平面空间大小。

- 体积:三维图形所占据的空间大小。

- 常见图形的面积和体积计算公式:- 矩形:面积 = 长× 宽;体积 = 长× 宽× 高- 三角形:面积= 1/2 × 底× 高- 圆:面积= π × 半径²;体积= (4/3) × π × 半径³(对于圆柱体)5. 对称性- 轴对称:图形关于某条直线(对称轴)对称。

- 中心对称:图形关于某一点(对称中心)对称。

6. 相似和全等- 全等:两个图形在形状和大小上完全相同。

- 相似:两个图形在形状上相同,但大小可能不同。

7. 几何变换- 平移:图形在平面上沿着某一方向移动一定距离。

- 旋转:图形绕着某一点旋转一定角度。

- 缩放:图形按照一定的比例放大或缩小。

8. 基本几何定理- 毕达哥拉斯定理:直角三角形中,斜边的平方等于两直角边平方和。

- 欧几里得几何公理:一系列关于点、线、面的基本假设或命题。

9. 坐标几何- 坐标系:通过一对数值(坐标)来表示点的位置。

- 距离公式:计算两点间直线距离的公式。

- 斜率:表示直线倾斜程度的量。

几何的初步知识 知识点整理(全)

几何的初步知识 知识点整理(全)

几何的初步知识知识点整理(全)一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

* 射线射线只有一个端点;长度无限。

* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

* 平行线在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角(1)从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。

平角180°。

周角:角的一边旋转一周,与另一边重合。

周角是360°。

二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a²3三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4平行四边形(1)特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

图形与几何知识点整理

图形与几何知识点整理

图形与几何知识点整理一、直线与线段直线是由无数个点组成的连续集合,没有起点和终点,可以延伸到无穷远;线段是直线的一部分,有起点和终点。

二、角度与三角形1. 角度角度是由两条射线共享一个端点而形成的图形,以度(°)为单位表示,可以分为锐角、直角、钝角和平角。

2. 三角形三角形是由三条线段组成的图形,根据边的长短和角的大小,可以分为等边三角形、等腰三角形和普通三角形。

三、四边形与多边形1. 四边形四边形是由四条线段组成的图形,根据边的性质可以分为平行四边形、矩形、菱形、正方形和梯形。

2. 多边形多边形是由多条线段组成的图形,根据边的数量可以分为三角形、四边形、五边形等。

四、圆与球体1. 圆的性质圆是由所有与一个确定点的距离相等的点组成的图形,圆心是确定点,半径是连接圆心和任意一点的线段。

2. 球体球体是由所有与一个确定点的距离相等的点组成的立体图形,球心是确定点,半径是连接球心和任意一点的线段。

五、平面与立体图形1. 平面与直线的关系平面上的两条直线可以相交、平行或重合。

2. 立体图形的表面积和体积立体图形的表面积是指该图形的所有面的面积之和,体积是指该图形所占的空间大小。

六、相似与全等1. 相似图形相似图形是指两个图形的形状相似,但尺寸可以不同,对应角度相等,可以通过比例关系得到对应边长的关系。

2. 全等图形全等图形是指两个图形的形状和尺寸完全相同,对应角度和边长都相等。

七、坐标与向量1. 坐标系坐标系是由横轴和纵轴组成的直角坐标表示法,可以用来表示平面上的点的位置。

2. 向量向量是有大小和方向的量,可以用于表示平移、旋转等运动。

八、三维几何三维几何是指在三维空间中研究图形的几何学,包括点、线、面的位置关系以及体积等概念。

九、几何证明几何证明是指通过推理和逻辑分析来证明几何问题的方法,可以使用各种几何定理和性质进行推导和论证。

这些是图形与几何的主要知识点整理,通过对这些知识点的学习和掌握,我们可以更好地理解和应用几何学在实际生活和问题解决中的作用。

几何的入门知识点总结

几何的入门知识点总结

几何的入门知识点总结1. 点、线、面在几何学中,最基本的概念就是点、线和面。

点是最基本的几何图形,它没有大小和方向,只有位置。

线由一系列相邻的点构成,它是一维图形,没有宽度和厚度。

面则由一系列相邻的线构成,它是二维图形,有宽度和长度,但没有厚度。

在实际应用中,我们经常会用到这些基本概念来描述和分析各种几何形状。

2. 角的概念角是两条射线共同端点的部分,它通常用来描述两条线的夹角和交叉角。

角的大小通常用度数来表示,一个完整的圆周被定义为360度,对应于360度的角叫做一周角。

在实际应用中,我们通常会用角的概念来描述和分析各种图形之间的相对位置和方向。

3. 直线与曲线在几何学中,直线是最简单的图形,它由无穷多个点组成,并且在任意两点之间都是最短的路径。

而曲线则是除直线之外的任何图形,它通常具有曲折和变化的形状。

在几何学中,我们经常会用直线和曲线来描述和分析各种几何形状和它们之间的关系。

4. 多边形的概念多边形是由若干条线段组成的闭合图形,它由若干个顶点和边组成,并且每两条相邻的边都只有一个共同的端点。

多边形可以分为三角形、四边形、五边形等不同类型,它们在实际应用中都有着广泛的应用。

5. 圆的概念圆是由一系列与同一点的等距离的点组成的闭合曲线,它的周长和面积都有着特定的计算公式。

圆在几何学中应用广泛,我们通常会用它来描述和分析各种几何形状和它们之间的相互关系。

6. 几何变换几何变换是指通过移动、旋转、镜像、缩放等方法改变几何图形的位置、大小和形状。

通过几何变换,我们可以得到原始图形的各种变化形式,从而更好地理解和分析它们之间的关系。

通过以上的介绍,我们可以初步了解几何学的基本概念和原理,帮助大家更好地理解和应用几何学的知识。

在学习几何学的过程中,我们还可以深入研究各种几何形状的性质和计算方法,进一步提高自己的几何学水平。

希望以上内容对大家有所帮助,希望大家在日常应用和学习中能够更好地运用几何学的知识。

图形与几何知识点整理图形与几何复习知识点

图形与几何知识点整理图形与几何复习知识点

图形与几何知识点整理图形与几何复习知识点一、平面几何知识点:1.点、直线、线段、射线的基本定义和性质:点是没有大小和形状的,直线是由无数个点组成的,线段是由两个端点和这两个端点之间的所有点组成的,射线是由一个端点和这个端点到无限远方的所有点组成的。

2.角的基本概念和性质:角是由两条边和它们的公共端点组成的,以顺时针或逆时针方向为正方向。

角的度量是以度为单位,一个圆周角等于360度。

3.三角形的性质:三角形是由三条边和三个顶点组成的,根据边长和角度可以分为等边三角形、等腰三角形、直角三角形等,根据角度可以分为锐角三角形、钝角三角形、直角三角形等,根据边的关系可以分为全等三角形、相似三角形等。

4.四边形的性质:四边形是由四条边和四个顶点组成的,根据边的关系可以分为平行四边形、矩形、正方形、菱形等。

5.圆的性质:圆是由一个固定点和到这个点距离相等的所有点组成的,圆的中心到圆上任意一点的距离称为半径,关于半径的线称为半径。

6.整除性质:整除指的是一个数能够被另一个数整除,可以整除的数称为约数,而可以被整除的数称为倍数。

7.直角三角形的勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。

8.相似三角形的性质:两个三角形对应的角相等,对应边的比值相等。

二、立体几何知识点:1.立体图形的基本概念:包括点、线、面、体的概念。

2.立体图形的展开与视图:通过展开立体图形可以得到平面的投影视图,包括正交投影和斜投影。

3.三棱柱、四棱柱、五棱柱等的性质:包括底面类型、侧面类型、轴线类型、全等类型等。

4.三棱锥、四棱锥、五棱锥等的性质:包括底面类型、侧面类型、轴线类型、全等类型等。

5.正多面体的性质:包括正方体、正六面体、正八面体、正十二面体等的性质。

三、向量几何知识点:1.向量的基本概念和性质:向量是有大小和方向的,用箭头表示。

2.向量的加减法:向量的加法是对应分量相加,向量的减法是对应分量相减。

3.向量的数量积和向量积:数量积是两个向量的乘积,向量积是两个向量的叉乘。

数学几何初级知识点总结

数学几何初级知识点总结

数学几何初级知识点总结1.基本概念几何的基本概念包括点、线、平面、角等。

点是几何中最基本的概念,它没有大小和形状,只有位置。

线是由无数个点组成的,是一种没有宽度和厚度的图形。

平面是由无数条平行线组成的,是一个没有边界的表面。

角是由两条射线共同端点所形成的图形,通常用来描述物体之间的相对位置关系。

2.直线和角度直线是在平面上无限延展的,没有起点和终点。

在几何学中,直线可以用箭头符号表示。

角度是两条射线之间的夹角,通常用度数或弧度来表示。

在计算角度时,一圈被分为360°,而一弧度等于圆的半径与角所对的圆弧长度的比值。

角度可以通过直尺和量角器来测量和画出。

3.三角形三角形是几何学中最简单的图形之一,它由三条边和三个角组成。

根据三角形边长和角度的不同,可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形等多种类型。

三角形的性质和计算方法在几何学中经常会用到。

4.四边形四边形是由四条边和四个角组成的图形,它包括矩形、正方形、菱形、平行四边形、梯形等多种类型。

四边形的性质和计算方法也是几何学中重要的内容之一。

5.多边形多边形是由多条边和多个角组成的图形,它包括三角形、四边形、五边形、六边形等多种类型。

多边形是几何学的基本图形之一,它们的性质和计算方法在实际问题中有很多应用。

6.圆圆是一个特殊的图形,它是一个平面上所有到一个点距离相等的点的集合。

圆由圆心、半径和圆周组成。

圆的性质和计算方法在许多领域都有广泛的应用,例如在建筑设计、机械制造、地图制作等领域。

7.立体图形立体图形是在三维空间中存在的图形,它包括球体、圆柱体、圆锥体、棱柱体、棱台等多种类型。

立体图形的性质和计算方法需要通过三角学和空间几何学来研究和应用。

8.坐标系坐标系是描述点、线、图形等几何对象在平面上的位置和相对位置的方法。

常见的坐标系包括直角坐标系和极坐标系。

直角坐标系是由两条互相垂直的坐标轴构成的,分别称为x 轴和y轴。

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩主(正)视图----------从正面看几何体的三视图左视图----------------从左边看俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。

《几何图形初步》知识点总汇

《几何图形初步》知识点总汇

⎧⎨⎩⎧⎨⎩知识点梳理(一)几何图形(是多姿多彩的)立体图形: 等.一、几何图形 平面图形: 等. 1 请你把图中的几何图形与它们相应的名称连接起来------从正面看; 二、几何体的三视图 ----- 从左(右)边看; -------从上面看. 2 如图,请把相应立体图形的平面展开图序号填在对应的立体图形下方.同步练习1画出从正面、上面、左面三个方向看到的立体图的形状2 从正面、上面、左面看圆锥得到的平面图形是( )A .从正面、上面看得到的是三角形,从左面看得到的是圆B .从正面、左面看得到的是三角形,从上面看得到的是圆C .从正面、左面看得到的是三角形,从上面看得到的是圆和圆心D .从正面、上面看得到的是三角形,从左面看得到的是圆和圆心3下列四个几何体中,从正面、上面、左面看都是圆的几何体是( ) A 圆锥B 圆柱 C 球 D正方体4 一个几何体从正面、上面、左面看到的平面图形如右图所示,这个几何体是( ) A 圆锥B 圆柱 C 球 D 正方体5 观察下列几何体,从正面、上面、左面看都是长方形的是( )6 从正面、左面、上面看四棱锥,得到的3个图形是( )A BC7 如下图,是一个几何体正面、左面、上面看得到的平面图形,下列说法错误的是( ) A .这是一个棱锥 B .这个几何体有4个面 C .这个几何体有5个顶点D .这个几何体有8条棱8 如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则从正面看该几何体的图形是()三、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形是的.(填“一样”或“不一样”)(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.1如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是3 下列图形是正方体的展开图,还原成正方体后,其中完全一样的是A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(3)和(4)4、如图,这是一个正方体的展开图,则“喜”字所相对的字是______.5、如图,把这个平面展开图折叠成立方体,与“祝”字相对的字是______.四、点、线、面、体1)几何图形的组成点:线和线相交的地方是点,它是构成几何图形的。

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点在我们的日常生活和学习中,几何图形无处不在。

从简单的房屋建筑到复杂的机械设计,从精美的艺术作品到日常的生活用品,几何图形都扮演着重要的角色。

对于初学者来说,了解几何图形的初步知识是打开几何世界大门的钥匙。

接下来,让我们一起探索几何图形初步的奥秘。

一、点、线、面、体点是构成几何图形最基本的元素,它没有大小和形状,只有位置。

比如,在一张纸上用笔尖轻轻点一下,那个点就代表了一个位置。

线是由无数个点组成的,它可以是直的,也可以是弯曲的。

直线是没有端点,可以无限延伸的;而射线有一个端点,只能朝一个方向无限延伸;线段有两个端点,长度是固定的。

我们常见的电线、绳子等都可以近似地看作线段。

面是由线围成的,它可以是平面,也可以是曲面。

平面没有厚度,比如桌面、墙面等;曲面则具有一定的弯曲度,像篮球的表面、圆柱的侧面等。

体是由面围成的,具有一定的空间形状和大小。

比如正方体、长方体、球体、圆柱体等。

点动成线,线动成面,面动成体。

例如,笔尖在纸上移动可以画出一条线;汽车雨刷在挡风玻璃上摆动会形成一个扇形的面;把长方形的纸绕着一边旋转一周,就形成了一个圆柱体。

二、直线、射线、线段直线的基本性质是:经过两点有且只有一条直线,简称两点确定一条直线。

在实际生活中,木工师傅弹墨线、射击瞄准都利用了这一性质。

线段的长度可以度量,比较两条线段长短的方法有两种:一种是把它们的一端对齐,看另一端的位置;另一种是分别度量出两条线段的长度,再进行比较。

线段的中点是指把一条线段分成两条相等线段的点。

如果点 M 是线段 AB 的中点,那么 AM = BM = 1/2 AB。

三、角角是由两条具有公共端点的射线组成的图形,公共端点叫做角的顶点,两条射线叫做角的边。

角也可以看作是由一条射线绕着它的端点旋转而成的图形。

角的度量单位是度、分、秒,1 度= 60 分,1 分= 60 秒。

角可以按照大小进行分类,小于 90 度的角是锐角,等于 90 度的角是直角,大于 90 度小于 180 度的角是钝角,等于 180 度的角是平角,等于 360 度的角是周角。

七年级上册数学《几何图形初步》知识点整理

七年级上册数学《几何图形初步》知识点整理

几何图形初步一、本节学习指导本节知识点比较简单,都是基础,当看书应该就能理解。

二、知识要点1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

比如:正方体、长方体、圆柱等平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

比如:三角形、长方形、圆等2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图,如:1、2、物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

三、经验之谈本节知识比较重要的是我们要对常见的立体图形有个概念性的认识,很多图形在小学就学习过,我们要巩固其相关求法。

其次画立体图形的三视图的时候要小心,多在脑子里形成空间想象。

本文由索罗学院整理。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

(完整版)几何图形初步知识点

(完整版)几何图形初步知识点

几何图形初步知识点归纳1.几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。

练习:1、下列叙述正确的有 ( )(1)棱柱的底面不一定是四边形;(2)棱锥的侧面都是三角形;(3)柱体都是多面体;(4)锥体一定不是多面体A.1个B.2个C.3个D.4个2、若一个多面体的顶点数20,面数为12,则棱数为 ( )A.28B.32C.30D.263、在世界地图上,一个城市可以看作 ( )A.一个点B.一条直线C.一个面D.一个几何体4、直线AB 上有一点C ,直线AB 外有一点D ,则A 、B 、C 、D 四点能确定的直线有( )A.3条B.4条C.1条或4条D.4条或6条5、C 为线段AB 延长线上的一点,且AC=AB ,则BC 为AB 的 ( )23A.B.C. D. 323121236、如图中是正方体的展开图的有( )个A 、2个B 、3个D 1、底面是三角形的棱柱有 个面, 个顶点, 条棱。

2、手电筒发出的光给我们的形象是 。

3、下列说法中:①直线是射线长度的2倍;②线段AB 是直线AB 的一部分;③延长射线OA 到B 。

正确的序号是 。

aA B4、已知:线段AC和BC在同一直线上,如果AC=10㎝,BC=6㎝,D为AC的中点,E为BC的中点,则DE= 。

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结1 .几何图形相关概念L几何图形:从形形色色的物体外形中得出的图形是几何图形。

它分为立体图形和平面图形。

2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形(如长方体.正方体.圆柱.圆锥.球等)。

3、平面图形:有些几何图形的各部分都在同一平面内,它们是平面图形(如线段.角.三角形.长方形.圆等)。

4、立体图形的展开图:将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、体:几何体简称为体。

6、面:包围着体的是面,面有平的面和曲的面两种。

7、体:面与面相交的地方形成线,线和线相交的地方是点。

8、点线面体关系:点动成面,面动成线,线动成体。

2.直线、射线、线段L直线基本事实:经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线(公理)。

2、直线表示方法:(1)用直线上任意表示两个点的大写字母表示,如直线AB ;(2 )用一个小写字母表示,如直线Io3、直线的特征:①无端点;②向两端无限延伸;③不可度量。

4、直线与点的位置关系:①点在直线上(直线经过点);②点在直线外(直线不经过点).5、直线相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

6、射线定义:直线上一点和它一旁的部分叫做射线,这一点叫做射线的端点。

7、射线的表示方法:(1)用射线的端点和射线上另一点的大写字母表示,如射线OA ;(2 )用一个小写字母表示,如射线I.8、射线的特性:①一个断定;②向一方无限延伸;③不可度量.9、线段概念:直线上两点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段的表示方法:IOs(1)用线段两个端点的大写字母表示,如线段AB ;(2 )用一个小写字母表示,如线段I.Ils线段的特征:①两个端点;②无方向;③可度量.12、线段的中点:点M把线段AB分成相等的两条线段AM和MB ,点M叫做线段AB的中点。

几何图形初步知识点总结

几何图形初步知识点总结

几何图形初步第一节几何图形认识立体图形点、线、面、体欧拉公式几何体的表面积(1)几何体的表面积=侧面积+底面积(上、下底的面积和)(2)常见的几种几何体的表面积的计算公式①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)③长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高)④正方体表面积:6a2 (a为正方体棱长认识平面图形几何体的展开图展开图折叠成几何提体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.截一个几何体(1)截面:用一个平面去截一个几何体,截出的面叫做截面.(2)截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形第二节直线射线线段直线射线线段的表示(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.线段的性质线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.如图,AC=BC,C为AB中点,AC=12AB,AB=2AC,D 为CB中点,则CD=DB=12CB=14AB,AB=4CD,这就是线段的和、差、倍、分.第三节角一:角(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.钟面角方向角二:角的比较与运算度分秒的换(1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.角平分线的定义角的计算(1)角的和差倍分①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB.(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.计算器---角的换算三:余角和补角。

初一(七年级)上册数学几何图形初步知识点总结

初一(七年级)上册数学几何图形初步知识点总结

1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各局部不在同一平面内,叫做立体图形。

有些几何图形的各局部都在同一平面内,叫做平面图形。

虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联络的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学根本概念,是点在空间内沿一样或相反方向运动的轨迹。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。

常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的局部所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔〞组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6. 两点间的间隔:连接两点间线段的长度叫做这两点间的间隔。

7. 端点:直线上两个点和它们之间的局部叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。

其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有间隔。

射线也没有间隔。

因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

所旋转射线的端点叫做角的顶点,开场位置的射线叫做角的始边,终止位置的射线叫做角的终边。

初中数学(几何)知识点总结

初中数学(几何)知识点总结

初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

4、射线的概念:直线上一点和它一旁的部分叫做射线。

这个点叫做射线的端点。

5、线段的概念:直线上两个点和它们之间的部分叫做线段。

这两个点叫做线段的端点。

6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。

它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形初步第一节几何图形认识立体图形(1 )几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.(3)重点和难点突破:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.点、线、面、体1 )体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体•点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.欧拉公式(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2 •这个公式叫欧拉公式•公式描述了简单多面体顶点数、面数、棱数特有的规律.(2)V+F-E=X (P) , V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X ( P)是多面体P的欧拉示性数.几何体的表面积(1)几何体的表面积=侧面积+底面积(上、下底的面积和)(2)常见的几种几何体的表面积的计算公式①圆柱体表面积:2nR2+2 n Rh ( R为圆柱体上下底圆半径,h为圆柱体高)②圆锥体表面积:n r+n n ( h2+r2 ) 360 (r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)③长方体表面积:2 (ab+ah+bh ) (a为长方体的长,b为长方体的宽,h为长方体的高)④正方体表面积:6a2( a为正方体棱长认识平面图形(1)平面图形:一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等.(2 )重点难点突破:通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3 )立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.展开图折叠成几何提体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形正方体相对两个面上的文字(1 )对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.截一个几何体(1)截面:用一个平面去截一个几何体,截出的面叫做截面.(2)截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形第二节直线射线线段直线射线线段的表示(1) 直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线I,或用两个大些字母(直线上的)表示,如直线AB .②射线:是直线的一部分,用一个小写字母表示,如:射线I;用两个大写字母表示,端点在前,如:射线OA .注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB (或线段BA). 內之汕氐疋応筑I 刘汽oa戒礬叹t 农"宙(2) 点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外直线的性质(1)直线公理:经过两点有且只有一条直线. 简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.线段的性质线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字长度”也就是说,它是一个量,有大小,区别于线段,线段是图形•线段的长度才是两点的距离•可以说画线段,但不能说画距离比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB > CD、AB=CD、AB V CD .(2)线段的中点:把一条线段分成两条相等的线段的点.(3 )线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.如图,AC=BC , C 为AB 中点,AC=12AB , AB=2AC , D 为CB 中点,贝U CD=DB=12CB=14AB , AB=4CD,这就是线段的和、差、倍、分. :- _第三节角一:角(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.(2 )角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如/ a, Z 3, / Y…)表示,或用阿拉伯数字(/ 1,/ 2…)表示.(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始边与终边旋转重合时,形成周角.(4)角的度量:度、分、秒是常用的角的度量单位. 1度=60分,即1° =60;1分=60秒,即1' =60,钟面角(1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走112格,分针1分钟走1格.钟面上每一格的度数为360° -^12=30°,(2 )计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.(3)钟面上的路程问题分针:60分钟转一圈,每分钟转动的角度为:360° ^60=6°时针:12小时转一圈,每分钟转动的角度为:360° +12弋0=0.5 °,方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西. (注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南. )(3 )画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.二:角的比较与运算度分秒的换(1 )度、分、秒是常用的角的度量单位. 1度=60分,即1° =60;1分=60秒,即1' =60,(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60 ,反之,将低级单位转化为高级单位时除以60 •同时,在进行度、分、秒的运算时也应注意借位和进位的方法.角平分线的定义(1 )角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2 )性质:若OC 是/ AOB 的平分线则/ AOC= / BOC=12 / AOB 或/ AOB=2 / AOC=2 / BOC .(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.角的计算(1)角的和差倍分①/ AOB 是/ AOC 和/ BOC 的和,记作:/ AOB= / AOC+ / BOC . Z AOC 是/ AOB 和/ BOC 的差,记作:/ AOC= Z AOB- Z BOC .②若射线OC 是Z AOB 的三等分线,则Z AOB=3 Z BOC 或Z BOC=13 Z AOB .(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60 .(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.计算器---角的换算科学型计算器计算器上面的函数区,三行二列的键(. ,,,)就是度分秒转换的键.输入数值,如输入30.5,先按=,再按(.,,,)键,就显示出30° 30' 0〃如果要输入30° 30' 0〃先输入30在度”的位置按一下,再输入30在分”的位置再按一下,最后输入0,在秒”的位置再按一下就可以得到30° 30' 0〃若要转化为度,则按=,再按(.,,,)键,就显示出30.5 °三:余角和补角(1)余角:如果两个角的和等于90° (直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3 )性质:等角的补角相等.等角的余角相等.(4 )余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.。

相关文档
最新文档