电动力学 西南师范大学出版社 罗婉华 第三章作业答案
电动力学答案(郭硕鸿+第三版) chapter3
(ρ > a)
a ∴ r = xr − xr' = (ρ cosϕ − a cosϕ')2 + (ρ sinϕ − a sinϕ')2 + z'2
d = ρ 2 + a2 + z'2 −2aρ cos(ϕ −ϕ') h rr = xr − xr'= ( ρ cosϕ − a cosϕ')erx (ρ sinϕ − a sinϕ')ery − z'erz k dlr = −adϕ'⋅sinϕ'erx + adϕ'⋅cosϕ'ery . ∴ dlr × rr = −az'cosϕ'dϕ'erx − az'sinϕ'dϕ'ery + [a2 − aρ cos(ϕ'−ϕ)]dϕ'erz
第三章 静磁场
场是均匀强磁场 故只须求出其中轴线上的磁感应强度 即可知道管内磁场 由其无限长的特性 不妨取场点为零点 以柱坐标计算
rr = −a cosϕ 'erx − a sin ϕ 'ery − z'erx
dlr = −adϕ '⋅sinϕ'erx + adϕ'⋅cosϕ 'ery ∴ dlr × rr = (−adϕ '⋅sin ϕ 'erx + adϕ '⋅cosϕ'ery ) × (−a cosϕ'erx − a sin ϕ'ery − z'erx )
erθ
ww ∴ Hr 2 − Hr1 = 0,满足边界条件 nr × (Hr 2 − Hr1) = 0
电动力学课后答案
电动⼒学课后答案第五章多电⼦原⼦1.选择题:(1)关于氦原⼦光谱下列说法错误的是:BA.第⼀激发态不能⾃发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第⼀激发态能量相差很⼤;D.三重态与单态之间没有跃迁(2)氦原⼦由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产⽣的谱线条数为:BA.0;B.3;C.2;D.1(3)氦原⼦由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产⽣的谱线条数为:CA.3;B.4;C.6;D.5(4)氦原⼦有单态和三重态两套能级,从⽽它们产⽣的光谱特点是:DA.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不⼀定是三线.(5)若某原⼦的两个价电⼦处于2s2p组态,利⽤L-S耦合可得到其原⼦态的个数是:CA.1;B.3;C.4;D.6.(6)设原⼦的两个价电⼦是p电⼦和d电⼦,在L-S耦合下可能的原⼦态有:CA.4个;B.9个;C.12个D.15个;(7)若镁原⼦处于基态,它的电⼦组态应为:CA.2s2s B.2s2p C.3s3s D.3s3p(8)有状态2p3d3P 2s3p3P的跃迁:DA.可产⽣9条谱线B.可产⽣7条谱线C 可产⽣6条谱线D.不能发⽣课后习题1.He 原⼦的两个电⼦处在2p3d态。
问可能组成哪⼏种原⼦态?(按LS耦合)解答:l1 = 1 l2 = 2 L = l1 + l2, l1 + l2?1, ……, | l1? l2| = 3, 2, 1 s1 =1/2 s2 =1/2 S = s1 + s2, s1 + s2?1, ……, |s1 ? s2| = 1, 0 这样按J = L+S, L+S?1, ……, |L?S| 形成如下原⼦态:S = 0 S = 1L = 1 1P13P0,1,2L =2 1D23D1,2,3L = 3 1F33F2,3,43.Zn 原⼦(Z=30) 的最外层电⼦有两个。
《电动力学》课后答案
(a ⋅ ∇ ) r = ( a x
∂ ∂ ∂ + ay + a z )[( x − x ' )e x + ( y − y ' )e y + ( z − z ' )e z ] ∂x ∂y ∂z = axe x + a y e y + az ez = a
4 ○
∇ ( a ⋅ r ) = r × (∇ × a ) + ( r ⋅ ∇ ) a + a × (∇ × r ) + (a ⋅ ∇ ) r 因为, a 为常向量,所以, ∇ × a = 0 , ( r ⋅ ∇) a = 0 , 又 ∵ ∇ × r = 0 ,∴ ∇( a ⋅ r ) = ( a ⋅ ∇) r = a ∇ ⋅ [ E0 sin( k ⋅ r )] = (∇ ⋅ E0 ) sin( k ⋅ r ) + E0 ⋅ [∇ sin( k ⋅ r )]
ez ex ey dA (3) ∇u × = ∂u / ∂x ∂u / ∂y ∂u / ∂z du dAx / du dAy / du dAz / du
dAy ∂u dAx ∂u dA ∂u dAz ∂u dAz ∂u dAy ∂u − )e x + ( x − )e y + ( − )e z du ∂y du ∂z du ∂z du ∂x du ∂x du ∂y ∂Ay (u ) ∂Ax (u ) ∂A (u ) ∂Ay (u ) ∂A (u ) ∂Az (u ) =[ z − ]e x + [ x − ]e y + [ − ]e z ∂y ∂z ∂z ∂x ∂x ∂y = ∇ × A(u ) =(
S S S S S S S S S
(1)
电动力学第三版答案
电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
电动力学课后答案 (2)
电动力学课后答案本文档为电动力学课后习题的答案,旨在帮助学生理解和巩固所学的电动力学知识。
以下是习题的答案解析。
1. 高斯定律的应用(20分)题目:一半径为 R 的均匀带电球面,电荷密度为σ。
沿球面 A 点方向垂直放置一个圆环,半径为 r (r < R),环面上均匀分布着电荷,电荷密度为ρ。
求圆环上的电场强度。
解析:根据高斯定律,可以得到球面上的电场强度公式:E * 4πR² = Q / ε₀其中 E 为电场强度,R 为球面的半径,Q 为球面内的总电荷量,ε₀ 为真空介电常数。
对于球面内的总电荷量 Q,可以通过球面的电荷密度σ求得:Q = σ * 4πR²将 Q 的值代入上式,可以得到球面上的电场强度:E = σ / ε₀对于圆环上的电场强度E₁,根据叠加原理,可以将整个圆环分割成无限小的电荷元素,然后将各个电荷元素对圆环上某一点的电场强度进行叠加:E₁ = ∫(k * dq / r²)其中 k 为库仑常数,dq 为圆环上无限小的电荷元素,r 为圆环上的点到电荷元素之间的距离。
将 dq 的值代入上式,进行积分计算,可以得到圆环上的电场强度。
2. 电势与电势能(15分)题目:一电荷为 Q 的点电荷静止在距离无限远处,根据库仑定律,可以得到电场强度公式。
根据电场强度 E,可以求出电势差V = ∫E · dr。
解析:根据库仑定律,点电荷 Q 在距离 r 处的电场强度 E 可以表示为:E = k * Q / r²其中 k 为库仑常数。
对于电势差V,可以定义为电场强度E 在两点之间的积分:V = ∫E · dr该积分表示沿路径的曲线积分,其中 E 为点电荷 Q 在路径上的电场强度,dr 为路径上的微小位移。
将 E 的表达式代入上式,并对路径进行处理,可以计算得到电势差 V。
3. 静电场的能量(25分)题目:两个点电荷Q₁ 和Q₂ 之间的电势能可以表示为 E = k * Q₁ * Q₂ / r,其中 k 为库仑常数,r 为两个点电荷之间的距离。
电动力学 西南师范大学出版社 罗婉华 第七章作业答案
习题七2.用洛仑兹变换式和四维坐标矢量,导出洛仑兹变换矩阵。
解:洛仑兹变换式为./1/',',',/1'22222cv cvx t t z z y y cv vt x x --===--= (1)令,ict x z x y x x x ====4321,,,,按矢量的变换性质,则 νμνμx L x =' (2) μνL 为洛仑兹变换矩阵,设为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a L (3) 由(2)式矩阵计算为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321444342413433323124232221141312114321''''x x x x a a a a a a a a a a a a a a a a x x x x (4) (4)式计算结果为4443432421411434333232131142432322212114143132121111''''x a x a x a x a x x a x a x a x a x x a x a x a x a x x a x a x a x a x +++=+++=+++=+++= (5)将(5)式和(1)式比较,不难得出γβγβγγ=-===44411411,,,a i a i a a 其中cv =β,.1122cv -=γL 中其余各量为0. 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=γβγβγγ0010*******i i L . 5.爱因斯坦在他创立狭义相对论的论文《论运动物体的电动力学》中说:“设有一个在电磁场里运动的点状单位电荷,则作用在它上面的力等于它所在的地方所存在的电场强度。
这个电场强度是我们经过场的变换变到与该电荷相对静止的坐标系所得出的。
电动力学 西南师范大学出版社 罗婉华 第二章作业答案
习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z eV F πε= 解:0004R q V πε=,0004V R q πε=,.000R V εσ=z z e V e R F ˆ2ˆ22002002πεπεσ=⋅=2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ; ⑷.ln222ab l f πελσ解:⑴r f e r D ˆ2πλ=,.ˆ2r f e rDE πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以0=∂∂+tD J f。
因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ ⑵由f f tλεσλ-=∂∂,解这个微分方程得()tf et εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a bl rldr r f baf πελσππελσ=⎪⎪⎭⎫ ⎝⎛⎰能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=长度为l 的一段介质内能量减少率为 .ln2222ab l rldr tw f baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫ ⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ; r er R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lT Rl i ==2ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为 ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210d td Rrdtd r E ωσμπ-=Φ-=因为t αω= 所以ασμrR E 021-=考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为 ()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯=r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。
电动力学课后习题解答(参考)
∂ ∂y
∂ ∂z
=
(
∂Az ∂y
−
∂Ay ∂z
)ex
+
(
∂Ax ∂z
−
∂Az ∂x
)ey
+
(
∂Ay ∂x
−
∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y
−
∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z
−
∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x
−
(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r
电动力学 西南师范大学出版社 罗婉华 第八章作业答案
习题八1.设两根互相平行的尺,在各自静止的参考系中的长度均为0l ,它们以相同的速率v 相对于某一参考系∑运动,但是运动方向相反,且平行于尺子。
求站在一根尺子上测量另一根尺子的长度。
解:设1尺()'∑系沿∑系x 轴正向以速度v 运动,则2尺"∑系相对于∑系的速度为v -,因此在1尺上测得2尺的速度及其长度分别为22222/1'vc vc cvu v u u x x x +-=--=()2222020/'1'vc v c l c u l l x +-=-=2.静止长度为0l 的车厢,以速度v 相对于地面运行。
车厢的后壁以速度0u 向前推出一个小球,求地面的观察者测得小球从后壁到前壁的运动时间。
解:设地面参考系∑中小球处于车厢后壁和前壁两事件的时空坐标为()11,t x 和()22,t x ,在车厢参考系'∑中时空坐标为()11','t x 和()22','t x可直接由洛仑兹变换式()⎪⎭⎫⎝⎛+=+='',''2x c v t t vt x x γγ得到002021''u l c v u x c v t t ⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛∆+∆=∆γγ3.一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针上跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线上的两铁塔,求列车上的观察者测量到电光到达两铁塔的时刻差。
设建筑物及两铁塔都在一直线上,与列车前进方向一致,铁塔到建筑物的地面距离已知都是0l .解:设地面参考系∑中,两铁塔分别位于0102,l x l x -==,距离0122l x x x =-=∆,被照亮的时刻c l t t /021==,故012=-=∆t t t .由洛仑兹变换()vt x x x c v t t -=⎪⎭⎫ ⎝⎛-=γγ','2得列车上观测到的电光到达两铁塔的时刻差为 202/2'c vl x c v t t γγ-=⎪⎭⎫ ⎝⎛∆-∆=∆也可以用间隔不变得到.4.在参考系∑中,有两个物体都以速度u 沿x 轴运动,在∑系看来,它们一直保持距离l 不变.今有一观察者以速度v 沿x 轴运动,他看到这两个物体的距离是多少?解:在两物体静止的参考系'∑中,两者的距离为 2220)/(1uc cl c u l l -=-=设观察者所在参考系为''∑系,他测得这两物体的速度为 ()uvc v u ccvu v u u x --=--=222/1"故观察者测得这两物体的距离为 ()uvc v c cl c u l l x --=-=22220/"1''.5.火箭A 和B 分别以c .80和c .60的速度相对于地球向右和向左飞行。
电动力学答案
r 1 1 a 3(a r )r ( a r ) 3 3 (a r ) 3 3 r r r r r5 (2) (3) [(a r ) r ] r ( a r ) (a r ) r 4a r ( a )
(4) [(a r ) r ] (a r ) r (a r ) r a r
A B 3e x e y 解 (1) A C 3e x 2e y 3e z (2)
ex
ey Ay By
ez Bz
ex 1
ey 0
ez 1
A B C
(3) (4)
Ax Bx
Az C 2
1 1 ( e x e y 2e z ) 0
(uv )
1 u 1 v 1 u 1 v 1 u 1 v ve 1 ue 1 ve 2 ue 2 ve 3 ue 3 h1 q1 h1 q1 h2 q 2 h2 q 2 h3 q3 h3 q3
(2)
1 v 1 u 1 v 1 v 1 u 1 u u e e e v e e e 1 2 3 1 2 3 h q h q h q h q h q h q 2 2 3 3 2 2 3 3 1 1 1 1 uv vu (h3 A3 ) (h2 u ) (h2 A2 ) 1 (h3u ) (uA) A3 u A2 u e 1 h2 h3 q 2 q 2 q 3 q3 (h3u ) (h3 A3 ) (h1 A1 ) 1 (h1u ) A1 u A3 u e 2 h1h3 q3 q3 q1 q1 (h2 A2 ) (h1u ) (h1 A1 ) 1 (h2 u ) A2 u A1 u e 3 h1h2 q1 q1 q 2 q 2
西南大学《电动力学基础》网上作业及参考答案
1:[论述题]第一次作业一、填空1.写出真空中麦克斯韦方程组中关于电场的旋度方程和散度方程_________________ ;2. 电荷守恒定律的微分形式和积分形式是____________________;3. 电磁场动量密度表示为___________________;4. 写出一般情形下电场和电磁势的关系_____________________;5. 电磁场能流密度表示为___________________;二、证明题1. 推导真空中静电场的散度和旋度方程.2.证明均匀介质内部的束缚电荷密度,其中ρ为自由电荷密度。
3.推导介质的界面上,电场的边值关系。
要求作图。
4.推导磁场的边值关系.要求作图.5.由麦克斯韦方程组导出电荷守恒定律。
三、计算题1.平行板电容器内有两层介质,厚度分别为和,介电系数为,,如介质漏电,电导率分别为和,试求在电流达到稳恒时,两极板上及介质界面上的自由电荷面密度,设两极间电动势为。
参考答案:第一次作业答案一批次.一、填空答案:1.2.3.4.5.6.保守力场二、证明题1.证明: 由静电场的高斯定理,由数学上高斯定理或者因积分是任意的所以又由数学上的斯托克斯定理又因静电场所以2.3.如图1,由介质的高斯定理由静电场环路定理:如图24.做扁平盒如图1,由磁场的高斯定理,即做细长矩形回路如图2,由磁场环路定理:,即5.三、计算题1、解:两极间电阻两极间电流电流密度由欧姆定律微分形式,介质界面上自由电荷极板上自由电荷面密度1:[论述题]第二次作业二批次一、填空题1.电偶极子的电势;2. 写出磁场和矢势的关系_____________________;3. 超导的迈斯纳效应是指______________________;4.写出真空中麦克斯韦方程组中关于磁场和源的方程___________________ ;5.静电场的泊松方程。
6.动量流密度是张量,其中一个元素是指____________________________.7.一点电荷位于一无限大水平接地平板导体之上, 距离导体上表面处, 则点电荷的像的电量和位置为____________________________________________二、计算题1、有一导体球, 半径为R, 电势为φ0,距球心b>R处有一点电荷q,求导体外的电势2.在处和处有两个互相垂直的无限大导体面,设有一点电荷从无限远处准静态地移至,,z=0处,试求电荷在这位置上所受的电场力及移动中外力所做的功。
电动力学课后答案
第一章1. 根据算符的微分性与矢量性推导下列公式uA e u A e u A e du A d duA d u u A zu u A y u u A x u u A z A y A x A u A z u e y u e x u e u ududfu u f u f duu df u f z u u f u f z y u u f u f y x u u f u f x du Ad u u A du A d u u A u du df u f z y x u AA A A A AA A A A A A A AB A BA B A A B A B B A C B A B A B A B B A A C C B A A C B B A C A C B A B A B A A B B C A C B A C B A B C c B A B A B A AA A A AB A B A A B A B B A zz y y x x z y x z y x zy x c c c c c c c c c c ∂∂+∂∂+∂∂=⋅∇=⋅∇∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂=⋅∇∂∂+∂∂+∂∂=∇∇=∇=∇=∂∂=∂∂∂∂=∂∂∂∂=∂∂⨯∇=⨯∇⋅∇=⋅∇∇=∇∇⋅-∇=⨯∇⨯∇⋅+∇⋅+⨯∇⨯∇=⋅∇=∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇⨯∇⨯+∇⋅=⋅∇==∇=⨯⨯-⋅=⋅⨯⨯+∇⋅=⋅∇==∇=⨯⨯+⋅=⋅⋅∇+⋅∇=⋅∇∇⋅-∇=⨯∇⨯∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇)()()2()(')()()(')(')()(')()(')()1()()()(,, 2.)(21)()()()(2)()2()()()()()()()(,,,)()()()()(,,)()()()()(1)(21)()2()()()()()()1(222故故得解:的函数,证明:是空间坐标设所以:右边为:则左边为令上述公式中则得不再需要的符号将此两项相加,并弃去)(可得令又应用公式:)(结果可得令应用公式:常量表示相当的量应该看成此处)()解:(3333333300033332221')'(')1(;)'(')1(;)'(')1(1)'()1(;)'()1(;)'()1()(')'(';)'(';)'('])'()'()'([)'(;)'(;)'()()1(,)],sin([)()]sin([)(),()(,))((,)(,)()2()0(0')(0)(1'1)(')()''''(1')'()'()'(.3)()3(r r r r z z z r r y y y r r x x x r r r r r z z z r r y y y r r x x x r b r rr rz z z r r y y y r r x x x r rrr z z e r y y e r x x e r rz z z r r y y y r r x x x r a E k a r k E f r k E e r a d r a c r b r a r rrr r d r r c rrr r b r r r r a zA e y A e x A e z A e y A e x A e r x x z z y y x x r duAd u y u u A x u u Ae x u u A z u u A e z u u A y u u A e y A x A e x A z A e z A y A e u A z y x zz y y x x z z y y x x x y z z x y y z x x y z z x y y z x=∇∴--=∂∂--=∂∂--=∂∂-=∇∴--=∂∂--=∂∂--=∂∂-=∇∴--=∂∂--=∂∂--=∂∂=-+-+-=∇∴-=∂∂-=∂∂-=∂∂⋅⨯∇⋅⋅∇⋅∇∇⋅⨯∇⋅∇≠=-∇=⋅∇=⨯∇-=-∇=∇=-∇=∇∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∇-+-+-=⨯∇=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⨯∇解:均为常矢量及其中及求会对源变数求微商)证明下列结果,并体(为从源点指向场点的方向规定的距离,到场点为该点设;1)'(3'1;1)'(3'1;1)'(3'1)1()1()(010''')(3523352335232333333r r z z r z z z z r z r r y y r y y y y r y r r x x r x x x x r x r r rr d r r r r z z r y y r x x z y x e e e r r c zy x --=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂--=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂--=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∇=∇⋅-∇=⋅∇=∇⨯-∇=⨯∇=---∂∂∂∂∂∂=⨯∇ 或 013])'()'()'[(3)1(3352222=⋅∇=--+-+-=∇r r r r z z y y x x r 即 [][][][][][][])cos()()cos()()cos()()cos()()sin()()cos()()cos()cos()cos()sin()()(;)'()'(;)'()'(;)'()'()'()'()'()()()'()'()'())((0)'()'()'()'()'()'()(3)'()'()'()'()'()'())(2(0000000000000r k E k r k k E k E e r k k E k E e r k k E k E e r k E f r k E k r k E k r k E k r k E k r k E e a r a a za z z a z z a z a y a y y a y y a y a x a x x a x x a x z z a y y a x x a r a d ae a e a e a e z z e y y e x x z a y a x a r a c e y x x x y y e x z z z x x e y y y z z z r b zz z y y y x x x r z z e y y e x x e r a y x x y z x z z x y z y y z x z z y y x x z z z z y y y y x x x x z y x z z y y x x z y x z y x z y x z y x⋅⨯=⋅-+⋅-+⋅-=⋅⨯∇⋅⋅=⋅+⋅+⋅=⋅⋅∇=⋅∇∴=∂∂-+=-∂∂=∂∂-+=-∂∂=∂∂-+=-∂∂-+-+-∇=⋅∇=++=-+-+-⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=∇⋅=⎥⎦⎤⎢⎣⎡∂-∂-∂-∂+⎥⎦⎤⎢⎣⎡∂-∂-∂-∂+⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⨯∇=∂-∂+∂-∂+∂-∂=⋅∇-+-+-=4 (1) 应用高斯定理证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰⨯=⨯∇∴⨯⋅-=⨯⋅-=⨯=⨯⋅∇=⨯∇⋅-⨯=⨯∇svsssvvsvfs d f dv f s d a f s d a s d f a dv f a dv f a a a fs d f dv)()()(点乘方程左边得是一个任意常矢量,以证:令(2) 应用斯托柯斯定理证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰=∇⨯∴∇⨯⋅=⋅⨯∇=⋅⨯∇=⋅=⋅=∇⨯LssssLLLsl d s d s d a s d a s d a l d a l d a a a l d s d ϕϕϕϕϕϕϕϕϕ)()(点乘方程右边得是一个任意常矢量,以证:令 5已知一个电荷系统的偶极矩定义为⎰=vdv x t x t p ,,,),()(ρ利用电荷守恒定律0=∂∂+⋅∇t J ρ 证明的变化率为⎰=vdv t x J dt pd ,,),(解:⎰=vdv x t x t p ,,,),()(ρ,x 与时间无关,取的)(t p一个分量为⎰⎰⎰⎰⎰⎰⎰⋅+⋅⋅-=⋅⋅∇+⋅∇-=⋅∇-====vi s i i vi i v i i v i i v i i i i vi i dv J s d J x dv J x dv J x dv J x dv t x x t pdt t dp dv x t x t p ,,,,,,,,,,,,,,,,,)()()(),()()(),()( ρρ考虑到积分区域的表面比电荷所在区域大得多时,表面上的电流为0。
电动力学 第三章 习题解答
3μ0 H0 μ + 2μ0
3(μ − μ0 ) R03 ( H 0 i R) R (μ − μ0 ) R03 H 0 − (μ + 2μ0 ) R 5 (μ + 2μ0 ) R8 B1 = 3μμ0 H0 μ + 2μ0
B2 = μ0 H 0 +
求诱导磁矩:法 1 球体外的标势
⎡ 3( H 0 i R ) R H 0 ⎤ μ − μ0 − 3⎥ μ0 R03 ⎢ 5 ⎢ R R ⎥⎦ μ + 2μ0 ⎣
磁化电流分布。 【解】 (1)求磁感应强度 以导体圆柱的对称轴为 z 轴,建立柱坐标系。由于电流 J 沿 z 轴方向,矢势 A 只有
z 分量。因电流是轴对称的,可推知 Az 仅与 r 有关,所以
∇2 Az = ∇2 A(r ) =
2
⎞ 1 ∂⎛ ⎟ ⎜r ∂A ⎟ ⎜ ⎟ ⎜ ⎝ ⎠ r ∂r ∂r
- 58 -
华中师大 陈义成
A2 = f ln r + g
边界条件 在 r = 0 处, A1 有限,得到 b = 0 ;在 r = a 处,由式(3-1-13)和(3-1-16) ,有 边值关系
A2 = A1
1 ∂A2 1 ∂A1 = μ2 ∂r μ1 ∂r
、 (4)得 将 A1 、 A2 代入式(3)
z
依 ∇ A = −μ J ,在导体圆柱内部
∂A ⎞ 1 ∂⎛ I ⎜ r 1⎟ = −μ1 2 ⎟ ⎜ ⎟ ⎝ ∂r ⎠ πa r ∂r ⎜
在导体圆柱外
(1)
O
A
x
θ r
y P
(2)
∂A ⎞ 1 ∂⎛ ⎜ r 2⎟ ⎟ ⎜ ⎟= 0 ⎝ ∂r ⎠ r ∂r ⎜
《电动力学第三版郭硕鸿》第1-5章练习题答案
10. 变化磁场激发电场
11. 电场强度随时间的变化率
∇
×
G E
=
−
G ∂B
12.
∂t
G ∇×H
=
G J+
G ∂D
13.
∂t
G 14. ∇ ⋅ D = ρ
G
15. ∇ ⋅ B = 0 16. 稳恒电流
G
G GG
17. f = ρ E + J × B (适用于电荷分布情况)
G
GG
18. e E + e v × B
0
Pn (cos
θ
)]
=
Q
⇒
b0
=
Q 4πε 0
, b1
=
−
E 0 R03 2
,bn
=
0(n
≠
0 ,1)
⇒
ϕ
=
− E 0 R cos θ
+
Q 4πε 0 R
−
E 0 R03 2R 3
cos
θ
-8-
《电动力学》各章练习题参考答案(2014) __________________________________________________________________________________
(三)证明题: 1. 书上内容P112-113。 2.书上内容P115。 3. 书上内容P115。 4. 书上内容P122。 5. 书上内容P126。
(四)计算、推导题:
1.解: G
GGG
(1)k G ek =
= G k
k
−3ex
+ G
ey
+ G
ez
西南师范大学附属中学高中物理选修二第三章《交变电流》习题(含答案)
一、选择题1.如图所示,三只完全相同的灯泡L1、L2、L3分别与电感线圈、电容器和电阻串联后接在同一交流电源上,供电电压瞬时值为u1=U m sinω1t,此时三只灯泡亮度相同。
现换另一个电源供电,供电电压瞬时值为u2=U m sinω2t,ω2=12ω1,U m保持不变,则改换电源后()A.L1灯比原来暗B.L2灯比原来暗C.L3灯比原来暗D.L1、L2、L3三灯亮度仍然相同2.一交变电压随时间变化的图像如图所示已知横轴下方为正弦曲线的一半,则该交变电压的有效值为()A.510V B.210V C.10V D.102V3.一矩形线圈在匀强磁场中匀速转动,线圈中感生电动势e随时间的变化规律如图,下面说法正确的是()A.2t时刻通过线圈的磁通量的绝对值最大B.3t时通过线圈的磁通量为零C.3t时刻通过线圈的磁通量的变化率最大D.每当感应电流的方向改变时,通过线圈的磁通量的绝对值为最大4.如图,用一根总电阻为2R粗细均匀的铜导线制成半径为L的圆环,PQ为圆环的直径,其左右两侧14圆面积内各存在垂直于圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反。
一根长度为2L、电阻为R的金属棒MN绕着圆环的圆心O点紧贴着圆环以角速度ω沿逆时针方向匀速转动,转动过程中金属棒MN 与圆环始终接触良好,不计一切阻力和摩擦,下列说法正确的是( )A .转动过程中流过金属棒中电流方向始终是从N 到MB .图示位置金属棒两端的电压大小为223B L ωC .从PQ 位置开始计时,π02ω-时间内通过金属棒MN 的横截面电荷量为零 D .金属棒旋转一周的过程中,金属棒中电流的有效值为223B L Rω 5.如图所示,理想变压器匝数比21:2:1n n =,输入电压为202sin 20π(V)u t =。
当开关S 闭合时,灯泡A 、B 、C 均能发光。
则S 断开时( )A .交流电压表的示数为10VB .理想变压器的输入功率变大C .灯泡A 变暗、灯泡B 变亮D .理想变压器的输入电压变大6.对于如图所示的电流i 随时间t 做周期性变化的图象,下列说法中正确的是( )A .电流大小变化,方向不变,是直流电B .电流大小、方向都变化,是交流电C .电流的周期是0.2s ,最大值是0.2AD.电流做周期性变化,是交流电7.如图所示为演示交变电流产生的装置图,关于这个实验,正确的说法是()A.线圈经过图示位置时,电流方向发生改变B.图示位置为中性面,线圈中无感应电流C.图示位置ab边的感应电流方向为a bD.线圈平面与磁场方向平行时,磁通量变化率为零8.电压互感器和电流互感器是利用变压器原理对高压电路或是高电流电路进行测量的工具,钳形电流表就是电流互感器的一种(如图),它可以在不改变被测电路结构的情况下直接测出电路电流,它的测量过程如图a所示,此时正在测量一台正常工作电动机的电缆线的电流,其内部变压器可以视为理想变压器,内部结构如图a右侧所示(电流表表盘上刻度值已经转换成被测电流值)。
电动力学第三版答案
1. 根据算符∇的微分性与矢量性推导下列公式B A B A A B A B B A rr r r r r r r r r )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇解1B A v v )(=⋅∇首先算符∇是一个微分算符其具有对其后所有表达式起微分的作用对于本题∇将作用于BA vv 和又∇是一个矢量算符具有矢量的所有性质因此利用公式b a c b c a b a c vv v v v v v v v )()()(⋅−⋅⋅=××可得上式其中右边前两项是∇作用于Av 后两项是∇作用于Bv2根据第一个公式令AvB v可得证2. 设u 是空间坐标xy z 的函数证明.)()()(duA d u u A du Ad u u A u dudf u f rr rr ×∇=×∇⋅∇=⋅∇∇=∇证明1ududfe z u du df e y u du df e du df e z u f e y u f e x u f u f z y x x u z y x ∇=∂∂⋅+∂∂⋅+⋅=∂∂+∂∂+∂∂=∇∂∂r r r r r r )()()()(2du A d u zu dz u A d y u du u A d x u du u A d z u z A y u A x u A u A z y x z y x rr r r r r r r ⋅∇=∂∂⋅+∂∂⋅+∂∂⋅=∂∂+∂∂+∂∂=⋅∇)()()()()()()(3=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∂∂∂∂∂∂=×∇z x yy z x x y z z y u x z y xe y A x A e x A z A e z A y A u A u A A zy x e e e u A r r r r rr r r r r r r r r rr )()()()()()()(duA d u e y u du A d x udu A d e x u du A d z u du A d e z u du A d y u du A d z x y y z x x y z r r r r r r r r r r ×∇=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)()()(3. 设2'2'2')()()(z z y y x x r −+−+−=为源点'x 到场点x 的距离r 的方向规定为从源点指向场点1 证明下列结果并体会对源变数求微商(''''ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 与对场变数求微商)(ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 的关系 )0.(0,0,11,3'333''≠=−∇=⋅∇=×∇−=−∇=∇=−∇=∇r rr r r r r r r r r r r r r r r r r r (最后一式在人r 0点不成立见第二章第五节)2求均为常矢量及其中及000,)],sin([)]sin([),(,)(,,E k a r k E r k E r a r a r r rr r r r r r r r r r r r r r ⋅×∇⋅⋅∇⋅∇∇⋅×∇⋅∇证明3)()()('''=∂−∂+∂−∂+∂−∂=⋅∇z z z y y y x x x r r 0'''=−−−∂∂∂∂∂∂=×∇z z y y x x z y x e e e r z y xr r r r ])'()'()')][(()[()(z y x z y x z z y y x x e z z e y y e x x e ze y e x e a e a e a r a v r v v v v v v v r v −+−+−∂∂+∂∂+∂∂⋅++=∇⋅ ])'()'()')[((z y x z yxe z z e y y e x x za y a x a v r v −+−+−∂∂+∂∂+∂∂= ae a e a e a z z y y x x vvvv=++=ar a r r a r a r a vv v r v v v v v v ⋅∇⋅+×∇×+∇⋅+×∇×=⋅∇)()()()()( a a r a r r a v r v v v v v ⋅⋅+×∇×+∇⋅=)()()( ar a r a vvv v v ⋅∇⋅+×∇×+=)()())(sin()](sin([)]sin([000E r k E r k r k E rr r r r r r r r ⋅∇⋅+⋅⋅∇=⋅⋅∇0])sin()sin()sin([E e r k z e r k y e r k x z y x r r r r r r r r r ⋅∂∂+⋅∂∂+⋅∂∂= ))(cos())(cos(0E k r k E e k e k e k r k z z y y x x r r r r rr r r r r ⋅⋅=++⋅=000)sin()]sin([)]sin([E r k E r k r k E rr r r r r r r r ×∇⋅+×⋅∇=⋅×∇4. 应用高斯定理证明∫∫×=×∇SVfS d f dV r r r 应用斯托克斯Stokes 定理证明∫∫=∇×LSl d S d φφr r证明1)由高斯定理∫∫⋅=⋅∇SVgS d g dV r r r即∫∫++=∂∂+∂∂+∂∂S zz y y x x V zy x dS g dS g dS g dV z g y g x g )( 而dVk f yf x j f x f z i f z f y dV f x y z x y z V ])()()[(r r r r ∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇∫∫ ∫−∂∂+−∂∂+−∂∂=dVi f j f zk f i f y j f k f x y x x z z y )]()()([r r r r r r 又])()()[(k S d f dS f j dS f dS f i dS f dS f f S d y Sx x y x z z x z y y z Sr rr r r ∫∫−+−+−=× ∫−+−+−=zy x y x z x z y dS i f j f dS k f i f dS j f k f )()()(rr r r r r 若令if j f H k f i f H j f k f H y x Z x z y z y x rr r r r r −=−=−=,, 则上式就是∫∫⋅=⋅∇SVH S d dV H r r r,高斯定理则证毕2)由斯托克斯公式有∫∫⋅×∇=⋅SlSd f l d f r r r r∫∫++=⋅lz z y y x x ldl f dl f dl f l d f )(rr ∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=⋅×∇S zx y y z x x y z S dS f y f x dS f x f z dS f z f y S d f )()()(r r 而∫∫++=lz k y j x i ldl dl dl l d )(φφφφr∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∇×S y x x z z y S k dS x dS y j dS z dS x i dS y dS z S d r r r r )()()(φφφφφφφ ∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zy x dS i yj x dS k x i z dS j z k y )()()(rr r r r r φφφφφφ若令k z j y i x f f f φφφ===,,则证毕5. 已知一个电荷系统的偶极矩定义为,),()('''∫=VdV x t x t P r r r ρ利用电荷守恒定律0=∂∂+⋅∇tJ ρr 证明P r 的变化率为∫=V dV t x J dtPd ''),(r r r证明∫∫∇−=∂∂=∂∂V V dV x j dV x t tP '''''''r r r r r ρ ∫∫∫⋅∇−=⋅∇−⋅∇−=∇−=∂∂V x V x dVj x j dV j x j x dV x j tP '''''''''''''''')((])()([)(r r r r r∫∫⋅−=Sx Sd j x dV j r r '若)0(,0)(,==⋅∞→∫S j S d j x S rr r 则 同理∫∫=∂∂=∂∂'')(,)(dVj t dV j t z z y y ρρr r 即∫=V dV t x j dtPd ''),(r r r6. 若m r是常矢量证明除R 0点以外矢量3R R m A r r r ×=的旋度等于标量3RR m r r ⋅=ϕ的梯度的负值即ϕ−∇=×∇A r其中R 为坐标原点到场点的距离方向由原点指向场点证明mr m r r m r m R m R R m A vv v v v v v v ])1[()]1([1)(1)()]1([)(3∇⋅∇−∇⋅∇−∇∇⋅+∇⋅∇=∇××−∇=××∇=×∇)0(,1)(≠∇∇⋅=r rm vr m m r r m r m R R m 1)()()1()]1([)]1([)(3∇∇⋅−×∇×∇−∇×∇×−=∇⋅−∇=⋅∇=∇vv v v v v ϕ rm m r 1)(])1[(∇∇⋅−=∇⋅∇−vvϕ−∇=×∇∴A v7有一内外半径分别为r 1和r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷f ρ求1 空间各点的电场2极化体电荷和极化面电荷分布解1∫∫=⋅dV S d D f Sρrr , (r 2>r>r 1)f r r r D ρππ)(3443132−=⋅即)(,3)(123313r r r r r r r E f >>−=∴rr ερ 由)(,)(342313200r r r r Q S d E f f S >−==⋅∫ρεπεr r )(,3)(2303132r r r rr r E f >−=∴r r ρε 01时E r r r <2)EE E P e r r r r )(00000εεεεεεχε−=−=)(3]3)([)()(3310331300r rr r r r r r E P f f P r r r r r −⋅∇−−=−⋅∇−−=⋅∇−−=⋅−∇=∴ρεεερεεεεερ f f ρεεερεεε)()03(300−−=−−−=nn P P P 21−=σ考虑外球壳时r r 2 n 从介质1指向介质2介质指向真空2=n Pfr r f n P r r r rr r r P ρεερεεεσ32313203313013)1(3)(2−−=−−===r 考虑到内球壳时r r 23)(133130=−−−==r r f P rrr r rρεεεσ8内外半径分别为r 1和r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流J f 导体的磁导率为µ求磁感应强度和磁化电流解fS f I S d D dtd I l d H =⋅+=⋅∫∫rr r r 当0,0,1===<B H I r r f rr 故时 当r 2>r>r 1时)(2212r r j S d j rH l d H f Sf l−=⋅==⋅∫∫ππr r r r r j r r r r r r j B ff rr v ×−=−=22122122)(2)(µµ 当r>r 2时)(22122r r j rH f −=ππ r j r r r B frr r ×−=2212202)(µ )2()1())()(2212000rr r r j H H M J f M M−××∇−=−×∇=×∇=×∇=r r r r r µµµµµχ )(,)1()1(2100r r r j H f <<−=×∇−=r r µµµµ指向介质从介质21(),(12n M M n Mr r rr−×=α 在内表面上0)2)1(,012212021=−−===r r rr r M M µµ故)(,012r r M n M ==×=rr rα在上表面r r 2时)1(22)(0212221211222−−−=×−×−=×−=−×===µµαr f r r fr r Mj rr r r j r r r r r M n M n rr r rrr r r rf j rr r r 2212202)1(−−−=µµ9证明均匀介质内部的体极化电荷密度P ρ总是等于体自由电荷密度f ρ的倍)1(0εε−−证明ff P E E P ρεεερεεεεεερ)1()()()(0000−−=−−=⋅∇−−=−⋅−∇=⋅−∇=r r r 10证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明1线圈1在线圈2的磁场中的受力 ∫×=23121222024l r r l d I B v v v πµ21112B l d I F d v v v×=∫∫∫∫××=××=∴12123121221210312122211012)(4)(4l l l l r r l d l d I I r r l d I l d I F v r vvv v v πµπµ )()(41221312123121212210∫∫⋅−⋅=l l l d l d r r r r l d l d II v v v v v v πµ12线圈2在线圈1的磁场中受的力同1可得∫∫⋅−⋅=21)()(41232121321212121021l l l d l d r r r r l d l d I I F v v v v v v v πµ2分析表达式1和21式中第一项为0)1()(21221212221212231212123121212=−⋅==⋅=⋅∫∫∫∫∫∫∫l l l l l l r l d r dr l d r r l d l d r r l d l d 一周v v v v v v v v 同理对2式中第一项 ∫∫=⋅210)(3212121l l r r l d l d v v v ∫∫⋅−==∴12)(421312122102112l l l d l d r r II F F v v rv v πµ11. 平行板电容器内有两层介质它们的厚度分别为l 1和l 2电容率为21εε和今再两板接上电动势为Ε的电池求1 电容器两板上的自由电荷密度f ω2 介质分界面上的自由电荷密度f ω若介质是漏电的电导率分别为21σσ和当电流达到恒定时上述两问题的结果如何解在相同介质中电场是均匀的并且都有相同指向则,)00f 2211212211==−=−Ε=+σεε介质表面上E E D D E l E l n n故122112122121,εεεεεεl l E l l E +Ε=+Ε=又根据fn n D D σ=−21 n 从介质1指向介质2在上极板的交面上 121f D D σ=− D 2是金属板故D2即12212111εεεεεσl l D f +== 而02=f σ)0(,'1'1'2'2'13=−=−=D D D D D f 是下极板金属故σ 13122121ff l l σεεεεεσ−=+−=∴ 若是漏电并有稳定电流时222111,σσjE j E r r r r == 又 ===Ε=+积稳定流动电荷不堆,2121222111j j j j j l j l n nrrr σσ 得+Ε==+Ε==+Ε==1221122212212111221121:,σσσσσσσσσσl l j E l l j E l l j j 即12212`13σσσεσl l D f +Ε==上1221122σσσεσl l D f +Ε−=−=下Ε+−=−=1221121232σσσεσεσl l D D f 中12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时电场线的曲折满足1212tan tan εεθθ=其中21εε和分别为两种介质的介电常数21θθ和分别为界面两侧电场线与法线的夹角2当两种导电介质内流有恒定电流时分界面上电场线曲折满足1212tan tan σσθθ=其中21σσ和分别为两种介质的电导率证明(1)根据边界条件112212sin sin ,0)(θθE E E E n ==−×即vv 由于边界面上0=fσ故)(12=−⋅D D n v vv 即111222cos cos θεθεE E = 12121122,εεθθεθεθ==∴tg tg tg tg 即有(2)根据E J vv σ=可得电场方向与电流密度同方向由于电流I 是恒定的故有1221cos cos θθj j =即122211cos cos θσθσE E =而0)(12=−×E E n v vv 即 1122sin sin θθE E = 故有2121σσθθ=tg tg 13试用边值关系证明在绝缘介质与导体的分界面上在静电情况下导体外的电场线总是垂直于导体表面在恒定电流的情况下导体内电场线总是平行于导体表面证明1导体在静电条件下达到静电平衡01导体内E v∴ 而 0)(12=−×E E n v vv 02=×∴E n vv故0E v垂直于导体表面3导体中通过恒定电流时导体表面0=fσ∴导体外0,022==D E vv即 而 0:,0)(10112=⋅=⋅==−⋅E n D n D D n f v vv v v v v εσ即 01=⋅∴E n vv 导体内电场方向和法线垂直即平行于导体表面14内外半径分别为a 和b 的无限长圆柱形电容器单位长度电荷为fλ板间填充电导率为σ的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消因此内部无磁场2求f λ随时间的衰减规律3 求与轴相距为r 的地方的能量耗散功率密度4求长度为l 的一段介质总的能量耗散功率并证明它等于这段的静电能减少率1 证明由电流连续性方程0=∂∂+⋅∇t J f ρr 据高斯定理 D f r⋅∇=ρ 0=∂⋅∂∇+⋅∇∴tDJ rr 即0=∂∂⋅∇+⋅∇tDJ rr 0.0)(=∂∂+∴=∂∂+⋅∇∴t DJ t D J r r r r 即传到电流与位移电流严格抵消(2)解由高斯定理得∫∫=⋅dl dl r D f λπrr 2 rf r f e r E e r D rr r r πελπλ2,2==∴ 又ED E J t D J rr r r rr εσ===∂∂+,,0 t e E E tEE εσεσ===∂∂+∴0,0r r r r rt r r f e e re r r rεσπελπελ−=∴220电动力学习题解答 第一章 电磁现象的普遍规律tf f e εσλλ−=∴03解re r t t D J ft f πλεσπλεσ2)2(0⋅=∂∂−=∂∂−=−r r 能量耗散功率密度σπελσρ222)2(1rJ J f ==5解 单位体积rdrl dV π2⋅= ∫==b a f f abl rdr l r P ln22)2(222πεσλπσπελr 静电能 abl dr r l dV E D W f b a f baln2212212122⋅⋅==⋅=∫∫πελπελr r 减少率 ab l t a b l t W f ff ln2ln 222πεσλλπελ=∂∂⋅−=∂∂−1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK Er r ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE r rrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rr r r 2121内内内εεεεεεεεωK K K E D rr r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos 21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00s0R 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外301201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷fQ 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r 又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a+='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得0f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R 4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fP r球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A30113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 f P P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rr2φ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 22002131020*******=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos 61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E n n n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解2镜像法如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aR R a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O),20(],cos 22242a R R b a ba Rb a><≤−++πθθ12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx x d )(δ的图说明)()(x P rr δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxxd x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又EnE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−+=+1010)(]1)1[(212dxx P l l l φ当l 为偶数时00=ll R A 当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。
电动力学智慧树知到课后章节答案2023年下华南师范大学
电动力学智慧树知到课后章节答案2023年下华南师范大学绪论单元测试1.由于静电场场强是电标势的负梯度,所以静电场一定是( )。
A:无旋无源场。
B:有源有旋场; C:无旋有源场; D:无源有旋场;答案:无旋有源场;2.由于磁感应强度是磁矢势的旋度,所以磁场一定是( )。
A:无旋无源场。
B:无源有旋场; C:无旋有源场; D:有源有旋场;答案:无源有旋场;3.由Stokes定理可知:( )。
A:B:C:D:答案:4.标量的梯度用于确定( )。
A:场的大小; B:力的方向。
C:场的方向; D:力的大小;答案:场的大小;;场的方向;5.矢量的散度用于确定( )。
A:场的有旋性; B:场的源或者汇; C:是否存在孤立的源。
D:场的有源性;答案:场的有旋性;;场的源或者汇;;场的有源性;6.矢量的旋度用于确定( )。
A:场线是否封闭; B:场的有源性; C:场的有旋性; D:是否存在孤立的源。
答案:场线是否封闭;;场的有旋性;7.A:对 B:错答案:错8.A:错 B:对答案:错第一章测试1.库仑定律表明电荷间作用力与其距离( )关系。
A:成反立方。
B:成反比; C:成正比; D:成反平方;答案:成反平方;2.真空中的静电场高斯定理表明:穿过封闭曲面的电通量与该曲面内的净余电量( )。
A:无关。
B:成反平方比; C:成正比; D:成反比;答案:成正比;3.法拉第电磁感应定律表明:感应电场是由( )产生的。
A:变化的磁场。
B:电荷; C:电流; D:变化的电场;答案:变化的磁场。
4.在电介质的某点处,与自由电荷体密度成正比的是( )的散度。
A:电位移矢量; B:电场强度矢量; C:极化强度矢量; D:电流密度矢量。
答案:电位移矢量;5.在磁介质的某点处,与自由电流面密度成正比的是( )的旋度。
A:位移电流密度矢量。
B:磁感应强度矢量; C:磁场强度矢量; D:磁化强度矢量;答案:磁场强度矢量;6.法拉第电磁感应定律表明:感应电场是有源无旋场。
电动力学 西南师范大学出版社 罗婉华 第四章参考答案
习题四参考答案1.一个半径为R 的电介质球,极化强度为2/r r K P =,电容率为ε.计算⑴ 束缚电荷的体密度和面密度; ⑵ 自由电荷体密度; ⑶ 球外和球内的电势;⑷ 该带电介质球产生的静电场的总能量. 答案:⑴ 2rK p -=ρ,RK p=σ⑵ ()20rKfεεερ-=⑶ ()rKR 002εεεεϕ-=()R r >⎪⎪⎭⎫ ⎝⎛+-=001ln εεεεϕr K K()R r < ⑷ 20012⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+=εεεεπεK R W 提示:⑴2rKP p-=⋅-∇= ρ, RK P eRr r p=⋅== ˆσ⑵ 因为f P ρεερ⎪⎭⎫⎝⎛-=10,所以()20rKfεεερ-=⑶ 因为电荷分布具有球对称性,所以可以由高斯定理求电场强度E ,再求ϕ ⑷ 两种方法都可以求解 ⎰=v d V W ρϕ21,V 是电荷分布的球区间。
或者, ⎰∞⋅=d V D E W21,这里V 是电场分布的全空间3.接地的空心导体球内外半径为1R 和2R ,在球内离球心为()1R a a <处置一点电荷q ,求空间的电势分布.导体球上的感应电荷有多少?分布在内表面还是外表面?答案:()()⎥⎥⎦⎤⎢⎢⎣⎡-+-+-+=θθπεϕcos /2//cos 241212212122a R R aR R aqR Ra a R qq q -=',分布在内表面.感应电荷不等于像电荷.提示:该题的解法与例题2完全类似,只是像电荷在球外空间。
4.上题的导体球壳不接地,而是带电荷0q ,或使其有确定的电势0ϕ,试求这两种情况的电势.又问0q 和0ϕ是何种关系时,两情况的解相等?答案:提示:由叠加原理,本题可以看作3题再叠加一个均匀带电球面,球面带电为q q +0,或者球面电势为0ϕ.所以()()⎥⎥⎦⎤⎢⎢⎣⎡++-+-+-+=20212212122cos /2//cos 241R q q a R R aR R aqR Ra a R qθθπεϕ 或者,()()212212122cos /2//cos 241ϕθθπεϕ+⎥⎥⎦⎤⎢⎢⎣⎡-+-+-+=a R R aR R aqR Ra a R q当 20004R q q πεϕ+=时5.在0=x 处和0=y 处有两个互相垂直的无限大导体面,设有一点电荷从无限远处准静态地移至a x =,b y =,z=0处,试求电荷在这位置上所受的电场力及移动中外力所做的功.答案:q 受到的力为3个像电荷的力⎪⎪⎭⎫⎝⎛++-+-=22222228b a e b e a b e a e q F y x y xπε外力的功q qU W = q U 为q 所在点感应电荷电势所以⎪⎪⎭⎫⎝⎛+-+-=2221118ba ba q W πε 6.设有两平面围成的直角形无穷容器,其内充满电导率为σ的液体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三参考答案
1.试证明,在两种导电介质的分界面上, .011
22=∂∂-∂∂n
n
ϕσϕσ
()21指向由n
.
证明:因为
0=⋅⎰⎰
S
S d j
所以,n n j j 21= 又, n
E j n n ∂∂==ϕσ
σ
即 .011
22=∂∂-∂∂n
n
ϕσϕσ
2.半径为0R 的导体球,带自由电荷总量为f Q .今使导体球的一半浸在介电常数为ε的液体中,另一半露在真空中.求静电势、静电场、自由电荷和束缚电荷分布. 答案:
液体的电势1ϕ,电场1E
及空气中电势2ϕ,电场2E 分别为
()().
2,
23
021021R
R Q E E R
Q f f
εεπεεπϕϕ+=
=+=
=
导体球的电势0ϕ及球内电场0E
分别为
().0,200
00=+=
E R Q f
εεπϕ
自由电荷分布及束缚电荷分布:
① 下半球面 ()()().2,22
002
0R Q R Q f
P
f
f
εεπεεσ
εεπεσ
+-=
+=
② 上半球面 ().0,22
00=+=
P
f
f
R
Q σ
εεπεσ
③ 液体表面 .0,0==p
f
σσ
提示 由边界条件,提出尝试解r
A =ϕ ,再由唯一性定理,求出常数A.
3.试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.
(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由0
2ερϕ-=∇ (1)
没有电荷的地方
02
2
2
2
22
=∂∂+
∂∂+
∂∂z
y
x
ϕϕϕ (2)
如果ϕ为极大,则
02
2
<∂∂x
ϕ,
02
2
<∂∂y
ϕ,
02
2
<∂∂z
ϕ,这不满足(2)式,可见没有电荷
处,ϕ不能为极大。
同理可以证明ϕ不能为极小。
在均匀介质中,有ρερ⎪⎪⎭
⎫
⎝⎛--=r p 11,若没有自由电荷,也就没有极化电荷。
方程(2)仍然成立,证明和前面一样。
4.三个同心薄金属球壳形成一个静电系统,内球半径为1R ,中间球半径为2R ,外球半
径为 3R ,球壳之间为真空,内外球壳接地,电荷Q 置于中间球壳上,试求: (1)内球壳上的感应电荷1Q 值;’ (2) 外球面上的感应电荷3Q 的值.
解 在所研究场域内无电荷分布,故场域满足0=⋅∇D .因为电场具有球对称的特点,故选用球坐标,且0==φθE E ,于是
0=⋅∇D )(21R r R << 或在球坐标系中
0)(112
2
=D r d
d r
(1)
积分得 2
1r
A D =
(2)
同理得 2
2r
B D =
)(32R r R << (3)
根据边界条件确定常数A 、B. 由
⎰
⎰
=⋅-
⋅Q dS D dS 1
n D n 2, 得
π
4Q B A =
+ (4)
由 ⎰⎰⋅=⋅1
23
221R R R R r r d E d E 得
B R R R R R R A )
()(123231--=
(5)
联立(4)、(5)式,得
)
()(4132231R R R R R R Q A --⋅
=
π
; )
()(4132123R R R R R R Q B --⋅
=
π
因此,球壳之间电场分布为 )
()(132231012
4R R R R R R Q
E r --⋅
=
πε;
)
()(4132232
021R R R R R R r
Q E --=
πε
内球壳上感应电荷分布
10101E E n εεσ-==
总电荷Q R R R R R R Q )
()(1322311---
=
外球壳内表面感应电荷分布为 20203E E n εεσ-== 总电荷
Q
R R R R R R Q )
()
(1
3
2
1
2
3
2
---
= .
5.(1)根据电荷守恒定律证明稳恒电流情况下的边界条件:电流密度的法向分量连续. (2)证明导体表面电位移的法向分量σ=n D (σ为面电流密度),但 D 不在导体表面的法线方向.
解(1)在两种导电媒质的分界面上,作一扁圆柱体(高0→∆h ),把连续性方程
⎰
=⋅0S j d 用于这个圆柱面上,则0)(12=-⋅j j n 或n n 21j j =,法向单位基矢n 由媒质1指
向媒质2,因此电流密度在界面法线n 上的分量连续.
(2)由于介质中各点02=j ,故导电媒质与非导电媒质交界面上边界条件为
01=E σ 2t
1t
E E =t
∵ σ=-⋅)(12D D n ,σ=n D 2
因为电场有切向分量,所以D 不在导体表面法线方向。
分析 (1)在稳流场中,两种导电媒质界面上n j 连续,而n E 不连续是由于界面上
存在面电荷.面电荷密度为
)112221()(E E n D D n εεσ-⋅=-⋅=
j )(
1
12
2σεσ
ε-
=
界面上积累电荷密度激发的电场将影响整个空间的电场分布.
(2)两种导电媒质的交界面不是等势面,当交界面上各点切向分量0=t E ,界面才是等势面.
(3)对理想导体∞→1σ ,其内部电流密度有限,故01=E ,整个理想导体为等势体..在稳流场中,一般把供电电极作为理想导体使用,而不论其电导率的值为多大.
6. 已知三平面交线一点有点电荷q ,三个两面角是321,,ααα;每个角内介质是3
,2,1εεε.
求空间电势分布.
解 在所研究场域内,除 q 之外,电荷密度 0=ρ,故电势ϕ满足方程
02
=∇i ϕ i=1,2,3
边界条件是:(1) 0=∞
→r
i ϕ;
(2) 2
1
ϕ
ϕ=(1,2界面),32ϕϕ=(2,3界面),3
1ϕϕ=(1,3界面);(3)以 q 为中心的球面是等势面,故 321ϕϕϕ==;(4)给定电荷. 根据唯一性定理提出尝试解
B r A +=
ϕ
由边界条件决定系数A 、B 由条件(1)得0=B ,故r
A =
ϕ ,因此介质内电场强度
r E 3
r
A =
-∇=ϕ,电位移i i i E D ε= ,根据高斯定理
⎰⎰
⎰
⎰
++=⋅+
⋅+
⋅=
⋅=
1
2
3
332211332211)222(S S S A d d d d q αεαεαεS D S D S D S
D
于是 )
(2332211αεαεαε++=
q
A
r
q
r
A )(2332211αεαεαεϕ++==
7. 试用A表示一个沿z 方向的均匀恒定磁场B,写出A的两种不同表示式,证明二者之差是无旋场.
解:由z e B A ˆ=⨯∇
,(1) 在直角坐标系中
选x e
By A ˆ1-=,或y e Bx A ˆ2-=,其他分量为零,都满足(1) 而且有
()
()()021=∂∂
--∂∂-=-⨯∇Bx x
By y A A。