先进复合材料热压罐成型技术
先进复合材料热压罐工艺成型过程压力监测技术
先进复合材料热压罐工艺成型过程压力监测技术李艳霞;顾轶卓;李敏;张佐光【摘要】Autoclave is one of the most impor-tant manufacturing processes commonly used to fabricate composite structures with high performances in aeronau-tical and aerospace area. If the cure process is not well controlled, the defects, such as uneven fiber distribution, bridging, waviness, delamination, and deformation, will occur, which seriously affect surface quality, mechanical properties and reliability of composite parts. The pressure monitoring technology during the autoclave process is an important experimental method to guide mould design, cure cycle optimization and the mechanism analysis of de-fect formation, and to improve the manufacturing capabil-ity of composite structures. In this paper, the test methods and their suitability of the pressures shared by ifber, resin, and prepreg stack during the autoclave process are summa-rized.%热压罐工艺是航空航天领域生产高性能复合材料构件最重要的方法,如工艺控制不利可能导致制件存在纤维架桥、屈曲、孔隙、分层、变形等缺陷,从而影响复合材料表面质量、力学性能以及可靠性。
复合材料热压罐成型技
(2)加热与气体循环系统 加热方式: 间接气体点火----常用方式 热油(联苯400oC,硅油425oC)----可燃---潜在危险 蒸汽加热----150oC~180oC-----温度低,使用少 电加热----(适用直径小于2米)-----运营成本高
(6)周边挡条----橡胶
School of Materials Science and Engineering
四、固化成型工艺流程
成型工艺流程
模具准备----裁减与铺叠----组合与装袋----固化与出罐脱模----检测----修整---二次成型----装配
School of Materials Science and Engineering
《复合材料制备新技术》
复合材料热压罐成型技术
主讲:梅启林 单位:材料学院
School of Materials Science and Engineering
一、前言
热压罐:
航空复合材料制品的主要生产设备,具有整体加热系统的大型压力容器。
优点:
(1)大范围内适应各种材料对加工条件的要求 高温环氧175oC,600KPa 聚酰亚胺300~400oC, 1MPa
五、热压罐成型工艺的仿真模拟
热压罐固化成型过程中发生的主要物理化学变化:
(1)促进树脂流动,确保浸渍充分,和预浸料准确到位 (2)纤维网络压实,实现纤维体积含量最大化 (3)合适的压力以抑制基体中空隙的形成 (4)合适的成型温度保证固化充分
成型过程的数值仿真模拟
第4章热压罐成型工艺(PDF)
胶膜压延法
树脂含量可由胶膜 厚度,辊压力与间 距、纤维张力、加 热温度等控制
线速度大,效率高 树脂含量容易控制 挥发分含量低,污染小 制膜和浸渍过程分步进
行,减少对纤维损伤
预浸料制备
大纱束或织物难于浸透 高粘度树脂难于浸渍 设备投资高,纤维用量大
2 辅助材料 Auxiliary material
碳纤维 其热膨胀系数与所成型复合材料构件一致,质量轻,材料模量高,模具
复合材料
刚度大;适用于高精度的大型构件的成型,但材料成本高,耐温低,表 面易划伤,有吸湿问题
玻璃纤维 质量轻,材料价格低;但材料模量低,模具刚度差;一般用于简单成型 复合材料 或型面要求不高的结构
3 模具材料-模具的分类
根据模具用材料
可很好的排除挥发物
4 袋压成型——压力袋成型
密封装置
盖板
压缩空气
空气压缩机
压力袋
特点:
模具
复合材料坯料
通过向橡皮囊构成的压力袋(气压室)内注入压缩空气,实现对 复合材料坯料的加压,也叫气压室成型;
真空袋基础上发展而来,气压均匀垂直作用在毛胚的表面,压 力可达0.25-0.5MPa,对模具强度和刚度的要求较高;
真空薄膜
具有较好的强度、延展性、耐温性、耐磨性和韧性。使用时,用腻子 将成型中的构件密封在模具上,形成真空袋
密封胶带
具有常温下的粘性,高温下密封性好,固化后易清理和贮存时间长等 特点
吸胶材料
可定量吸出复合材料毛坯中的多余树脂,并有一定透气性能的材料。 有吸胶毡、玻璃布、吸胶纸等,其单位面积吸树脂量随材料而异
成型工 艺稳定 可靠
热压罐内的压力和温度均匀,可以保证成型构件的质量稳定。一般热压罐成型 工艺制造的构件孔隙率较低、树脂含量均匀,相对其他成型工艺热压罐制备构 件的力学性能稳定可靠,迄今为止,航空航天领域要求高承载的绝大多数复合 材料构件都采用热压罐成型工艺。
热压罐成型工艺课件
后期处理
修整
对成型后的产品进行修整,去除毛刺、飞边 等。
质量检测
对产品进行质量检测,确保符合要求。
03 热压罐成型工艺参数
温度
总结词
温度是热压罐成型工艺中最重要的参数之一 ,它直接影响材料的物理和化学性质以及产 品的最终性能。
详细描述
在热压罐成型过程中,温度的合理控制对于 确保产品质量至关重要。温度过低可能导致 材料无法充分塑化或流动,影响产品的机械 性能和外观;而温度过高则可能导致材料过 热分解、烧焦或者产生气泡等缺陷。因此, 需要根据材料的特性和产品的要求,选择合
热压罐成型工艺课件
目录
• 热压罐成型工艺简介 • 热压罐成型工艺流程 • 热压罐成型工艺参数 • 热压罐成型工艺质量控制 • 热压罐成型工艺案例分析
01 热压罐成型工艺简介
定义与特点
定义
热压罐成型工艺是一种先进的复合材料制造工艺,通过在高压和高温下将预浸 料放入热压罐中,经过一定的温度和压力作用,使材料发生塑性变形,最终形 成所需形状和性能的复合材料构件。
产品质量检测与控制
01
02
03
外观检测
对热压罐成型的产品进行 外观检查,确保无明显缺 陷和气泡。
尺寸检测
使用测量工具对产品尺寸 进行测量,确保符合设计 要求。
性能测试
对产品进行机械性能测试 ,如拉伸、弯曲、抗压等 ,以确保其满足使用要求 。
05 热压罐成型工艺案例分析
案例一:航空航天领域应用
总结词:热压罐成型工艺在航空航天领域应用广泛,主 要用于制造高性能的复合材料制品,如飞机结构和航天 器部件。 机翼、尾翼和机身等大型复合材料结构件的制造;
热压罐_VARTM组合成型新工艺设计
的成型条件,或者可以满足立体织物 强度高质量的纤维增强树脂基复合
增强低粘度树脂基复合材料的成型 材料。COMPRIS技术需要一个压
条件。在能够满足包括各种织物形 力容器或热压罐(或者其他提供压力
的手段)来制造复合材料部件。它 实际上就是热压罐与VARTM的组 合技术。
德国DLR German Aerospace Center和INVENT GmbH的技 术人员也进行了相关的研究。他 们同样考虑将热压罐成型工艺和 VA RTM工艺的优点结合在一起。 由此提出了所谓的SLI(Single Line Injection)技术的概念。SLI 是指纤维预成型体抽真空和树脂体 系的注射通过同一根树脂传递管道 进行。
(1)树脂导入与流动方式。 液体成型工艺中树脂的导入方 式和流动方式决定了树脂对纤维的 浸渍质量,是影响制品性能的重要因 素。在普通的RTM成型工艺中,树 脂流动方式均采用平面流动方式,即 树脂的流动前沿以与铺层平面平行 的方向往前推进,流动前锋过后的预 制件中均充满树脂,这种方式适合于 流动路径较短的制品。对于比较大 的制件,流动路径可能要几米甚至十 几米,这时树脂流动的原动力——压 力差会随着流动距离的增加而减弱,
居建国 研究员。在读博士,从事航天领域
先进复合材料及其制造技术的研究工 作20余年。主要研究方向为复合材料 加工工程。
随着复合材料专业的发展,复合 材料制备技术也在不断地发展和完 善。迄今为止,已有的复合材料制备 技术有:手糊或湿法铺覆工艺,真空 袋压、真空成型和热压罐成型工艺, 模压成型工艺,热压/冷压模塑成型 工艺,注射模塑成型工艺,缠绕成型 工艺,拉挤成型工艺,复合材料液体 成型工艺等。
2007年第12期·航空制造技术73
万方数据
复合材料的热压成型工艺技术水平_概述及解释说明
复合材料的热压成型工艺技术水平概述及解释说明1. 引言1.1 概述复合材料是由两种或以上不同材料的组合而成,具有优异的性能和广泛的应用领域。
作为一种重要的制造工艺技术,热压成型在复合材料的加工中扮演着至关重要的角色。
本文将简要概述复合材料热压成型工艺技术水平的发展及其影响因素。
1.2 文章结构本文内容主要包括以下几个方面:引言、复合材料热压成型工艺技术水平、热压成型工艺技术水平的影响因素分析、目前热压成型工艺技术水平现状概述以及结论与展望。
第二部分将介绍热压成型的定义和原理,以及它在不同领域中的应用。
第三部分将详细分析影响热压成型工艺技术水平的因素,包括材料选择与预处理、工艺参数控制与优化以及设备性能与先进技术应用。
第四部分将总结国内外对热压成型工艺技术水平的研究现状,并解析技术难点和挑战。
最后,第五部分将对复合材料热压成型技术水平进行总结,并对未来的发展进行展望。
1.3 目的本文旨在全面了解复合材料的热压成型工艺技术水平,并分析其影响因素,从而为该领域的技术发展提供参考。
通过梳理国内外研究现状,揭示出当前存在的技术难题和挑战,并预测未来的发展趋势,以期为相关领域的科研人员和企业提供有价值的指导和启示。
2. 复合材料的热压成型工艺技术水平2.1 热压成型的定义和原理热压成型是一种常见的复合材料成型方法,通过在高温和高压条件下将预浸料或干布加热至树脂固化温度,使树脂固化并与纤维增强材料结合,在模具内形成所需形状。
热压成型基于树脂熔融流动性质以及压力和温度对材料行为的影响。
在加热过程中,树脂变得粘稠,并且能够填充纤维增强材料之间的空隙。
同时,施加的高压可提供更好的力学性能和纤维层间结合,从而实现更好的强度和刚度。
2.2 热压成型的应用领域热压成型广泛应用于航空航天、汽车、电子、建筑等许多领域中。
由于其能够提供优异的强度-重量比和刚度-重量比,它被视为一种有效替代传统金属制造方法的先进工艺。
在航空航天领域,热压成型被广泛应用于飞机结构的制造,如机身、机翼和尾翼等。
先进复合材料热压罐共固化技术的低成本工程
先进复合材料热压罐共固化技术的低成本工程以热压罐成型技术为主制造的航空先进复合材料结构件在各类飞机制造上都不同程度进入了批量生产阶段,有的型号已生产了数百架份的先进复合材料结构件,并经过了十多年的使用考核,为进一步扩大先进复合材料在飞机上的应用提供了实用的工程经验。
但我们必须清醒看到,先进复合材料的制造成本居高不下、批产中质量的不一致性、对先进复合材料特性缺乏足够的认识等仍然是阻碍先进复合材料在飞机上扩大应用的主要因素,这也是我国航空先进复合材料与先进国家航空复合材料应用差距巨大的问题所在。
因此,立足现有的热压罐法,如何降低其制造成本是我们的当务之急,如选用工艺特性优良的树脂体系、国产辅助材料的采用、成型模具的结构优化以及过程细节的严格控制等,都可以在降低制造成本的同时,明显的提高制件的合格率。
本课题针对先进复合材料共固化技术成型的产品,从材料开发、工艺优化、性能检测到售后服务等环节,以低成本为主导线,详细描述了一个热压罐共固化技术工程化的范例,达到了在热压罐成型方面明显降低制造成本的目的。
技术难点复合材料共固化技术要进入工程化,必须从材料、工艺、检测和售后等环节入手,高产品质量与低制造成本并行研究,高生产效率与低缺陷率并行考虑,建立低成本、高质量、高效率和低缺陷的复合材料工程化制造体系,达到整个工程的低成本化、技术完整化。
先进复合材料共固化技术工程化要实现低制造成本必须攻克的技术难点主要有:(1)低成本的原材料货源和多品种预浸料的开发与储备;(2)共固化技术所需辅助材料的国产化研究;(3)共固化成型工艺的优化;(4)产品性能检测项目的合理性以及产品质量的保证;(5)先进复合材料制品缺陷修复手段和修复后的性能表征。
技术方案1 多品种预浸料的开发由于复合材料的基体用原材料性能不稳定,加上材料体系易受运输、保管等因素的影响,使得预浸料的工艺性能出现较大的差异,从而影响先进复合材料的内部质量。
此外,先进复合材料件在固化过程中出现的某些局部缺陷,由于很难找到一种与之性能相当的树脂体系对其进行修复,构件因不能满足产品技术要求而无法使用,增加了构件的制造成本。
复合材料热压罐技术原理
复合材料热压罐技术原理
复合材料热压罐技术是一种先进的复合材料成型工艺,主要应用于航空、航天、电子、兵器等领域。
该技术通过真空袋封装和热压罐设备,实现复合材料制件的均匀温度和压力分布,从而制备出表面质量和内部质量高、形状复杂、面积巨大的复合材料制件。
其技术原理如下:
1. 预浸料准备:预浸料是将增强纤维(如碳纤维、玻璃纤维等)与树脂基体(如环氧树脂、酚醛树脂等)混合后,经过一定的工艺处理制成的。
预浸料的质量直接影响到最终复合材料制件的质量。
2. 铺层设计:根据复合材料制件的结构和性能要求,设计合适的铺层顺序和厚度。
铺层设计对于制件的强度、刚度和疲劳性能等具有重要影响。
3. 真空袋封装:将预浸料按照设计的铺层顺序铺设在模具上,然后用真空袋将其密封。
真空袋可以有效地防止空气和水蒸气进入复合材料制件,确保制件的密实性和均匀性。
4. 热压罐设备升温、加压:将封装好的模具放置在热压罐中,热压罐设备会按照设定的升温速率对模具进行加热,同时施加压力。
这样可以使预浸料中的树脂基体发生固化反应,形成复合材料制件。
5. 保温、降温:在达到一定的温度和压力后,保持一段时间以使树脂充分固化。
随后,热压罐设备会按照设定的降温速率将模具冷却至室温。
6. 卸压、脱模:待模具冷却至室温后,卸除压力,然后脱模得
到复合材料制件。
总之,复合材料热压罐技术原理主要是通过控制温度、压力和时间等参数,实现树脂基体的固化反应,从而制备出具有高性能的复合材料制件。
预浸料热压罐成型工艺
预浸料热压罐成型工艺预浸料热压罐成型工艺1. 介绍预浸料热压罐成型工艺是一种先进的复合材料成型技术,广泛应用于航空航天、汽车、船舶等领域。
本文将深入探讨预浸料热压罐成型工艺的原理、应用以及优缺点。
2. 原理预浸料热压罐成型工艺是一种将纤维增强复合材料与树脂预浸料结合,经过加热和压力处理来实现成型的工艺。
预浸料是将纤维和树脂提前混合搅拌,并在其固化之前储存的一种材料。
在成型过程中,预浸料被放置在模具中,经过加热和高压处理,树脂固化并与纤维形成坚固的结合,最终得到所需的复合材料产品。
3. 应用预浸料热压罐成型工艺在航空航天领域得到广泛运用。
由于其制造的产品具有高强度、轻量化和耐腐蚀性能,能够满足飞机、航天器等高性能应用的需求。
预浸料热压罐成型工艺也逐渐应用于汽车、船舶等领域,用于制造车身结构、内饰件等。
4. 优点预浸料热压罐成型工艺具有以下优点:- 高性能:由于树脂预浸料事先经过完全浸润纤维,成型后的产品具有优异的力学性能,如高强度和刚度。
- 轻量化:相比于传统金属材料,预浸料热压罐成型的产品重量更轻,能够实现结构的重量减轻,提高工作效率和节能。
- 过程可控性:成型过程中的加热、压力等参数可以精确控制,确保产品的一致性和质量稳定性。
- 设计自由度高:预浸料热压罐成型工艺可以实现复杂形状的产品制造,满足不同应用领域对产品外形和结构的要求。
5. 缺点预浸料热压罐成型工艺也存在一些局限性:- 成本高:与传统的复合材料成型工艺相比,预浸料热压罐成型的工艺过程较为复杂,需要较高的设备投资和人工成本。
- 环境影响:树脂预浸料制备过程中可能需要使用有机溶剂等化学物品,对环境造成一定的影响。
- 周期较长:预浸料的固化需要一定的时间,导致成型周期较长,不适用于快速成型需求。
6. 总结预浸料热压罐成型工艺是一种先进的复合材料成型技术,广泛应用于航空航天、汽车、船舶等领域。
该工艺通过将纤维增强材料与树脂预浸料结合,经过加热和压力处理来实现成型,制造出具有高强度、轻量化和耐腐蚀性能的产品。
新型复合材料在飞行器制造中的应用研究
新型复合材料在飞行器制造中的应用研究在现代航空航天领域,飞行器的性能和质量要求不断提高,新型复合材料因其出色的性能特点,在飞行器制造中扮演着日益重要的角色。
这些材料不仅能够减轻飞行器的重量,提高燃油效率,还能增强结构强度和耐久性,为飞行器的设计和制造带来了全新的可能性。
一、新型复合材料的种类及特点1、碳纤维增强复合材料(CFRP)碳纤维增强复合材料是由碳纤维与树脂基体复合而成。
碳纤维具有高强度、高模量的特点,而树脂基体则提供了良好的韧性和耐腐蚀性。
CFRP 的比强度和比模量远高于传统金属材料,使其在减轻飞行器结构重量方面表现出色。
同时,它还具有良好的抗疲劳性能和抗腐蚀性能,能够延长飞行器的使用寿命。
2、玻璃纤维增强复合材料(GFRP)玻璃纤维增强复合材料由玻璃纤维和树脂基体组成。
虽然其性能不如碳纤维增强复合材料,但具有成本较低、加工性能好等优点。
在一些对性能要求不是特别高的飞行器部件中,如非承力结构件、内饰件等,GFRP 得到了广泛应用。
3、芳纶纤维增强复合材料(AFRP)芳纶纤维具有优异的抗冲击性能和耐高温性能,与树脂基体复合后形成的 AFRP 在防弹、抗冲击防护等方面具有独特的优势。
在飞行器制造中,AFRP 常用于制造飞机的舱门、机翼前缘等部位,以提高飞行器的抗冲击能力和安全性。
4、陶瓷基复合材料(CMC)陶瓷基复合材料具有耐高温、高强度、抗氧化等优异性能,适用于飞行器的高温部件,如发动机热端部件、燃烧室等。
CMC 能够承受高温燃气的冲刷和腐蚀,提高发动机的工作效率和可靠性。
二、新型复合材料在飞行器结构中的应用1、机翼和机身结构新型复合材料在机翼和机身结构中的应用可以显著减轻重量,提高结构效率。
例如,波音 787 客机的机身结构大量采用了 CFRP,其重量比传统铝合金机身减轻了 20%左右,大大降低了燃油消耗。
同时,复合材料的可设计性使得机翼和机身的气动外形能够得到更精确的优化,提高了飞行器的飞行性能。
复合材料热压罐成型工艺的常见缺陷及对策
复合材料热压罐成型工艺的常见缺陷及对策摘要:热压罐成型是复合材料应用较多、最为常见的一种成型工艺。
热压罐工艺生产的制品占整个复合材料制品产量50%以上。
热压罐成型工艺具有许多其他工艺不具备的优点,可制造形状复杂的制件,成型工艺灵活,适于生产大面积整体成型构件,纤维含量高,孔隙率低。
同时热压罐成型工艺具有设备投资高,成型周期长的特点。
热压罐成型复合材料构件主要缺陷包括外形尺寸超差与内部质量缺陷等,内部质量缺陷包括分层,夹杂等。
造成缺陷的原因种类繁多,包括制造中的人机料法环各环节的相关工序。
本文分析非等厚板材、曲率构件常见缺陷产生原因,分析内容对复合材料零件质量控制具有一定的借鉴作用。
关键词:复合材料;热压罐成型工艺;常见缺陷及对策引言随着复合材料在航空航天领域的用量占比逐渐增加,已成为与钛合金、铝合金、合金钢并驾齐驱的四大航空结构材料之一。
而热压罐成型技术依旧是现阶段制造复合材料构件的主要方法,成型面的温度场分布是影响构件成型质量的重要因素。
研究表明,成型过程中温度场的分布不均匀将会导致复合材料固化后产生残余应力,导致材料力学性能降低,材料受到损坏,最终影响构件成型质量。
成型模具一般为金属模具,具有良好的热传导性,成型模具对复合材料构件温度场的影响远远大于辅助材料对构件温度场的影响。
因此,成型模具在复合材料固化成型中具有重要影响,研究与复合材料构件直接接触的成型模具型板表面温度均匀性对最终成型质量至关重要。
1复合材料热压罐成型工艺特点复合材料热压罐成型工艺主要是将复合材料毛坯或胶接结构用真空袋密封在热压罐中,用罐体内部均匀温度场对成型中的零件施加温度压力,使其成为所需要的形状与质量状态的成型工艺方法。
其成型工艺特点主要是罐内压力均匀,真空袋内的零件在均匀压力下成型。
适用范围广,成型工艺稳定,热压罐温度条件几乎满足所有聚合物基复合材料的成型工艺要求。
可保证成型零件质量,热压罐成型工艺制造的层压板孔隙率较低,相对其他成型工艺成型层板力学性能稳定。
先进复合材料真空袋,热压罐成型技术
先进复合材料真空袋,热压罐成型技术真空袋/热压峨成塑技术是航空、航天领城应用最广泛的成型技术之一它能在宽广范圈内适应各种材料对加工工艺条件的要求。
真空级/热压罐成型的主要工艺流程1.模具清理和脱棋剂涂抹。
脱棋荆一定要涂抹均匀.用量要严格控制,过少影响脱模,过多污染制品。
2.预浸料裁切与铺叠。
裁切与铺叠可采取人工操作.可采取机器辅助裁切与人工铺叠相结合.也可采取全自动方式裁切与铺叠。
裁切按模板裁剪.要注意控制纤维方向偏差,一般不超过士1度。
铺叠时要按照设计的铺层顺序和方向依次铺叠,同时要注意在接缝部位采取搭接形式.且各层接缝必须错开.要注意将顶浸料展平压实,尽量排除层间空气。
3真空袋组合系统制作和坯件装袋.真空袋组合系统制作需要采用各种辅助材料.其中包括:真空袋材料(改性尼龙薄膜或聚酸胺薄膜).橡胶密封胶条.有孔或无孔隔离膜(聚四氟乙烯或改性氟塑料)。
吸胶材料。
透气材料.脱模布和周边胶条等。
按图10-1所示顺序将坯件与各种辅助材料依次组合井装袋.形成真空组合系统。
在组合过程中.吸胶材料的用量要精确计算.真空袋不宜过小或过大,以舒展为宜。
装袋后应进行真空检漏.确认无误后.便可闭合锁锁热压罐门.升温固化。
1.真空袋.2.透气材料.3.压板04.有孔隔离层,5.预浸料叠层,6.有孔脱模布,7.吸胶材料,8.隔离薄面.9.底模版.10.周边挡条.11.周边密封带112.热压罐金属基板。
13.密封胶条,14.真空管路3.固化。
各种树脂体系的固化制度,应根据各种不同树脂体系的固化反应特性和物理特性分别给予制定,要懊重考虑加压时机和关闭真空系统的时机。
固化完毕要控制降温速率,以防止因降沮速度过快导致制品内部产生残余应力。
4.出罐脱模。
罐内温度降至接近室温时方可出罐脱模。
5.检测与修整。
先进复合材料制品一般都要进行无损探伤检侧。
预没料侧备织物预浸料是热压罐成型的半成品原材料,可采用溶液及演法和热熔浸渍法制造。
1.溶液浸渍法。
国内外复合材料工艺设备发展述评之八热压罐成型
三、发展趋势和挑战
随着科学技术的不断进步和市场需求的变化,复合材料工艺设备的发展趋势 也在不断变化。未来,模压成型设备将更加注重自动化、智能化和绿色化。例如, 通过引入机器人技术和先进的数控系统,实现设备的自动化操作和无人化生产; 通过采用新型的环保材料和节能技术,实现生产的绿色化和可持续性。
然而,在发展的过程中,我们也面临着一些挑战。首先,如何将先进的自动 化技术应用到传统的复合材料生产中,实现两者的有机结合,是一个亟待解决的 问题。其次,随着环保要求的日益严格,如何在保证产品质量的前提下,实现生 产的环保和可持续性,也是一个重要的课题。最后,如何提高设备的可靠性和稳 定性,降低设备的维护成本,也是我们需要解决的一个重要问题。
3、个性化和多样化:随着消费者需求的多样化,复合材料制品的形状、尺 寸和性能也要求更加多样化和个性化。因此,设备制造商需要针对不同领域和产 品的需求,提供更加灵活和多样化的设备方案。
4、智能化和自动化:通过引入人工智能、机器视觉等技术,实现设备的智 能化和自动化控制,可以提高设备的精度和稳定性,减少人工干预和操作失误, 提高产品质量和生产效率。
感谢观看
存在的问题与挑战
虽然国内外在热压罐成型技术方面取得了一定的进展,但仍存在一些问题和 挑战。具体表现在以下几个方面:
1、设备成本高:目前,高端热压罐成型设备的价格较高,给一些中小型企 业带来较大的经济压力。
2、技术水平有待提高:与发达国家相比,我国在热压罐成型技术方面还存 在一定差距,需要进一步提高技术水平和研发能力。
国内外复合材料工艺设备发展 述评之八热压罐成型
目录
01 引言
03 国内外发展现状
02 热压罐成型技术概述 04 参考内容
引言
复合材料热压罐成形工艺模拟特色实验
复合材料热压罐成形工艺模拟特色实验先进树脂基复合材料具有比强度高、可设计性强、抗疲劳断裂性能好、耐腐蚀、结构尺寸稳定性好、便于大面积整体成形以及电磁性能可调等特点,是航空航天装备的关键材料之一。
成本过高是制约先进复合材料大量应用的一个非常突出的问题,其中制造成本是其最高单项,约占复合材料总成本的70%-85%制造成本过高的主要原因如下:(1)“炒菜式”研发模式,制造方法的选择和工艺参数的优化均须要凭经验和实验,从试样到缩比件多次试验,造成工艺研究费用高,科学性差;(2)制造规范不通用,从大量试验摸索形成的较合理的制造工艺规范,只适用特定构件形式,当制件的结构形式改变,又需要新做大量试验,耗资耗时;(3)复合材料制造质量的可控性差,造成复合材料性能分散,材料许用值低,制件合格率低。
基于数值模拟方法,开展先进复合材料的制造过程机理分析是解决先进复合材料制造成本和制造质量控制问题的重要途径。
武汉理工大学材料学院和天津工业大学、洛阳理工学院材料系针对复合材料本科专业开设综合性实验,强调实验教学,不仅有利于学生对科学知识的学习,同时对提高学习兴趣、培养实验能力、增强探究意识和促进创新能力具有重要作用[1-3] 。
《复合材料热压成型工艺模拟特色实验》是北京航空航天大学材料科学与工程学院在大专业培养模式基础上[4-6] ,为高分子及复合材料专业本科生开设的专业特色选课,它是基于数值模拟手段的专业实验课程。
热压罐成形工艺是航空航天领域制备先进复合材料的主要成形方法之一,复合材料热压成型过程包括温度作用下树脂体系化学交联反应、树脂交联结构变化,压力作用下树脂流动/ 纤维密实等物理化学作用,涉及到高分子物理、高分子化学、渗流力学、材料力学等多学科知识。
工艺模拟特色实验不是简单的数值模拟软件操作学习,而是通过工艺数值模拟实验,引导学生应用复合材料理论知识,掌握复合材料热压罐成形工艺的原理。
复合材料热压成型工艺模拟软件平台是在多个国家级重点基础项目支撑下,基于实验和数值理论方法,建立的复合材料热压成型过程数字化模拟与工艺评价平台,对于缩短复合材料研制周期、提高制件质量可靠性、改变传统的复合材料研制模式(试错法和经验法),具有重要的意义[7-8] 。
热压罐成型复合材料成型工艺的常见缺陷及对策
热压罐成型复合材料成型工艺的常见缺陷及对策1. 引言1.1 热压罐成型复合材料的重要性热压罐是制备复合材料的重要工艺设备之一,其在航空航天、汽车、船舶、建筑等行业中具有重要的应用价值。
热压罐成型复合材料具有优异的性能,包括高强度、轻质、耐腐蚀等特点,能够满足各种复杂工程的要求。
在航空航天领域,热压罐成型的复合材料被广泛应用于飞机机身、飞翼、推进器等部件,能够减轻飞机重量、提高飞行性能,促进飞机的节能减排。
在汽车制造领域,热压罐成型复合材料可以用于车身结构、内饰件等部件,提高汽车的安全性、舒适性和节能性能。
热压罐成型复合材料在各行业中都具有重要的应用意义,能够推动产业的发展,并为人们的生活带来更多便利和安全。
1.2 常见的成型工艺在热压罐成型复合材料的生产过程中,经常采用的成型工艺包括预浸法、手工层叠法、自动穿透法等。
预浸法是一种将预先浸渍过树脂的纤维材料层叠放置在模具中,并经过热压成型的工艺。
这种方法能够有效地保证成型件的强度和表面质量。
手工层叠法则是工人手工层叠纤维和树脂,虽然成本相对较低,但可能产生不均匀的成型厚度和质量问题。
自动穿透法是通过机械设备将纤维和树脂压制在一起,可以提高生产效率和一致性,但设备成本较高。
在选择成型工艺时,需要考虑生产效率、成型质量和生产成本等因素。
合理的成型工艺可以保证复合材料成型件的质量和性能,提高生产效率和降低成本。
研究和优化成型工艺是提高热压罐成型复合材料质量的关键。
在这个过程中,我们需要关注常见的成型工艺缺陷及对策,以进一步提高生产效率和产品质量。
2. 正文2.1 成型工艺中常见的缺陷及原因1. 气泡:成型过程中,材料中的气体未能完全排除,导致在成型件内部形成气泡。
造成气泡的原因可能是材料使用不当、工艺参数设置不当或是设备故障等。
2. 凹坑:在成型过程中,材料未能完全填充模具空腔,导致成型件表面产生凹陷或凹坑。
凹坑的原因可能是模具设计不合理、压力控制不到位或是材料流动性差等。
热压罐成型复合材料成型工艺的常见缺陷及对策
热压罐成型复合材料成型工艺的常见缺陷及对策【摘要】热压罐成型是一种重要的复合材料成型工艺,但常常存在一些常见缺陷,如气泡和孔洞的产生、层间剥离、成型件表面质量不佳以及尺寸精度不达标。
针对这些问题,可以通过优化工艺参数、改进模具设计、采用适当的表面处理方法以及加强设备维护等对策来解决。
通过对常见缺陷的分析及对策的制定,可以有效提高热压罐成型复合材料成型工艺的质量和效率。
对热压罐成型复合材料成型工艺的常见缺陷及对策的研究有着重要的意义,可以帮助生产厂家更好地应对各种挑战,提高产品的质量和竞争力。
【关键词】热压罐、复合材料、成型工艺、常见缺陷、气泡、孔洞、层间剥离、表面质量、尺寸精度、优化工艺参数、模具设计、表面处理、设备维护、质量、效率。
1. 引言1.1 热压罐成型复合材料成型工艺的重要性热压罐成型复合材料成型工艺是一种重要的制造工艺,广泛应用于航空航天、汽车、船舶等行业。
该工艺可以制备轻质、高强度、耐腐蚀的复合材料制品,具有优异的性能和广泛的应用前景。
热压罐成型复合材料成型工艺在航空航天领域中的应用尤为突出,航空器结构件、航天器密闭结构件等都可以通过热压罐成型工艺来制造。
这些复合材料制品具有重量轻、强度高、抗冲击性好、耐腐蚀等优点,可以有效提高航空器和航天器的性能。
热压罐成型复合材料成型工艺在现代制造业中具有重要的地位和作用。
通过研究和优化该工艺,可以进一步提高复合材料制品的质量和效率,满足不同领域的需求,促进工业的发展和进步。
1.2 存在的常见缺陷常见缺陷是指在热压罐成型复合材料成型过程中常见的问题或不完美现象,影响着成型件的质量和性能。
气泡和孔洞的产生是一个常见的缺陷,可能会导致成型件强度不足或外观质量不佳。
层间剥离也是一个常见问题,会影响成型件的整体结构完整性。
成型件表面质量不佳和尺寸精度不达标也是常见的缺陷现象,会直接影响成型件的外观和整体性能。
了解并解决这些常见缺陷是提高热压罐成型复合材料成型工艺质量的关键。
复合材料制备技术讲义(5)-热压罐成型实例
T300—3000一40B碳纤维性能
T300/HD58层压板物理及力学性能
4、工艺难点分析
(1)蜂窝夹层结构面层密实度控制问题 蜂窝夹层结构面层密实度较难保证。尤其是采用一步法固化成型时, 由于加压固化的支持面为蜂窝芯,造成复材面板加压不均匀,呈凹凸 状,从而导致面层密实度极不均匀,有的甚至出现局部明显分层,造 成力学性能差,面层传剪能力变弱,直接影响结构的使用性能。采取 三步法热压罐固化工艺及软模技术,保证了面层密实度的要求。 (2)两端框与壳体的装配协调问题 火箭仪器舱处于三级箭体上的重要部位。其前后端框与卫星接口支 架、三级储箱的连接要求极其严格,其对接面平面度、圆度、平行度、 方位扭转误差以及对舱体的纵轴垂直度在图纸和技术条件上均有严格 的规定。我们通过改进钣金工艺方法,设置合理的工艺流程,提高铆 接及装配质量来满足仪器舱的装配要求。
1、仪器舱的结构形式及特点 整体采用碳纤维面板/铝蜂窝夹层结构; 前后端面为铝合金端框,前端面与卫星支架相连、后端面 与三级过渡段和整流罩相协调,舱壁上安装了圆盘支架、电
子程配、数字量变换器、振动传感器,小平台支架、爆炸器 等一系列仪器设备。另外,舱壁上还分布着检查窗等开口;
仪 器 舱 呈 截 圆 锥 形 , 前 框 直 径 为 1248mm , 后 框 直 径 为 2896mm ,高为 1028mm ,截圆锥形壳体与后端面呈 52.3°的 夹角。
5.2 热压罐结构
分大部分:机械部分、功能部分、控制部分。
机械部分包括罐体、底板与小车、气流控制装置、密封装置等;
功能部分包括加热、加压、抽真空及冷却系统;
控制部分包括温度、压力的手动和自动控制系统; 罐体:为圆筒形压力容器,封头采用压制成型,筒身采用钢板卷筒焊制。 筒身由内外筒组成,加热与冷却装置安装在内外筒之间。罐体内装有风 机,使空气通过内外筒涵道强制循环流动。内筒焊有底板,上置轨道和 小车,制品可由小车进出罐体。 加热装置:采用电加热和空气加热。电加热结构紧凑,方便易控。 冷却装置:强制冷却。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先进复合材料热压罐成型技术
苏鹏;崔文峰
【摘要】近年来,随着复合材料在航空航天中的广泛应用,其加工制造理论和技术水平在逐步提高.其中,热压罐成型技术是复合材料结构成型中较为成熟的方法,在航空航天产品中广泛应用.但是,由于现代大型飞机中应用的复合材料整体构件轮廓复杂度越来越高,尺寸也越来越大,传统热压罐成型技术已经无法满足制造实际应用需求.因此,为提高制品的质量和工作效率,热压罐成型工艺的改进和优化依然是当前主要的途径.本文根据传统热压罐成型工艺流程和特点,从提高产品质量和效率的角度分析其工艺过程,针对下料环节、温度控制环节、压力控制环节以及模具设计等关键技术,给出现阶段的最新研究进展.
【期刊名称】《现代制造技术与装备》
【年(卷),期】2016(000)011
【总页数】2页(P165-166)
【关键词】航空航天;复合材料;热压罐成型技术;温度场控制技术
【作者】苏鹏;崔文峰
【作者单位】大连长丰实业总公司,大连 116038;大连长丰实业总公司,大连116038
【正文语种】中文
热压罐成型工艺的工作原理是利用罐内的高温压缩气体产生的压力对复合材料坯料进行加热加压以完成固化成型。
热压罐成型系统是由罐体、冷却系统、真空系统、
压力系统、加热系统、密封系统和控制系统构成。
表1是热压罐各个系统的技术要求,该技术要求的满足可使热压罐罐内压力和温度均匀分布。
热压罐工艺流程:①预浸料下料(裁剪);②铺叠毛坯;③抽真空预压实(坯料与模具贴合);④(组装)固化;⑤(降温)脱模;⑥无损检测;⑦切边打磨;⑧称重。
当前,在热压罐抽真空压实环节借助真空袋与模具之间抽真空形成的负压,对复合材料坯料进行加压。
现已经发展成熟的技术有真空袋成型法、压力袋成型法和双真空袋成型法。
其中,真空袋成型法加压不大于0.1MPa,只适用于薄板制作或者蜂窝夹层结构。
缺点是制品外形表面质量精度较差。
压力袋成型法是通过向橡皮囊构成的压力袋(气压室)内注入压缩气体实现对复材坯料的加压,压力可达0.25~0.5MPa,特点是对模具的刚度和强度要求高,制品的机械性能好于真空袋成型法制品。
双真空袋压成型法起源于美国空军,采用湿法环氧预浸料对飞机复合材料结构修补。
它有两套真空系统,适用于挥发分含量较高的树脂体系,如酚醛和聚酰亚胺。
热压罐成型工艺已由最初制备飞机承力较小的构件扩张到垂尾,方向舵和平尾发展到当前的机翼、机身等主承力结构。
综合热压罐的技术要求和工艺特点,热压罐成型工艺的优点有:①热压罐内的温度和压力均匀变化,保证了固化过程制品受热均匀;②使用范围广泛,模具相对比较简单,效率高,适合大面积复杂型面的蒙皮、壁板和机身的成型;③热压罐内的温度、压力几乎能满足所有聚合物基复合材料的成型工艺要求,如低温成型的聚酯基复材、高温高压成型的聚酰亚胺等;④成型工艺稳定可靠。
缺点有:①采用人工铺叠和下料效率低,耗时长,劳动强度大,废料较多;②固化过程中用到的辅助材料价格昂贵。
热压罐成型过程中,具有较大调控和改进空间的工艺有:预浸料下料环节、加热环节、加压环节和模具材料和设计。
2.1 工艺研究进展
热压罐成型工艺的整体成型技术采用共固化/共胶接的方式,大大减少了零件、紧
固件的数目,实现了复合材料从结构设计到制造一体化成型,易于实现翼身融合气动布局,增加机体表面光滑完整程度,避免因钻孔引起的构件加工损伤。
同时,还可减轻飞机结构的质量,降低制造成本。
其中,最为关键的是各个构件之间连接区域的制造质量。
2.2 热压罐温度场研究进展
王永贵等[2-3]对框架式模具温度变化规律进行了模拟和实验测试,发现升温时模
具上高温区在进风端处,低温区在模具中间,而降温时得到的结论和升温时得到的结论相反。
所以,温度的不均匀是复合材料产生早期破坏的主要原因,也是影响复合材料构件质量的关键因素。
Hakan Ucan[4]提出一种“Masterbox”作为热压
罐工艺在线控制系统,可借助有效的传感器和调节器,实现碳纤维增强树脂基复合材料固化工艺的智能优化。
2016年贾云超等[5]利用CATIA软件建立了热压罐模型,并用FLUENT软件进行了温度场的模拟,运用控制变量法发现:①气流流速
增加,可减小工装表面的温差;②升温速率的增加,影响制品质量;③低比热容、高热导率的工装材料,有利于提高制品质量。
2.3 热压罐加压环节的研究进展
热压罐工艺中,加压点的确定直接影响复合材料的性能。
包建文等[6]因热压罐成
型工艺加压点的不确定这一特点,采用凝胶时间理论对某种型号的复合材料运用两种工艺进行成型,发现当反应程度参数小于凝胶参数时,加压成型的复材内部缺陷减低。
因此,利用理论可准确估算出树脂基复材的固化反应程度,从而确定加压点,提高产品质量。
刘小龙等[7]利用Flexiforce薄膜压力传感器建立密实压力在线测
试系统。
该系统获得树脂基复合材料成型过程中密实压力数据,为进一步优化复合材料成型工艺参数和模具方案提供重要依据。
李艳霞等[8]提到,压力测量胶片可
用于定性分析模具传压效率。
2.4 热压罐模具的研究进展
模具是目前热压罐成型工艺中的重要组成部分。
模具要和材料一起放入高温高压的罐内进行固化,这对模具的性能要求极高,因此模具的改进将大大提高构件的质量。
一方面模具的制造原材料有很多,如殷钢(承受温度540℃)、单晶石墨(承受
温度430℃)、钢、陶瓷等。
贾云超等[5]对热压罐温度场建模时提出,低比热容、高热导率的工装材料有利于提高制品质量。
另一方面,由于某些模具的结构复杂,需要利用软件数值模拟,因此采用数字化设计和加工将极大减少模具制造的时间,并且能优化模具,从而提高热压罐成型工艺制品的质量。
岳广全等[9]指出:①模
具的热传导性能不佳,会使得构件变形;②模具的膨胀系数对尺寸较大的构件影响较多;③模具的结构形式影响构件表面温度的分布。
韩培培等[10]利用CATIA软
件对复合材料U型梁成型模具及模具材料进行选择,并对材料的热膨胀系数、结
构形式、回弹角以及脱模等因素进行了优化设计。
目前,模具数字化制造可采用的方法主要有CAPP、数控加工和数字化检测。
2.5 综合工艺的发展
预浸料下料和铺叠大多采用人工,但人工操做效率低,产生的废料多,工耗长,劳动强度大。
自动铺带技术(ATL)是通过数控技术将有隔离背衬纸的单向预浸料在铺带头的作用下,完成预浸带的剪裁、定位、铺叠和辊压,进而直接铺叠到模具表面的数字化技术。
该技术可减少人工操作的劳动力成本和原材料的浪费。
但是,国内该项技术应用并不广泛,且维护费用昂贵,设备复杂。
因此,对于大型连续生产企业可选择该技术;对于科研或者小型企业,可结合人工和自动铺带技术的特点进行创新。
热压罐成型工艺是航空领域内复合材料,尤其是树脂基复合材料构件成型应用最广泛也最成熟工艺之一。
随着理论知识的不断补充,新技术的竞争,市场的需求,迫
使传统工艺更进一步发展。
热压罐工艺流程中升温环节、加压环节、预浸料下料铺叠和模具,都可调控优化。
通过模拟热压罐成型工艺的温度场、压力检测以及模具的性能检测,提高复合材料构件的质量和工作效率,具有重要意义。
热压罐成型工艺的升级优化,势必成为一个重要的研究方向。
【相关文献】
[1]赵渠森.先进复合材料手册[M].北京:机械工业出版社,
2003:1206-1207 .
[2]王永贵,梁宪珠,曹正华,等.热压罐工艺成型先进复合材料构件的温度场研究综述[J]. 玻璃钢/
复合材料,2009,(3):81-85.
[3]王永贵,梁宪珠.热压罐工艺的成型压力对框架式模具温度场的影响[J].玻璃钢/复合材料,2009,(4):70-73,76.
[4]Hakan Ucan,王迎芬.Masterbox:世界最大实验室用热压罐的固化工艺优化[J].航空制造技术,2012,(18):62-63.
[5]贾云超,关志东,李星,等.热压罐温度场分析与影响因素研究[J].航空制造技术,2016,
(Z1):90-95.
[6]包建文,钟翔屿,李晔,等.树脂基复合材料热压罐成型加压工艺模拟[J].热固性树脂,2014,(1):33-36.
[7]刘小龙,顾轶卓,李敏,等.采用薄膜传感器的树脂基复合材料热压罐工艺密实压力测试方法[J].复合材料学报,2013,(5):67-73.
[8]李艳霞.先进复合材料热压罐成型固化仿真技术研究进展[J].航空制造技术,2016,(15):76-81,86.
[9]岳广全,张博明,杜善义,等.热压罐成型工艺所用框架式模具的变形分析[J].复合材料学报,2009,(5):148-152.
[10]韩培培,孟庆杰.复合材料U形梁成型模具设计[J].玻璃钢/复合材料,2015,(3):73-77.。