吸收塔自动控制工艺设计

合集下载

化工原理课程设计甲醇填料吸收塔设计

化工原理课程设计甲醇填料吸收塔设计
经济评价与环保考虑
投资估算及经济效益分析
投资估算
根据甲醇填料吸收塔的设计方案,对设备、材料、安装、调试等各方面的费用进行详细估算,以确保投资预算的 准确性。
经济效益分析
通过对比不同设计方案的经济效益,包括投资回报率、净现值、内部收益率等指标,评估甲醇填料吸收塔的经济 效益,为决策提供依据。
环保法规遵守情况说明
在甲醇吸收塔周围设置防火墙或 防火带,防止火灾蔓延。同时, 塔体上应设置明显的安全警示标 志和灭火器材。
防爆措施
对于可能存在爆炸危险的区域, 应采取相应的防爆措施,如设置 防爆门、防爆窗等。此外,还应 对塔体进行定期检查和维修,确 保设备完好无损。
防毒措施
甲醇具有一定的毒性,因此在设 计过程中应采取相应的防毒措施 。例如,在塔体上设置排风口和 通风设备,确保空气流通;工作 人员在操作时应佩戴防毒面具和 防护服等个人防护用品。
化工原理课程设计甲 醇填料吸收塔设计
目录
• 课程设计背景与目的 • 甲醇填料吸收塔基本原理 • 设计方案制定与参数选择
目录
• 工艺流程设计与优化 • 设备布置与管道设计 • 控制系统设计与实现 • 经济评价与环保考虑
01
课程设计背景与目的
化工原理课程设计意义
01 02
理论与实践结合
化工原理课程设计是连接化工理论学习与工程实践的重要桥梁,通过课 程设计,学生可以将所学的化工原理知识应用于实际工程问题中,加深 对理论知识的理解和掌握。
塔内件设计与优化
通过对塔内件(如分布器、收集器、再分布器等)的设计和优化,实现气液均匀分布、减少返混和降低压降等目标, 从而提高吸收效率和降低能耗。
操作条件优化
通过对操作条件(如温度、压力、流量等)的优化,使吸收塔在最佳工况下运行,提高吸收效率和产品 质量,降低能耗和废弃物排放。

吸收解吸塔的详细设计和ASPEN塔设计

吸收解吸塔的详细设计和ASPEN塔设计
课程设计任务书
学生姓名: 指导教师:
一、课程设计题目 填料吸收塔的设计 二、工艺条件
1.煤气中含苯 2%(摩尔分数) ,煤气分子量为 19; 2.生产能力:每小时处理含苯煤气 2000m³,连续操作; 3.吸收塔底溶液含苯≥0.15%(质量分数) ; 4.吸收回收率≥95%; 5.吸收剂为洗油:分子量 260,相对密度 0.8; 6.吸收操作条件为:1atm、27℃;解吸操作条件为:1atm、120℃; 7.冷却水进口温度<25℃,出口温度≤50℃。 8.吸收塔汽-液平衡 y* = 0.125x; 解吸塔汽-液平衡为 y* = 3.16x; 9.解吸气流为过热水蒸气,经解吸后的液体直接用作吸收剂,正常操作下不再补充新 鲜吸收剂过程中热效应忽略不计; 10.年工作日及填料类型:自选。
-1-
1 设计方案的介绍
本设计为填料吸收塔,设计中说明吸收剂为洗油,被吸收的气体是含苯的 煤气,且混合气中含苯的摩尔分数为 0.02.除了吸收塔以外,还需其他的辅助设 备构成完整的吸收-脱吸塔。气液采用逆流流动,吸收剂循环再用,所设计的流 程图如 A3 图纸上的图所示。图中左侧为 吸收部分, 混合气由塔底进入吸收塔,其中混合气中的苯被由塔顶淋下的洗油吸 收后,由塔顶送出(风机在图中未画出来) 。富液从富油贮罐由离心泵(J0102)送 往右侧的脱吸部分。 脱吸常用的方法是溶液升温以减小气体溶质的溶解度。故用 换热器使送去的富油和脱吸的贫油相互换热。 换热而升温的富油进入脱吸塔的顶 部,塔底通入过热蒸汽,将富油中的苯逐出,并带出塔顶,一道进入冷凝器,冷 凝后的水和苯在贮罐(F0102)中出现分层现象,然后将其分别引出。回收后的 苯进一步加工。由塔顶到塔底的洗油的含苯量已脱的很低,从脱吸贮罐(F0103) 用离心泵(J0101)打出,经过换热器、冷凝器再进入吸收塔的顶部做吸收用,完成 一个循环。

水吸收丙酮填料吸收塔课程设计

水吸收丙酮填料吸收塔课程设计

目录第1章概述 .................................................................................- 1 -1.1吸收塔的概述....................................................................... - 1 -1.2吸收设备的发展 .................................................................... - 1 -1.3吸收过程在工业生产上应用....................................................... - 2 - 第2章设计方案............................................................................- 3 -2.1设计任务 ............................................................................ - 3 -2.2吸收剂的选择....................................................................... - 3 -2.2吸收流程的确定 .................................................................... - 4 -2.3吸收塔设备的选择 ................................................................. - 5 -2.4吸收塔填料的选择 ................................................................. - 5 - 第3章吸收塔的工艺计算.................................................................- 9 -3.1基础物性数据....................................................................... - 9 -3.1.1液相物性数据................................................................ - 9 -3.1.2气相物性数据................................................................ - 9 -3.1.3气液相平衡数据 ........................................................... - 10 -3.2物料衡算 .......................................................................... - 10 -3.3填料塔的工艺尺寸的计算 ....................................................... - 11 -3.3.1塔径的计算 ................................................................ - 11 -3.3.2填料层高度计算 ........................................................... - 12 -3.4填料层压降的计算 ............................................................... - 14 - 第4章塔件及附属设备的计算 ......................................................... - 15 -4.1液体分布器的计算 ............................................................... - 15 -4.2填料塔附属高度的计算 .......................................................... - 15 -4.3填料支撑板........................................................................ - 16 -4.4填料压紧装置..................................................................... - 16 -4.5液气进出管的选择 ............................................................... - 17 -4.6液体除雾器........................................................................ - 17 -4.7筒体和封头的设计 ............................................................... - 18 -4.8人孔的设计........................................................................ - 19 -4.9法兰的设计........................................................................ - 19 - 第5章设计总结.......................................................................... - 21 -符号说明 ................................................................................... - 23 -参考文献 ................................................................................... - 23 -第1章概述1.1吸收塔的概述气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

吸收塔 设计计算

吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。

其设计计算是确保设备正常运行的重要步骤之一。

下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。

一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。

具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。

2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。

3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。

4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。

二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。

吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。

板式吸收塔简单易制,可耐受高浓度废气,且维护简单。

2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。

塔体内装有填料液槽和底部雾化器。

气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。

喷雾吸收塔结构简单,投资少,可以广泛应用。

3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。

分为干法吸收和湿法吸收。

吸附塔可用于汽车尾气和工业废气的处理。

吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。

三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。

气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。

2、液体流量液体流量是衡量吸收塔性能的重要指标之一。

液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。

3、气体温度气体温度是影响吸收塔工作效果的因素之一。

高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。

化工原理课程设计吸收塔-终极版

化工原理课程设计吸收塔-终极版

目录引言 (1)1.流程的说明 (2)1.1吸收剂的选择 (2)1.2填料层 (2)1.2.1填料的作用 (2)1.2.2填料种类的选择 (3)1.2.3填料的选择 (3)1.2.4填料塔的选择 (3)1.3吸收流程 (4)1.4液体分布器 (4)1.5液体再分布器 (4)2.吸收塔工艺计算 (5)2.1基础物性数据 (5)2.1.1 液相物性数据 (5)2.1.2气相物性数据 (5)2.2物料衡算 (5)2.3填料塔的工艺尺寸计算 (6)2.3.1塔径计算 (6)2.3.2传质单元高度的计算 (8)2.3.3 传质单元数的计算 (8)2.3.4填料层高度的计算 (9)2.4塔附属高度的计算 (10)2.5填料层压降的计算 (10)2.6其他附属塔内件的选择 (11)2.6.1液体分布器的选择: (11)2.6.2布液计算 (12)2.7.3液体再分布器的选择 (13)2.6.4填料支承装置的选择 (13)2.6.5填料压紧装置 (14)2.6.6塔顶除雾器 (14)2.7吸收塔的流体力学参数计算 (14)2.7.1 吸收塔的压力降 (14)2.7.2 吸收塔的泛点率校核 (14)2.7.3 气体动能因子 (15)3.其他附属塔内件的选择 (15)3.1吸收塔主要接管的尺寸计算 (15)3.2离心泵的计算与选择 (16)3.3风机的选取 (17)4.总结 (18)附录一吸收塔设计计算用量符号总表 (19)参考文献 (21)引言吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。

一个完整的吸收过程应包括吸收和解吸两部分。

气体吸收过程是利用气体混合物中,各组分在液体溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。

在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都广泛应用到气体吸收过程。

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。

其次,填料的表面
积大,对氨气的吸附强度较高。

二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。

结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。

三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。

v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。

四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。

我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。

吸收塔设计(附图)

吸收塔设计(附图)

填料吸收塔课程设计说明书专业应用化学班级0704班姓名李海涛班级序号 3目录一前言 (2)二设计任务 (2)三设计条件............................................................ (2)四设计方案 (2)1流程图及流程说明2填料塔的选择五工艺计算 (5)1物料衡算,确定塔顶,塔底的气、液流量和组成2泛点的计算3塔径的计算4 填料层高度的计算5 填料层压降的计算6 液体分布装置7分布点密度计算8 液体再分布装置9气体入塔分布六填料吸收塔的附属设备 (5)1填料支撑板2填料压板和床层限制版七设计一览表 (6)八课程设计总结 (6)九主要符号说明 (6)十参考文献 (9)十一附图.......................................................... . (13)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的形式,可以分为填料塔和板式塔。

板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。

工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。

塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。

板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。

填料塔由填料、塔内件及筒体构成。

填料分规整填料和散装填料两大类。

塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。

与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。

水吸收NH3填料塔设计一设计任务1000m³∕h含NH3空气填料吸收塔的设计①1000m³∕h(标准状况下)含5%(体积比)氨气,其他组分视为惰性气体,气体进口温度为40℃,吸收后尾气中氨含量50μg/m³;②用清水吸收,清水进口温度为35℃;③操作压力为塔顶表压为0.2atm;④填料采用乱堆式拉西环二吸收工艺流程的确定采用常规逆流操作流程.流程如下。

吸收、吸附单元操作机械化、自动化设计方案指南-2023最新

吸收、吸附单元操作机械化、自动化设计方案指南-2023最新

吸收、吸附单元操作机械化、自动化设计方案指南1 范围本文件提供了吸收、吸附单元实现机械化、自动化操作的技术指导方案。

本文件适用于化工行业吸收、吸附单元及该单元操作所用设备的机械化、自动化改造与设计方案的确定。

2 规范性引用文件本文件没有规范性引用文件。

3 术语和定义下列术语和定义适用于本文件。

3.1吸收单元操作absorption unit operation利用气体混合物中各个组分在液体中溶解度的差异,对气体混合物进行有效分离的操作过程。

3.2吸附单元操作adsorption unit operation利用流体混合物中各个组分在不同介质表面吸附性能的差异,对流体混合物中各组分进行有效分离的操作过程。

4 一般要求4.1 用于检测吸收、吸附单元操作过程控制参数(如液位、流量、温度、压力、组分浓度、压差等)的仪表以及现场执行机构(如开关阀、调节阀等)应具备信号远传功能,远传信号应传送至控制室集中显示,控制系统应根据仪表检测信号设置相应的报警值或联锁值:各种检测仪表宜与现场相对应的执行机构构成自动调节控制回路或联锁控制回路。

4.2 吸收单元中的吸收塔塔釜或吸收液出料管线宜设置吸收液密度检测仪表(或具备密度检测功能的质量流量检测仪表、在线浓度检测仪等),实现吸收液组成的自动检测。

控制系统应根据吸收液密度检测仪表(或具备密度检测功能的质量流量检测仪表、在线浓度检测仪等)信号设置相应的报警值或联锁值:各种检测仪表宜与现场相对应的执行机构构成自动调节控制回路或联锁控制回路。

4.3 吸收、吸附单元操作中使用的动力设备(如泵、风机、真空泵等)应实现远程停止功能,宜实现远程启动功能。

4.4 对于有特殊要求的吸收、吸附单元,自动调节控制回路和联锁控制回路的具体构成方式及检测仪表、执行机构、设备等的选型应根据所涉工艺、设备、安全等方面的特殊要求确定。

4.5 对于甲乙类、腐蚀物、爆炸物、忌水、忌空气等有特殊要求的介质,应根据物料特性从本质安全角度出发设置相关保护措施。

化工原理课程设计吸收塔

化工原理课程设计吸收塔

化工原理课程设计吸收塔(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《化工原理》课程设计课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛学号: 02指导老师:曹丽淑目录第一章设计任务3设计题目3设计任务及操作条件3设计内容3第二章设计方案4设计流程的选择及流程图4第三章填料塔的工艺设计4气液平衡关系4吸收剂用量5计算热效应5定塔径6喷淋密度的校核6体积传质系数的计算7填料层高度的计算8附属设备的选择第四章设计结果概要第五章设计评价17第一章设计任务、设计题目设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔、设计任务及操作条件(一)气体混合物1.组成(如表1所示):2.气体量:4700Nm3∕h3.温度:30°C4.压力:1800KN∕m2(二)气体出口要求(V%):CO2≤%(三)吸收剂:水、设计内容设计说明书一份,其内容包括:1.目录2.题目及数据3.流程图4.流程和方案的选择说明与论证5.吸收塔的主要尺寸的计算,注明计算依据的公式、数据的来源6.附属设备的选型或计算7.设计评价8.设计结果9.参考文献第二章设计方案、吸收流程的选择及流程图本设计混合原料气溶质浓度不高,同时过程分离要求不高,选用一种吸收剂(水)一步流程即可完成吸收任务。

由于逆流操作传质推动力大,这样可减少设备尺寸,并且能提高吸收率和吸收剂使用效率,故选择逆流吸收。

由于本任务吸收后的CO2要用以合成尿素,则需对吸收后的溶液解吸以得到CO2,同时溶剂也可循环使用。

水吸收CO2工艺流程图(图1)1-吸收塔;2-富液泵;3-贫液泵;4-解吸塔第三章填料塔的工艺设计、气液平衡关系由于此操作在高压下进行,高压环境对理想气体定律有偏差,故需对压力进行校核:由《化工原理设计导论》查得CO2的临界温度Tc=304K,临界压力Pc=则其对比温度Tr== =对比压力Pr= = =查《化工原理设计导论》图2-4得在此温度压力下:逸度系数则逸度f=p=1800×=1656KPa查《化工原理》下册得CO2气体在30℃时溶于水的亨利系数E=188000KPa相平衡常数m= = =则可得在此条件下气液平衡关系为:Y= =、吸收剂用量进塔CO2摩尔分数:=%=进塔CO2摩尔比:Y1= =出塔CO2摩尔分数:=%=出塔CO2摩尔比:Y2==混合气体体积流量:=4700N/h混合气体中惰性气体流量:V=×()=∕h出塔液相浓度最大值: X1*=X1max= = =对于纯水吸收过程:X2=0则最小液气比:()min= = =由 = ~2)()min:取L11==××=∕hL21==××=∕hL31==××=∕h则由物料衡算公式V(Y1-Y2)=L(X1-X2):X= = =X21= = =X31= = =以下计算以第一组数据(L11,X11)为例、计算热效应水吸收CO2的量:G A=V(Y1-Y2)=×()=∕h查《化工原理设计导论》图4-5得CO2的溶解热q=97Kcal∕Kg查《化工原理》上册附录5,得水的Cp=∕(Kg·K)则由L×18×Cp×Δt=GA×44×q×得:Δ=同理可求得Δ=,Δ=由于Δ,Δ,Δ均小于1。

吸收氨过程填料塔的设计、吸收塔设计(完整版)

吸收氨过程填料塔的设计、吸收塔设计(完整版)
5.设计内容
(1)吸收塔的物料衡算;
(2)吸收塔的工艺尺寸计算;
(3)填料层压降的计算;
(4)液体分布器简要设计;
(5)吸收塔接管尺寸的计算;
(6)绘制生产工艺流程图;
(7)绘制吸收塔设计图;
(9)对设计过程的评述和有关问题的讨论。
6.设计基础数据
20℃下氨在水中的溶解度系数为H=0.725kmol/(m3.kPa)。
1.
1.设计题目:吸收氨过程填料塔的设计
试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为3.2万Nm3/h,其中含氨为7%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。
2.操作条件
(1)操作压力常压
(2)操作温度20℃
3.工作日
每天24小时连续运行。
4.厂址
宁波地区
取操作液气比为
3.2
3.2.1
采用Eckert通用关联图[1]计算泛点气速。
气相质量流量为
液相质量流量可近似按纯水的流量计算
Eckert通用关联图的横坐标为
查Eckert通用关联图得
选用DN50塑料阶梯环
查散装填料泛点填料因子平均值表[1]得

由圆整塔径,取D=2.2m Nhomakorabea泛点率校核:
(在允许范围内)
填料规格校核:
4
当空塔气速较大,塔顶溅液严重,以及工艺过程不允许出塔气体夹带雾滴的情况下,设置除沫器,从而减少液体的夹带损失,确保气体的纯度,保证后续设备的正常操作。
常用的除沫器装置有折板除沫器、丝网除沫器、以及旋流板除沫器。除沫器型式一般是根据所分离液滴的直径、要求的捕沫效率及给定的压力降来确定。
次次设计采用丝网除沫器。丝网除沫器具有比表面积大,重量轻,空隙率大以及使用方便等优点。尤,其是它具有除沫效率高,压力降小的特点,从而成为一种广泛使用的除沫装置。丝网除沫器不宜用于气液中含有粘结物或固体物的场合,以免除沫器发生堵塞。

化工原理课程设计说明书---填料吸收塔设计

化工原理课程设计说明书---填料吸收塔设计

化工原理课程设计目录摘要-----------------------------------------------------------3 前言-----------------------------------------------------------4 一填料吸收塔工艺尺寸的设计计算-------------------------------5 1.1 工艺流程及设计指标--------------------------------------5 1.1.1 工艺流程------------------------------------------51.1.2 设计参数,指标------------------------------------51.2 物性参数的计算-----------------------------------------5 1.2.1 原料气物性参数------------------------------------51.2.2 吸收液物性参数------------------------------------61.2.3 填料物性参数--------------------------------------71.3 吸收塔的物料衡算---------------------------------------7 1.4 塔体的计算---------------------------------------------8 1.4.1 塔径的计算----------------------------------------8(1)液泛气速----------------------------------------8(2)塔径--------------------------------------------9 1.4.2 填料层高度的计算----------------------------------9(1)传质单元数--------------------------------------9(2)传质单元高度-----------------------------------10 二吸收塔优化设计--------------------------------------------13 2.1 系统的年总费用----------------------------------------13 2.2 吸收塔塔体和平台扶梯年折旧及维修费用------------------13 2.3 填料年折旧费用----------------------------------------13 2.4 离心泵年折旧和维修费用及操作费用----------------------13 2.5 风机年折旧和维修费及操作费用--------------------------15 2.6 吸收剂费用--------------------------------------------15 三内部结构设计----------------------------------------------16 3.1 液体分布装置------------------------------------------16 3.2 填料支撑装置------------------------------------------16 3.3 液体分布装置------------------------------------------16 3.4 除沫器------------------------------------------------16 四设计校核--------------------------------------------------17 4.1 主要工艺参数校核--------------------------------------17 4.1.1 塔直径与塔中填料直径之比--------------------------174.1.2 液体喷淋密度--------------------------------------174.1.3 实际气速与液泛气速比------------------------------174.2 强度校核---------------------------------------------174.2.1 筒体材料的选用与计算-----------------------------174.2.2 封头厚度的计算-----------------------------------184.2.3 塔体的强度与稳定计算-----------------------------184.2.4 质量载荷计算-------------------------------------184.2.5 塔体的风载荷和风力矩-----------------------------19(1)、风力矩的计算公式-------------------------------19(2)、总弯矩的计算-----------------------------------19(3)、塔的自振周期计算-------------------------------20(4)、地震载荷计算-----------------------------------20 4.2.6 塔体的强度与稳定校核-----------------------------21(1)、塔体危险截面(1-1)的轴向应力计算----------------21(2)、塔体危险截面(1-1)抗压强度及轴向稳定性计算------214.2.7 裙座的强和稳定计算、校核-------------------------224.2.8 水压试验时塔的强度和稳定性验算-------------------22(1)、水压试验时塔体(1-1)截面的强度校核--------------22(2)、水压试验时裙座底部(0-0)截面强度和轴向稳定要求--234.2.9 基础环板的设计-----------------------------------23(1)、基础环板内外径的确定---------------------------23(2)、基础环板厚度的设计-----------------------------234.2.10 地脚螺栓的设计----------------------------------244.2.11 混凝土的强度校核--------------------------------24五主要符号说明---------------------------------------------25六优化程序及其运行结果-------------------------------------296.1 传质单元数的计算程序及运算结果-----------------------296.2 液气比优化程序及运算结果-----------------------------31小结---------------------------------------------------------35参考文献-----------------------------------------------------36摘要[中文摘要]PC作为工业化脱二氧化碳的吸收剂,有着很大的优势。

化原课程设计二氧化硫吸收塔

化原课程设计二氧化硫吸收塔

化工原理课程设计题目:SO2气体吸收塔的设计系别:化学与环境工程学院专业:过程装备与控制工程姓名:***学号: ************ 指导老师:***2015年 6 月 22 日目录一设计任务书二设计方案简介三工艺计算一设计任务书(一)设计题目过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除混水吸收SO2,其余为惰性组分,采用清水进行吸收。

合气体(先冷却)中的SO2(二)操作条件(1)操作压力常压(2)操作温度 20℃(三)设计内容(1)流程的选择:本流程选择逆流操作;(2)工艺计算:吸收剂量求取、操作线方程式、填料塔径求取、填料层高度、最小润湿速度求取及润湿速度的选取、单位填料层压降的求取、吸收塔高度等的计算;(3)附件选型:液体分布,分布器及再分布器、支座等的选型;(4)编写设计说明书和设计结果一览表,绘制填料塔的工艺条件图。

二设计方案简介2.1方案的确定2.1.1装置流程的确定本流程选择逆流操作。

2.1.2吸收剂的选择吸收剂为清水2.1.3操作温度与压力的确定(1)操作压力常压(2)操作温度 20℃2.2填料的类型与选择的过程,操作温度及操作压力较低,工业上通常选用塑料对于水吸收SO2散装填料。

本流程选用N38塑料鲍尔环填料。

2.3设计步骤本课程设计从以下几个方面的内容来进行设计:(1)吸收塔的物料衡算;(2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(3)设计液体分布器及辅助设备的选型;(4)绘制有关吸收操作图纸。

三 工艺计算3.1基础物性数据3.1.1 液相物性数据20℃时水的有关物性数据如下: 密度为 ρL =998.2 kg/m 3 粘度为 µL =1.0050mPa ·s 表面张力为σL =72.6×103 N/mSO 2在水中的扩散系数为 D L =147×10-9m 2/s=5.29×10-6m 2/h (依Wilke-Chang 0.518r 0.6()1.85910M TD V φμ-=⨯计算,查《化学工程基础》)3.1.2 气相物性数据设进塔混合气体温度为20℃, 混合气体的平均摩尔质量为M Vm =Σy i M i =0.04×64+0.96×29=30.4g/mol 混合气体的平均密度为 ρVm =RT PM =293314.84.30325.101⨯⨯=1.2645kg/ m 3混合气体的粘度可近似取为空气的粘度,查化工原理得20℃空气的粘度为 μV =1.81×105Pa ·s查手册得SO 2在空气中的扩散系数为 D V =1.08×10-5m 2/s=0.039 m 2/h3.1.3 气液相平衡数据由手册查得,常压下20℃时SO 2在水中的亨利系数为 E=3.55×103kPa 相平衡常数为m=E/P=3.55×103/101.3=35.04 溶解度系数为H=ρ/EM=998.2/(3.55×103×18)=0.0156kmol/kN ·m 3.1.4 物料衡算(1)进塔混合气中各组分的量 塔平均操作压强为101.3kPa ,故: 混合气量=3000×20273273+×4.221=124.79 kmol/h混合气SO 2中量=124.78×0.04=4.99 kmol/h =4.99×64=319.44kg/h 设混合气中惰性气体为空气,则混合气中空气量=124.78-4.99=119.79kmol/h =119.79×29=3473.88kg/h(2)混合气进出塔的摩尔组成y 1=0.04 y 2=0.0014(3)混合气进出塔摩尔比组成 进塔气相摩尔比为 Y 1=11y 1y -=04.0104.0-=0.04167出塔气相摩尔比为 Y 2=22y 1y -=0014.010014.0-=0.001401963(4)出塔混合气量出塔混合气量=119.79÷(1-0.0014)=119.96kmol/h (5)吸收剂(水)的用量L该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算12min 12()Y Y LY V X m -=-对于纯溶剂吸收过程,进塔液相组成为X 2=0(V L )min =004.3504167.0001401963.004167.0--=33.86取操作液气比为min 4.1)(V L V L = 404.4786.334.1=⨯=VL53.567879.119404.47=⨯=L kmol/h(6)塔底吸收液组成X 11212()()V Y Y L X X -=-000848.0)(211=-=LY Y V X (7)操作线方程 依操作线方程0014.0404.47)(22+=-+=X X VLY X V L Y 3.2填料塔的工艺尺寸的计算3.2.1塔径的计算采用Eckert 通用关联图计算泛点气速。

填料吸收塔工艺流程图

填料吸收塔工艺流程图

填料吸收塔工艺流程图填料吸收塔是一种常见的化工设备,用于气体与液体之间的物质传质过程。

它主要通过将气体通过填料层与溶液接触,利用填料的大表面积和复杂的通道结构,以增加气液相的接触面积,从而实现气体成分的吸附和分离。

以下是一份填料吸收塔的工艺流程图。

首先,在填料吸收塔的顶部,我们需要安装进料口和塔顶出口。

气体通过进料口进入填料吸收塔,在塔顶出口处,收集对流塔顶排出的液体。

接下来是填料层的设计。

填料层位于填料吸收塔内部,用于增加气液相的接触面积。

填料选择要考虑气体成分、压力、温度等因素。

一般情况下,填料层的松散程度应适中,以保证液体能够充分覆盖填料。

在填料吸收塔的底部,装有收液器。

收液器的作用是将经填料层吸收液收集起来,排出不需要的溶质。

收液器通过管道连接到出液口。

出液口处还设有流量调节阀,以控制出液流量。

填料吸收塔内需要注入吸收溶液。

这个溶液根据具体的应用场景而定,可以是水、有机溶剂等。

吸收液通过泵送进入填料塔内,与气体接触,从而实现气体成分的吸附。

在整个填料吸收塔工艺中,关键的参数是塔顶出口气体的成分和吸收溶液的浓度。

塔顶出口气体的成分可以通过气体分析仪来检测,从而确定溶质从气相到液相的转移效率。

吸收溶液的浓度可以通过采样后进行化验,也可以根据流量调节阀的开度来进行调节。

最后,为了保证填料吸收塔的正常运行,需要进行定期的维护和清洗。

填料吸收塔内的填料会因为长期使用而积累秽物和沉淀物,这些物质会影响气液交换。

定期的清洗可以有效地恢复塔效,并延长其使用寿命。

综上所述,填料吸收塔工艺流程主要包括塔顶进出口、填料层设计、收液器、出液管道、吸收溶液注入和维护等步骤。

通过合理的设计和操作,填料吸收塔可以实现气体成分的吸附和分离,满足不同工艺需求。

吸收塔的设计和选型

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x2,x1为喷淋塔石灰石浆液进出塔时的SO2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m2﹒h)W 液相空塔质量流速,kg/(m2﹒h)y1×=mx1, y2×=mx2 (m为相平衡常数,或称分配系数,无量纲)k Y a为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)k L a为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

Aspen吸收塔的设计

Aspen吸收塔的设计

SO 2吸收塔的设计计算矿石焙烧炉送出的气体冷却到25℃后送入填料塔中;用20℃清水洗涤以除去其中的SO 2..入塔的炉气流量为2400h m /3;其中SO 2摩尔分率为0.05;要求SO 2的吸收率为95%..吸收塔为常压操作..试设计该填料吸收塔..解 1设计方案的确定用水吸收SO 2属于中等溶解度的吸收过程;为提高传质效率;选用逆流吸收过程..因用水作为吸收剂;且SO 2不作为产品;故采用纯溶剂..2填料的选择对于水吸收SO 2的过程;操作过程及操作压力较低;工业上通常选用塑料散装填料..在塑料散装填料中;塑料阶梯环填料的综合性能较好;故此选用聚丙烯阶梯环填料..3工艺参数的计算步骤1:全局性参数设置..计算类型为“Flowsheet”;选择计量单位制;设置输出格式.. 单击“Next”;进入组分输入窗口;假设炉气由空气AIR 和SO 2组成..在“Component ID”中依次输入H 2O;AIR;SO 2..步骤2:选择物性方法..选择NRTL 方程..步骤3:画流程图..选用“R adFrac”严格计算模块里面的“ABSBR1”模型;连接好物料线..结果如图3-1所示..图3-1 水吸收SO 2流程图步骤4:设置流股信息..按题目要求输入进料物料信息..初始用水量设定为400kmol/h.. 步骤5:吸收塔参数的输入..在“Blocks|B1|Setup”栏目;输入吸收塔参数..吸收塔初始模块参数如表3-1所示..其中塔底气相GASIN 由第14块板上方进料;相当于第10块板下方.. Calculation typeEquilibrium Number of stages13 CondenserNone ReboilerNone Valid phasesVapor-Liquid ConvergenceStandard Feed stageWATER 1 GASIN 14 PressurekPa Stage 1 101.325表3-1 吸收塔初始参数至此;在不考虑分离要求的情况下;本流程模拟信息初步设定完毕;运行计算;结果如图3-2所示..此时SO 2 吸收率为%52.9660.319/49.308 ..图3-2 初步计算结果步骤6:分离要求的设定;塔板数固定时;吸收剂用量的求解..运用“Design Specifications”功能进行计算;在“Blocks|B1|D esign Spec”下;建立分离要求“1”..在“Blocks|B1|Design Spec|1| Specifications”页面;定义分离目标..按题目要求进行设定..结果如图3-3所示..在“Blocks|B1|Design Spec|1|Components”页面;选定“SO2”为目标组分;在“F eed/Product Streams”页面;选择“LOUT”为参考物流..图3-3 Design Spec-1的定义图3-4 Vary-1的定义在“Blocks|B1|Vary”下;定义变量“1”..在“Blocks|B1|Vary|1|Specifications”页面;设定进料流量“Feed rate”为变量;上下限分别为5、1000..结果如图3-4所示..至此;分离要求已设置完毕;运行计算;结果如图3-5所示..当塔板数为13时;要达到95%的吸收率;需用水386.44kmol/h..图3-5 吸收剂用量计算结果步骤6:吸收塔的优化;吸收剂用量对塔板数灵敏度分析..使用“Sensitivity”功能进行分析..在“Modle Analysis Tools|Sensitivity”目录;创建一个灵敏度分析文件“S-1”..在“S-1|Input|Define”页面;定义因变量“FLOW”;用于记录进塔水流量;结果如图3-6所示..图3-6 定义灵敏度分析参数在“S-1|Input|Vary”页面;设置自变量及其变化范围;这里假设塔板数变化;如图3-7所示..在“S-1|Input|Tabulate”页面;设置输出格式..设置“FLOW”为输出变量..图3-7 设置自变量变化范围本题为吸收塔;在塔板数变化的同时;塔底气体的进料位置也随之改变..运用Calculator功能;来实现这一过程..在“Flowsheeting Options|Calculator”目录;创建一个计算器文件“C-1”..在“C-1|Input|Define”页面;定义2个变量;如图3-8所示..其中;“FEED”记录塔底气体进料位置;“NS”记录吸收塔塔板数..图3-8 定义计算器变量在“C-1|Input|Calculate”页面;编写塔底气体进料位置的Fortran语言计算语句;如图3-9所示..图3-9 编写Fortran计算语句在“C-1|Input|Sequence”页面;定义计算器计算顺序;如图3-10所示..在塔B1前计算..图3-10 定义计算器顺序至此;吸收塔灵敏度分析计算所需要的信息已经全部设置完毕;运行计算;结果如图3-11、图3-12所示..图3-12为利用Aspen内Plot功能;吸收剂用量对塔板数作图结果..图3-11 灵敏度分析计算结果图图3-12 同塔板数所需吸收剂用量步骤7:吸收塔的工艺参数..由图3-12可得;当塔板数为大于10时;随着塔板数的增加;吸收剂用量减少不太明显;因此选择塔板数为10..在“Blocks|B1|Setup”栏目;将塔板数改为10;塔底气体进料位置为11;隐藏“C-1”和“S-1”;运行计算..结果如图3-13所示..此时;水用量为399.75kmol/h;7200kg/h..图3-13 填料塔最终工艺计算结果4填料塔设计首先进行塔径计算..在“B locks|B1|Pack Sizing”文件夹中;建立一个填料计算文件“1”..在“Pack Sizing|1|Specifications”页面;填写填料位置、选用的填料型号、等板高度等信息;如图3-14所示..其中填料为塑料阶梯环PLASTIC CMR;等板高度设定为0.45m..KOCH公司的塑料阶梯环;在Aspen Plus7.2数据中有三种尺寸1A;2A;3A..由于填料尺寸越小;分离效率越高;但阻力增加;通量减少;填料费用也增多..而大尺寸的填料应用于小直径塔中;又会产生液体分布不良及严重的壁流;使塔的分离效率降低..因此初始选择2A型号;其湿填料因子为103.361/m..运行计算;结果如图3-15所示..图3-14 填料塔信息设置图3-15 填料塔计算结果由图3-15可知;填料塔塔径为752mm;最大液相负荷分率0.62;最大负荷因子0.0537m/s;塔压降0.0093bar;平均压降1.73mmHg/m;液体最大表观流速0.0046m/s;比表面积为164㎡/m³..本例题填料塔初步计算塔径为752mm;此时最大负荷分率为0.62;相对保守;可以用塔径700mm进一步核核算..在“Blocks|B1|Pack Rating”文件夹下;建立一个填料核算文件“1”; 在“Pack Rating|1|Specifications”页面;填写填料位置、选用的填料型号、等板高度等信息;如图3-16所示..运行计算;结果如图3-17所示..图3-16 填料塔核算参数设置图3-17 填料塔核算参数设置由图3-17可知;当填料塔塔径为0.7m;最大液相负荷分率0.716;在0.6~0.8之间;最大负荷因子0.062m/s;塔压降0.0142bar;平均压降2.63mmHg/m;液体最大表观流速0.00535m/s..因为一般填料塔的操作空塔气速低于泛点气速;对于一般不易发泡物系;液泛率为60%~80%;因此塔径选择0.7m是合理的..。

设计一座稳定汽油吸收富气的填料吸收塔

设计一座稳定汽油吸收富气的填料吸收塔

目录一、绪论 (4)二、设计任务书 (5)三、设计方案简介 (6)四、填料塔的主要工艺尺寸计算 (7)4.1、基本物性数据 (7)4.2、物料衡算 (8)4.3、填料吸收塔的工艺尺寸计算 (10)4.4、填料层高度计算 (13)4.5、填料压降计算 (13)五、填料塔内部结构设计 (14)5.1、泵的选择 (14)5.2、工艺管道的材质选择 (14)5.3、液体分布器设计 (14)5.4、液体再分布器设计 (16)5.5、支承板的设计 (17)5.6、压板的选取 (18)5.7、塔顶除雾器 (19)5.8、人孔 (20)六、壁厚的计算 (21)6.1、筒体的设计计算 (21)6.2、封头设计计算 (21)6.3、法兰和垫片的选取 (22)七、各接管尺寸的设计 (22)7.1、进气出管直径 (22)7.2、吸收剂进料管直径 (23)7.3、吸收剂出料管直径 (23)7.4、尾出气管直径 (23)八、设计结果一览表 (24)九、主要符号说明 (24)十、参考文献 (25)十一、设计体会 (26)十二、附图 (27)一、绪论专业课程设计是综合运用《化工原理》课程和有关专业课程(《分离工程》,《化工制图》《化工设备机械基础》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。

通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。

本次课程设计有如下要求:1、写出详细计算步骤,并注明选用数据的来源;2、每项设计结束后,列出计算结果明细表;3、对图、表分别按顺序编号;4、选用的物性数据、引用的经验公式及图表应注明来历,符号和单位要统一;5、按规定的时间进行设计,并按时完成任务.设计指导思想:满足工艺要求,在经济上合理,保证生产安全,设计符合国家相关标准等,满足环保要求。

工业废气治理中的吸收和吸收塔工艺设计理论及其应用研究

工业废气治理中的吸收和吸收塔工艺设计理论及其应用研究

工业废气治理中的吸收和吸收塔工艺设计理论及其应用研究贾唯策
【期刊名称】《化工设计通讯》
【年(卷),期】2024(50)1
【摘要】吸收是气体溶解于液体的一种化工单元操作。

它对于气体分解、合成混合气的处理和废气的净化具有重大的实际意义。

特别是环境保护的需要提出大量新的任务,因而要求不断发现新的分离方法。

重点介绍工业废气治理中的吸收和吸收塔的工艺设计理论及其实践运用。

【总页数】5页(P96-99)
【作者】贾唯策
【作者单位】四川美亿强华工程设计有限公司
【正文语种】中文
【中图分类】TQ111.16
【相关文献】
1.含氨废气吸收塔的工艺设计
2.喷淋吸收-活性炭吸附工艺在化工行业VOCs废气治理与控制中的应用
3.工业有机废气治理中活性炭吸附工艺应用研究
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸收塔自动控制工艺设计
吸收塔自动控制工艺设计
一、引言
吸收塔是一种常见的化工设备,用于气体与液体之间的质量传递过程。

为了提高吸收效率和操作安全性,自动控制系统在吸收塔中的应用变
得越来越重要。

本文将详细介绍吸收塔自动控制工艺设计。

二、工艺流程
1. 原料气体进入吸收塔顶部,并与吸收剂接触。

2. 在吸收剂中发生物理或化学反应,将目标组分从气相转移到液相。

3. 液相流向底部,经过分离器分离出产物和废气。

4. 废气排出系统。

三、自动控制策略
1. 控制目标:保持吸收剂浓度和温度在设定范围内,以及实现目标组
分的高效传质。

2. 控制参数:
- 吸收剂流量:根据进料气体流量和目标组分浓度确定合适的吸收剂流量。

- 吸收剂浓度:根据反应速率和传质效果要求,调节进料和排出流量来控制吸收剂浓度。

- 吸收塔压力:根据设备和操作要求,保持吸收塔内部压力稳定。

- 吸收剂温度:通过加热或冷却措施来维持吸收剂温度在适宜范围内。

- 废气排放浓度:根据环保要求,控制废气中目标组分的浓度。

四、自动控制系统
1. 测量与传感器:
- 气体流量计:用于测量进料气体流量。

- 液位计:用于监测吸收剂液位,以调节进料和排出流量。

- 温度传感器:用于测量吸收塔内部的温度变化。

- 压力传感器:用于监测吸收塔内部的压力变化。

2. 控制器:
- 流量控制器:根据进料气体流量和目标组分浓度设定值,调节吸收剂流量控制阀的开度。

- 液位控制器:根据吸收剂液位设定值,通过调节进料和排出流量控制阀来维持液位平衡。

- 温度控制器:根据吸收剂温度设定值,控制加热或冷却设备的操作。

- 压力控制器:根据吸收塔压力设定值,调节进料和排出流量控制阀的开度。

- 废气排放控制器:根据废气中目标组分浓度设定值,调节废气排放系统的操作。

3. 执行器:
- 流量控制阀:根据流量控制器的信号,调节吸收剂流量。

- 液位控制阀:根据液位控制器的信号,调节进料和排出流量。

- 加热或冷却设备:根据温度控制器的信号,进行加热或冷却操作。

- 压力控制阀:根据压力控制器的信号,调节进料和排出流量。

- 废气排放系统:根据废气排放控制器的信号,进行废气处理操作。

五、安全保护
1. 紧急停机装置:设置紧急停机按钮,在发生异常情况时可以立即切断电源。

2. 温度保护装置:设置温度限制开关,在温度超过安全范围时自动切断加热或冷却设备的电源。

3. 压力保护装置:设置压力限制开关,在压力超过安全范围时自动切断进料和排出流量控制阀的操作。

4. 液位保护装置:设置液位限制开关,在液位过高或过低时自动切断进料和排出流量控制阀的操作。

六、总结
吸收塔自动控制工艺设计是提高吸收效率和操作安全性的重要手段。

通过合理选择控制参数、使用传感器和控制器进行测量与调节,并配备相应的执行器和安全保护装置,可以实现吸收塔稳定运行和目标组分高效传质。

在实际应用中,还需根据具体情况进行工艺优化和系统调试,以确保吸收塔自动控制系统的可靠性和稳定性。

相关文档
最新文档