量子力学习题解答-第5章

合集下载

量子力学答案(第二版)苏汝铿第五章课后答案5.1-5#7

量子力学答案(第二版)苏汝铿第五章课后答案5.1-5#7
与视核为点电荷时电子的势能之差为
r r0 r r0
2 1 r2 3 Ze Ze 3 , ' H eV r r 2 r 2 r 0 0 r 0,
2
r r0 r r0
将其视为微扰。类氢离子中 1s 轨道电子波函数为
2
D
l 0 , m
2
l|m c o s | 0 / E 0
l E
由于
cos Y00
1 Y10 3
根据球谐函数的正交性可知,能量二级修正中只有 l 1, m 0 有贡献。
所以
E0 D 1 0 | c o s
2
2
| 00 E 0/ E
2
1
2
/ 2I ,
l 0,1, 2...
对确定的 l , m 0, 1, 2,..., l ,即能级的简并度为 2l 1 。 定理:某能级 En 非简并时, H 和宇称算符 具有共同本征矢 n 。 因而,
n r n n r n n r n n r n
07QMEx5.1-5.3 如果类氢原子的核不是点电荷,而是半径为 r0 ,电荷分布的小球,计算这种效应对类
5.1
氢原子基态能量的一级修正。 解: 由电磁学知球形电荷分布的静电势为
Ze 3 1 r 2 , r0 2 2 r02 V (r ) Ze , r
Z 1s R10Y00 a0
3/ 2
2e
Zr a0
1 4
2 Zr a0
1s 能级的一级修正为
E1s 1s H 1s
'
1

量子力学课后习题

量子力学课后习题

第一章 绪论1. 在0K 附近,钠的价电子能量约为3电子伏,求其德布洛意波长。

2. 氦原子的动能是32E kT =(k 为玻耳兹曼常数),求T =1K 时,氦原子的德布洛意波长。

3. 利用玻尔-索末菲的量子化条件,求 (1) 一维谐振子的能量;(2) 在均匀磁场中作圆周运动的电子轨道的可能半径。

4. 两个光子在一定条件下可发转化为正负电子对。

如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 第二章 波函数和薛定谔方程1. 证明在定态中,几率密度和几率流密度与时间无关。

2. 由下列两定态波函数计算几率流密度:(1)11ikr e rψ=,(2)11ikr e rψ-=3. 求粒子在一维无限深势阱 中运动的能级和波函数。

4. 证明(2.6-14)式中的归一化常数是5. 求一维线性谐振子处于第一激发态时几率最大的位置。

6. 试求算符ˆix dFie dx=-的本征函数。

7. 如果把坐标原点取在一维无限深势阱的中心,求阱中粒子的波函数和能级的表达式。

0,2(),2a x U x a x ⎧≤⎪⎪=⎨⎪∞≥⎪⎩⎩⎨⎧≥≤∞<<=a x x ax x V 或0,0,0)(aA 1='第三章 量子力学中的力学量1. 一维线性谐振子处于基态,求: (1)势能的平均值; (2)动能的平均值; (3)动量的几率分布函数。

2. 氢原子处于基态()0,,ra r ψθϕ-=,求: (1)r 的平均值;(2)势能2e r-的平均值;(3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。

3. 一刚性转子转动惯量为I ,它的能量的经典表示式是22L H I=,L 为角动量。

求与此对应的量子体系在下列情况下的定态能量及波函数: (1)转子绕一固定轴转动; (2)转子绕一固定点转动。

4. 一维运动的粒子的状态是⎩⎨⎧=-0)(xAxe x λψ 00<≥x x 其中0>λ,求(1)粒子动量的几率分布函数; (2)粒子的平均动量。

量子力学第五章习题

量子力学第五章习题

第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。

量子力学答案(第二版)苏汝铿第五章课后答案5.16-5#7 @

量子力学答案(第二版)苏汝铿第五章课后答案5.16-5#7 @
A 2 p 1s A 200,100 A 210,100 A 211,100 A 21-1,100
批注 [JL3]: 对于固定初末态(即具有固定的 m 与 m )的跃迁,不需要求和。

2 3
8
2 me10 3 c3 6

8
2 me10 3 c3 6

8
me10 28 me10 c3 6 37 c3 6
The transition coefficient is
...
氢原子的初态(k 态)的波函数是: 100 ,末态( k ' 态)的波函数是 21m : 1s 态
100
1
a3
1
e

r a
(1)
r
2s 态
200
211
r ( 2 )e 2 a 3 a 32a
r ( )e 2 a sin e i 8 a 3 a r ( )e 2 a sin e i 8 a 3 a r ( )e 2 a cos 32a 3 a
0
i
t
(ez ) k 'k (ez ) k 'k
t o

e
1 [ i ( ' k ) ]t
k

dt t
(7)

0
i
e
t [ i ( ' k ) t ]t
k

i (k ' k )

0
i [(k ' k ) ]

1 t 0
(ez ) k 'k
| r k 'k
|
2
|
x | | y | | z

量子力学答案(第二版)苏汝铿第五章课后答案5.13-5#11

量子力学答案(第二版)苏汝铿第五章课后答案5.13-5#11

0
2 2 2 0 0 0 0 0 2 2 2
5.14 一根长度为 d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为 M ,在棒的 两端分别有电荷+Q 和-Q。 (i)写出体系的哈密顿量,本征函数和本征值; (ii)如果在转动平面内存在一电场强度为 的弱电场,准确到一级修正,他的本征函数和 能量如何变化? (iii)如果这个电场很强,求基态的近似波函数和相应的能量值。 解: (i)该系统的哈密顿量为 H 式中 I
0
1
m1
n
n H' m Em 0 En 0
n H' m
1 2
2
dE cos e
0
i m n
d
1 1 dE 2 m n 1,0 m n 1,0 2 2 1 dE m n 1,0 m n 1,0 2
式中用了 k
0
0
0
取到 的一阶
B 0 C
0
的完备性

k
0 0
kLeabharlann k 1(ii)根据已给的条件
3 P2 1 H 0 i m 2 xi 2 , H ' x3 2 i 1 2m
可看出相应的 A
m
P3
2
, 它使 H ' i A, H 0 x3
计算 xi 在基态的平均值 xi
i 1, 2,3 至 的最低阶,并将这个结果和精确解相比较。
0
解: (i)设系统非微扰的本征态及对应的能量分别为 k 即 H0 k
0
, Ek 0
Ek 0 k

曾谨言量子力学习题解答第五章

曾谨言量子力学习题解答第五章

第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。

[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。

(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ* 将此平均值求时间导数,可得以下式(推导见课本§5.1)⎰⎰⎰-≡=ττψψd A H H A i H A i dt A d )ˆˆˆˆ(*1]ˆ,ˆ[1 (1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。

(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。

(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p xˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x p p p xˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x p i p i pi =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xVx i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p r z y x ∂∂+∂∂+∂∂+++=⋅ μ}ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6) (2)在定态ψ之下求不显含时间t 的力学量A ˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7)但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem ) T V n 2= 式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。

量子力学答案(第二版)苏汝铿第五章课后答案5.4-5#3

量子力学答案(第二版)苏汝铿第五章课后答案5.4-5#3
(0) 2
b2 (0) E1(0) E2
b2 a (0) E2 E1(0)
(3) '
(ii)严格求解法: 这就是根据表象理论,分立表象中,本征方程可以书写成矩阵方程式形式,并可以求得本征 值和本征矢(用单列矩阵表示) 。 我们设算符 H(1)具有本征矢
C1 ,本征值是 ,列矩阵方程式: C2
E1(0) 解 : (i)取 H 0 0 0
'
0 E1(0) 0
0 0 (0) E2
( 3)
0 a 0 0 b 则有: H H H 0 0 * * 0 b a
本题的微扰矩阵(3)是简并的波函数(零级)计算得来的,若像无简并微扰论那样计算二 级能量修正是可能的,但近似程度差,从(3)看出一级能量修正为零,准确到二级修正量 的能量本征值是:
1
, f n ,代入(1)式中,得
到与 En 相应的零级波函数的系数.从而给出零级波函数和能量本征值的一级修正,
0 0 n a n

En En En
0 1
考虑 的系数,讨论第 n 个能级.
2
当 m n 时,得到能级的二级修正 E
(5)
C1 C2 1
2
2
(6)
(5)式有 C1C2 非平凡解的条件是:
E1( 0) a b E
( 0) 2
b a
0
(0) ( E1( 0) a )( E 2 a ) b2 0 ( 0) (0) E ( 0) E 2 ( E1( 0) E 2 ) a 1 b2 2 2 2
0 0 1 2

量子力学习题解答

量子力学习题解答

i
Et)*
*
(r)e
i
Et

(r)e
i
Et)]
2m
i [ (r) *(r) *(r) (r)]
2m
可见
J与t
无关。
量子力学 盛忠志主讲
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 e ikr r
(2) 2
1 e ikr r
从所得结果说明 1 表示向外传播的球面波,
2
表示向内(即向原点)
证:在一维势场中运动的粒子的定态 S-方程为
2 2m
d2 dx2
(x)
U
( x)
(x)
E
(x)

将式中的 x以(x) 代换,得
2 2m
d2 dx2
(x)
U
(x)
(x)
E
(x)

利用U (x) U (x) ,得
2 2m
d2 dx2
(x)
U (x)
(x)
E
(x)

量子力学 盛忠志主讲
比较①、③式可知, (x)和 (x) 都是描写在同一势场作用下的
d
8h 3 c3
1
h
d ,
ekT 1

c
、 d
c 2
d

8hc 5
1hc,ek Nhomakorabea 1令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
5 xex ex 1
用图解法求得 x 4.97 ,即得 hc 4.97 ,将数据代入求得
m k T
mT b, b 2.9 10 3 m0 C

1量子力学练习1~5+解答

1量子力学练习1~5+解答
对于质量为角频率为的三维各向同性的谐振子其势能表达式为由于其势能表达式的特殊性所以求解三维各向同性的谐振子的本征值和本征函数可以在三种坐标中进行但是在不同坐标系中求解所选守恒量完全集不同在球坐标系中常为守恒量完全集在柱坐标系常选为守恒量完全集中在直角坐标系中常选为守恒量完全集
量子力学练习一
1.爱因斯坦在解释光电效应时,提出光量子(光子)概念;爱因斯坦光电效应方程为
解:(1)令 ,则由归一化条件可得
而 ,故
归一化的波函数为
(2)坐标几率密度取极值的条件
即x=0时坐标几率密度取极大值,其值为
9.设粒子归一化波函数为 ,求在 范围内找到粒子的几率。
解:波函数已归一化,故在 范围内找到粒子的几率,应将x,z分量积分掉即
10.写出几率守恒的积分和微分形式以及几率密度、几率流密度的表达式;并计算:
4.对于质量为 、角频率为 的三维各向同性的谐振子,其势能表达式为,由于其势能表达式的特殊性,所以求解三维各向同性的谐振子的本征值和本征函数可以在三种坐标中进行,但是在不同坐标系中求解所选守恒量完全集不同,在球坐标系中常选为守恒量完全集,在柱坐标系常选为守恒量完全集中在直角坐标系中常选为守恒量完全集。
(2)粒子动量p的平均值 、 及动量不确定度(涨落) ;
(3) ,并验证测不准关系;
解:一维无限深势阱中,粒子处于第一激发态的波函数为
(1)粒子坐标的平均值:
(2)动量的平均值:
(3) ,满足测不准关系
2.粒子被限制在如下势场中运动,试写出粒子所满足的Schrodinger方程(粒子能量 ),并确定其边界条件。(不需要具体计算,所写方程要最简(参数引人))
(C1,C2为常数)
同理
8.设粒子处于 状态中,求 和 (提示:首先利用升降算符 ,证明

量子力学周世勋第二版课后习题解答第5章

量子力学周世勋第二版课后习题解答第5章

5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。

据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出,⎰∞-=rE d rer U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr er U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。

∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = 5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。

《量子力学教程》_课后答案

《量子力学教程》_课后答案

(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件



( x) dx 1
2
A2

a
2 sin
0
n xdx 1 a


a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10

量子力学(周世勋)课后答案-第五章

量子力学(周世勋)课后答案-第五章

量子力学课后习题详解 第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解:类氢原子如果核是点电荷,核外电子运动的哈密顿量为00ˆˆ()H T U r =+ 其中,)(0r U 为点电荷库伦势的势能,即2004ze U r rπε=-()在小球核电荷分布情况下,核外电子运动的哈密顿量为ˆˆ()HT U r =+ 球对称核电荷分布只对0r r <的区域有影响,对0r r ≥的区域无影响,即在0r r ≥区域, 200()()4Ze U r U r r πε=-=在0r r <区域,)(r U 可由下式得出,⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ 将哈密顿算符形式改写为 0ˆˆˆHH H '=+得 ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于通常0r 相对于电子的典型(平均)运动半径(玻尔半径)很小,所以,可以认为(0)ˆˆHH '<<,视为一种微扰。

对于基态r a Ze a Z 02/1303)0(1)(-=πψ,2422(0)1222e s s m Z e Z e E a =-=-由ˆH '引起的一级修正为 ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ 由于 00r r a ≤<<,故102≈-r a Ze 。

量子力学习题解答-周世勋

量子力学习题解答-周世勋

周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。

并近似计算b 的数值,准确到两位有效数字。

解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。

解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。

解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。

曾谨严量子力学习题解答5

曾谨严量子力学习题解答5

= − nx − iny 1+ nz
2
归一化本征函数为
φ−1


)
=
⎡ ⎢ ⎢ ⎢⎢⎣−
sin θ 2
θ cos
eiϕ
2
⎤ ⎥ ⎥ ⎥ ⎥⎦

⎡⎢⎢⎢⎢⎣−sicnoθs2θ2e
−iϕ /
eiϕ
2 /2
⎤ ⎥ ⎥ ⎥ ⎥⎦


φ1(nr) =

1 ⎡ 1+ nz ⎤
2 (1 +
nz
)
⎢⎣nx
+
iny

由⑶、⑷可解得: a = −b = 1 2
所以 σ x的本征态为:
ψ− =
1 ⎛1⎞
2
⎜ ⎝
−1⎟⎠
5.《曾 p.442-练习2》
在σ z 表象中,求 σr ⋅ nr 的本征态,nr (sinθ cosϕ,sinθ sinϕ, cosθ ) 是 (θ ,ϕ )方向的单位
矢量.
解:在σ z 表象中, pauli 算符σ 的矩阵表示为
σx
=
⎡0 ⎢⎣1
1⎤ 0⎥⎦
,
σ
y
=
⎡0 ⎢⎣ i
−i⎤ 0 ⎥⎦ ,
σz
=
⎡1 ⎢⎣0
0⎤ −1⎥⎦

因此
σn
= σr
⋅ nr
= σ xnx

yny
+ σ znz
=

⎢ ⎣
nx
nz + iny
nx − iny ⎤
−nz
⎥ ⎦
=
⎡ cosθ ⎢⎣sinθ eiϕ

量子力学导论第5章答案

量子力学导论第5章答案

量子力学导论第5章答案第五章力学量随时间的变化与对称性5.1)设力学量不显含,为本体系的Hamilton量,证明证.若力学量不显含,则有,令则,5.2)设力学量不显含,证明束缚定态,证:束缚定态为::。

在束缚定态,有。

其复共轭为。

5.3)表示沿方向平移距离算符.证明下列形式波函数(Bloch波函数),是的本征态,相应的本征值为证:,证毕。

5.4)设表示的本征态(本征值为),证明是角动量沿空间方向的分量的本征态。

证:算符相当于将体系绕轴转角,算符相当于将体系绕轴转角,原为的本征态,本征值为,经过两次转动,固定于体系的坐标系(即随体系一起转动的坐标系)的轴(开始时和实验室轴重合)已转到实验室坐标系的方向,即方向,变成了,即变成了的本征态。

本征值是状态的物理属性,不受坐标变换的影响,故仍为。

(还有解法二,参钱..《剖析》.P327)5.5)设Hamilton量。

证明下列求和规则。

是的一个分量,是对一切定态求和,是相应于态的能量本征值。

证:()又。

不难得出,对于分量,亦有同样的结论,证毕。

5.6)设为厄米算符,证明能量表象中求和规则为(1)证:式(1)左端(2)计算中用到了公式。

由于是厄米算符,有下列算符关系:(3)式(2)取共轭,得到(4)结合式(2)和(4),得证毕。

5.7)证明schrödinger方程变换在Galileo变换下的不变性,即设惯性参照系的速度相对于惯性参照系运动(沿轴方向),空间任何一点两个参照系中的坐标满足下列关系:。

(1)势能在两个参照系中的表示式有下列关系(2)证明schrödinger方程在参照系中表为在参照系中表为其中证:由波函数的统计解释,和的意义完全相同。

,是时刻在点找到粒子的几率密度;,是时刻在点找到粒子的几率密度。

但是在给定时刻,给定地点发现粒子的几率应与参照系的选择无关,所以相应的几率应相等,即(6)从(1)式有(6’)由此可以得出,和两个波函数彼此只应差绝对值为1的相因子,所以(7)(7)由(1)式,,(3)式变为:(8)将(7’)代入(8)式,可得(9)选择适当的,使得(9)(4)。

周世勋量子力学习题及解答(PDF)

周世勋量子力学习题及解答(PDF)

量子力学习题及解答第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式dv e chv d kThv v v 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hc v v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kT hc kThc e kT hc ehc λλλλλπρ⇒0115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章
全同粒子
本章主要内容概要
1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。

在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。

所有的微观粒子可以分为两类:波色子和费米子。

所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。

由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。

对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。

如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为
12121212()
()()()()()(,,...,,...,)()()()
i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ=
交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。

当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。

对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N P
q q q q C P q q q αφφφΦ=∑
其中P 表示N 个粒子在波函数中的某一种排列,P
∑表示对所有可能排列求和,由于波色
子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1
,全不相等时为1/
2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为
121212(,)()()()()]a b b a x x x x x x ψψψψψ±=±
这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。

对对称空间波函数这个力是吸引力,倾向于把两粒子拉近;对反对称空间波函数,这个力是排斥力,倾向于让两粒子相互远离。

固体中属于不同原子的两个电子组成的共价键可以由这种力解释,两电子体系的波函数是反对称的,当两个电子的自旋波函数为反对称的自旋单态时,空间波函数必是对称的,所以这种状态下的两个电子倾向于相互靠近,形成共价键。

3. 元素周期表:原子中一个单粒子态(),,n l m 称之为轨道,因为电子是费米子,受到泡利不相容原理的制约,一个轨道上只能有两个电子(一个自旋向上,一个自旋向下)。

当原子处于基态时,电子将从最低能态开始依据洪特定则依次填充。

1n =这个壳层能容纳两个电子,2n =壳层能容纳8个,3n =容纳18个,第n 个壳层可以容纳2
2n 个电子。

(洪特第一定则:在其它量都相同时,总自旋(S )取最大值的状态的能量最低。

第二定则:当
自旋给定时,总轨道角量子数(L )取最大值且同整体的反对称性一致时,将具有最低的能量。

第三定则:如果次壳层(n ,l )填充不到一半,则能量最低态满足:J=L-S ;如果填充超过一半,则J=L+S 态能量最低。

)一般以
21
S J L +表示原子电子组态,其中S 为电子总自
旋角动量,L 为总轨道角动量,J 为总角动量量子数。

习题5.7 解:(a )可分辨粒子
()()()()123123,,a b c x x x x x x ψψψψ=
(b )全同玻色子
(
)()()()()()()()()()()()()()()()()()()123123123123123123123,,a b c a c b b a c b c a c b a c a b x x x x x x x x x x x x x x x x x x x x x ψψψψψψψψψψψψψψψψψψψ=+++++⎤⎦
(c )全同费米子
()()()()
()()()()()(
)
()()()()()()()()()()()()()()()()()()111123222333123123123123123123,,a b c a b c a b c a b c a c b b a c b c a c b a c a b x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ψψψψψψψψψψψψψψψψψψψψψψψψψ=
=
--+-+⎤⎦
习题5.33 解:
(a )对于可分辨例子,三个粒子都可以处于任意一个态,所以总共会有3327=个可能三粒
子态。

列出如下:
(b )当粒子为全同玻色子时,要求波函数满足交换对称性,共10个可能态。

三个粒子处于相同粒子态:3个
123()()()a a a x x x ψψψ 123()()()b b b x x x ψψψ 123()()()
c c c x x x ψψψ 三个粒子处于两个粒子态:6个
1231231231
()()()()()()()()())a a b a b a b a a x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())a a c a c a c a a x x x x x x x x x ψψψ+ψψψ+ψψψ
1231231231
()()()()()()()()())b b a b a b a b b x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())b b c b c b c b b x x x x x x x x x ψψψ+ψψψ+ψψψ
1231231231
()()()()()()()()())c c a c a c a c c x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())c c b c b c b c c x x x x x x x x x ψψψ+ψψψ+ψψψ 三个粒子处于三个不同粒子态:1个
123123123123123123()()()()()()()()()
()()()()()()()()())
a b c a c b b a c b c a c a b c b a x x x x x x x x x x x x x x x x x x ψψψ+ψψψ+ψψψ+ψψψ+ψψψ+ψψψ
(c )当粒子为全同费米子时,要求波函数满足完全反对称性,每个费米子必须处在互不相同的态上,只有1种可能态
]111222123123333
1231231231
23
()()()()()()()()()()()()()()()()()()()()()()()()()()()a b c a b c a b c a c b a b c b a c b c a c a b c b a x x x x x x x x x x x x x x x x x x x x x x x x x x x ψψψψ=ψψψ-ψψψψψ-ψψψ+ψψψ+ψψψ-ψψψ。

相关文档
最新文档