高一数学重点知识点:幂函数解析

合集下载

高一数学上册幂函数知识点

高一数学上册幂函数知识点

高一数学上册幂函数知识点幂函数是一种常见的函数形式,由于其在数学和实际问题中的广泛应用,掌握幂函数的知识点对高一学生来说至关重要。

本文将介绍高一数学上册幂函数的主要知识点,包括定义、性质以及解题方法等。

1. 幂函数的定义幂函数是指形如f(x) = x^a的函数,其中a为常数,x为自变量。

在幂函数中,底数x通常为正实数,指数a可以是正数、负数或零。

2. 幂函数的图像与性质(1)当指数a为正数时,幂函数的图像呈现递增的趋势。

若指数a大于1,则曲线斜率较大;若指数a介于0到1之间,则曲线斜率较小。

(2)当指数a为负数时,幂函数的图像呈现递减的趋势。

(3)当指数a为零时,幂函数的图像为一条水平直线。

3. 幂函数的基本性质(1)定义域:对于幂函数f(x) = x^a,其定义域为所有使得x^a有意义的实数x。

(2)值域:幂函数值域的范围可以是整个实数轴,或者是一个区间,具体取决于底数的正负和指数的奇偶性。

(3)对称性:当指数a为奇数时,幂函数关于原点对称;当指数a为偶数且底数x为正数时,幂函数关于y轴对称。

4. 幂函数的运算法则(1)幂函数的加法:若f(x) = x^a 和 g(x) = x^b 为幂函数,则它们的和函数是h(x) = x^a + x^b。

(2)幂函数的乘法:若f(x) = x^a 和 g(x) = x^b 为幂函数,则它们的乘积函数是h(x) = (x^a)(x^b) = x^(a+b)。

(3)幂函数的倒数:若f(x) = x^a 为幂函数,则其倒数函数是g(x) = 1/f(x) = 1/(x^a) = x^(-a)。

5. 幂函数的解题方法(1)求函数的定义域:根据幂函数的定义,求解所有使得x^a 有意义的实数x即可得到函数的定义域。

(2)求函数的值域:根据底数的正负和指数的奇偶性,可以确定函数的值域范围。

(3)求函数的性质与图像:通过计算函数的导数、二阶导数等信息,可以推断函数的增减性、凹凸性和图像的特征。

高一数学必修一幂函数及其图象和性质知识点总结

高一数学必修一幂函数及其图象和性质知识点总结

1 3.3幂函数
一、幂函数定义及解析式特点
1.定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。

2.解析式特点:①系数为1;②底为自变量;③指数为常数。

3.幂函数的指数除了可以取整数外,还可以取其他实数。

二、幂函数的图象
1.幂函数主要以11,2,3,,12
α=-为代表,来研究掌握0α<,01α<<,1α>时的大致图象和图象的性质。

2.同一坐标系中画出1232
,,,y x y x y x y x ====和1y x -=的图象,如下图:
三、幂函数图象特点
1.根据幂函数y x α=的图象可得到以下结论: (1)幂函数在()0,+∞都有定义,且都过()1,1点,不一定过()0,0点。

(2)幂函数都过第一象限,不过第四象限;
(3)当0α>时,在第一象限都是增函数;当0α<时在第一象限都是减函数。

2.(1)当0α<时,幂函数在第一象限是减函数,且和1y x
=在第一象限的图象 大致相同;
(2)当0α>时,函数在第一象限是增函数,且在第一象限的大致图象的特点 可细分为两种情况:
①01α<<时,幂函数的图象在第一象限“趴着增”,且在()0,1内,图象在直 线y x =的上方增,在()1,+∞图象在直线y x =的下方增。

②1α>时,幂函数的图象在第一象限“竖着增”,且在()0,1内,图象在直线。

高中幂函数知识点总结

高中幂函数知识点总结

引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。

本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。

概述:幂函数是指形如y=x^n的函数,其中n是常数。

幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。

在研究幂函数时,需要掌握其定义、性质和应用。

正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。

幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。

1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。

1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。

二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。

当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。

2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。

当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。

2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。

三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。

平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。

3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。

伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。

3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全在高一数学学科中,幂函数是重要的一个知识点。

幂函数是指形如y = ax^n的函数,其中a和n是实数,且a≠0,n≠0。

一、幂函数的定义及性质幂函数的定义就是函数的定义,即y = ax^n,其中a称为幂函数的底数,n称为指数。

幂函数的性质有以下几点:1. 当n为正整数时,幂函数表示乘方运算,例如y = 2x^3表示x的3次方。

2. 当n为负整数时,幂函数表示倒数,例如y = 2x^-2表示x的倒数的平方。

3. 当n为分数时,幂函数表示根式,例如y = 2x^(1/2)表示x的平方根。

4. 当n为零时,幂函数表示常数函数,即y = a,其中a为常数。

二、幂函数图像特征1. 当a>0且n为正偶数时,幂函数的图像开口向上,且对称于y轴。

2. 当a>0且n为正奇数时,幂函数的图像开口向上,且不对称于y 轴。

3. 当a<0且n为正偶数时,幂函数的图像开口向下,且对称于y轴。

4. 当a<0且n为正奇数时,幂函数的图像开口向下,且不对称于y 轴。

三、幂函数的变换幂函数可以通过平移、伸缩、翻转等变换得到其他函数形式。

1. 平移:平移是指将函数的图像沿x轴或y轴方向上下左右移动。

例如,对于函数y = 2x^3,将x坐标减2,可以得到y = 2(x-2)^3,实现了向右平移2个单位。

2. 伸缩:伸缩是指将函数的图像沿x轴或y轴方向上下左右拉长或缩短。

例如,对于函数y = 2x^3,将x坐标扩大为原来的2倍,可以得到y = 2(2x)^3,实现了横向的伸缩。

3. 翻转:翻转是指将函数的图像沿x轴或y轴方向上下左右翻转。

例如,对于函数y = 2x^3,将函数的图像上下翻转,可以得到y = -2x^3,实现了关于x轴的翻转。

四、幂函数的应用1. 金融领域:在复利计算中,幂函数常被用于计算投资收益和贷款利息。

2. 自然科学领域:幂函数经常出现在自然界的现象中,如物体的自由落体运动中,下落距离与时间的关系可以用幂函数表示。

幂函数知识点高一必修一

幂函数知识点高一必修一

幂函数知识点高一必修一幂函数是高中数学中的一个重要概念,它在解决实际问题和理论推导中都有广泛应用。

在高一必修一的数学课程中,学生将首次接触到幂函数的概念和相关知识。

本文将从定义、性质、图像和应用等方面进行介绍,帮助学生更好地理解和掌握幂函数。

一、幂函数的定义幂函数是形如$f(x)=x^a$的函数,其中$x$是自变量,$a$是常数且$a$可以为有理数、整数或实数。

当$a$为有理数时,幂函数的定义域是实数集;当$a$为整数时,幂函数的定义域可以是正实数集、负实数集或者零;当$a$为实数时,幂函数的定义域可以是正实数集和零集。

二、幂函数的性质1. 定义域:幂函数的定义域取决于指数的取值范围,通常为实数集或者特定的数集。

2. 奇偶性:当指数$a$为整数且为偶数时,幂函数是偶函数;当指数$a$为整数且为奇数时,幂函数是奇函数;当指数$a$为实数且为非整数时,幂函数既不是奇函数也不是偶函数。

3. 单调性:当指数$a>0$时,幂函数是增函数;当指数$a<0$时,幂函数是减函数。

4. 对称轴:当指数$a$为整数且为偶数时,幂函数的对称轴为$y$轴;当指数$a$为整数且为奇数时,幂函数没有对称轴。

三、幂函数的图像根据幂函数的性质可以推断出其图像的一些特点。

1. 当指数$a>1$时,幂函数的图像在原点左侧逐渐趋近于$x$轴且斜率逐渐增大;在原点右侧逐渐上升但斜率趋于0。

2. 当指数$a=1$时,幂函数的图像为直线$y=x$。

3. 当指数$0<a<1$时,幂函数的图像在整个定义域上单调递减,并且在$x$轴上趋于无穷。

4. 当指数$a=0$时,幂函数的图像为常数函数$y=1$。

5. 当指数$a<0$时,幂函数的图像在整个定义域上单调递减,但在$x$轴右侧逐渐趋近于0。

综上所述,幂函数的图像呈现出不同的形态和趋势,具体取决于指数的取值范围。

四、幂函数的应用幂函数在实际问题中有广泛的应用,尤其在自然科学和工程技术领域。

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。

掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。

本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。

一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。

在幂函数中,x的指数是常数,y与x之间存在特定的关系。

二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。

当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。

2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。

3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。

三、幂函数的性质1. 定义域:所有实数。

2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。

3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。

4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。

5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。

四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。

在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。

例如,求解一个正方形的面积与边长之间的关系。

我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。

高一必修一幂函数的知识点

高一必修一幂函数的知识点

高一必修一幂函数的知识点高一必修一:幂函数的知识点高一数学课程中,幂函数是一个重要的学习内容。

幂函数是一种常见的函数形式,在生活和工作中有广泛的应用。

幂函数的研究是数学中的重要课题,掌握了幂函数的知识,对于理解数学的其他分支,如微积分等,具有重要的意义。

本文将重点介绍高一必修一中幂函数的知识点,帮助同学们更好地理解和应用幂函数。

一、幂函数的定义和性质幂函数是形如y = ax^n (a ≠ 0, n为整数)的函数,其中a称为底数,n称为指数。

幂函数的图象一般呈现出曲线的形式,其性质包括:1. 定义域和值域:当指数n为正整数时,定义域为全体实数集,值域为(0, +∞);当指数n为负整数时,定义域为非零实数集,值域为(0, +∞)与(-∞, 0)的并集,并具有一至多个零点;当指数n为零时,定义域为整个实数集,值域为{1}。

2. 奇偶性:当指数n为奇数时,幂函数关于y轴对称;当指数n为偶数时,幂函数关于原点对称。

3. 单调性:当指数n为正数时,幂函数在整个定义域上是递增的;当指数n为负数时,幂函数在定义域的两侧是递减的。

4. 极限性质:当x无限趋近于正无穷时,幂函数的值也趋近于正无穷;当x无限趋近于负无穷时,幂函数的值的符号取决于指数的奇偶性。

二、幂函数与图像的关系幂函数的图像是通过对幂函数的底数进行相同倍数的拉伸或压缩得到的。

具体来说,我们可以通过以下几个方面了解幂函数与图像的关系。

1. 底数a的变化对图像的影响:当底数a大于1时,幂函数的图像被压缩,曲线变得更陡峭;当底数a小于1时,幂函数的图像被拉伸,曲线变得更平缓。

2. 指数n的变化对图像的影响:当指数n为正数时,幂函数的图像在y轴上方增长,形成上升的曲线;当指数n为负数时,幂函数的图像在y轴下方增长,形成下降的曲线。

3. 圆形与直线的比较:幂函数的图像与圆的曲线相似,但在其特定区间内,幂函数的图像会出现与直线相切的情况,这时幂函数的曲线呈现出直线的性质。

幂函数高考知识点总结

幂函数高考知识点总结

幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。

幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。

下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。

1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。

其中,a称为幂函数的系数,b称为幂函数的指数。

幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。

当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。

2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。

首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。

其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。

除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。

3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。

对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。

具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。

此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。

4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。

对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。

幂函数知识点总结5篇

幂函数知识点总结5篇

幂函数知识点总结5篇在平时的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。

想要一份整理好的知识点吗?的我精心为您带来了5篇《幂函数知识点总结》,如果能帮助到亲,我们的一切努力都是值得的。

高一数学幂函数知识点总结篇一1、函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。

区间D称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(3)函数单调区间与单调性的判定方法(A)定义法:a.任取x1,x2D,且x1b.作差f(x1)-f(x2);c.变形(通常是因式分解和配方);d.定号(即判断差f(x1)-f(x2)的正负);e.下结论(指出函数f(x)在给定的区间D上的单调性)。

(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:"同增异减'注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。

8、函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数。

(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

高一数学幂知识点

高一数学幂知识点

高一数学幂知识点幂作为数学中的一个重要概念,在高一数学中占据着重要地位。

掌握好幂的定义、运算规则以及一些常见的性质和应用,对于理解和解决数学问题是至关重要的。

本文将为大家详细介绍高一数学中的幂知识点。

一、幂数的定义在数学中,幂是指将一个数乘以自身多次的运算。

其中,被乘的数称为底数,用字母a表示;乘积中相同的因数的个数称为指数,用字母n表示。

幂的表示方式为aⁿ。

例如,当a=2,n=3时,2ⁿ = 2³ = 2 × 2 × 2 = 8。

二、幂数的运算规则1. 幂的乘法规则:当两个幂的底数相同时,它们的指数相加。

即,aⁿ × aᵐ= aⁿ⁺ᵐ。

例如,2² × 2³ = 2⁵ = 2 × 2 × 2 × 2 × 2 = 32。

2. 幂的除法规则:当两个幂的底数相同时,将它们的指数相减。

即,aⁿ ÷ aᵐ= aⁿ⁻ᵐ。

例如,3⁵ ÷ 3² = 3³ = 3 × 3 × 3 = 27。

3. 幂的乘方规则:幂的乘方指的是将一个幂再次乘以指数。

即,(aⁿ)ᵐ= aⁿᵐ。

例如,(4²)³ = 4⁶ = 4 × 4 × 4 × 4 × 4 × 4 = 4096。

三、幂的性质1. 任何数的零次幂等于1:即,a⁰ = 1(其中a不等于0)。

例如,2⁰ = 1。

2. 任何非零数的负整数次幂等于其倒数的正整数次幂:即,a⁻ⁿ = 1 / (aⁿ)(其中a不等于0)。

例如,3⁻² = 1 / (3²) = 1 / 9。

3. 指数为1的幂等于底数本身:即,a¹ = a。

例如,5¹ = 5。

四、幂的应用幂的概念在数学中有着广泛的应用,尤其在代数、几何和物理等领域中经常被使用。

高一数学指对幂函数知识点

高一数学指对幂函数知识点

高一数学指对幂函数知识点在高一数学课程中,学生们将会接触到许多数学知识,其中之一就是幂函数。

幂函数是数学中非常重要的一部分,它在各个领域都有广泛的应用。

本文将从定义、性质及应用三个方面,对幂函数进行详细介绍。

一、幂函数的定义与基本性质幂函数是指形如f(x) = a^x的函数,其中a是常数且大于0,x属于实数集。

幂函数的图像通常是一个与x轴的交点为(0, 1)的变化趋势递增或递减的曲线。

当a>1时,幂函数呈指数增长趋势;当0<a<1时,幂函数呈指数衰减趋势。

幂函数有一些基本的性质,首先是定义域。

对于幂函数f(x) = a^x,由于a>0,故定义域为所有实数。

其次是值域。

当a>1时,f(x)的值域为(0, +∞);当0<a<1时,f(x)的值域为(0, 1)。

幂函数还具有一些特殊的性质,比如当x为0时,幂函数f(x)的值为1。

这可以从定义中直接得出,当x=0时,a^0=1。

此外,幂函数的单调性与横截距也是值得关注的性质。

当a>1时,幂函数呈递增趋势,且在x轴的正半轴上无横截距;当0<a<1时,幂函数呈递减趋势,且在x轴的正半轴上有横截距。

二、幂函数的应用幂函数在实际问题中有着广泛的应用。

首先是在经济学中的应用。

在经济学中,幂函数可以用来描述一些经济指标的增长趋势。

比如,GDP增长速度可以用幂函数来描述,这有助于分析和预测经济发展的趋势。

其次是在生物学中的应用。

在生物学中,幂函数可以用来描述一些生物体的增长规律。

例如,人口增长模型就可以用幂函数来描述,这有助于研究人口增长的变化规律以及制定相应的政策。

此外,幂函数还可以用来表示一些物理学中的规律。

比如,当物体受到空气阻力时,在自由下落过程中速度与时间的关系可以用幂函数来表示。

这可以帮助我们理解物体在真实环境中的运动规律。

三、幂函数的图像与变换在绘制幂函数的图像时,我们可以通过计算多个点的函数值来得到一个大致的曲线。

数学高中幂函数知识点总结

数学高中幂函数知识点总结

数学高中幂函数知识点总结一、幂函数的定义幂函数是形如y = ax^b (a ≠ 0)的函数,其中a、b为常数且b为实数。

当b为自然数时,叫做指数函数;当b为整数时,叫做整数幂函数。

二、幂函数的基本性质1、幂函数的定义域:要求x的b次幂在任何实数范围内都有定义,即x∈R。

2、幂函数的值域:当b为正数时,a为正值时,y的取值范围是(0,+∞);当b为正数时,a为负值时,y的取值范围是(-∞,0);当b为负数时,函数图象经过第二象限,y的取值范围是(0,+∞),a的正负对y的取值范围没有影响。

3、幂函数的奇偶性:b为偶数时,函数图象关于y轴对称;b为奇数时,函数图象关于原点对称。

4、幂函数的单调性:在定义域内,当b>0时,a>0时y随x增大而增大;当b>0时,a<0时y随x增大而减小。

5、幂函数的图象:a) b>0时,a>1时的函数图象是上凸的抛物线,a<1时的函数图象是下凸的抛物线;b) b<0时,a>0时的函数图象是一条破折线;c) b=1时,函数图像是一条直线。

6、幂函数的增长性:a) 当a>1,b>0时,y随x增大而增大;b) 当0<a<1,b>0时,y随x增大而减小;c) 当a>0,b<0时,y随x增大而减小。

三、幂函数的运算性质1、乘法运算:幂函数y=ax^m和y=bx^n的乘积是幂函数y=abx^(m+n)。

2、除法运算:幂函数y=ax^m和y=bx^n的商是幂函数y=(a/b)x^(m-n)。

(b≠0)3、幂函数的乘方:(ax^m)^n = a^nx^(m*n)。

四、幂函数的应用1、指数增长和指数衰减:指数增长是指幂函数的指数大于1且底数大于1时,函数值随自变量的增大而呈指数增长;指数衰减是指幂函数的指数大于1且底数小于1时,函数值随自变量的增大而呈指数衰减。

2、复利问题:利息的计算通过年限n^{'}m即可直接得到m*n倍经过以上的总结,我们对高中幂函数的相关知识有了更深入的了解。

3.3 幂函数(重难点突破)解析版 2023-2024学年高一数学重难点突破

3.3 幂函数(重难点突破)解析版 2023-2024学年高一数学重难点突破

3.3 幂函数重难点幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.重难点题型突破1 求幂函数的解析式幂函数的解析式是一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.例1.(1)、(2022·江苏·无锡市教育科学研究院高二期末)已知幂函数()y f x =的图像过点⎛ ⎝,则(16)f =( )A .14-B .14C .4-D .4【变式训练1-1】、(2022·江苏·扬州中学高二阶段练习)若幂函数()a f x x =的图象经过点(,则函数()f x 的解析式是( )A .()43f x x =B .()13f x x =C.()43f x x-=D.()2 3f x x=重难点题型突破2 幂函数的图像及其性质的应用幂函数的图像及其性质的应用1.幂函数y=xα的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查:①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y=xα在第一象限的图象特征如下:A .①1y x -=,②12y x =,③13y x =C .①13y x =,②12y x =,③1y x -=【答案】AA.⑥③④②⑦①⑤B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤D.⑥④③②⑦⑤①【答案】C【分析】根据幂函数的图象的性质判断各图象对应解析式的形式,即可得答案【详解】图象(1)关于原点对称,为奇函数,且不过原点、第一象限递减,故2.利用幂函数的单调性比较幂值大小的技巧:结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较.例3.(1)、(2023·全国·高一专题练习)已知幂函数()f x 的图象过点()2,32,若()()110f a f ++->,则a 的取值范围为( )A .()2,+∞B .()1,+∞C .()0,∞+D .()1,-+∞【答案】C【分析】利用待定系数法求出幂函数的解析式,可得其为奇函数,且在R 上单调递增,()()110f a f ++->可转化为()()11f a f +>,根据单调性即可求解.【详解】设幂函数()y f x x α==,其图象过点()2,32,所以232α=,解得5α=,所以()5f x x =.因为()()()5f x x f x -=-=-,所以()5f x x =为奇函数,且在R 上单调递增,所以()()110f a f ++->可化为()()()111f a f f +>--=,可得11a +>,解得0a >,所以a 的取值范围为()0,∞+.故选:C.(2).(2020·全国高一专题练习)下列关系中正确的是A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】D 【分析】利用指数函数的单调性和幂函数的单调性比较即可.【详解】因为12xy ⎛⎫= ⎪⎝⎭是单调递减函数,1233<,所以12331122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 因为幂函数23y x =在()0,∞+上递增,1152<;所以22331152⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即223323111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选D.【点睛】同底指数幂比较大小常用的方法是利用指数函数的单调性,不同底数指数幂比较大小一般应用幂函数的单调性.【变式训练3-1】、(2019·江西九江·高二期末(理))设e e a =,e πb =,πe c =,则,,a b c 大小关系是A .a c b >>B .b c a >>C .c b a >>D .c a b>>【答案】C 【分析】由幂函数的单调性可以判断出,a b 的大小关系,通过指数函数的单调性可以判断出,a c 的大小关系,比较,b c 的大小可以转化为比较eln π与π的大小,设()eln f x x x =-求导,判断函数的单调性,利用函数的单调性可以判断出eln π与π的大小关系,最后确定,,a b c 三个数的大小关系.【详解】解:由幂函数和指数函数知识可得e e πe >,πe e e >,即b a >,c a >.下面比较,b c 的大小,即比较eln π与π的大小.设()eln f x x x =-,则e ()xf x x-'=,()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,(e)(π)f f ∴>,即eln e e eln ππ->-,即eln ππ<,e ππe ∴<,即c b >,即c b a >>,故选C.【点睛】本题考查了幂函数和指数函数的单调性,通过变形、转化、构造函数判断函数值大小是解题的关键.重难点题型突破3 幂函数型复合函数(2)答案见解析【分析】(1)根据题意,由幂函数的性质列出方程即可求得m ,从而得到函数()f x 的解析式;(2)根据题意,由幂函数的值域即可求得结果.【详解】(1)∵()223mm f x x --+=,其中22m -<<,m ∈Z当1m =-时()2f x x =,当0m =时()3f x x =,当1m =时()01f x x ==,(0x ≠),∵()f x 在区间()0,∞+上单调递增,∴1m =-,或0m =选①时,可知函数()f x 为偶函数,则()f x 的解析式为()2f x x =,选②时,可知函数()f x 为奇函数,则()f x 的解析式为()3f x x =.(2)若函数()[]233f x x ,x ,=∈-易知()2f x x =在[]3,0-上单调递减,在[]0,3上单调递增当0x =时,()min 0f x =,当3x =±时,()max 9f x =,∴()f x 的值域为[]0,9.若()[]333f x x ,x ,=∈-,易知()3f x x =在[]3,3-上是增函数当3x =-时,()min 27f x =-,当3x =时,()max 27f x =,∴()f x 的值域为[]2727,-.。

高中幂函数知识点总结

高中幂函数知识点总结

高中幂函数知识点总结在高中数学中,学生们需要掌握幂函数的基本性质、图像特征、变化规律以及应用等知识点。

下面就幂函数的这些知识点进行总结。

一、幂函数的基本性质1.定义域和值域幂函数的定义域为全体实数集R,当a>0时,幂函数的值域为(0,+∞);当a<0时,幂函数的值域为(-∞,0)。

当b为实数时,定义域不变,值域也不变。

2.奇函数和偶函数当b为奇数时,幂函数为奇函数,其图像关于原点对称;当b为偶数时,幂函数为偶函数,其图像关于y轴对称。

3.增减性当b>0时,a^b是单调递增函数;当b<0时,a^b是单调递减函数;当a>1时,a^x是单调递增函数;当0<a<1时,a^x是单调递减函数。

4.奇偶性当b为偶数时,幂函数的值域为(0,+∞),其奇函数;当b为奇数时,幂函数的值域为(-∞,+∞),其为奇函数。

5.图像特征当a>1时,幂函数的图像开口向上,且与y轴有交点(0,1);当0<a<1时,幂函数的图像开口向下,且与y轴有交点(0,1)。

二、幂函数的变化规律1.当a>1时,随着x的增大,幂函数的值也增大;当0<a<1时,随着x的增大,幂函数的值逐渐减小。

2.当b>0时,随着x的增大,幂函数的值也增大;当b<0时,随着x的增大,幂函数的值逐渐减小。

3.在定义域内,当a大于1时,幂函数呈现增长趋势,a小于1时,幂函数呈现下降趋势。

幂函数的图像是在a的基础上上升或下降,实际上是在描绘x的指数函数。

4.幂函数的图像经常在一轴上浮躺,显示出一种不平滑的弧度,变化没有一元二次函数的平稳。

随着a的变大或者减小,幂函数的图像与x轴的夹角越来越小。

5.当b不为整数,是一个更加复杂的形式;而指数函数是幂函数的一种特殊情况,b为整数时。

三、幂函数的应用1.在现实生活中,幂函数的变化规律被应用在各个方面,比如物理学中的指数增长和衰减模型、生物学中的人口增长模型、经济学中的利润增长模型等。

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结高一数学知识点─ 幂函数知识点总结幂函数是数学中的一种基本函数类型,在高一数学课程中占据重要地位。

幂函数的表达形式为$f(x) = ax^b$,其中$a$和$b$为常数($a \neq 0$)。

一、幂函数的定义域和值域幂函数$f(x) = ax^b$的定义域为实数集,即$(-\infty, +\infty)$。

幂函数的值域则取决于$a$和$b$的取值范围。

当$b > 0$时,幂函数的值域为$(0, +\infty)$。

此时,函数图像从第三象限逐渐上升到第一象限。

当$b < 0$时,幂函数的值域为$(-\infty, 0)$。

此时,函数图像从第一象限逐渐下降到第三象限。

二、幂函数的对称性幂函数的对称性可以分为以下两种情况:1. 当$b$为偶数时,幂函数$f(x) = ax^b$关于$y$轴对称。

即对于任意$x$都有$f(-x) = f(x)$。

2. 当$b$为奇数时,幂函数$f(x) = ax^b$关于原点对称。

即对于任意$x$都有$f(-x) = -f(x)$。

三、幂函数的增减性与极值幂函数$f(x) = ax^b$的增减性与$b$的正负性相关。

1. 当$b > 0$时,幂函数在定义域上是递增函数。

随着$x$的增大,函数值也随之增大。

2. 当$b < 0$时,幂函数在定义域上是递减函数。

随着$x$的增大,函数值反而减小。

对于幂函数$f(x) = ax^b$而言,只有$b > 0$且$a > 0$时,才会存在极大值;只有$b < 0$且$a < 0$时,才会存在极小值。

四、幂函数的图像特征对于幂函数$f(x) = ax^b$,根据参数$a$和$b$的取值范围,其图像可以表现出不同的特征。

1. 当$a > 0$,$b > 1$时,函数图像呈现上升的指数形态。

2. 当$a < 0$,$b > 1$时,函数图像呈现下降的指数形态。

幂函数知识点归纳

幂函数知识点归纳

幂函数知识点归纳幂函数是数学中一种常见的函数类型。

它的一般形式可以表示为y = a^x,其中a是底数,x是指数,y是函数的值。

在幂函数中,底数a通常是一个正数。

本文将对幂函数的一些重要知识点进行归纳总结。

1. 幂函数的定义:幂函数是一种以底数为变量的指数函数,它的定义域是实数集。

在幂函数中,底数可以是正实数、负实数、分数或小数。

2. 幂函数的图像特点:幂函数的图像特点与底数a的取值密切相关。

- 当a>1时,函数呈现增长趋势。

在x轴的左侧,函数值非常接近0,但不会趋于0。

在x轴的右侧,函数值会趋近于正无穷大。

- 当0<a<1时,函数呈现衰减趋势。

在x轴的左侧,函数值会趋近于正无穷大。

在x轴的右侧,函数值非常接近0,但不会等于0。

- 当a=1时,函数的图像变为一条直线,斜率为1。

函数值始终等于x。

- 当a<0时,函数的图像在点(0,0)的左侧与右侧呈现镜像关系。

3. 幂函数的特殊情况:- 当指数x为分数时,幂函数的性质稍有不同。

让我们考虑一个简单的例子:y = 2^(1/2)。

这个函数的意义是求2的平方根。

我们知道,2^(1/2)的值是正的,并且无论指数的取值是多少,结果始终是正数。

因此,这种情况下的幂函数的图像位于第一象限。

- 当指数x为负数时,幂函数的结果为底数的倒数。

例如,y =2^(-1)等于1/2。

这种情况下的幂函数的图像将通过点(1,1)并且在此处呈现对称。

4. 幂函数的变化率:幂函数的导数可以用来计算函数的变化率。

对于一般形式的幂函数f(x) = a^x来说,其导数可以表示为f'(x) = a^x * ln(a)。

这意味着在指数相同的情况下,底数越大,幂函数的变化率越大。

5. 幂函数的性质:幂函数具有以下性质:- 对于任何正数a,a^0等于1。

- 对于任何正数a,a^(-1)等于1/a。

- 幂函数满足指数法则。

例如,(a^m)^(n) = a^(m*n)。

高一数学知识点幂函数知识点总结

高一数学知识点幂函数知识点总结

高一数学知识点幂函数知识点总结幂函数是数学中的一种基本函数形式,它的形式为f(x) = x^a,其中a为常数。

在高一数学中,学习幂函数是非常重要的一部分,本文将对高一数学知识点中的幂函数进行总结和归纳。

一、幂函数的定义和性质幂函数可用 y = x^a 表示,其中a为常数。

以下是幂函数的一些基本性质:1. 自变量的取值范围:幂函数的自变量x可以是任意实数。

当a为正偶数时,幂函数定义域为正实数集;当a为负偶数时,幂函数定义域为负实数集;当a为奇数时,幂函数的定义域为全体实数集。

2. 定义域和值域:因为幂函数的定义域为全体实数集,所以其值域也是全体实数集。

3. 奇偶性:当a为正偶数时,幂函数是偶函数;当a为负偶数时,幂函数是奇函数;当a为奇数时,幂函数既不是偶函数也不是奇函数。

4. 单调性:若a>0,则幂函数在定义域上是递增函数;若a<0,则幂函数在定义域上是递减函数。

5. 图像特点:幂函数的图像一般存在一个不可见的特殊点(0,0),当a>0时,图像在第一象限中单调递增,通过点(1,1);当a<0时,图像在第四象限中单调递增,通过点(1,1);当a为负偶数时,图像经过点(-1,1)。

二、幂函数的图像与变换1. 幂函数的基本图像:以y = x^2为例,当x取非负实数时,幂函数是递增曲线,在定义域上图像呈现开口向上的抛物线;当x取负实数时,幂函数的图像和x轴关于y轴对称。

2. 幂函数的图像平移:对于幂函数y = x^a,其中a为常数,在x轴向右平移c个单位长度的函数为y = (x-c)^a,表示为:f(x) --> f(x+c)。

3. 幂函数的图像伸缩:对于幂函数y = x^a,其中a为正常数,可以进行垂直方向的伸缩,即在y轴方向上缩放一定倍数。

若倍数k > 1,函数为y = kx^a;若0 < k < 1,函数为y = kx^a。

三、幂函数与指数函数的关系指数函数与幂函数是密切相关的,两者具有相似的性质。

幂函数知识点总结

幂函数知识点总结

幂函数知识点总结幂函数是高中数学中的一个重要概念,它在数学的各个领域中都有着广泛的应用。

从初中开始,我们就接触到了简单的幂函数,随着学习的深入,我们逐渐掌握了更多关于幂函数的知识。

在本文中,我们将对幂函数的相关概念、性质和应用进行总结和探讨。

1. 幂函数的定义和表示方式幂函数是指以一个常数为底数,自变量为指数的函数。

一般表示为:f(x) = a^x,其中a为常数,x为自变量,f(x)为函数值。

2. 幂函数的基本性质2.1 幂函数的奇偶性与增减性:当底数a为正数且不等于1时,幂函数f(x) = a^x在定义域内是奇函数;当底数a为负数时,幂函数f(x) = a^x是偶函数。

当底数a大于1时,幂函数是增函数,当底数a在(0,1)之间时,幂函数是减函数。

2.2 幂函数的单调性:当底数大于1时,幂函数是递增的;当底数小于1时,幂函数是递减的。

2.3 幂函数的相关性质:a^0=1,a^1=a,a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),(a^m)/(a^n)=a^(m-n),(a/b)^n=a^n/b^n。

3. 幂函数图像和特征幂函数的图像具有一些独特的特征,这在解析题或者问题求解时具有重要意义。

3.1 幂函数的渐近线:当底数大于1时,幂函数的图像在y轴上有一个水平渐近线;当底数小于1时,幂函数的图像在x轴上有一个水平渐近线。

3.2 幂函数的特殊点:当底数大于1时,幂函数的图像经过点(0,1);当底数小于1时,幂函数的图像经过点(0,1)和点(1,a)。

3.3 幂函数的拐点:当幂函数的底数a大于1时,图像经过点(1,a)并且有一个拐点;当底数a小于1时,图像经过点(1,a)但没有拐点。

4. 幂函数的应用幂函数在实际问题的解决中有着广泛的应用,以下是一些典型的应用场景:4.1 音乐和声音强度的计算:声音的强度与音源与听者距离的幂函数关系密切,通过对幂函数的建模和计算,可以获得声音强度的变化规律。

高一数学知识点:幂函数知识点知识点总结

高一数学知识点:幂函数知识点知识点总结

高一数学知识点:幂函数知识点知识点总结高一数学知识点:幂函数知识点总结在高一数学的学习中,幂函数是一个重要的知识点。

幂函数的形式简单,但其中蕴含的性质和规律却丰富多样。

下面我们就来详细总结一下幂函数的相关知识。

一、幂函数的定义一般地,形如$y = x^{\alpha}$($\alpha$为常数)的函数,叫做幂函数。

其中,$x$是自变量,$\alpha$是常数。

需要注意的是,幂函数的底数是自变量$x$,指数是常数$\alpha$。

二、幂函数的图像幂函数的图像因指数$\alpha$的不同而具有不同的特征。

当$\alpha > 0$时:若$\alpha$为正整数,幂函数的图像在第一象限内单调递增。

例如,$y = x^2$的图像是一个开口向上的抛物线,对称轴为$y$轴。

若$\alpha$为正分数,且分母为奇数,分子为偶数,幂函数的图像在第一象限内单调递增,且关于原点对称。

例如,$y =x^{\frac{2}{3}}$的图像在第一象限内类似于一个上凸的曲线。

若$\alpha$为正分数,且分母为偶数,分子为奇数,幂函数的图像在第一象限内单调递增,且关于$y$轴对称。

例如,$y = x^{\frac{1}{2}}$的图像是一个在第一象限内的半支抛物线。

当$\alpha < 0$时:幂函数的图像在第一象限内单调递减,且以坐标轴为渐近线。

例如,$y = x^{-1}$的图像是位于第一、三象限的双曲线。

三、幂函数的性质1、定义域当$\alpha$为正整数时,定义域为$R$。

当$\alpha$为正分数时,若分母为奇数,定义域为$R$;若分母为偶数,定义域为$0, +\infty)$。

当$\alpha$为负整数时,定义域为$\{x|x \neq 0\}$。

当$\alpha$为负分数时,定义域为$\{x|x > 0\}$。

2、值域当$\alpha > 0$时,值域为$0, +\infty)$。

当$\alpha < 0$时,值域为$\{y|y \neq 0\}$。

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结高一数学知识点-幂函数知识点总结幂函数是高中数学中一种重要的函数类型,它在各种实际问题中的应用十分广泛。

本文将对高一数学中的幂函数知识点进行总结,包括幂函数的定义、性质、图像和应用等方面。

一、幂函数的定义幂函数是指形如y = a^x的函数,其中a是一个正实数且a≠1,x是自变量,y是因变量。

其中,a被称为底数,x是指数。

二、幂函数的性质1. 定义域和值域:对于底数为正实数且不为1的幂函数,它的定义域是全体实数,值域是(0, +∞)。

当底数为负实数时,定义域为奇数次幂的负实数和偶数次幂的非负实数,值域与正实数的幂函数相同。

2. 单调性:当底数a>1时,幂函数递增;当0<a<1时,幂函数递减。

3. 奇偶性:当底数a>0时,幂函数是奇函数;当底数a<0时,幂函数是偶函数。

4. 零点与解集:当底数a>0时,幂函数在x=0处有零点;当底数a<0时,对于偶数次幂的幂函数在x=0处有零点。

5. 渐近线:当底数a>1时,幂函数的图像有一个水平渐近线y=0;当0<a<1时,幂函数的图像有一个正轴渐近线y=0。

三、幂函数的图像幂函数在平面直角坐标系中的图像特点如下:1. 当底数a>1时,随着x的增大,幂函数的值也逐渐增大,当x趋近于无穷大时,y趋近于无穷大。

2. 当0<a<1时,随着x的增大,幂函数的值逐渐减小,当x趋近于无穷大时,y趋近于0。

3. 当底数a<0时,幂函数的图像会根据指数的奇偶性以及底数的正负性产生不同的变化,需要具体分析。

四、幂函数的应用幂函数在各个领域中都有广泛的应用,下面介绍几个常见的应用场景:1. 成长问题:幂函数可以用来描述人口、资源、财富等随时间呈指数增长或指数衰减的情况。

2. 科学实验:幂函数可以用来描述某些物理量随着条件变化的规律,例如温度随着时间的变化、放射性物质的衰减等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学重点知识点:幂函数解析
高中数学相关于初中来说在学习方法和解题难度上都会有所增加,因此我们要熟悉每个重点知识点,以此来找到更好的学习方法。

把握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的高一数学重点知识点:幂函数解析,期望对宽敞朋友有所关心。

定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域
性质:
关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。

当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:
排除了为0与负数两种可能,即关于x0,则a能够是任意实数;
排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即关于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就能够得到当a为不同的数值时,幂函数的定义域的不同情形如下:
假如a为任意实数,则函数的定义域为大于0的所有实数;
假如a为负数,则x确信不能为0,只是这时函数的定义域还必须依照q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情形.
能够看到:
(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全
“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

(5)a大于0,函数过(0,0);a小于0,函数只是(0,0)点。

(6)明显幂函数无界。

相关文档
最新文档