植物生理学 实验报告--实验1 植物组织水势的测定
植物组织水势的测定实验报告
植物组织水势的测定(小液流法)实验目的:1. 了解测定植物组织水势的方法及其优缺点2. 学习用小液流法测定植物组织水势的方法实验原理:实验原理1、当植物组织与外液接触时发生水分交换:植物组织的水势低于外液的渗透势(溶质势),组织吸水,外液浓度变大;ψ植物<ψS植物组织的水势高于外液的渗透势(溶质势),组织失水,外液浓度变小;ψ植物> ψS若两者相等,则水分交换保持动态平衡,外液浓度保持不变;ψ植物=ψS2、同一种物质浓度不同时其比重不一样,浓度大的比重大,把高浓度的溶液一小液滴放到低浓度溶液中时,液滴下沉;反之则上升。
3、根据外液浓度的变化情况即可确定与植物组织相同水势的溶液浓度实验仪器与试剂试管架试管打孔器毛细管镊子青霉素瓶蔗糖溶液甲烯蓝粉末操作步骤1. 配制不同浓度的蔗糖溶液2.用打孔器在绣球花的不同部位打100-200片,混匀,每个青霉素瓶各放入15-20片,(打孔要迅速,避开叶脉,选边缘整齐无破损的叶片)3.从配制好的试管中各取2ml(量准确?)到相应的青霉素瓶或称量瓶中(用一只移液管由低高,不要润洗)。
放置20—30min,期间摇动数次,以加速水分平衡。
4. 染色:用接种针沾入微量甲烯蓝粉末加入青霉素瓶中,摇匀,溶液变蓝。
(干燥针头先用蒸馏水湿润,加入的甲烯蓝量一定少,使各瓶中颜色基本一致)5.观察液滴升降:用毛细吸管取青霉素瓶有色液插入相应试管中部缓慢从毛细吸管尖端横向放出一滴蓝色溶液,轻轻取出滴管,观察蓝色液滴的移动方向并记录。
(用白纸划一直线置于试管背面,方便观察)6.分别测定不同浓度中有色液滴的升降,找出与组织水分势相当的浓度,根据原理公式计算出组织的水势。
实验结果测定植物组织的水势实验记录水势计算ψs=-iCRT实验讨论如果小液流滴在对照溶液中全部上升或下降说明什么问题,应如何改变试验溶液浓度?答:“全部上升”说明实验溶液的浓度都高于植物组织的浓度,应该把试验溶液浓度降低再做;“全部下降”说明实验溶液的浓度都低于植物组织的浓度,应该把试验溶液浓度调高再做。
植物组织水势的测定实验报告
植物组织水势的测定实验报告植物组织水势的测定实验报告引言:植物的水势是指植物体内水分与纯水之间的差异,是植物水分状态的重要指标之一。
测定植物组织水势可以帮助我们了解植物的水分吸收与运输情况,进而探索植物的适应机制和生理生态学特征。
本实验旨在通过测定植物组织水势的方法,探究植物水分状态的变化以及影响因素。
材料与方法:1. 实验材料:鲜嫩的植物叶片、离心管、注射器、测水势仪器(如压力室或压力台秤)等。
2. 实验步骤:a. 收集鲜嫩的植物叶片,并将其快速放入离心管中,避免水分流失。
b. 将离心管中的叶片放入注射器中,并用注射器吸取一定量的水分,使叶片完全浸没在水中。
c. 将注射器与测水势仪器连接,并记录初始读数。
d. 通过改变注射器的压力,使水分进入或退出植物叶片,记录每次读数。
e. 根据测得的数据,计算植物组织的水势值。
结果与讨论:通过实验测定,我们获得了植物组织的水势值。
根据实验结果,我们可以得出以下结论和讨论。
1. 植物组织水势的变化:在实验过程中,我们发现随着水分进入植物叶片,测水势仪器的读数逐渐增加,表示植物组织的水势值降低。
相反,当水分从植物叶片流失时,测水势仪器的读数减少,表示植物组织的水势值增加。
这说明植物组织的水势与水分的流动方向密切相关。
2. 影响植物组织水势的因素:植物组织的水势受多种因素的影响,包括温度、湿度、光照强度、气孔开闭等。
在实验中,我们可以通过改变这些因素来观察植物组织水势的变化情况。
例如,当提高环境温度时,植物组织的水势值通常会下降,因为高温会增加水分的蒸发速率。
而在湿度较低的环境中,植物组织的水势值也会下降,因为湿度低会导致植物体内水分的流失加剧。
3. 植物的适应机制:植物通过调节水势来适应不同的环境条件。
在干旱环境中,植物会通过调节气孔的开闭来减少水分流失,从而提高植物组织的水势值。
此外,一些植物还会通过根系的生长和分泌物质的合成来增加水分吸收,以维持植物组织的水势平衡。
植物组织水势的测定实验报告
植物组织水势的测定实验报告实验名称:植物组织水势的测定实验目的:了解各种植物组织中的水势变化规律,学习测定水势的实验操作方法。
实验原理:植物体内水势是维持植物生命活动的重要因素之一,水势可以影响水分的吸收和输送。
本实验采用“压延法”来测定不同植物组织(根、茎、叶)的水势大小。
实验步骤:1. 将需要测定水势的植物材料用钳子夹住,轻轻挥动,然后用手指指甲将其切断,割端要尽量平齐,不要碰到虫眼等杂质。
2. 将切口快速放入水中,利用吸水作用使水分上升,排除空气。
3. 将切口快速从水中取出,然后将其放到压延仪内,尽可能保持植物细胞的原有形态。
4. 向下轻压压延仪的拉杆,停留一段时间几秒钟,等到细胞的状况稳定后,读取示数,记录下此时的长度和标尺读数。
5. 再稍微压紧,停2~3秒左右,再读取示数,再记录下此时的长度和标尺读数。
6. 将杆恢复到原位,并将植物组织切口处擦干净。
7. 分别测定不同植物组织的水势。
根据水势的特点,以水分势值为y轴,切口位移长度为x轴,绘制出水势变化的曲线。
实验结果:我们分别测定了菜花根、豌豆茎、玉米叶片的水势变化曲线,图中可以看出,三种不同的植物组织他们的水势大小不同,玉米叶片水势最高,豌豆茎次之,而菜花根的水势最低。
这说明植物的吸收生长需要水分的支持,不同器官的水势不同。
实验结论:本实验内容重点在于掌握测水势的方法和水势的变化规律,同时还有机会深入了解植物的生长过程。
测定出不同植物组织的水势差异信息,说明不同的植物器官在吸水输液中扮演着不同的角色。
实验有效地理论与实践相结合,深化了我们对植物体内水分代谢的认识。
植物组织水势的测定实验报告
植物组织水势的测定实验报告实验目的:本实验旨在通过测定植物组织的水势来研究植物体内水分的流动和调节机制。
实验原理:水势是植物中水分的浓度差异所致的物理性质,其大小通过测定植物组织与纯水之间的渗透压差和反渗透压差来确定。
渗透压是指浓度差异引起的水分向高浓度区域扩散的压力,反渗透压则是指纯溶液渗透进入植物组织时产生的水分向外扩散的压力。
植物的水势主要由渗透压和压力势两部分组成,而压力势又由浸渍压和板塞压组成。
实验材料:1.鲜嫩茄果或马铃薯块茎;2.切片刀和玻璃片;3.纯水;4.测水势的装置(例如渗透压计、压力室等)。
实验步骤:1. 将茄果或马铃薯块茎切成薄片(约0.2-0.5 mm厚),并用玻璃片将其夹持在一起。
2.在渗透压计的样品槽中加入足够的纯水,使其淹没住茄果或马铃薯薄片。
3.观察茄果或马铃薯薄片随时间的变化,记录下相应的读数。
4.根据渗透压计的原理,计算出植物组织中的渗透压差和反渗透压差,从而得出植物组织的水势。
实验结果:随着时间的推移,茄果或马铃薯薄片会逐渐失去水分,呈现出萎缩的状态。
记录下的读数与时间的关系可以绘制出一条曲线,从曲线的斜率和极限值可以计算出植物组织的水势大小。
实验讨论:通过本实验的结果可以得出植物组织的水势值,进而了解植物体内水分的流动和调节机制。
植物组织的水势是由渗透压差、反渗透压差和压力势等多种因素共同决定的。
渗透压差取决于植物组织中的溶质浓度和纯水之间的浓度差异,而反渗透压则是溶质渗透进入植物组织时产生的水分向外扩散的压力。
压力势则是由浸渍压和板塞压共同形成的,其大小受到植物细胞壁的性质和细胞内液体压力的影响。
实验总结:本实验通过测定茄果或马铃薯薄片的水势,研究了植物体内水分的流动和调节机制。
通过观察薄片的萎缩情况并记录读数,得出了植物组织的水势大小。
实验结果表明,植物组织的水势是由多种因素共同决定的,包括渗透压差、反渗透压差和压力势等。
这些研究结果对进一步了解植物体内水分的调节机制以及水分平衡的保持具有重要意义。
试验一植物组织水势的测定小液流法
实验一植物组织水势的测定(小液流法)一、原理当植物组织与外液接触时,如果植物组织的水势低于外液的渗透势(溶质势),组织吸水、重量增大而使外液浓度变大;反之,则组织失水、重量减小而外液浓度变小;若两者相等,则水分交换保持动态平衡,组织重量及外液浓度保持不变。
根据组织重量或外液浓度的变化情况即可确定与植物组织相同水势的溶液浓度,然后根据公式计算出溶液的渗透势,即为植物组织的水势。
溶液渗透势的计算:Ψ s = - iCRT式中:Ψ s ——溶液的渗透势,以MPa为单位。
R ——气体常数,为0.008314MPa·L/(mol·K)。
T ——绝对温度,即273+ t℃。
C ——溶液的质量摩尔浓度,以mol/kg为单位。
i ——为解离系数,CaCl2为2.6。
二、实验目的了解植物组织中水分状况的另一种表示方法及用于测定的方法和优缺点。
三、实验材料、试剂与仪器设备(一)实验材料植物叶片或洋葱鳞茎。
(二)试剂1、甲烯蓝粉末。
2、CaCl2溶液:包括0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45 mol/kg 8 种不同质量摩尔浓度的溶液。
(三)仪器设备大试管8支,小试管8支,青霉素小瓶8支,移液管(5ml),毛细吸管8支,培养皿,打孔器,剪刀l把,镊子1把,解剖针1支。
四、实验步骤1、编号贴标签取干燥洁净的大试管8支,小试管8支,青霉素小瓶8支,毛细吸管8支,编号贴标签,按序号排好。
2、打取、浸泡叶片取待测样品的功能叶数片,用打孔器打取小圆片约60片,放在培养皿中,混合均匀。
用镊子分别把5-8个小圆片放到盛有4 ml不同质量摩尔浓度CaCl 2 溶液的青霉素小瓶中,浸没叶片,盖紧瓶塞,放置30 min,并不断轻摇小瓶,以加速水分平衡(如温度低时可延长放置时间)。
3、染色到预定时间后,用解剖针尖蘸取微量甲烯蓝粉末,加入各青霉素小瓶中,并摇动,使溶液染色均匀。
4、测定把试管中的不同浓度的系列标准液分别倒入相同编号的小试管中,用毛细吸管吸取相同编号青霉素小瓶内的有色溶液少许,插入相同编号的小试管溶液中部,轻轻挤出有色溶液一小滴,小心取出毛细管(勿搅动有色液滴),观察有色液滴的升降情况,并记录于表中。
植物生理学实验报告
实验一植物组织水势的测定(小液流法)——2013.3.11 一、目的用小液流法(落滴法)测定植物组织的水势,由水势大致了解植物体内的水分状况二、原理水势表示水分的化学势,象电流由高电位处流向低电位处一样,谁从水势高处流向低处。
植物体细胞之间,组织之间以及植物体和环境间的水分移动方向都由水势插决定。
三、材料与设备植物材料:阔叶树叶片(大叶女贞)实验器具:细滴管一支;试管及指形管各五支(带塞);100mL烧杯一只;镊子、剪刀各一把;2mL、5mL移液管各一支;标签纸;钻孔器;木板试剂:1ml/L蔗糖溶液;甲烯蓝溶液四、操作步骤1.用短滴管吸取1,mol/L蔗糖液配制一系列浓度递增的蔗糖溶液(0.05,0.1,0.2,0.3,0.4mol/L)各10 ml,加入干燥刻度试管内,各管都加上塞子,充分混合,并编号。
用移液管从浓度各试管中吸取1ml注入第二指形管内,各管均加塞,并贴上标签。
2.用钻孔器(取相同部位)钻取同大小叶片。
每支指形管中放入10片,加塞,放置20~30分钟(期间摇动2~3次),到时间后,加入2~3滴甲烯蓝溶液于指形管中,使其溶液呈蓝色,以区别原来的颜色。
3.用细长滴管从各指形管中依次吸取着色的液体少许,然后伸入相同编号(原相同浓度)试管的中部,缓慢从细长滴管尖端横向放出一滴蓝色试验溶液,在无色透明背景上观察小液滴移动的方向。
如果有色液滴向上移动,说明细胞液中水分外流,试验比重比原来小;如果有色液向下移动,则说明细胞从溶液中吸收了水分,溶液变浓,比重变大;如果液滴不动,向外扩散则说明两者的浓度相等或接近,即植物组织的水势等于溶液的渗透势。
记录液滴不动的试管中蔗糖溶液的浓度,若找不到改浓度,取在下降上升转变时量浓度的均值。
五、作业1.记录小液流在试管内的移动方向2.按下列公式计算组长的水势:ψW(细胞水势)=ψs=-CRT式中:ψs——溶液的渗透势,以Mpa为单位R——气体常数,为0.008314Mpa*L/(mol*K)。
植物生理学实验报告植物组织水势测定
植物生理学实验报告植物组织水势测定实验目的:本实验旨在通过测量植物组织的水势,了解植物在不同生理状态下的水分状况和水分调节能力。
实验原理:植物组织的水势是一个重要的生理指标,用来描述植物的水分状态。
水势的测定是通过测量植物组织与纯水之间的压力差来实现的。
当植物组织的水势为负值时,说明组织在吸水,而正值则表明组织有排水的趋势。
实验步骤:1.准备材料:取一盆植物,将其叶片切下并放入离心管中;准备一些试管和纯水。
2.测量植物组织的水势:将离心管放入测水袋中,并将测水袋连至一根透气玻璃管,然后将试管插入水槽中以保持温度恒定。
通过气压计记录水势值。
3.测量植物组织在不同条件下的水势:可以在不同的实验条件下测量植物组织的水势,如在光照、温度变化或干旱条件等。
4.数据记录与分析:记录测得的水势数值,并进行统计和比较,以检验不同条件对植物组织水势的影响。
实验结果与讨论:通过对植物组织水势的测定,我们可以得到一些有意义的结果。
首先,测量不同植物组织在水势上的差异。
由于植物不同部位的组织结构和功能不同,其水分状况也会有差异。
比如,叶片的水势可能会更高,因为它们是光合作用和气体交换的主要结构。
其次,测定不同环境条件下植物组织的水势变化。
例如,在干旱条件下,植物会通过减少蒸腾作用和调节根部的水分吸收来保持水势平衡。
因此,测量植物组织在干旱条件下的水势,可以帮助我们了解植物对干旱的应对机制。
此外,还可以通过对不同温度和光照条件下植物组织水势的测定,来研究植物的生长和适应性。
不同的温度和光照条件会影响植物的光合作用和蒸腾作用,从而改变植物的水分平衡。
综上所述,植物组织水势的测定是一个重要的植物生理学实验,在研究植物的水分状况和水分调节能力方面具有重要意义。
通过进行多方面的测定和分析,我们可以更好地了解植物的生理机制和适应性。
植物组织水势的测定
植物生理学实验报告
实验题目:植物组织水势地测定
姓名
班级
学号
一、实验原理和目地
根据渗透作用地原理,用小液滴法测得蔗糖溶液与植物组织中之间地等渗浓度,根据公式Ψ(细胞水势) Ψ—
求得溶液地水势,从而得知植物组织地水势.
二、实验器具和步骤
植物材料:女贞叶片
实验器具:细滴管;试管及指形管;烧杯;镊子、剪刀;移液管;标签纸
试剂:蔗糖溶液;甲烯蓝溶液
实验步骤:
.用短滴管吸取蔗糖溶液取、、、、分别放入刻度试管中,加蒸馏水至,盖上塞子上下倒转混匀,配成、、、、地糖液.
.用移液管从浓度各试管中吸出注入对应地指形管内,各管均加塞,并贴上标签. .将女贞叶片在叠在一起,沿中脉两边用钻孔器打取片小圆片,分别放入小指形管内,放置(期间摇动次)后,加甲烯蓝滴摇匀.
.用长滴管吸取着色溶液放入原相应地蔗糖溶液中,慢慢放出一滴蓝色溶液,在白色纸片上观察小液滴升降情况,并作记录.
三、实验数据和作业
Ψ (细胞水势) Ψ—
式中:Ψ——溶液地渗透势,以为单位.
——气体常数,为·(·).
——绝对温度,即℃, 单位为.
——溶液地摩尔浓度,以为单位.
实验所得浓度为()()
Ψ (细胞水势) Ψ— **
四、数据分析
1.由于液滴在浓度为上升和在浓度下降,所以取为细胞液地浓度.
五、思考题
.用小液流法测定植物组织细胞水势,为什么强调所用试管、毛吸管应持干燥?
答:如果试管、毛吸管湿润会稀释蔗糖浓度,使蔗糖溶液浓度变小,影响实验准确性.
.打孔为什么要迅速?为什么加入地甲烯蓝不能太多?
答:这样可以防止植物组织液发生蒸发.加太多甲烯蓝会对蔗糖溶液地浓度造成很大地影响.。
植物生理学实验报告
植物生理学实验报告实验一、植物组织水势测定(小液流法)一、实验原理水总是从水势高的系统流向水势低的系统。
将植物叶片分别与一系列不同浓度的蔗糖溶液接触,蔗糖溶液浓度从小到大,开始时,植物叶片水势低于蔗糖溶液,溶液中水分向叶片转移,蔗糖溶液浓缩,蔗糖溶液密度较原始浓度升高;蔗糖溶液高到一定浓度后,蔗糖溶液水势低于植物叶片,叶片水分向溶液中转移,蔗糖溶液稀释,密度较原始浓度降低。
如果植物组织的水势等于蔗糖溶液的水势,水分不发生净移动,外液浓度较原浓度不发生变化上述浸泡过植物组织、浓度发生改变的蔗糖溶液为乙组。
原始浓度的蔗糖溶液为甲组。
将乙组溶液染色后,取乙组溶液一小滴(小液流),放入对应浓度的甲组溶液中,观察小液流因密度不同而下降、上升或不动的情况,记录与之相对应的甲组溶液的浓度。
二、材料与设备1.材料:植物叶片;2.仪器设备:试管、试管架、打孔器、尖头镊子、尖头针、移液管、毛细滴管;3.试剂:1M蔗糖液、甲烯蓝粉。
三、实验步骤1.蔗糖溶液配制:l)取干燥洁净试管5支,贴标签标记,用1M蔗糖母液配制蔗糖溶液,浓度由小到大分别为0.1、0.25、0.5、0.75、1M,每个浓度均配8m1,放入对应标记的试管中,作为甲组(一定要混匀)2)另取干燥洁净的指形管5支,标明0.1、0.25、0.5、0.75、1M浓度的蔗糖溶液,分别从甲组取相应浓度蔗糖溶液1m1置于指形管,作为乙组。
2.取样及测定1)选取生长一致的叶片,用打孔器钻取小圆片4-6片/管,将小圆片全部浸入乙组指形管溶液中,摇动20分钟;2)用针尖蘸取少许甲烯蓝粉末,分别放入乙组各指形管中,摇匀,可看见乙组指形管中溶液颜色变蓝:3)用毛细滴管吸取蓝色溶液,轻轻插入相应浓度的甲组溶液中部,用吸耳球轻柔吹气,以帮助蓝色溶液从毛细滴管中流出。
在流出的一瞬间观察并记录液滴的升降情况;4)若液滴下降,说明组织吸水使溶液变浓,比重变大;若液滴上升,说明组织失水使溶液变稀,比重变小;若液滴静置不动,说明此溶液的溶质势与叶圆片组织的水势相等,水分交换平衡,溶液比重不变,根据溶液的浓度可计算水势:若前一浓度溶液小液流下沉,而后一浓度溶液中上浮,则组织的水势值介于两蔗糖溶液水势之间,可取平均值计算。
植物生理学实验报告植物组织水势测定
实验报告课程名称:植物生理学及实验实验类型:探索、综合或验证实验项目名称:植物组织水势测定一、实验目的和要求1. 巩固植物组织水势概念和植物组织水势的组成2. 掌握小液流法测定植物组织水势原理3. 了解其他水势测定方法原理。
二、实验内容和原理1.小液流法测定新鲜白萝卜的组织水势。
植物细胞是一个渗透系统。
当组织水势低于溶液渗透势,组织吸水,溶液变浓,比重增加,小液流下沉。
当组织水势高于溶液渗透势,组织失水,溶液变稀,比重下降,小液流上浮。
当组织水势等于溶液渗透势,组织与溶液达到水分进出动态平衡,溶液浓度和比重不变,小液流不动。
2.压力室法测定海桐叶片组织水势。
植物叶片通过蒸腾作用产生蒸腾拉力。
导管中的水分由于内聚力的作用而形成连续的水柱。
因此,对于蒸腾着的植物,其导管中的水柱由于蒸腾拉力的作用,使水分连贯地向上运输。
当叶片或枝条被切断时,木质部中的液流由于张力解除迅速缩回木质部。
将叶片装入压力室钢筒,切口朝外,逐渐加压,直到导管中的液流恰好在切口处显露时,所施加的压力正好抵偿了完整植株导管中的原始负压。
三、主要仪器设备小液流法:白萝卜、打孔器、10ml离心管(10个)、小刀、镊子、注射器、1mol/L蔗糖溶液、甲基橙压力室法:植物水势仪四、操作方法与实验步骤小液流法:1、用1mol/l的蔗糖溶液配制0.05、0.10、0.20、0.30、0.40M一系列不同浓度的蔗糖溶液(10mL),充分摇匀。
2、分别取4ml不同浓度的溶液到另一组相应的试管中。
每管加入厚度约为1mm的萝卜圆片,加塞放置30-40min。
期间晃动(3-4次)。
3、用针蘸取少量甲基橙放入每支试管,混匀。
4、用注射器取少许黄色溶液,伸入对应浓度的蔗糖溶液中部,缓慢挤出一滴小液滴,观察小液滴移动方向并记录。
Ψw(Mpa) = -iCRT = -0.0083×(273+t o C) ×浓度压力室法:1、根据植物材料选取枝条(或叶片)型的压力室盖2、将试样装入压力室盖的孔(或槽)中夹紧,压入压力室并顺时针旋转紧固。
植物组织水势的测定实验报告
植物组织水势的测定实验报告植物组织水势是指植物细胞内的水分势,它是维持植物细胞正常生理活动的重要因素。
本实验旨在通过测定植物组织水势的变化,探究植物在不同环境条件下的水分调节机制。
实验中我们选择了甜菜和马铃薯作为实验材料,通过测定它们在不同浓度蔗糖溶液中的质量变化,来间接推断植物组织的水势变化。
以下是实验的具体过程和结果。
首先,我们准备了不同浓度的蔗糖溶液,分别为0.2M、0.4M、0.6M、0.8M和1.0M。
然后,将甜菜和马铃薯均匀切成小块,分别放入不同浓度的蔗糖溶液中浸泡一段时间。
浸泡结束后,取出植物组织,用纸巾将其表面水分吸干,然后称量其质量并记录下来。
实验结果显示,随着蔗糖溶液浓度的增加,甜菜和马铃薯的质量均呈现出不同程度的减少。
这表明植物组织在高浓度蔗糖溶液中失去了水分,导致质量减少。
而在低浓度蔗糖溶液中,植物组织的质量减少较少,甚至有些情况下质量还有所增加。
这说明低浓度蔗糖溶液中的水势比植物组织的水势高,因此水分会从溶液中渗入植物组织,导致质量增加。
通过对实验结果的分析,我们可以得出以下结论,植物组织的水势受到周围环境的影响,当外部环境的水势高于植物组织的水势时,水分会从外部环境渗入植物组织;反之,当外部环境的水势低于植物组织的水势时,水分会从植物组织流向外部环境。
这种水分调节机制有助于植物在不同环境条件下维持细胞内稳定的水分平衡,保证正常的生长和代谢活动。
综上所述,本实验通过测定植物组织在不同浓度蔗糖溶液中的质量变化,间接测定了植物组织的水势变化,并探究了植物的水分调节机制。
通过本实验的学习,我们更深入地理解了植物细胞内水分调节的重要性,也为今后进一步研究植物生长发育提供了一定的参考和指导。
总之,植物组织水势的测定实验为我们提供了一个更清晰的认识植物水分调节机制的途径,也为我们理解植物生长发育的规律提供了重要的实验依据。
希望通过今后的学习和实践,我们能够进一步深化对植物生理学的理解,为推动植物科学研究做出更大的贡献。
植生实验水势测定
Ψw = -RTiC
R:摩尔气体常数,0.083×105 L·pa/mol·k T:热力学温L
试剂 1 mol/L蔗糖溶液;超纯水; 10%次甲基蓝(或甲烯蓝)
材料 马铃薯;白萝卜;胡萝卜;南瓜;植物叶片 毛细吸管8支;吸水纸;标签
R:摩尔气体常数,0.083×105 L·pa/mol·k T:热力学温度,单位k i:解离系数,蔗糖等于1 C:等水势浓度,单位mol/L
将植物组织置于外界溶液中,将出现3种情况:
大小 (1)组织水势 > 溶液水势 (2)组织水势 < 溶液水势 (3)组织水势 = 溶液水势
溶液比重 减小 增大 不变
分别用毛细吸管吸取各试验组试管中的溶液 约2/3长度。
用食指按紧毛细吸管管口,将毛细吸管从试 验组试管中取出。
用吸水纸吸掉毛细吸管下端悬挂的液滴。 将毛细吸管移入到对应对照组试管中,使下 管口位于溶液的中部。 稍微放开食指使流出少许溶液后迅速按紧管 口,将毛细吸管从试管中取出。 认真观察着色液滴的移动方向, 找出等水势 浓度C。
实验一 植物组织水势的测定(小液流法)
一、实验原理 将植物组织处于外界溶液中,若Ψw(组织)< Ψw(溶液),则组织
吸水,溶液的比重增大;反之组织的水分渗出,溶液的比重变小;若Ψw (组织)= Ψw(溶液),则二者水分处于动态平衡,溶液的比重不变。 通过检查实验前后溶液比重是否变化,可以找到溶液Ψw与组织Ψw相当的 溶液,利用该溶液的浓度C,参照公式Ψw = -RTiC,可以求出组织的水势。 二、器材与试剂
着色液滴的移动方向
↑ ↓
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8(mol/L)
下周实验
植物细胞渗透势的测定(质壁分离法) P5-6
植物组织水势的测定实验报告
植物组织水势的测定实验报告实验目的,通过测定植物组织的水势,了解植物细胞内外水分的动态平衡及调节机制。
实验材料与方法:1. 实验材料,新鲜的植物叶片、瓶塞、注射器、离心管、蒸馏水、测量器具等。
2. 实验方法:a. 取一片新鲜的植物叶片,迅速切下并置于离心管中。
b. 在离心管中注入一定量的蒸馏水,并用瓶塞封紧。
c. 将装有叶片和蒸馏水的离心管放置于室温下一段时间,使叶片细胞内外水分达到动态平衡。
d. 使用注射器在叶片细胞外抽取一定量的液体,记录所抽取的液体体积。
e. 根据所抽取的液体体积和叶片细胞外水势的计算公式,计算出叶片细胞外的水势值。
实验结果与分析:根据实验测定所得的数据,我们可以得出植物组织水势的测定结果。
通过对不同植物组织进行水势测定,我们可以发现在不同的环境条件下,植物细胞内外的水势会发生变化,这与植物细胞的渗透调节有关。
另外,我们还可以通过比较不同植物组织的水势数值,来了解不同组织对水分的吸收和调节能力。
实验结论:植物组织水势的测定实验结果表明,植物细胞内外水分的动态平衡是通过渗透调节来实现的。
在不同的环境条件下,植物细胞的水势会有所变化,这为植物细胞的生长和发育提供了必要的物质基础。
通过本实验,我们对植物组织水势的测定方法有了更深入的了解,这对于进一步研究植物生长发育和适应环境具有重要意义。
实验注意事项:1. 实验中使用的植物叶片应为新鲜样品,以保证实验结果的准确性。
2. 在测定植物组织水势时,应尽量避免叶片细胞的破损,以免影响实验结果。
3. 实验过程中应注意操作的细致和准确,以确保实验结果的可靠性。
总结:通过本次实验,我们对植物组织水势的测定方法有了更深入的了解,同时也加深了对植物细胞内外水分动态平衡及调节机制的认识。
希望通过这一实验,能够为今后的植物生理学研究提供一定的参考和借鉴。
实验1植物组织水势的测定。
实验目的
水是原生质的主要组成成分,占原生质总 量的70%~90%。植物水分状况对植物生理的 生理活动具有重要影响。植物水势是植物 的水分状况的重要指标,导意义。
掌握植物组织水势的测定方法及其优缺点, 并了解渗透系统中水势大小是水分移动方 向的决定因素。
实验原理
植物生活细胞是一个渗透系统,当将植物 细胞或组织放人外界溶液中时,水分将以 水势差为动力在两者间流动,最终达到动 态平衡。如果植物组织的水势小于外界溶 液的水势,植物细胞吸水,使外界溶液浓 度增大;反之,植物细胞失水,使外液浓 度变小。若植物组织与外界溶液水势相同, 将不改变外部溶液的浓度,此时外液的渗 透势就等于植物组织的水势。可以利用外 界溶液的浓度不同其比重也不同的原理来 确定与植物组织水势相同的外液,根据公 式计算植物组织的水势。
结果分析
1号管小液流下降,说明组织水势低于蔗 糖溶液水势,组织吸水,蔗糖浓度变大; 2号管小液流不动,说明组织水势与蔗糖 溶液水势相同,二者间无水分量的交换; 3~8号管小液流上升,说明组织水势高 于蔗糖溶液水势,组织排水,蔗糖浓度变 低。
注意事项
1 .材料投入试管要快,防止材料水分蒸发影响实 验结果。
t 为实验温度); c 为等渗溶液浓度, mol/L 。
实验结果
组号 1 2 3 4 5 6 7 8
蔗糖 浓度 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (M)
小液 流方 向下 悬浮 向上 向上 向上 向上 向上 向上
向
=-1×0.1×0.083×100000×(273+25) =-247340Mpa
4.用铜丝向每支试管中挑入少许甲基兰,摇 匀,使溶液呈浅蓝色。
5.用弯头滴管依次 从实验组试管中吸 取少量溶液,小心 插入装有相同蔗糖 浓度的对照组试管 的中部,轻轻挤出 滴管中的蓝色液体, 观察记录小液流的 方向。
植物组织水势的测定实验报告
植物组织水势的测定实验报告植物组织水势的测定实验报告摘要:本实验主要是通过测定不同组织类型的植物的水势,以研究植物的生理状况。
通过使用压榨法测定水势,我们得出了不同组织类型的植物水势数据,并分析了数据的结果。
实验目的:1. 测定不同组织类型的植物的水势;2. 分析不同组织类型的植物的水势的差异。
实验步骤:1. 收集不同组织类型的植物样本;2. 将植物样本放入一个抽滤纸和玻璃纸制成的夹子中;3. 迅速将夹子夹住,并通过一个带有手摇的压榨器,将植物样本压榨出液体;4. 使用水势计测定压榨出的液体的水势;5. 记录不同组织类型的植物的水势数据。
实验结果:通过实验测定,我们得出了以下不同组织类型的植物的水势数据(单位为MPa):叶片组织:-0.5茎组织:-1.3根组织:-1.8实验分析:从实验结果可以看出,不同组织类型的植物具有不同的水势。
叶片组织的水势最高,根组织的水势最低。
这说明了不同组织在植物生理过程中具有不同的水分吸收能力和水分保持能力。
叶片组织的水势较高,可能是因为叶片组织在光合作用中需要大量的水分,并且叶片具有气孔,可以通过气孔释放多余的水分,从而保持水势的平衡。
根组织的水势较低,可能是因为根组织需要吸收土壤中的水分,并且许多植物根部不能通过气孔释放多余的水分,导致水势降低。
茎组织的水势介于叶片组织和根组织之间,可能是因为茎组织需要输送营养物质和水分到其他部位,保持整个植物的生长和发育,所以其水势较低。
结论:通过本实验测定不同组织类型的植物的水势,我们得出了叶片组织的水势最高,根组织的水势最低的结论。
这些结果表明不同组织类型在植物生理过程中具有不同的水分吸收能力和水分保持能力。
这些实验结果对我们了解植物的生长和发育过程以及水分调节机制具有重要意义,对于农业和园艺学的研究也具有一定的指导意义。
讨论:本实验通过测定不同组织类型的植物的水势,可以更深入地理解植物的水分调节机制。
水势是反映植物组织内水分状况的重要指标,它与水的吸收、运输和蒸腾有密切关系。
实验一 植物组织水势的测定
实验一植物组织水势的测定一:目的测定植物水势,了解植物水势测定的方法二:原理根据渗透作用的原理,用小液滴法测得蔗糖溶液与植物组织中之间的等渗浓度,根据公式ΨW(细胞水势)=Ψs=-CRT求得溶液的水势。
三:材料与试验器具植物材料:女贞叶片实验器具:细滴管、试管及指形管、烧杯、镊子、剪刀、移液管、标签纸试剂:1mol/L蔗糖溶液、甲烯蓝溶液四:操作步骤1、用移液管吸取1M蔗糖溶液取0.5ml、1ml、2ml、3ml分别放入10ml刻度管中,加蒸馏水至10ml,盖上盖子上下倒转混匀,配成0.05M、0.1M、0.2M、0.3M的糖液。
2、用移液管从浓度各试管中吸取2ml注入对应的指形管中,各管均加塞,并贴上标签。
3、将女贞叶片叠在一起,沿中脉两边用钻孔器打取10片小圆片,分别放入小指形管内,放置20min(期间摇动两至三次)后,加入甲烯蓝1滴摇匀。
4、用长吸管吸取着色溶液放入原相应的蔗糖溶液中,慢慢放出一滴蓝色溶液,在白色纸片上观察小液滴升降情况,并做记录。
五:作业2、按下列公式计算组织的水势ΨW(细胞水势)=Ψs=-CRT式中Ψπ为细胞渗透势,以MPa (兆帕)为单位。
R为气体常数,为=0.008314 MPa.L/(mol.K)T为绝对温度(单位K),即为273+t,其中t为实验温度(℃)。
i为解离系数,蔗糖为1。
C为等渗溶液的浓度,单位为mol/L。
六:思考题1、用小液流法测定植物组织水势时,为什么应强调所用试管,毛吸管应保持干燥。
小液流法的使用与溶液浓度有关,试管上的水珠会影响溶液的浓度,造成实验误差。
2、打取小圆片并投入试管中时动作应迅速,加入甲烯蓝不能太多?防止叶内水分蒸发影响实验数据。
加入甲烯蓝过多会影响溶液比重。
七:注意事项1、取液时应从低浓度到高浓度依次取液2、释放蓝色溶液时要缓慢,防止过急挤压冲力影响液滴移动3、观察液滴情况时放在白色背景下。
实验一植物组织水势的测定(小液流法)
实验一植物组织水势的测定(小液流法)1.实验目的掌握植物组织水势的组成;掌握小液流法测定植物组织水势的方法。
2.实验内容成熟细胞水势主要决定于压力势(ψp)和渗透势(ψs)。
对于外液(如蔗糖溶液)而言,只具有水势或渗透势ψs=-iCRT,R、T均为常数,先要知道蔗糖重量摩尔浓度C,则可知蔗糖溶液水势。
该实验的目的是求得细胞水势,其中的ψp很难测定,故只有把细胞水势与蔗糖溶液水势联系起来,间接利用蔗糖溶液的渗透势计算公式求出细胞水势。
怎样将两者联系起来是该实验的关键。
将已知浓度的蔗糖溶液分装于两个容器中,在其中一个加入植物材料,这样就将植物细胞与蔗糖溶液处于一个系统之中,依水分总是从水势高的区域向水势低的区域移动的原理,当植物细胞水势与蔗糖溶液水势不相等时,它们之间就有水分移动,主要有以下三种情形:因此,如果液滴在原处扩散,即表示浓度不变,此溶液浓度的水势就等于植物组织的水势,而蔗糖溶液的水势ψw = iCRT,只要知道蔗糖溶液的重量摩尔浓度C,即可知其水势,我们观察时,如没有原处扩散现象,则取上升与下降的两相邻试管所对应的蔗糖浓度的平均值作为公式中的C。
3.需用的仪器或试剂(1)仪器设备:带刻度试管;弯头滴管;镊子;打孔器;培养皿。
(2)试剂:0.1、0.2、0.3、0.4、0.5、0.6mol/L蔗糖溶液;甲烯蓝粉末。
4.实验步骤(1)取0.1~0.6m蔗糖溶液各10ml于大试管中;分取2ml于对应的青霉素瓶和分取3ml 于对应指形管。
(2)在每个青霉素瓶中各放20片叶圆片,不时摇动,30min后,各加微量的甲烯兰充分摇匀,显浅兰色。
(3)用弯头毛细管吸一小滴溶液挤入对应的指形管中,同时观察液滴移动情况,记录结果于下表:(4)结果计算:ψw =-iCRT(巴)其中i=1,R=0.008MPa·Kg·mol-1·K-1,C为等渗浓度(mol/L)。
C=(下沉最高浓度+上升最低浓度)/25.教学方式:室内实验6.考核要求掌握植物组织水势的测定方法。
植物生理学实验
泰山学院生物与酿酒工程学院植物生理学课程实验
淀粉染色观察:取幼芽长至3~5cm的萌发小麦种子,将其 胚乳汁液,涂在载玻片上,加一滴水盖上盖玻片,显微 镜观察淀粉粒形态,加1滴碘液染色,观察色情况;
刮取未萌发小麦胚乳淀粉,进行相同实验操作,并做 比较观察
泰山学院生物与酿酒工程学院植物生理学课程实验
[实验原理] 叶绿素对可见光谱吸收,叶绿素a最大吸收峰在663nm,
叶绿素b最大吸收峰在645nm,吸收曲线彼此又有重叠。根 据Lambert-Beer定律,最大吸收峰不同的两组分混合液, 它们的浓度C(mg/L)与光密度(OD)有如下关系:
Ca=12.7OD663-2.69OD645—(1) Cb=22.9OD645-4.68OD663—(2) CT=Ca+Cb=8.02OD663+20.21OD645—(3)
植物材料马铃薯
泰山学院生物与酿酒工程学院植物生理学课程实验
[操作步骤]
1、粗酶液的提取 称取植物材料0.5g,加20mmol/L KH2PO4 5mL,于研钵中研磨成匀浆,以4000r/min离 心10min,收集上清液保存在冷处,所得残渣再用 20mmol/L KH2PO45mL溶液提取一次,合并2次上清液。
泰山学院生物与酿酒工程学院植物生理学课程实验
叶绿体植物进行光合作用的器官,在制备的叶绿体悬浮溶 液中加入电子受体2,6-二氯靛酚(DCIP)后,光照时叶绿 体对水进行光解,并放氧气,同时电子受体DCIP被还原,溶 液颜色从蓝色变为无色。
[仪器与试剂] 1.仪器 分光光度计,天平,研钵,剪刀,移液管 2.试剂 80%丙酮,碳酸钙,2,6-二氯靛酚 3.材料 新鲜菠菜叶片
植物生理学 实验报告--实验1 植物组织水势的测定
实验一植物组织水势的测定(小液流法)1、实验目的了解植物组织中水分状况的一种表示方法及用于测定的方法及其优缺点。
2、实验原理植物组织的水分状况可用水势来表示。
植物体细胞之间、组织之间以及植物体与环境之间的水分移动方向都由水势差决定。
将植物组织放在已知水势的一系列溶液中,如果植物组织的水势(Ψcell)小于某一溶液的水势(Ψout),则组织吸水,反之组织失水。
若两者相等,水分交换保持动态平衡。
组织的吸水或失水会使溶液的浓度、密度、电导率以及组织本身的体积与质量发生变化。
根据这些参数的变化情况可确定与植物组织等水势的溶液。
液体交换法测定水势的方法有很多种,本实验练习用小液流法测定植物组织的水势,并初步观察其变化情况。
小液流法测定水势的原理判据△Ψ=Ψout-Ψcell组织的水分得失外液的密度变化△Ψ>0吸水升高△Ψ<0失水降低△Ψ=0平衡不变使用器材用滴管测定外液的密度变化适用的材料叶片或碎的组织3、仪器和试剂试管,试管架,移液管,滴管,打孔机或单面刀片,镊子,解剖针,棉花,吸水纸;0.05-0.4mol/L CaCl2溶液,甲烯蓝;土豆4、实验步骤①将16支试管清洗干净,分为两组(实验组和对照组)按编号顺序倒置于试管架上,控净水分。
②配制一系列不同浓度的氯化钙溶液(0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4mol/L),分别注入八支实验组试管中,各10ml左右(体积约为试管的2/3处)。
再将实验组各试管溶液的2/3倒入对应编号的对照组试管中。
两组试管均加盖棉塞。
③将土豆用单面刀片切成0.5cm见方的小块。
将植物组织混匀,分成八份,放入实验组各试管中。
放置20min以上,期间多次摇动实验组试管,以促进水分平衡。
④用解剖针沾取甲烯蓝粉末给实验组各试管染色,摇匀,用滴管由低浓度向高难度顺序吸取实验组的染色液滴移入对照组对应浓度试管内,观察液滴升降变化并记录。
⑤水势计算Ψcell=Ψout=-icRT式中:为植物细胞水势;为外界溶液渗透势;i为解离系数,氯化钙为2.6;c为溶液浓度,单位mol/L;R为摩尔气体常数,0.0083 (L·MPa)/(mol·K);T为热力学温度,单位为K,即273+t,t为试验温度。
植物组织水势测定实验报告
植物组织水势测定实验报告1. 引言植物组织的水势测定是研究植物水分运输和水分势变化的重要方法之一。
本实验旨在通过测量植物组织中的水势,了解植物体内水分的分布和运输规律。
本文将详细介绍实验的步骤和结果。
2. 实验步骤本实验使用的方法主要为压膜法,具体步骤如下:2.1 准备工作准备实验所需的材料和设备,包括: - 植物样品(如茎段或叶片) - 压力室(包括压膜和压力传感器) - 毛细管 - 毛细管支架 - 数字压力计 - 一定浓度的甘露醇溶液2.2 样品处理将待测的植物样品从植株上切取下来,保持样品的完整性和新鲜度。
如果需要,可以将样品的叶片去除。
2.3 测定样品的水势将样品的切口与毛细管相连接,并用胶管固定好。
然后将样品放入压力室中,确保样品与压膜的紧密接触。
2.4 施加压力通过向压力室注入甘露醇溶液,使压力室内的压力逐渐升高。
同时使用数字压力计测量压力室内的压力。
2.5 记录压力和毛细管高度在压力室内压力达到稳定后,使用数字压力计记录压力值,同时测量毛细管液面的高度。
2.6 重复测量重复以上步骤,测量不同样品的水势值,并记录数据。
3. 结果与讨论根据实验的结果,我们可以得到不同植物组织的水势值。
通过比较不同样品的水势值,我们可以得出以下结论:1.植物茎段的水势值普遍较高,说明茎段在水分运输中起着重要的作用。
2.叶片的水势值较低,说明叶片对水分的吸收能力相对较弱。
3.不同植物的水势值差异较大,这可能与植物的生理特性有关。
通过本实验,我们可以进一步理解植物体内水分的分布和运输规律,为后续的研究提供重要参考。
4. 结论植物组织水势测定实验是研究植物水分运输和水分势变化的重要方法。
本实验使用压膜法测定植物样品的水势值,并通过比较不同样品的水势值,揭示了植物茎段和叶片的水分吸收能力差异。
通过该实验,我们深入了解了植物体内水分的运输规律,为进一步研究提供了有价值的参考。
5. 参考文献[1] Smith, J. M., & Johnson, M. B. (2018). Plant water potential. Smith, J. M., & Johnson, M. B. (2018). Plant water potential. In: Analytical Methods for Measurements of Chemical and Biological Properties of Forest Soils (pp. 47-57). CRC Press.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一植物组织水势的测定
(小液流法)
1、实验目的
了解植物组织中水分状况的一种表示方法及用于测定的方法及其优缺点。
2、实验原理
植物组织的水分状况可用水势来表示。
植物体细胞之间、组织之间以及植物体与环境之间的水分移动方向都由水势差决定。
将植物组织放在已知水势的一系列溶液中,如果植物组织的水势(Ψcell)小于某一溶液的水势(Ψout),则组织吸水,反之组织失水。
若两者相等,水分交换保持动态平衡。
组织的吸水或失水会使溶液的浓度、密度、电导率以及组织本身的体积与质量发生变化。
根据这些参数的变化情况可确定与植物组织等水势的溶液。
液体交换法测定水势的方法有很多种,本实验练习用小液流法测定植物组织的水势,并初步观察其变化情况。
小液流法测定水势的原理
判据
△Ψ=Ψout-Ψcell
组织的
水分得失
外液的密度变化
△Ψ>0吸水升高
△Ψ<0失水降低
△Ψ=0平衡不变
使用器材用滴管测定外液的密度变化
适用的材料叶片或碎的组织
3、仪器和试剂
试管,试管架,移液管,滴管,打孔机或单面刀片,镊子,解剖针,棉花,吸水纸;
0.05-0.4mol/L CaCl2溶液,甲烯蓝;
土豆
4、实验步骤
①将16支试管清洗干净,分为两组(实验组和对照组)按编号顺序倒置于试管架上,控净水分。
②配制一系列不同浓度的氯化钙溶液(0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4mol/L),分别注入八支实验组试管中,各10ml左右(体积约为试管的2/3处)。
再将实验组各试管溶液的2/3倒入对应编号的对照组试管中。
两组试管均加盖棉塞。
③将土豆用单面刀片切成0.5cm见方的小块。
将植物组织混匀,分成八份,放入实验组各试管中。
放置20min以上,期间多次摇动实验组试管,以促进水分平衡。
④用解剖针沾取甲烯蓝粉末给实验组各试管染色,摇匀,用滴管由低浓度向高难度顺序吸取实验组的染色液滴移入对照组对应浓度试管内,观察液滴升降变化并记录。
⑤水势计算
Ψcell=Ψout=-icRT
式中:为植物细胞水势;为外界溶液渗透势;i为解离系数,氯化钙为2.6;c为溶液浓度,单位mol/L;R为摩尔气体常数,0.0083 (L·MPa)/(mol·K);T为热力学温度,单位为K,即273+t,t为试验温度。
5、数据记录
外液浓度
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 (mol/L)
升降情况
注:↑↓表示升降情况,移动不明显的以—表示。
6、注意事项
①甲、乙组溶液顺序标注清晰,避免混乱;
②两组试管均须加棉塞,以隔绝空气中的水分;
③方法一:叶片打孔时应避开叶脉及破损处,切口边缘整齐无缺损;方法二:土豆切块均匀,不宜过碎;
④在平衡期间多次摇动试管,以加速水分平衡;
⑤只给甲组各试管中的溶液染色,甲烯蓝染色深浅适宜,染色后摇匀,并立即取液观察;
⑥由甲组各试管顺序吸取液滴,滴入乙组对应试管的液层中部,液滴须圆实,滴后观察液滴移动方向3秒以上再记录现象。
7、问题
土豆块/叶圆片的多少是否影响计算结果?为什么?
答:不影响。
水势测定结果仅取决于有色液滴的升降情况,而该现象仅取决于土豆块/叶圆片与外液的水势差异。
土豆块/叶圆片多少仅能影响现象的明显与否。