等腰三角形性质教学反思(热门13篇)

合集下载

八年级数学等腰三角形教学反思

八年级数学等腰三角形教学反思

八年级数学等腰三角形教学反思八年级数学等腰三角形教学反思第一篇这一课的教学重点是等腰三角形的判定定理及应用。

教学难点是等腰三角形的性质定理与判定定理的区分。

教学方法主要是商量、探究、启发式。

运用辅助工具是多媒体课件。

等腰三角形是一类特别的三角形,因此它比一般的三角形在理论和实际中的应用更为广泛。

教材特地设计一个单元的内容来讨论它。

这个单元的重点之一就是等腰三角形的判定,同时这也是本章的重点之一。

大纲对此的要求是“把握等腰三角形的性质和判定,等边三角形的性质和判定,并能敏捷应用它们进行论证和计算〞。

在学过等腰三角形的性质和判定后,推理根据增多了,学生所接触到的题目难度也会明显加大,证明思路不再那么简洁。

近几年的很多中考题目常以等腰三角形为命题背景,结合四边形、相似形、圆、函数等相关学问点出一些综合性题目和压轴题目。

所以要求学生能把握并敏捷应用。

学生刚刚学过等腰三角形的性质,对等腰三角形已经有了肯定的了解和认识。

学生在这个阶段渐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够敏捷应用它进行有关论证和计算。

进展学生的动手、归纳猜测能力;进展学生证明用文字表述的几何命题的能力;使它们进一步把握归纳思维方法,领会数学分类思想、转化思想。

再进一步进展学生独立思索、勇于探究的创新精神和关于数学内容间普遍存在的互相联系、互相转化的观点。

八年级数学等腰三角形教学反思第二篇今日在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。

在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:〔一〕突出重点,实现教学目标《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等〞及“三线合一〞的性质。

等腰三角形教学反思(共8篇)

等腰三角形教学反思(共8篇)

等腰三角形教学反思(共8篇)以下是网友分享的关于等腰三角形教学反思的资料8篇,希望对您有所帮助,就爱阅读感谢您的支持。

等腰三角形的教学反思篇1《等腰三角形》教学反思我给本校的教师上了一节示范课,八年级学生共计38人(是我班学生),听课教师10人左右,教学内容是等腰三角形及性质(人教版八年级上册49页)。

本节教学内容是在学习了三角形的有关概念、轴对称的概念及性质,掌握了全等三角形基础上进行的,它是以后证明线段相等和角相等的重要依据。

探索、证明和应用等腰三角形的性质是本节的重点,把操作实验结果抽象为数学语言和得出辅助线的添加方法是本节的难点。

整体设计思路:创设情景——观察比较——操作实验工——验证归纳——推理论证——巩固应用。

下面是我对这节课教学的几点反思:1、在引课时:我要求学生独立完成,也可四人小组共同完成,同学们按课本探究要求将一张纸折叠后剪出一个三角形,然后在本上画出一个等腰三角形,这个过程大约花了3分钟。

之后提出的又一问题过于开放,我进行了补充,是关于角的方面。

学生积极思考,互相交流,不一会,有的学生猜出了答案。

我的问题是:什么是等腰三角形?根据原有的知识,你能说出等腰三角形的腰、底边、顶角、底角的概念吗?这时学生畅所欲言,思维活跃,踊跃回答,课堂气氛热烈。

有的学生说等腰三角形的两底角相等,我是用折纸的方法得到的。

有的说是用度量的方法得出等腰三角形的两底角相等,这使我有点出乎意料。

但很快就有学生反驳:“用度量的方法得出等腰三角形的两底角不一定相等”。

我及时赞扬了该同学的发现。

进一步询问“为什么会出现这个现象”。

学生的回答令人满意“画图不准确,可能度量有误差”。

这位学生的注意很不简单。

这时是及时引导学生用事实讲话,以理服人的好时候。

那么用折纸的办法就能够避免误差吗?显然,同样避免不了。

只要是动手,只要是操作,误差就是不可避免的。

那几何岂不成了不精确的学问了,这还是数学吗?几何学的创造者用智慧解决了这个问题,他们想出了绕过动手操作,从而避免难以克服的对误差精度的要求的办法,用概念、用公理、用命题、用道理来确定等腰的含义,这就避免了由动手操作、直观想象所带来的不确定性,于是边与角、腰与角之间的关系就成为确定等腰三角形的精确关系,用这些关系,不用画、不用量就可以把握住等腰三角形,同样,这也可以从等腰三角形中延拓出各种性质。

等腰三角形的教学反思

等腰三角形的教学反思

等腰三角形的教学反思等腰三角形的教学反思6篇等腰三角形的教学反思精选篇1本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形“两个底角相等”、“三线合一”的性质。

“等腰三角形”是学生小学学过的、生活中常见的一类__面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。

因此我给它定位是“轴对称图形”的典型#。

从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。

实践、交流、归纳出等腰三角形的2点性质:“两个底角相等”、“三线合一”。

要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的“证明三角形全等”这一常见方法了。

在此,将猜想的命题转化成符号语言是一个初步的训练。

而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。

这条辅助线就是图形的对称轴。

结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A 作底边BC的高线AD”或者“作∠BAC的__分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。

这点在辅助线的添加处加以说明:作中线,证高线,证__分线;作高线,证中线,证__分线或作角__分线,证高线,证中线。

性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。

等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。

等腰三角形的教学反思精选篇23月4日本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。

我首先出示两块三角板,通过观察让学生发现有一块三角板边不同于另一块,有两条边相等的,从而引出等腰三角形,然后利用折纸这个活动,来进一步体会等腰三角形的特点。

等边三角形与之类似,在教学中我把重点放在折纸上,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得还可以,但在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。

八年级数学上册《等腰三角形的性质》教学反思

八年级数学上册《等腰三角形的性质》教学反思

八年级数学上册《等腰三角形的性质》教学反

八年级数学上册《等腰三角形的性质》教学反思
在本节课中,首先,从学生熟悉的亲身经历的现实生活入手,符合学生原有认知构造,营造使学生亲自体验新知识的气氛,创设有利于引向数学问题本质的真实情境,引导学生发现问题、提出问题,激发学生学习兴趣及探究的'欲望,显示实际生活中等腰三角形的广泛应用,引出研究等腰三角形的重要性。

其次,通过对折、测量等活动,培养学生的合作意识、探究意识和动手才能。

引导学生自主探究、发现、猜测、验证等腰三角形的性质,体验数学的学习活动过程,开展合理推理才能,符合学生认知规律。

然后,在学生经历“实验 --- 发现--- 猜测 --- 验证”的根底上,引导学生讨论交流,分别作出不同的辅助线,利用不同的方法证明,猜测,符合学生的原有知识构造,使学生逐步意识到,结论的正确性需要演绎推理确实认,把证明作为学生探究等腰三角形性质活动的自然延续和必要开展,开展演绎推理的才能,激发学生对数学证明的兴趣,进步学生思维的广阔性和灵敏性。

最后,启发引导学生:要证明两个角相等,可以通过构造两个全等三角形进展证明。

在学生独立考虑后,引导学生讨论交流,分别作出不同的辅助线,用不同的思路、方法证明性质,老师对学生及时进展鼓励评价,归纳示范,形成定理,并提醒等腰三角形性质定理的本质,体会转化思想,同时帮助引导学生总结证明两个角相等的方法,开阔学生思路。

等腰三角形教学反思

等腰三角形教学反思

篇一:等腰三角形的性质教学反思《等腰三角形的性质》教学反思奉城二中李爱贤 2007-5-12本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。

通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。

并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。

而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。

引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。

从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。

在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠b=∠c,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。

等腰三角形教学反思

等腰三角形教学反思

等腰三角形教学反思等腰三角形教学反思作为一名到岗不久的人民教师,我们的工作之一就是教学,写教学反思可以快速提升我们的教学能力,那么优秀的教学反思是什么样的呢?以下是小编为大家整理的等腰三角形教学反思,希望对大家有所帮助。

等腰三角形教学反思1这一课的教学重点是等腰三角形的判定定理及应用。

教学难点是等腰三角形的性质定理与判定定理的区别。

教学方法主要是讨论、探索、启发式。

学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。

学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。

因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。

发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想,再进一步发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

在教学方法上采用“目标——问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。

本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。

“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。

但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。

问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。

目标——问题教学法的`本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。

令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。

而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。

《13.3.1等腰三角形的性质》教学反思

《13.3.1等腰三角形的性质》教学反思

《13.3.1等腰三角形的性质》教学反思《13.3.1等腰三角形的性质》教学反思等腰三角形作为特殊三角形的典范,既是三角形、轴对称等知识的深化,又是证明角相等、线段相等、直线垂直的常用依据,也为三角形相似、三角形全等等后继知识的学习,奠定了坚实的基础。

八年级的学生,从心理发展水平决定学习的思维特征由经验型推理向演绎推理过度,依赖于直观经验作出相应的判断和猜想,有了初步的推理验证意识。

根据《义务教育数学课程标准·2011年版》内容,要求落实“四基”,课堂教学要体现教学的过程性、互动性和生成性,要充分关注学生的主体地位,凸显学生对知识的主动构建、对数学基本活动经验的积累和对数学思想方法的感悟。

我在本节课的教学设计中,采用了问题激趣引发思考,将学生掌握的等腰三角形概念和三角形的高、中线等已有知识经验与新知进行桥接。

针对学习主题,指导学生设计学习方案,逐步积累设计的活动经验。

学生主动开展操作实验、观察猜想、推理论证的探究性学习,得到等腰三角形的性质,关注其动手实践、观察猜想的直接活动活动经验和推理论证、符号抽象的间接活动经验的积累。

学生在我将用多媒体辅助教学呈现教学情境中,积极参与,对等腰三角形的性质证明,多角度的展开,活跃了思维,积累了一题多证的解题经验。

在进一步在变式训练中,学生通过应用性质的解释现象,解决问题,促使经验内化为思想,外化为解题的方法。

课堂中学生充分展示学习收获,积极开展互评互议,体验成功的乐趣,学会客观的评价,初步感受到了数学学习的探究性和合作交流的必要性。

本节课的设计和实施中需要改进的地方:①设计的练习,对学生准确运用性质符号有序推理考察反馈的显少。

②变式练习在完成的过程中留给学生思考的时间较少,限制了学生解决问题的直接经验的积累和思想方法的感悟。

③对于证明角度相等,未将“等边对等角”与全等证明进行比较辨析,促进学生将获得知识和积累经验内化到已知的认识体系。

④对等腰三角形的性质的应用条件限制未进行判断辨析,易导致学生将“三线合一”性质泛化到腰上。

《等腰三角形》获奖说课稿(通用13篇)

《等腰三角形》获奖说课稿(通用13篇)

《等腰三角形》获奖说课稿《等腰三角形》获奖说课稿(通用13篇)作为一名无私奉献的老师, 常常需要准备说课稿, 编写说课稿助于积累教学经验, 不断提高教学质量。

如何把说课稿做到重点突出呢?下面是小编帮大家整理的《等腰三角形》获奖说课稿(通用13篇), 欢迎大家借鉴与参考, 希望对大家有所帮助。

《等腰三角形》获奖说课稿篇1一、教学目标1.知识技能:(1)掌握等腰三角形的性质。

(2)运用等腰三角形的性质进行证明和计算。

2.数学思考:(1)观察等腰三角形的对称性, 发展形象思维。

(2)经历等腰三角形性质的探究过程, 在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。

3.问题解决:(1)通过观察等腰三角形的对称性, 培养学生观察、分析、归纳问题的能力。

(2)通过运用等腰三角形的性质解决有关问题, 提高运用知识和技能解决问题的能力, 发展学生的应用意识、创新意识、反思意识。

4、情感态度:引导学生对图形的观察、发现, 激发学生的好奇心和求知欲, 并在运用数学知识解决问题的活动中获取成功的体验, 建立学习的自信心。

二、教学方法实验法和探究法。

三、重难点重点是等腰三角形的性质及应用。

难点是等腰三角形性质的证明。

四、教学过程(一)创设情境, 引入新课人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹, 下面请同学们观察这几幅图片, 看看这些伟大的人类建筑中都含有一个什么样的基本图形?师1: 同学们, 这几张图片中共同存在的基本图形是什么?等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝, 可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。

(板书)12.3.1等腰三角形(二)探究发现, 学习新知1.认识等腰三角形师1: 在小学时我们就知道两条边相等的三角形叫做等腰三角形。

下面我们利用剪纸的方法将手中的矩形纸片变变形。

《等腰三角形》教学反思(精选10篇)

《等腰三角形》教学反思(精选10篇)

《等腰三角形》教学反思(精选10篇)作为一名优秀的教师,教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,教学反思应该怎么写呢?下面是小编收集整理的《等腰三角形》教学反思(精选10篇),欢迎阅读与收藏。

《等腰三角形》教学反思1首先我让学生从概念上去认识等腰三角形,会识别它的腰、底边、顶角和底角。

然后让学生在练习本上画出一个等腰三角形,锻炼学生的动手作图能力,对等腰三角形翻折让它的两条腰AB和AC重合,通过这个简单的试验让学生从中寻找、发现等腰三角形的一些性质。

学生归纳和抽象的逻辑思维能力略显不足,归纳结论也没有方向性,我及时的对学生进行引导,翻折图形的过程三角形的两部分完全重合说明该三角形是一个轴对称图形。

然后从轴对称图形所具有的一般性质出发,推导等腰三角形所具有的具体的性质。

通过引导学生轴对称图形的对应线段相等,对应角相等从而在等腰三角形图形中找到相应的线段和角。

学生的观察图形,抽象归纳的能力有待提高,今后也要加强这方面的训练。

例如我们从图中观察出线段BD=CD,那么线段AD是三角形的什么线?有不少学生说是高线和角平分线,这也是学生一个不好的习惯导致的,做题不看清楚题目意思,不读懂题目,想当然的说出答案。

当然还有一个原因:学生对概念定义的理解不够透彻,混淆了意思相近的概念,导致了解题的出错。

在结论一推出后我马上给出一例题,加强学生对结论一的理解和吸收,并能够简单的对结论一加以应用;同样在给出结论二后,为了让学生更深入的理解结论二(三线合一),在反复的强调结论二以后仍然给出了一个例子,也是为了追求思维的连贯性。

纵贯整堂课,在教学内容上,结合学生的理解程度,还是略显偏多。

就结论二这个知识点学生理解起来相当吃力,等腰三角形的三线合一学生很容易把三条线弄混淆,什么时候该用等腰三角形的顶角平分线,什么时候用底边上的中线,什么时候用底边的高线学生不明白,再加上文字语言与数学语言之间的转换,学生学起来就更加的吃力。

关于等腰三角形的教学反思

关于等腰三角形的教学反思

关于等腰三角形的教学反思关于等腰三角形的教学反思6篇关于等腰三角形的教学反思(篇1)今天在县教育局的#下,在李菊芳科长的#下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和#,同仁们进行了评课。

在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:(一)突出重点,实现教学目标《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。

设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。

使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

(二)导课自然,成功引入新课首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。

引出学生探究心理,迅速集中#,使其带着浓厚的兴趣开始积极探索思考。

从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

(三)设置有梯度,学生易于接受在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。

有着良好的效果这节课,也有不足的地方:(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。

(二)上课的节奏有点快。

在以后的教学中能多加以改正。

美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的.教学中应多补充些例题及习题。

关于等腰三角形的教学反思(篇2)《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。

本节内容是在学生已有的__行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。

特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。

《等腰三角形的性质》反思

《等腰三角形的性质》反思

《等腰三角形的性质》的反思等腰三角形的性质的运用是这节课的重点和难点。

例题处理:课本例题较难理解故在这一环节上我先通过求三角形三个内角的度数的方法,设未知数,根据内角和等于180°的解题思路,从而类比得到例题的解法。

习题处理:题目应循序渐进的呈现,引导学生拾阶而上,可极大的增强了学生学习数学的自信心。

题目的变式也有利于学生的知识巩固。

在解题时,还要注重学生分类讨论的数学思想方法。

另外本节课还有以下收获:1、注重培养了学生的数学方法。

在剪三角形中渗透“观察与实验“的数学方法,让学生探索出等腰三角形的两个性质;在例题的讲解中用类比和方程的思想使学生更能找到解题思路;在等腰三角形的性质的运用上,注重了学生分类讨论的数学思想方法。

2、有梯度的习题设计可满足不同层次的学生需求。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

整个教学过程来说,学生掌握效果较好。

但还有几点需要改进的地方:1、创设情境,提出问题。

问题的解决允许运用直观的方法,还应当鼓励学生不停留在直观的认识上,要进行合情的推理、精确计算,科学地判断。

本案例把“问题”贯穿于教学的始终,运用“提出问题——探究问题——解决问题”的方式,让学生发现规律和运用规律,使学生在长知识的同时,也长智慧、长能力,进一步培养学生良好的思维品质。

2、让数学思想方法渗透于课堂教学之中。

应积极引导学生通过折一折的手段来运用于“转化”思想,将等腰三角形转化为轴对称变换。

同时渗透数学与实践相结合的思想,培养学生的应用意识。

3、由于学生对等腰三角形的知识已有初步的认识,本课例的难点突破应在等腰三角形的“三线合一”及其应用上,应创设有利于学生学习的情境(生活中的事例),通过“折”(强调“折”)这一直观方法引导学生进行积极主动地探索、交流去发现,从而习得知识和经验,提高能力和兴趣。

《13.3.1等腰三角形的性质》课堂教学反思

《13.3.1等腰三角形的性质》课堂教学反思

13.3.1等腰三角形的性质课堂教学反思在本次教学中,我们主要介绍了等腰三角形的性质和相关定理。

通过多种教学方法,学生们深入理解了等腰三角形的特点和性质,同时也学会了如何应用这些知识来解决问题。

以下是本人对本次教学反思的总结。

教学目标本节课的教学目标主要包括:•学习等腰三角形的定义和性质;•掌握等腰三角形的相关定理;•能够应用这些知识来解决实际问题。

在上课前,我制定了这些教学目标,并通过不同的教学方法向学生们传授这些知识。

通过本次教学,我发现学生们对这些知识有了更深入的理解,并能够更好地应用这些知识来解决问题。

教学内容本次教学主要包括以下内容:1.等腰三角形的定义•意义:等腰三角形指两边(腰)相等的三角形。

•通俗表述:等腰三角形就是两边相等的三角形。

2.等腰三角形的性质•底角相等:等腰三角形的两底角相等。

•等腰定理:若一三角形的两边相等,则其所对的角也相等。

•高线定理:等腰三角形的高线、底边、底角构成一组直角三角形。

•中线定理:等腰三角形的底边中线等于底边一半,且与底边平行。

3.等腰三角形相关定理•等腰三角形的角平分线定理:等腰三角形的角平分线同时是等腰三角形的高线。

•欧拉线定理:等腰三角形的垂心、重心、外心和内心四点共线。

•勾股定理的逆定理:若一个三角形的两条边平方和等于第三边的平方,则该三角形是等腰三角形。

教学方法本次教学使用了多种教学方法,以满足不同学生的不同需求。

1.讲解性教学法通过讲解性教学法,我向学生们介绍了等腰三角形的定义、性质和相关定理,以及如何应用这些定理来解决问题。

这种教学方法使学生们更好地理解了这些知识。

2.互动教学法通过互动教学法,我向学生们介绍了等腰三角形相关的例子,并让他们尝试自己解决这些问题。

这种教学方法使学生们更好地理解了如何应用这些定理来解决实际问题。

3.小组讨论通过小组讨论,学生们可以与同学们一起讨论并思考如何解决问题。

这种教学方法使学生们更好地理解这些知识。

(完整)《等腰三角形的性质》教学反思

(完整)《等腰三角形的性质》教学反思

《等腰三角形的性质》教学反思肥西上派初级中学: 刘辉一、引言2014年12月,我校承担了肥西县中学“送培送教”、名师示范课部分活动,我有幸作为其中一名教师给大家展示了一节《等腰三角形的性质》示范课。

本课在初中数学内容中具有一定的代表性,它蕴含着许多数学思想,如数形结合思想、类比思想等。

本课是在探索了两个三角形全等的条件及轴对称性质的基础上进行的,进一步认识特殊的轴对称图形──等腰三角形,主要探索等腰三角形“等边对等角”和“等腰三角形的三线合一”的性质.本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,同时还是证明角相等、线段相等及两直线互相垂直的重要依据,具有承上启下的重要作用。

二、教学过程简录活动1:动手操作,导入新知问题:如图,把一张长方形的纸按图中虚线对折,并减去阴影部分,再把它展开,得到一个什么图形?等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质外,还有它独有的性质,那么这节课我们就一起来研究等腰三角形独有的性质。

活动2:观察实验,猜出性质问题:(1)活动1中剪出的等腰三角形是轴对称图形吗?如果是,它的对称轴是什么?(2)把剪出的等腰三角形ABC 沿折痕对折,找出其中重合的B行证明吗?活动3:推理证明,论证性质问题:学生口述证明过程性质1:等腰三角形的两个底角相等(简称“等边对等角”,前提是在同一个三角形中)在△ABC中,∵AB=AC ∴∠B=∠C活动4:运用性质,解决问题问题:(1)等腰三角形一个底角为75°,它另外两个角为 ;(2)等腰三角形一个角为70°,它的另外两个角为;(3)等腰三角形一个角为110°,它的另外两个角为。

注意:等腰三角形中的内角,若没指出是底角还是顶角应分类讨论。

活动5:继续探究,再得性质受性质1的证明的启发,你能发现等腰三角形的顶角平分线、底边上的中线、•底边上的高线三者之间的关系吗?性质2:等腰三角形的顶角的平分线、底边上的中线、•底边上的高线三线合一。

等腰三角形的性质反思

等腰三角形的性质反思

《等腰三角形的性质》教学反思本节课的整个教学过程基本实现了教学目标掌握了等腰三角形的性质,也培养了学生的动手、观察、总结的能力。

从思想上也鼓励了学生的学习信心,培养了克服困难的勇气,提高了学习兴趣。

在得出性质的过程中我认为还可以进行修改。

对本节教学过程作如下总结:本节课在学生动手操作和实验观察总结的基础上让学生学习了本节内容,充分发挥了学生的主观能动性。

通过折纸来认识等腰三角形及发现等腰三角形的性子。

通过学生们的自己动手、观察、总结最终得出了新内容,增强了学生的学习兴趣,培养了学生的动手、观察、总结能力。

我始终坚持以学生为主体,教师为主导,启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中。

在整个教学过程中,我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而开展的。

在数学思想的运用上我充分渗透了轴对称、全等及辅助线的运用的做题思想,也做到对已学知识的巩固并解决了新的内容。

但是在学生的活动形式上不是太明确,是小组还是自主学习在备课时考虑的不是太详细。

我认为小组学习可以使学生增强交流的能力,也可以对一些学习困难的学生起到帮助的作用。

对于等腰三角形性质的得出本可以通过一次折纸全部发现的也就是俩性质,一次就可以全部得出的,考虑到学生们对得到等腰三角形底边上的中线、底边上的高、顶角的角平分线就是折痕即互相重合较为困难,因此分开。

但是放在一起一次性全部引导学生得出,再一一证明。

既可以提高学生的观察能力,也可以节约时间,并且不会造成学生们只记得性质一,对性质二不如性子一记得牢固的情况。

而且学生们对“三线合一”性质的应用比较困难,应该让学生们学如何用符号语言来表示(共三种)。

练习的设计内容比较简单,但是把俩性质都运用了还算可以,如果前面时间可以节省点的话,这儿最后是再加点,让学生充分得到练习。

在做练习时让学生自主完成然后全班共同讨论结果,比较好点。

总结的形式是我认为比较好的种方式,让学生们既总结了新学到的又锻炼了语言表达能力。

等腰三角形性质教学反思

等腰三角形性质教学反思

《等腰三角形性质》的教学反思安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后总结如下。

优点:1、在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。

通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。

2、性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1 等腰三角形的顶角平分线平分底边、垂直于底边,2 等腰三角形的底边上的中线平分顶角、垂直于底边,3 等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2 等腰三角形的顶角平分线垂直于底边,3 等腰三角形的底边上的中线平分顶角,4 等腰三角形的底边上的中线垂直于底边,5 等腰三角形的底边上的高平分顶角, 6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。

这里设计了一组填空题,有利于性质2的应用。

学生能够整齐地叙述,但还需进一步巩固。

不足:1、课堂交流的面可以更宽些。

2、性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,安排了两个同学在黑板上板演,基础题的2道题没有讨论。

要培养学生讨论和自觉纠错的学习习惯。

3、练习量较少。

4、仅用两句话小结,本课的课堂小结还应当更充分些。

《等腰三角形的性质》教学反思

《等腰三角形的性质》教学反思

等腰三角形的性质教学反思引言等腰三角形是初中数学中的重要概念之一,它具有一些特殊的性质和定理。

在教学中,我选择了以《等腰三角形的性质》为标题,通过讲解等腰三角形的定义、性质和应用,引导学生掌握相关知识。

在整个教学过程中,我深思熟虑,合理安排教学内容和方法,以帮助学生更好地理解等腰三角形的性质。

本文将对此次教学进行反思,总结经验教训,并提出改进的建议。

教学目标本节课的教学目标是让学生能够: 1. 了解等腰三角形的定义和性质; 2. 利用等腰三角形的性质解决实际问题; 3. 掌握等腰三角形的判定方法。

教学内容本课程的教学内容主要包括以下几个方面: 1. 等腰三角形的定义:介绍什么是等腰三角形,以及等腰三角形的特点。

2. 等腰三角形的性质:讲解等腰三角形顶角相等、底边相等的性质,并通过具体的例子进行说明。

3. 等腰三角形的判定:介绍判断一个三角形是否为等腰三角形的方法。

4. 等腰三角形的应用:引导学生应用所学知识解决实际问题,如求等腰三角形的面积等。

教学方法在教学过程中,我采用了多种教学方法,以提高学生的学习兴趣和理解能力:1. 直观示范:通过绘制等腰三角形的图形,展示等腰三角形的形状和性质,帮助学生直观理解。

2. 互动讨论:通过提问学生,引导他们通过观察和思考来总结等腰三角形的性质,培养他们的逻辑思维能力。

3. 实例分析:通过具体的例题,帮助学生运用等腰三角形的性质解决实际问题,培养他们的应用能力。

教学反思本次的教学反思主要从以下几个方面进行总结:1. 教学内容设计在教学内容的设计上,我认为整体安排合理,既有对等腰三角形定义和性质的讲解,又有实际问题的应用,能够加深学生对知识的理解和应用。

然而,在讲解等腰三角形的判定方法时,可能没有充分引导学生进行思考和探索,导致他们对此部分知识点的掌握相对较弱。

下一次我可以通过引入更多的实例,让学生自己发现判断等腰三角形的方法,提高他们的主动学习能力。

2. 教学方法选择在教学方法的选择上,我尝试了多种教学方式,但可能对某些学生来说还不够充分。

等腰三角形的性质教学反思

等腰三角形的性质教学反思

《等腰三角形的性质》教学反思在教学三角形的性质时,根据教学要求,我做了如下的教学设计:1、什么是等腰三角形?2,你能用所学的知识及已有的经验通过折纸,画图等方法得到一个等腰三角形么?3.上面折出的等腰三角形是轴对称图形么?4.你能证明等腰三角形的这两个性质么?5.在你们所得出的等腰三角形中,再通过自己的折,画,并进行大胆的猜想,你还能得出等腰三角形的其他性质么?本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。

通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。

并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。

通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。

不足的是,课堂交流的面可以更宽些。

性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1 等腰三角形的顶角平分线平分底边、垂直于底边,2 等腰三角形的底边上的中线平分顶角、垂直于底边,3 等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2 等腰三角形的顶角平分线垂直于底边,3 等腰三角形的底边上的中线平分顶角,4 等腰三角形的底边上的中线垂直于底边,5 等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形性质教学反思(热门13篇)等腰三角形性质教学反思第1篇本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现,通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。

并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。

而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。

引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。

从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。

在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。

发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。

通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证,从而由感性认识上升到了理性认识。

性质得出后再引导学生观察。

既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。

通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

学完定理,我出示了一组练习,集中学生的注意力,同时为了突出重点,我设计了具有变式性的练习,通过口答、抡答形式来完成,既培养了学生的语言表达能力,又发挥了学生的主体地位,激发了学习兴趣,活跃了课堂气氛。

课堂教学,一是注重引入激发兴趣,二是注重教学过程,重视方法,三是注重概括总结,首先我让学业生总结本节课你都学到了哪些知识哪些解题方法、学习方法,然后教师对肯定学生的积极性,在今后的学习中继续发扬,让学生带着成功感走出课堂。

作业必做题面向全体学生,注重基本知识的巩固,选做题面向学有余力的同学,培养他们产生学好数学的长久愿望。

总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生学习的热情,让他们在轻松愉快中学习知识。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

等腰三角形性质教学反思第2篇在新课标中十分强调“过程”这一词,既要重视学生的参与过程,又要重视知识的再现过程。

有了学生的参与,课堂教学才显得生机勃勃,学生才会变成课堂学习的主人。

知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。

本节课重点是让学生通过动手折纸得出“等腰三角形的两底角相等”及“三线合一”的性质。

设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。

使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

授课过程分为4个环节:⑴感受生活中的等腰三角形。

在学习本节课之前,学生早已认识了等腰三角形,所以在上课前引导学生寻找“身边的等腰三角形”,带领学生走进《等腰三角形的性质》的知识世界。

⑵形象认识等腰三角形的性质。

由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此对于本环节的学习学生感觉很轻松,积极参与探究等腰三角形的性质。

⑶通过折纸探究等腰三角形的性质。

等腰三角形的“等边对等角”、“三线合一”的性质都是由其具有轴对称性质引出的,学生得出“等腰三角形的两底角相等”较为容易。

由于担心“三线合一”的性质学生会感到困难,我特意介绍了三角形中的角平分线、高线和中线,并且为学生们设计出对应表格,让学生填出“三线合一”的性质。

这样做降低了“三线合一”的性质得出的难度,学生较易理解。

但是我想如果让学生自主发挥,时间虽然多浪费一些,课堂上不确定因素虽然多了一些,但是学习效果应该会好得多!⑷运用等腰三角形的性质解决实际问题。

本节课的另一个重点是学会应用等腰三角形的性质解决实际问题。

课堂上,完成了一些角度计算的填空后,侧重于让学生书写解题过程。

我感觉到新课标教材中对学生解题步骤书写的规范程度要求比较放松,但是我总是认为如果让学生养成严谨的书写习惯对于培养学生思维的严谨性有很大的帮助,因此经过近一个学期的严格要求和训练,我们班虽然还有一部分学生对此感到困难,但是大多数学生都能够比较顺利地进行解题步骤的书写。

教学实践中,提倡数学教学应更关注学生的认知特点,尽量让全体学生学有所获。

本节课从总体上看,学生基本上掌握了等腰三角形的“等边对等角”及“三线合一”的性质,学会了等腰三角形性质的运用,较好地完成了教学目标。

但我总还是觉得,这样上课,不能满足学习基础较好的学生,他们会有吃不饱的感觉。

若在课堂教学过程中,尝试分组练习,整体教学效果可能会更好一些。

等腰三角形性质教学反思第3篇本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。

在教学方面,主要按以下步骤进行教学,教学效果比较好。

一、教学建议1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。

这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道:哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。

2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。

这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。

这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。

另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。

3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。

这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。

二、教学反思1.充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。

2.在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。

无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。

等腰三角形性质教学反思第4篇等腰三角形第一节课,要让学生通过动手翻折等腰三角形纸片得出等腰三角形"两个底角相等"、"三线合一"的性质。

设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角的知识加以论证。

使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的。

授课过程分为4个环节:(1)感受生活中的等腰三角形。

在学习等腰三角形之前,多数学生早已认识了等腰三角形。

所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找"你身边的等腰三角形"。

课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。

就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。

学生们兴趣盎然地走进了《等腰三角形》的知识世界。

(2)形象认识等腰三角形性质特点。

设计"已知等腰三角形的两边长分别为5和2,求周长",我的目的是检查学生对"三角形两边和大于第三边"知识的掌握情况及"等腰三角形有两条相等的边"的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:"等腰三角形两腰相等"。

由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。

通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。

课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。

由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。

(3)通过折纸探究等腰三角形的性质。

课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。

可以看到同桌两个同学在小声的讨论。

等腰三角形"等边对等角"、"三线合一"都是由其具有轴对称性质引出的,学生得出"两个底角相等"较为容易。

相关文档
最新文档