第1章动态规划方法
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题1. 线性规划问题简介线性规划是一种常见的数学优化方法,用于求解线性约束条件下的最优解。
它的目标是在给定的约束条件下,找到使目标函数取得最大(或者最小)值的变量取值。
2. 动态规划方法概述动态规划是一种通过将问题分解为子问题并逐步解决的方法。
它适合于具有重叠子问题和最优子结构性质的问题。
对于线性规划问题,动态规划方法可以通过将问题分解为多个子问题,并利用子问题的最优解来求解整体问题的最优解。
3. 动态规划方法求解线性规划问题的步骤步骤1: 定义状态首先,我们需要定义状态变量。
对于线性规划问题,状态变量可以是目标函数的值,或者是满足约束条件的变量取值。
步骤2: 定义状态转移方程接下来,我们需要定义状态之间的转移关系。
对于线性规划问题,状态转移方程可以表示为:dp[i] = max(dp[i-1] + a[i], a[i])其中,dp[i]表示第i个状态的最优值,a[i]表示第i个状态的值。
步骤3: 初始化状态在动态规划方法中,我们需要初始化第一个状态的值。
对于线性规划问题,我们可以将第一个状态的值设置为目标函数的初始值。
步骤4: 递推求解最优解接下来,我们可以使用状态转移方程递推求解最优解。
通过计算每一个状态的最优值,我们可以得到整体问题的最优解。
步骤5: 回溯求解最优解最后,我们可以通过回溯的方式求解最优解的具体取值。
通过追踪每一个状态的转移路径,我们可以找到使目标函数取得最大(或者最小)值的变量取值。
4. 动态规划方法求解线性规划问题的实例为了更好地理解动态规划方法求解线性规划问题的过程,我们来看一个具体的实例。
假设有一个线性规划问题,目标是最大化目标函数:maximize 3x + 4y约束条件为:2x + y <= 10x + 3y <= 15x, y >= 0我们可以按照以下步骤使用动态规划方法求解该线性规划问题:步骤1: 定义状态我们定义状态变量为目标函数的值,即dp[i]表示目标函数的值为i时的最优解。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题一、引言线性规划是运筹学中的一种重要的数学优化方法,用于在给定的线性约束条件下,寻觅使目标函数达到最大或者最小的变量值。
而动态规划是一种通过将问题分解为子问题并逐步求解的方法。
本文将介绍如何使用动态规划方法来求解线性规划问题。
二、问题描述假设我们有一个线性规划问题,目标是最大化或者最小化一个线性目标函数,同时满足一组线性约束条件。
我们需要找到一组变量的取值,使得目标函数达到最大或者最小值。
三、动态规划方法求解线性规划问题的步骤1. 确定状态在动态规划中,我们需要定义状态以便进行问题的分解。
对于线性规划问题,我们可以将每一个变量的取值作为一个状态。
2. 确定状态转移方程状态转移方程定义了如何从一个状态转移到另一个状态。
对于线性规划问题,我们可以通过约束条件来定义状态转移方程。
每一个约束条件都可以表示为一个线性不等式,例如:ax + by <= c。
我们可以根据这些不等式来确定状态的转移方式。
3. 确定初始状态和边界条件初始状态是指问题的起始状态,边界条件是指问题的结束状态。
对于线性规划问题,初始状态可以是变量的初始取值,边界条件可以是目标函数的最大或者最小值。
4. 确定最优解通过计算每一个状态的值,并根据状态转移方程逐步更新状态的值,我们可以找到最优解。
最优解是指使目标函数达到最大或者最小值的变量取值。
5. 输出最优解最后,我们将最优解输出为线性规划问题的解。
四、示例为了更好地理解动态规划方法求解线性规划问题,我们举一个简单的例子来说明。
假设我们有以下线性规划问题:目标函数:maximize 2x + 3y约束条件:x + y <= 10x >= 0y >= 0首先,我们确定状态。
在这个例子中,我们可以将x和y的取值作为状态。
然后,我们确定状态转移方程。
根据约束条件,我们可以得到以下状态转移方程:dp[x][y] = max(dp[x-1][y], dp[x][y-1])接下来,我们确定初始状态和边界条件。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题引言概述:线性规划是一种常见的优化问题,动态规划是一种常用的解决优化问题的方法。
本文将介绍动态规划方法在线性规划问题中的应用。
首先,我们将讨论线性规划问题的定义和特点,然后介绍动态规划方法的基本原理和步骤。
接下来,我们将详细阐述动态规划方法在线性规划问题中的五个关键点,并对每个关键点进行详细的解释。
最后,我们将总结动态规划方法在线性规划问题中的应用优势、限制和未来研究方向。
正文内容:1. 线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学优化问题,目标是在一组线性约束条件下,找到使目标函数最优的变量值。
线性规划问题的目标函数和约束条件均为线性函数。
1.2 线性规划问题的特点线性规划问题具有可加性、线性性和可分性的特点。
可加性意味着问题可以分解为多个子问题进行求解;线性性意味着目标函数和约束条件均为线性函数;可分性意味着问题的解可以通过分别求解子问题得到。
2. 动态规划方法的基本原理和步骤2.1 动态规划方法的基本原理动态规划方法是一种将问题分解为相互重叠的子问题,并通过存储子问题的解来避免重复计算的方法。
它通过构建一个状态转移方程来描述问题的最优解与子问题的最优解之间的关系。
2.2 动态规划方法的步骤动态规划方法的步骤包括问题建模、状态定义、状态转移方程的定义、边界条件的确定和最优解的计算。
首先,将原问题转化为子问题,并定义问题的状态。
然后,通过定义状态转移方程,将问题的最优解与子问题的最优解建立关系。
确定边界条件后,可以通过迭代计算得到问题的最优解。
3. 动态规划方法在线性规划问题中的五个关键点3.1 线性规划问题的拆分将线性规划问题拆分为多个子问题,使得每个子问题都是一个线性规划问题。
这样可以降低问题的复杂度,使得问题更易于求解。
3.2 子问题的状态定义根据线性规划问题的特点,定义子问题的状态。
状态可以包括变量的取值范围、目标函数值和约束条件等信息。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题引言概述:动态规划是一种常用的优化方法,可以用于求解各种复杂的问题。
在线性规划问题中,动态规划方法也可以发挥重要作用。
本文将介绍动态规划方法在求解线性规划问题中的应用,并分为四个部份进行详细阐述。
一、线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学建模方法,用于求解一类特殊的优化问题。
它的目标函数和约束条件都是线性的。
1.2 线性规划问题的特点线性规划问题具有可行解的存在性、有界性和最优性。
同时,线性规划问题的解空间是一个凸多面体。
二、动态规划方法的基本思想2.1 动态规划的基本原理动态规划是一种将问题分解为子问题并保存子问题解的方法。
通过递归地求解子问题,最终得到原问题的解。
2.2 动态规划方法的三个基本步骤动态规划方法包括问题的划分、状态的定义和状态转移方程的建立。
通过这三个步骤,可以得到问题的最优解。
2.3 动态规划方法的优点动态规划方法具有时间和空间复杂度低的优点,可以有效地求解大规模的优化问题。
三、动态规划方法在线性规划问题中的应用3.1 线性规划问题的动态规划模型将线性规划问题转化为动态规划模型,可以通过动态规划方法求解。
其中,状态的定义和状态转移方程的建立是关键。
3.2 动态规划方法求解线性规划问题的步骤通过将线性规划问题转化为动态规划模型,可以按照动态规划方法的三个基本步骤求解线性规划问题。
3.3 动态规划方法求解线性规划问题的实例通过一个具体的实例,详细介绍动态规划方法在求解线性规划问题中的具体应用步骤和求解过程。
四、动态规划方法在线性规划问题中的局限性和改进方法4.1 动态规划方法的局限性动态规划方法在求解线性规划问题时,可能会面临状态空间过大、计算复杂度高等问题。
4.2 动态规划方法的改进方法为了解决动态规划方法的局限性,可以采用剪枝策略、状态压缩等方法来提高求解效率。
结论:动态规划方法在求解线性规划问题中具有重要的应用价值。
动态规划的基本概念与方法
动态规划的基本概念与方法动态规划(Dynamic Programming,简称DP)是解决一类最优化问题的一种方法,也是算法设计中的重要思想。
动态规划常用于具有重叠子问题和最优子结构性质的问题。
它将问题分解为子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划的基本概念是“最优子结构”。
也就是说,一个问题的最优解可以由其子问题的最优解推导出来。
通过分解问题为若干个子问题,可以形成一个递归的求解过程。
为了避免重复计算,动态规划使用一个表格来保存已经计算过的子问题的解,以便后续直接利用。
这个表格也被称为“记忆化表”或“DP表”。
动态规划的基本方法是“状态转移”。
状态转移指的是,通过已求解的子问题的解推导出更大规模子问题的解。
常用的状态转移方程可以通过问题的递推关系定义。
通过定义好状态转移方程,可以通过迭代的方式一步步求解问题的最优解。
在动态规划中,通常需要三个步骤来解决问题。
第一步,定义子问题。
将原问题划分为若干个子问题。
这些子问题通常与原问题具有相同的结构,只是规模更小。
例如,对于计算斐波那契数列的问题,可以定义子问题为计算第n个斐波那契数。
第二步,确定状态。
状态是求解问题所需要的所有变量的集合。
子问题的解需要用到的变量就是状态。
也就是说,状态是问题(解决方案)所需要的信息。
第三步,确定状态转移方程。
状态转移方程通过已求解的子问题的解推导出更大规模子问题的解。
通常情况下,状态转移方程可以通过问题的递推关系确定。
在实际应用中,动态规划常用于求解最优化问题。
最优化问题可以归纳为两类:一类是最大化问题,另一类是最小化问题。
例如,最长递增子序列问题是一个典型的最大化问题,而背包问题是一个典型的最小化问题。
动态规划的优势在于可以解决许多复杂问题,并且具有可行的计算复杂度。
但是,动态规划也有一些限制。
首先,动态规划要求问题具有重叠子问题和最优子结构性质,不是所有问题都能够满足这两个条件。
其次,动态规划需要存储计算过的子问题的解,对于一些问题来说,存储空间可能会非常大。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用来求解线性规划问题。
线性规划是数学规划的一种重要方法,它通过线性约束条件和线性目标函数来求解最优解。
在实际应用中,线性规划时常遇到大规模问题,传统的求解方法效率较低。
而动态规划方法可以通过将大问题分解为小问题,并利用子问题的最优解来求解整个问题的最优解,从而提高求解效率。
动态规划方法求解线性规划问题的步骤如下:1. 确定问题的状态:将线性规划问题转化为动态规划问题时,需要确定问题的状态。
对于线性规划问题,状态可以是决策变量的取值范围或者问题的某种特征。
2. 定义状态转移方程:根据问题的状态,定义状态转移方程。
状态转移方程描述了问题从一个状态转移到另一个状态时的转移规则。
3. 确定边界条件:确定问题的边界条件,即问题的初始状态和结束状态。
4. 构建动态规划表:根据状态转移方程和边界条件,构建动态规划表。
动态规划表是一个二维表格,用于存储问题的中间结果。
5. 填充动态规划表:根据状态转移方程和边界条件,填充动态规划表。
填充的过程是从表格的左上角开始,逐行逐列地计算表格中的每一个单元格的值,直到填充到右下角。
6. 根据动态规划表求解最优解:根据填充好的动态规划表,可以得到问题的最优解。
最优解可以通过回溯法得到,即从右下角开始,根据动态规划表的值和状态转移方程,逆向推导出问题的最优解。
动态规划方法求解线性规划问题的优点在于可以将大问题分解为小问题进行求解,并且可以利用子问题的最优解来求解整个问题的最优解。
这样可以大大提高求解效率,特殊是对于大规模问题来说。
此外,动态规划方法还具有较好的可扩展性和灵便性,可以根据问题的特点进行相应的调整和优化。
举例来说,假设有一个线性规划问题,要求在满足一定约束条件的情况下,最大化目标函数的值。
可以将该问题转化为动态规划问题,并按照上述步骤进行求解。
首先确定问题的状态,可以将决策变量的取值范围作为状态。
然后定义状态转移方程,根据问题的约束条件和目标函数,确定状态之间的转移规则。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用于求解线性规划问题。
线性规划是一种数学建模方法,用于在给定的约束条件下最大化或最小化线性目标函数。
在实际问题中,线性规划经常出现,例如资源分配、生产计划、运输问题等。
动态规划方法是一种将问题分解为子问题并逐步求解的方法。
它的基本思想是通过对问题的分析,将大问题分解为小问题,并将小问题的解组合起来得到整个问题的最优解。
动态规划方法适用于具有最优子结构和重叠子问题性质的问题。
下面以一个具体的线性规划问题为例,介绍动态规划方法的求解步骤:假设有一个生产厂家需要生产两种产品A和B,每种产品的生产需要消耗不同的资源,并且有一定的利润。
资源的供应是有限的,且每种产品的生产数量也是有限的。
现在需要确定生产哪些产品以及生产的数量,使得总利润最大化。
首先,将问题转化为数学模型。
假设产品A的单位利润为5,产品B的单位利润为8,产品A的生产需要消耗1个资源,产品B的生产需要消耗2个资源。
假设资源的供应量为10,且产品A和产品B的生产数量都不能超过5。
定义状态变量和决策变量。
假设状态变量为i,表示第i个资源的剩余量,决策变量为x,表示生产产品A的数量。
建立状态转移方程。
根据题目要求,可以得到状态转移方程为:f(i) = max(f(i-1), f(i-1) + 5 * x)其中,f(i)表示剩余资源为i时的最大利润。
确定边界条件。
当剩余资源为0时,最大利润为0,即f(0) = 0。
通过递推求解。
根据状态转移方程和边界条件,可以递推求解出剩余资源为10时的最大利润。
最后,根据求解出的最大利润,可以确定生产产品A和产品B的数量,以及最终的利润。
以上是动态规划方法求解线性规划问题的基本步骤。
在实际应用中,可能会涉及更多的约束条件和决策变量,需要根据具体情况进行建模和求解。
需要注意的是,动态规划方法虽然可以有效地求解线性规划问题,但对于复杂的问题,可能需要较大的计算量和时间复杂度。
动态规划法的一般方法
动态规划法的⼀般⽅法在学习动态规划法之前,我们先来了解动态规划的⼏个概念1、阶段:把问题分成⼏个相互联系的有顺序的⼏个环节,这些环节即称为阶段。
2、状态:某⼀阶段的出发位置称为状态。
3、决策:从某阶段的⼀个状态演变到下⼀个阶段某状态的选择。
4、状态转移⽅程:前⼀阶段的终点就是后⼀阶段的起点,前⼀阶段的决策选择导出了后⼀阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转 移⽅程。
动态规划法的定义:在求解问题中,对于每⼀步决策,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每⼀步都经过筛选,以每⼀步都是最优解来保证全局是最优解,这种求解⽅法称为动态规划法。
⼀般来说,适合于⽤动态规划法求解的问题具有以下特点:1、可以划分成若⼲个阶段,问题的求解过程就是对若⼲个阶段的⼀系列决策过程。
2、每个阶段有若⼲个可能状态3、⼀个决策将你从⼀个阶段的⼀种状态带到下⼀个阶段的某种状态。
4、在任⼀个阶段,最佳的决策序列和该阶段以前的决策⽆关。
5、各阶段状态之间的转换有明确定义的费⽤,⽽且在选择最佳决策时有递推关系(即动态转移⽅程)。
动态规划设计都有着⼀定的模式,⼀般要经历以下⼏个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若⼲个阶段。
2、确定状态:将问题发展到各个阶段时所处的各种客观情况⽤不同的状态表⽰出来。
3、确定决策并写出状态转移⽅程:因为决策和状态转移有着天然的联系,状态转移就是根据上⼀阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移⽅程也就可以写出。
4、寻找边界条件:给出的状态转移⽅程是⼀个递推式,需要⼀个递推的终⽌条件或边界条件。
5、程序设计实现:动态规划的主要难点在于理论上的设计,⼀旦设计完成,实现部分就会⾮常简单。
根据以上的步骤设计,可以得到动态规划设计的⼀般模式:for k:=阶段最⼩值to 阶段最⼤值do {顺推每⼀个阶段}for I:=状态最⼩值to 状态最⼤值do {枚举阶段k的每⼀个状态}for j:=决策最⼩值to 决策最⼤值do {枚举阶段k中状态i可选择的每⼀种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}例如:多段图G=(V,E)是⼀个有向图。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化算法,可以用于求解线性规划问题。
在线性规划中,我们需要找到一组变量的取值,使得目标函数达到最大或最小值,同时满足一系列线性约束条件。
动态规划方法可以帮助我们高效地解决这类问题。
首先,我们需要明确线性规划问题的数学模型。
假设我们有n个变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g1(x1, x2, ..., xn) ≤ b1, g2(x1, x2, ..., xn) ≤ b2, ..., gm(x1, x2, ..., xn) ≤ bm。
其中,f(x1, x2, ..., xn)是一个关于变量x1, x2, ..., xn的线性函数,g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gm(x1, x2, ..., xn)是关于变量x1, x2, ..., xn的线性不等式,b1, b2, ..., bm是常数。
接下来,我们可以使用动态规划方法求解线性规划问题的最优解。
具体步骤如下:1. 定义状态:我们需要定义子问题的状态。
在这里,我们可以将线性规划问题的状态定义为子问题的目标函数值。
2. 确定状态转移方程:我们需要确定子问题之间的转移关系。
在这里,我们可以使用递推的方式来定义子问题之间的关系。
假设dp[i]表示目标函数值为i时的最优解,那么我们可以得到状态转移方程为:dp[i] = max(dp[i - c1] + v1, dp[i - c2] +v2, ..., dp[i - cn] + vn),其中ci表示第i个约束条件的系数,vi表示第i个约束条件的常数。
3. 初始化边界条件:我们需要初始化子问题的边界条件。
在这里,我们可以将dp[0]初始化为0,表示目标函数值为0时的最优解。
4. 递推求解:我们可以使用动态规划的递推方式来求解子问题的最优解。
从dp[1]开始,依次计算dp[2], dp[3], ..., dp[k],直到dp[m],其中m为目标函数的最大值或最小值。
动态规划模型及求解方法
dh2 dx2
2x2 s2 3x22
0
解得:
2 x2 3 s2
x2=0(舍)
d 2h2 dx22
2s2
6x2
d 2h2 dx22
x2
2 3
s2
是极大值点。
x2
2 3
s2
2s2
0
f2
(s2
)
(2 3
s2
)2 (s2
2 3
s2 )
4 27
s
3 2
x2*
2 3
s2
k=1时,
f1 (s1 )
max
k=3时,
f3 (s3 )
max
x3D3 (s3
)[v3
(
x3
)
f4 (s4 )]
max(
x3 s3
x3
)
s3
k=2时,
x3*=s3
f2 (s2 )
max
x2D2 (s2
)[v2
(
x2
)
f3 (s3 )]
max
0x2 s2
(
x22
s3 )
max [
0x2 s2
x22
(s2
x2 )]
令h2(s2,x2)=x22(s2-x2)
运筹学
动态规划模型及求解方法
一、动态规划的数学模型
1. 动态规划的基本方程
设第k阶段处于状态sk,决策是uk(sk),状态转移方程为 sk+1=Tk(sk,uk),k阶段和k+1阶段的递推关系式可写为:
fk
(sk
)
opt [vk
uk Dk ( sk )
(sk
,uk
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题一、引言线性规划是一种常见的优化问题求解方法,其目标是在给定的约束条件下,找到使目标函数最大或者最小的变量值。
动态规划是一种常用的求解优化问题的方法,通过将问题分解为子问题并利用子问题的最优解来求解原问题的最优解。
本文将介绍如何使用动态规划方法求解线性规划问题。
二、问题描述假设有一个线性规划问题,目标是最小化目标函数。
问题的约束条件可以表示为一组不等式和等式。
我们需要找到满足所有约束条件的变量值,使得目标函数的值最小。
三、动态规划方法求解线性规划问题1. 状态定义首先,我们需要定义状态。
在线性规划问题中,状态可以定义为变量的取值范围。
假设有n个变量,每一个变量的取值范围分别为[a1, b1], [a2, b2], ..., [an, bn]。
我们可以将状态定义为一个n维数组,其中第i维表示第i个变量的取值范围。
2. 状态转移方程接下来,我们需要定义状态转移方程。
状态转移方程描述了如何从一个状态转移到下一个状态。
在线性规划问题中,我们可以通过调整变量的取值来改变状态。
假设当前状态为S,我们可以通过选择一个变量并将其取值调整到[a, b]之间的某个值来转移到下一个状态。
这个选择可以通过遍历所有可能的取值来完成。
3. 初始状态和边界条件在动态规划中,我们需要定义初始状态和边界条件。
在线性规划问题中,初始状态可以定义为变量的初始取值范围。
边界条件可以定义为目标函数的初始值。
4. 最优解的计算通过定义状态、状态转移方程、初始状态和边界条件,我们可以使用动态规划方法求解线性规划问题的最优解。
具体步骤如下:a. 初始化状态数组和目标函数的初始值。
b. 遍历所有可能的状态转移,计算每一个状态的目标函数值。
c. 更新最优解和最优值。
d. 重复步骤b和c,直到遍历完所有可能的状态转移。
e. 返回最优解和最优值。
四、实例分析为了更好地理解动态规划方法求解线性规划问题,我们通过一个实例来说明。
动态规划算法设计方法及案例解析
动态规划算法设计方法及案例解析动态规划是一种解决多阶段决策问题的常用算法,通过将问题分解为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
本文将介绍动态规划算法的设计方法,并通过两个实例进行解析,以帮助读者更好地理解和应用该算法。
一、动态规划算法设计方法动态规划算法的设计一般遵循以下几个步骤:1. 确定问题的状态:将原问题划分为若干个子问题,并定义每个子问题的状态。
状态的定义应该包含子问题的变量和可以从子问题中获得的信息。
2. 定义状态转移方程:通过分析子问题之间的关系,确定状态之间的转移方式。
通常使用递推关系式来描述状态之间的转移,以表达每个子问题的最优解与其他子问题解之间的关系。
3. 确定初始状态和边界条件:确定问题的初始状态和边界条件,即最简单的子问题的解,作为求解其他子问题的基础。
4. 计算最优解:根据定义的状态转移方程,利用递推的方式从初始状态开始逐步计算每个子问题的最优解,直到得到原问题的最优解。
二、案例解析1:背包问题背包问题是动态规划算法中经典的案例之一,主要解决如何在限定容量的背包中选择一些物品,使得物品的总价值最大。
以下是一个简化的例子:假设有一个容量为C的背包,以及n个物品,每个物品有重量wi 和价值vi。
要求选择一些物品放入背包中,使得放入背包中物品的总价值最大。
根据动态规划算法的设计方法,我们可以定义子问题的状态为:背包容量为c,前a个物品的最优解用F(c,a)表示。
那么,状态转移方程可以定义为:F(c,a) = max{F(c,a-1), F(c-wa, a-1) + va}其中,F(c,a-1)表示不选择第a个物品时的最优解,F(c-wa, a-1) + va 表示选择第a个物品时的最优解。
初始状态为F(0,a) = F(c,0) = 0,边界条件为c < wa时,F(c,a) =F(c,a-1)。
根据以上定义,我们可以通过递推的方式计算F(c,n),从而得到背包问题的最优解。
动态规划求解方法
动态规划求解方法动态规划(Dynamic Programming)是一种常见的求解优化问题的方法,它通过将问题分解成更小的子问题,并保存子问题的解来降低时间复杂度。
动态规划通常使用一个表格来记录子问题的解,然后根据递推关系计算出更大问题的解。
动态规划的求解方法一般包含以下几个步骤:1.定义问题:首先,需要明确要解决的问题是什么。
动态规划通常适用于求解具有最优子结构性质的问题,即原问题的最优解可以通过一系列子问题的最优解得到。
2.确定状态:接下来,需要确定动态规划的状态。
状态是问题中会变化的量,它包含了问题的关键信息。
在动态规划中,状态可以是一个或多个变量。
3.建立转移方程:然后,需要建立问题的转移方程。
转移方程描述了问题状态之间的关系,用来计算子问题的最优解。
转移方程可以通过观察问题的特点或者使用递推关系得到。
4.确定初始条件:接下来,需要确定边界条件或初始条件。
边界条件是问题中的一些特殊情况,它们通常是一些最小子问题的解。
初始条件是指将边界条件中的解赋值给表格中对应的位置。
5.使用递推关系计算:最后,使用递推关系将表格中的其他位置的解计算出来。
通常,可以使用自底向上的方法,从表格的第一个位置开始计算,依次填充整个表格。
动态规划的优点在于它可以将一个复杂的问题分解成多个子问题,然后通过记录子问题的解来减少重复计算。
这样,可以大大提高求解问题的效率。
动态规划通常适用于求解满足最优化原理和无后效性条件的问题。
最优化原理是指问题的最优解具有递归的结构,即解可以通过子问题的最优解得到。
无后效性条件是指问题的当前状态决定了未来的决策,与过去的决策无关。
动态规划在算法设计和实现中有很多经典的应用,例如最长公共子序列问题、0/1背包问题、最短路径问题等。
下面简要介绍其中的两个经典应用。
1.最长公共子序列问题:给定两个字符串s1和s2,求它们的最长公共子序列。
最长公共子序列是指在两个字符串中以相同的顺序出现的最长的子序列。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划方法是一种通过将问题分解为子问题,并以最优子结构性质来解决复杂问题的数学优化方法。
在线性规划问题中,我们希望找到一组决策变量的最优值,以使目标函数达到最大或最小值,同时满足一系列线性约束条件。
为了使用动态规划方法求解线性规划问题,我们需要进行以下步骤:1. 定义问题:首先,我们需要明确定义线性规划问题的目标函数和约束条件。
目标函数是我们希望最大化或最小化的函数,而约束条件是决策变量必须满足的一系列线性等式或不等式。
2. 确定决策变量:接下来,我们需要确定参与问题求解的决策变量。
这些变量通常表示问题的不同方面或决策的选择。
3. 制定状态转移方程:动态规划方法的核心是制定状态转移方程,通过将问题分解为子问题来求解。
在线性规划问题中,我们可以将目标函数和约束条件转化为一组线性等式或不等式的形式。
4. 确定边界条件:边界条件是动态规划方法中的基础情况,它们定义了问题的边界或初始状态。
在线性规划问题中,边界条件通常是约束条件的边界值。
5. 进行状态转移计算:根据状态转移方程和边界条件,我们可以通过递归或迭代的方式计算出问题的最优解。
动态规划方法的关键是将问题分解为子问题,并利用最优子结构性质来求解。
6. 分析最优解:最后,我们需要分析计算得到的最优解是否满足问题的要求。
如果最优解满足约束条件,并且使目标函数达到最大或最小值,则我们可以得出问题的最优解。
举例说明:假设我们有一个生产计划问题,需要确定每个产品的生产数量,以最大化总利润。
我们有两种产品:A和B,每个产品的利润分别为10和15。
我们还有两个约束条件:总产量不能超过100个单位,产品A的产量不能超过50个单位。
首先,我们定义决策变量:x表示产品A的产量,y表示产品B的产量。
然后,我们制定目标函数和约束条件:目标函数:maximize 10x + 15y约束条件:x + y <= 100x <= 50接下来,我们可以根据动态规划方法制定状态转移方程:f(i, j)表示在前i个产品A和前j个产品B的情况下,能够获得的最大利润。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种通过将问题分解成子问题并以最优子结构性质递归地求解的方法。
在线性规划问题中,我们希翼找到一组变量的最优值,使得目标函数达到最大或者最小值,同时满足一组线性约束条件。
首先,我们需要明确线性规划问题的数学模型。
假设有n个决策变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn) ≤ b1, h(x1, x2, ..., xn) ≤ b2, ..., 其中g和h为线性函数,b1, b2, ...为常数。
接下来,我们将问题转化为动态规划的形式。
定义状态变量dp[i1, i2, ..., in]表示在决策变量x1, x2, ..., xn取值为i1, i2, ..., in时的最优解。
则我们可以得到如下的状态转移方程:dp[i1, i2, ..., in] = max/min {dp[i1-a1, i2-a2, ..., in-an] + c}其中,a1, a2, ..., an为决策变量的系数,c为常数项。
这个方程的意义是,在决策变量x1, x2, ..., xn取值为i1, i2, ..., in时,最优解可以通过在决策变量取值为i1-a1, i2-a2, ..., in-an的情况下的最优解加之c来得到。
我们可以使用动态规划的方法,从决策变量的边界条件开始,逐步计算出所有状态变量的最优解。
具体步骤如下:1. 初始化边界条件:根据约束条件设置决策变量的取值范围,并计算出边界条件下的最优解。
2. 逐步计算状态变量的最优解:从边界条件开始,按照状态转移方程计算出所有状态变量的最优解。
可以使用递归或者迭代的方法进行计算。
3. 根据最优解得到最优解决策:根据计算得到的最优解,反向推导出决策变量的取值,得到最优解决策。
4. 检验最优解:将最优解代入目标函数和约束条件中,验证是否满足所有约束条件,并计算目标函数的值。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题标题:动态规划方法求解线性规划问题引言概述:线性规划是一种常见的数学优化问题,动态规划方法是一种常用的求解线性规划问题的方法。
本文将介绍动态规划方法在求解线性规划问题时的具体步骤和应用场景。
一、动态规划方法概述1.1 动态规划的基本思想动态规划是一种将问题分解为多个子问题并分别求解的方法,通过保存子问题的解来避免重复计算,从而提高求解效率。
1.2 动态规划方法的特点动态规划方法具有最优子结构和重叠子问题两个关键特点,可以有效解决具有重叠子问题的优化问题。
1.3 动态规划方法的适合范围动态规划方法适合于具有最优子结构和重叠子问题的优化问题,包括线性规划问题。
二、线性规划问题的定义2.1 线性规划问题的数学表达形式线性规划问题可以用一组线性不等式约束和线性目标函数来表示,目标是找到满足约束条件的最优解。
2.2 线性规划问题的求解方法线性规划问题可以使用各种方法求解,包括单纯形法、内点法和动态规划方法等。
动态规划方法在某些情况下可以提供更高效的求解方案。
2.3 线性规划问题的应用领域线性规划问题在生产调度、资源分配和投资组合等领域有广泛的应用,通过求解最优解可以提高效率和经济效益。
三、动态规划方法求解线性规划问题的步骤3.1 确定状态和状态转移方程将线性规划问题转化为状态和状态转移方程的形式,定义状态表示问题的子结构,建立状态之间的转移关系。
3.2 构建动态规划表格根据状态和状态转移方程,构建动态规划表格,保存子问题的解,以便后续计算使用。
3.3 填充动态规划表格按照动态规划表格的填充顺序,从简单的子问题开始逐步计算,直到得到最优解。
四、动态规划方法求解线性规划问题的案例分析4.1 0-1背包问题将0-1背包问题转化为线性规划问题,并使用动态规划方法求解,得到最优解和最优解对应的物品选择方案。
4.2 生产调度问题将生产调度问题转化为线性规划问题,并使用动态规划方法求解,得到最优的生产计划和最大利润。
运筹学知识点总结
运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划方法是一种常用的优化算法,可以用于求解线性规划问题。
线性规划是一种数学优化问题,其目标是在一组线性约束条件下,最大化或者最小化一个线性目标函数。
动态规划方法通过将问题划分为一系列子问题,并利用子问题的最优解来求解整个问题的最优解。
首先,我们需要定义线性规划问题的数学模型。
假设我们有n个决策变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g1(x1, x2, ..., xn)≤b1, g2(x1,x2, ..., xn)≤b2, ..., gm(x1, x2, ..., xn)≤bm。
其中,f(x1, x2, ..., xn)是一个线性函数,g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gm(x1, x2, ..., xn)是一组线性函数,b1, b2, ..., bm是一组常数。
接下来,我们可以使用动态规划方法来求解线性规划问题。
动态规划方法的核心思想是将原问题划分为一系列子问题,并利用子问题的最优解来求解整个问题的最优解。
我们可以使用一个二维数组dp[i][j]来表示子问题的最优解,其中i表示决策变量的个数,j表示目标函数的取值。
具体的求解过程如下:1. 初始化dp数组。
将dp数组的所有元素初始化为无穷大(对于最小化问题)或者负无穷大(对于最大化问题),并将dp[0][0]初始化为0。
2. 逐步求解子问题。
从dp[1][1]开始,挨次计算dp[i][j]的值。
对于每一个dp[i][j],我们需要考虑两种情况:选择第i个决策变量和不选择第i个决策变量。
如果选择第i个决策变量,则dp[i][j]的值等于dp[i-1][j-c[i]] + f[i],其中c[i]表示第i个决策变量的系数,f[i]表示第i个决策变量的目标函数系数。
如果不选择第i个决策变量,则dp[i][j]的值等于dp[i-1][j]。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常见的优化算法,可以用来求解线性规划问题。
线性规划是一类数学规划问题,目标函数和约束条件都是线性的。
动态规划方法可以通过将问题分解为子问题,并利用子问题的最优解来求解原问题的最优解。
下面将详细介绍动态规划方法求解线性规划问题的步骤和具体实现。
1. 问题描述假设有一个线性规划问题,目标是最大化或最小化一个线性函数,同时满足一组线性约束条件。
线性规划问题可以用如下标准形式表示:最大化:maximize c^T x约束条件:Ax ≤ bx ≥ 0其中,c是一个n维列向量,表示目标函数的系数;x是一个n维列向量,表示决策变量;A是一个m×n维矩阵,表示约束条件的系数矩阵;b是一个m维列向量,表示约束条件的右侧常数向量。
2. 动态规划方法求解步骤(1)定义子问题将线性规划问题分解为若干子问题,每个子问题都是一个线性规划问题,目标是最大化或最小化一个线性函数,同时满足一组线性约束条件。
(2)确定状态定义状态变量,描述子问题的特征。
在线性规划问题中,状态变量可以是决策变量的某个分量或某个组合。
(3)建立状态转移方程根据子问题之间的关系,建立状态转移方程。
状态转移方程描述了子问题之间的转移关系,可以通过子问题的最优解来求解原问题的最优解。
(4)确定初始条件和边界条件确定初始条件和边界条件,即最小子问题的最优解。
这些条件可以是已知的约束条件或问题的特殊要求。
(5)计算最优解根据状态转移方程和初始条件,计算出每个子问题的最优解。
通过递推或迭代的方式,从最小子问题开始,逐步计算出更大规模的子问题的最优解,直到求解出原问题的最优解。
3. 实例演示假设有一个线性规划问题如下:最大化:maximize 3x1 + 2x2约束条件:x1 + x2 ≤ 52x1 + x2 ≤ 8x1, x2 ≥ 0(1)定义子问题将原问题分解为两个子问题,分别是:子问题1:最大化 3x1 + 2x2约束条件:x1 + x2 ≤ 5x1, x2 ≥ 0子问题2:最大化 3x1 + 2x2约束条件:2x1 + x2 ≤ 8x1, x2 ≥ 0(2)确定状态状态变量可以选取为决策变量的某个分量或某个组合。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用来求解线性规划问题。
线性规划是一种数学建模方法,用于在给定的一组约束条件下,寻觅使目标函数最大(或者最小)的变量值。
本文将介绍动态规划方法在解决线性规划问题中的应用。
一、线性规划问题的定义和形式线性规划问题可以用下列形式来描述:目标函数:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数。
目标是找到使目标函数最大(或者最小)的变量值。
二、动态规划方法求解线性规划问题的基本思想动态规划方法可以将线性规划问题转化为一个多阶段决策问题,并通过递推的方式求解最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
3. 初始化:确定初始状态和初始条件。
4. 递推求解:根据状态转移方程,逐步计算得到最优解。
5. 回溯得到最优解:根据递推过程中记录的状态,回溯得到最优解。
三、动态规划方法求解线性规划问题的具体步骤1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
例如,将约束条件 a₁₁x₁ + a₁₂x₂ ≤ b₁转化为 a₁₁x₁ + a₁₂x₂ + x₃ = b₁,其中 x₃为松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
定义状态:设 f(i,j) 表示前 i 个约束条件中,使得目标函数最大(或者最小)的变量值。
状态转移方程:f(i,j) = max/min { f(i-1,j), f(i-1,j-aᵢ₋₁₁x₁ - aᵢ₋₁₂x₂) +cᵢ₋₁x₁ + cᵢ₋₁x₂ }其中,f(i-1,j) 表示不使用第 i 个约束条件时的最优解,f(i-1,j-aᵢ₋₁₁x₁ -aᵢ₋₁₂x₂) + cᵢ₋₁x₁ + cᵢ₋₁x₂表示使用第 i 个约束条件时的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/11
2
动态规划
1 最短路径问题 2 贝尔曼最优化原理 3 WinQSB软件应用
2018/11/11
3
动态规划是解决多阶段决策问题 的一种方法. 1951年,美国数学 家贝尔曼(R.Bellman, 1920~1984)研究了一类多阶 段决策问题的特征,提出了解决 这类问题的基本原理。在研究、 解决了某些实际问题的基础上, 他于1957年出版了《动态规划》 这一名著。本章将简要介绍动态 规划的思想方法及其应用。
min{d ( Sk , X ( Sk )) f k -1 ( X (Sk ))}, k 2,3,..., n, f k ( Sk ) x k ( Sk ) f1 (S1 ) min{d (S1 , X1 (S1 ))} d (S1 , X1 (S1 )).
2018/11/11 22
第10章 动态规划方法
2018/11/11
1
动态规划(Dynamic Programming)同前 面介绍过的线性规划方法不同,它不是一种算法,而 是考察问题的一种途径。动态规划是一种求解多阶段 决策问题的系统技术。由于动态规划不是一种特定的 算法,因而它不像线性规划那样有一个标准的数学表 达式和明确定义的一组规则,动态规划必须对具体问 题进行具体的分析处理。动态规划在自然科学和社会 科学等各个领域都有着广泛的应用,并且获得了显著 的效果。
此关系被称为求最短路径的动态规划基本方程。 求解最短路径问题的过程,本质上是解上述基 本方程的过程。
2018/11/11 19
2 贝尔曼最优化原理
2018/11/11
20
2 贝尔曼最优化原理
将求解最短路径问题的思路推广到一般多 阶段决策问题时,可以表述成: 贝尔曼最优化原理:一个过程的最优策略 具有这样的性质,即无论其初始状态和初 始决策如何,今后的诸决策,对以第一个 决策所形成的状态作为初始状态的过程而 言,必须构成最优策略。 这个原理是动态规划的理论基础。
2018/11/11
d ( B1 , C1 ) f1 (C1 ) 6 5 f 2 ( B1 ) min min 11 5 8 d ( B1 , C2 ) f1 (C2 )
15
1 最短路径问题
从 B1 出发到终点E最短路径为“B1 C1 E ”, * X 决策变量 2 (B1 ) C1 ; 从B2出发到终点E最短路径为“B2 C1 E ”, * X 决策变量 2 (B2 ) C1 ; S3 可以取 A1 , A2 , A3 在阶段3: 中任意一个, 对应的有 d ( A , B ) f ( B ) 6 11
2018/11/11
8
1 最短路径问题
(a)
(b)
2018/11/11 9
1 最短路径问题
分析:如果用枚举法,将有12条不同的路 径,每条路径对应一个由S到E的路径距离, 其中最小值所对应的路径即为最短路径。本 问题的最短路径有3条,路程均为21个单位: 第1条: S A1 B1 C1 E
2018/11/11
21
2 贝尔曼最优化原理
应用动态规划方法解决一般多阶段决策问题时,其求 解过程如下: (1)把实际问题适当地划分成k个阶段,阶段变量 为k (k 1, 2,..., n) ; (2)在每个阶段k,确定状态变量 Sk 为及此阶段可 能的状态集合 {Sk } ; (3)确定决策变量 X k (Sk ) 及每个阶段k的允许决策 xk (Sk ) {X k (Sk )} 集合 ; (4)列出递推关系即动态规划基本方程并计算:
1 2
2018/11/11
23
2 贝尔曼最优化原理
(a)
(b)
2018/11/11 24
2 贝尔曼最优化原理
A B; B C; C D; D E. 解 划分成4个阶段: 阶段变量依次为4,3,2,1,如图2所示. 设 阶段k的状态变量为Sk , k 1, 2,3, 4 。 f1 ( D1 ) 3, f1 ( D2 ) 4 在阶段1: S2 可以取 C1, C2 , C3 在阶段2: 中任意一个, 对应的有 d (C , D ) f ( D ) 1 3
min{d ( Sk , X ( Sk )) f k -1 ( X ( Sk ))}, k 2,3,..., n, f k ( Sk ) X k ( Sk ) f1 (S1 ) min{d (S1 , X 1 (S1 ))} d (S1 , X 1 (S1 )).
f1 (C1 ) 5, f1 (C2 ) 8
在阶段2:S2 可以取 B1, B2 中任意一个,对应的有
d ( B2 , C1 ) f1 (C1 ) 9 5 f 2 ( B2 ) min min 14 8 8 d ( B2 , C2 ) f1 (C2 )
2 贝尔曼最优化原理
【例2】(石油输送管道铺设优选问题)某石 油公司计划从A地到E地铺设一条石油输送管 道,为此在A地与E地之间必须建立三个油泵 加压站,如图2所示, 其中 B, C, D 分别为必 须建站的地区,而 B1, B2 , B3 , C1, C2 , C3 , D , D 分别为可供选择的各站点,各点连线上的数字 表示相邻站点间铺设输送管道所需费用. 问: 如何铺设石油输送管道,能使总费用最少?
2018/11/11 14
1 最短路径问题
以 d (Sk , X k (Sk )) 表示在阶段k的状态变量为 Sk 、决策 变量为 X k (Sk ) 时点 Sk 与 X k (Sk ) 间的距离;记 f k ( Sk ) 为在阶段k由点 Sk 到终点E的最短路径的长度。本例 中要求的是 f4 (S ) 。 在阶段1:S1 可以取 C1, C2 中任意一个,对应的有
* 3 2 1
3 1 1
;
d ( S , A1 ) f3 ( A1 ) 4 17 f 4 ( S ) min d ( S , A2 ) f 3 ( A2 ) min 3 19 21 d (S , A ) f ( A ) 3 18 3 3 3
2018/11/11 13
1 最短路径问题
为了寻找由起点S到E终点的最短路径,我 们考察前面用枚举法找到的第1条最短路径:
S A1 B1 C1 E
A1 B1 C1 E 容易看出:子路径“ ” 也应 A1 是从 出发到终点E的所有路径中最短的一条。
这个现象启发我们从阶段1开始,逐段逆向地 求出各点到终点E的最短路径,最后求得由起 点S到终点E的最短路径,这就是动态规划的 基本思想。
1 1 1 1 f 2 (C1 ) min min 4 4 4 d (C1 , D2 ) f1 ( D2 ) d (C2 , D1 ) f1 ( D1 ) 6 3 f 2 (C2 ) min min 7 3 4 d (C2 , D2 ) f1 ( D2 ) d (C3 , D1 ) f1 ( D1 ) 3 3 f 2 (C3 ) min min 6 3 4 d (C3 , D2 ) f1 ( D2 )
第2条: S A3 B1 C1 E
S A3 B2 C1 E 第3条:
2018/11/11
10
1 最短路径问题
当段数很多时,枚举法的计算量将极其庞大。 现在换个思路,寻找由S到E的最短路径。先 把最短路径问题所考虑的过程分为4个阶段: 由S到 Ai (i 1, 2,3) 为第1阶段; Bj ( j 1, 2) 由 Ai (i 1, 2,3) 到 为第2阶段; 由 由
2018/11/11
6
1 最短路径问题
2018/11/11
7
1 最短路径问题
【例1】设在E城的某公司要从S城运送一批 货物,两城之间有公路相连(见图 1(a)), 其中 Ai (i 1, 2,3), Bj ( j 1, 2), Cl (l 1, 2) 是可以供选择的途经站点,各点连线上的数 字表示相邻站点间的距离。现在的问题是选择 一条由S到E的路径,使得所经过的路径最短。
2018/11/11 17
1 最短路径问题
因此,由起点S到终点E的最短路径为
S A1 B1 C1 E; S A3 B1 C1 E; S A3 B2 C1 E.
最短路径长度为21单位长度。
2018/11/11
18
1 最短路径问题
由上述计算过程可知,对有n个阶段的最短 路径问题,可以逐段逆向地求出各点到终 点的最短路径,且在求解的每一步都利用 阶段k和阶段k-1间的递推关系:
2018/11/11
16
1 最短路径问题
从 A1出发到终点E最短路径为 A1 B1 C1 E * X “ 3 ( A1 ) B1 ”,决策变量 ; 从 A2 出发到终点E最短路径为A2 B1 C1 E “ X (A ) B ”,决策变量 ; 从 A3 出发到终点E最短路径为 A B C E * X B2 “ ”,决策变量 或 3 (A 3) B 1 S4 只可以取S,于是 最后,在阶段4:
1 1 2 1 f3 ( A1 ) min min 17; 5 14 d ( A1 , B2 ) f 2 ( B2 ) d ( A2 , B1 ) f 2 ( B1 ) 8 11 f3 ( A2 ) min min 19; 6 14 d ( A2 , B2 ) f 2 ( B2 ) d ( A3 , B1 ) f 2 ( B1 ) 7 11 f3 ( A3 ) min min 18 4 14 d ( A3 , B2 ) f 2 ( B2 )