铸造铝合金变质处理

合集下载

铝合金的变质处理

铝合金的变质处理

铝合金的变质处理铝合金的变质处理铸锭组织的不均匀性集中的影响到铸锭的性能,用于锻造、轧制和挤压的铸锭特别不希望降低合金工艺塑性的柱状组织。

通常,具有细小晶粒组织、细微的晶粒内部结构和过剩相均匀分布的合金具有最好的铸态性能和最高的压力加工塑性。

采用增大冷却速度、低温浇注、超声波振荡铸造、电磁铸造等措施均有利于获得上述理想组织,但这些办法均有局限性,只有对合金采取变质处理才是调整铸锭组织的根本手段。

一、变质处理概述所谓变质处理就是在少量的专门添加剂(变质剂)的作用下改变铸态合金组织,使金属或合金的组织分散度提高的过程。

目前,这种处理方法的技术术语很不统一,有的叫细化处理,还有的叫孕育处理。

变质处理的分类也各不一样。

有人根据金属及合金的最终组织变化特征将变质处理分为三类:把改变初生树枝晶和其他初生晶尺寸的处理叫第一类变质处理,把改变初生树枝晶内部结构的处理叫第二类变质处理,把改变共晶组织的处理叫第三类变质处理。

也有人根据变质剂的作用特性,把变质处理分为三类四组(见表2—5—3)。

还有人按对结晶着的合金的物理作用和冶金作用来分类。

显然,这些概念之间的界限是很难区分的。

本手册把变质处理理解为金属及合金铸锭组织弥散度的提高。

表2—5—3变质剂的类别及其作用特性类别变质剂组别作用性质可能的变质机构I晶核变质剂l不起化学作用,但结构上具有共格性起晶核或生核基底作用,如铝中的TiC及其他高熔点夹杂物2起化学作用且有结构上的共格性包晶反应产生晶核质点,并改变周围液相的成分浓度,如钛和铝作用生成的TiAl,Ⅱ吸附变质剂3活性吸附或物理吸附吸附在晶面上,阻碍晶粒成长,促使过冷增核,如铝硅合金中加钠Ⅲ改变结构不匀性变质剂4起机械或物化作用,改变液相结构及分布状况均匀液相成分和温度,改变晶核质点的活性目前,有各种说明变质处理过程的理论,其中,比较著名的有晶核形成论、碳化物论、包晶反应论、原子结构论等,但其中没有一种理论可以全面地说明这种过程。

铝合金液熔体处理晶粒细化与变质处理

铝合金液熔体处理晶粒细化与变质处理

职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案铝合金液熔体处理—晶粒细化与变质处理制作人:张保林陕西工业职业技术学院铝合金液熔体处理——晶粒细化与变质处理一、概述对铝合金熔体进行细化、变质处理,以控制铝铸件的铸态组织是铸造铝合金熔炼的重要一环,也是获得高品质铝铸件的基本条件。

对于A1-Cu系、Al-Mg系、Al-Zn系等固溶体型合金,为防止产生铸造裂纹,提高力学性能,一般都需要进行细化处理,以使α(A1)固溶体的晶粒细化;对A1-Si系合金一般也常对其进行α(A1)晶粒细化处理。

二、晶粒细化α(A1)晶粒细化处理。

常用的晶粒细化剂有钛、硼、锆及稀土金属等,以中间合金或盐类形式加入铝液。

(1)中间合金形式加入常用细化剂主要有Al-Ti、Al-B、Al-Ti-B和Al-Ti-C等中间合金。

这些细化剂加入铝液后产生大量的TiAl3、AlB2、TiB2、TiC等微粒,它们熔点都较高,且晶格常数与α(A1)固溶体的很相近,所以作为异质核心抑制树枝状初生α(A1)晶粒的长大。

不同的细化剂细化效果和衰退特性是有区别的。

常用的Al-5%Ti、Al-5%Ti-1%B和A1-4%B细化剂对A356合金(与ZLSi7Mg相近)晶粒作用效果比较见图1。

图1 A356合金晶粒细化效果比较细化剂的加入量和合金种类、成分、加入工艺、熔炼温度、浇注时间等有关,细化剂的加入温度一般为710~730℃,加入量占合金的0.4%~0.6%。

添加Ti、B元素细化处理的铝液中,如果存在Zr、Cr、Mn等元素,将减弱细化效果,甚至出现“中毒”而失去细化效果。

其原因有些研究者认为是由于Zr、Cr、Mn等元素与TiAl3、TiB2、TiC微粒之间发生作用,形成了新相改变了原有的点阵常数,因而失去了异质核心作用所造成的。

(2)盐类形式加入。

含有很强晶粒细化作用的Ti、B、Zr等元素的氟钛酸钾、氟硼酸钾、氟锆酸钾等盐类物质。

铝合金的变质处理

铝合金的变质处理

铝合金的变质处理材料与能源学院金属材料工程2011级2班范宇鑫【摘要】变质处理指的是向金属液内添加少量物质,促进金属液生核或改变晶体生长过程的方法。

而铝合金制造过程中变质处理是必不可少的工艺,加入不同的变质剂对合金的工艺性能有着不同的影响。

关键词:铝合金变质处理铝合金的制备主要有铸造和压力变形两种。

铝合金制造过程中的缺陷有氧化夹渣、气孔气泡、缩松疏松、裂纹等。

这些缺陷严重影响铝合金的性能,容易造成断裂和磨损。

为了防止这些缺陷的产生,提高铝合金的工艺性能,加入变质剂就是一种有效的措施。

变质处理的目的主要是细化晶粒、改善脆性相、改善晶粒形态和分布状况。

变质处理的机理众说纷纭,主要分为两种:一是不溶性质点存在于金属液中的非均质晶核作用;二是以溶质的偏析及吸附作用。

在变质剂完全溶解于金属液且不发生化学反应生成化合物的情况下,变质剂就像溶质一样,在凝固过程中,由于偏析使固/液界面前沿液体的平衡液相线温度降低,界面处成分过冷度减少,致使界面上晶体的生长受到抑制,枝晶根部出现缩颈而易于分离。

同时,由于变质剂易偏析和吸附,故阻碍晶体生长的作用也加强。

因此,往往只需加入少量变质剂,就能显著细化晶粒。

其中,不同的变质剂所发挥的作用有所不同,常见以下几种变质剂:(1)钠盐变质剂:Na元素可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶温度,增加过冷度,细化晶粒。

其细化效果,对冷的慢的砂型、石膏型铸件而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件有重要的作用。

钠盐变质法的成本低,制备也比较简单,适合批量小、要求不很高的产品,但其缺点是,由于钠是化学活泼性元素,在变质处理中氧化、烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。

钠还使Al-Mg系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化,所以Al-Mg系合金和含Mg量高于2%的Al-Si合金,一般都不用钠盐变质剂来进行变质处理,以免出现所谓“钠脆”现象。

铸造铝合金的精炼处理及质量控制

铸造铝合金的精炼处理及质量控制

目录1 绪论 (1)1.1 铸造铝合金的现状与发展趋势 (1)1.1.1 铸造合金的现状 (1)1.2 未来发展趋势 (2)2 铝及铝合金 (3)2.1 铝的概述 (3)2.1.1 铝的简介 (3)2.1.2 铝材的发展史 (3)2.2 铝材的性质 (5)3 铸造合金的熔炼 (6)3.1 铸造合金熔炼前准备 (6)3.2 铸件质量的相关因素 (6)3.3 熔炼导致的缺陷分析及防止 (8)3.4 铸造铝合金的浇铸 (9)4 铝合金精炼及变质处理 (11)4.1 精炼工艺选定及变质处理 (11)4.1.1 精炼工艺选定 (11)4.2 变质处理 (16)5 铸件质量检验 (22)5.1 铸造铝合金质量检验 (22)5.1.1 铸件检验程序及方法 (22)6 结论 (24)致谢 (25)参考文261绪论1.1 铸造铝合金的现状与发展趋势1.1.1铸造合金的现状铸造铝合金为传统的金属材料由于其密度小、比强度高等特点广泛地应用于航空、航天、汽车、机械等各行业。

随着现代工业及铸造新技术的发展对铸造铝合金需求量越来越大。

例如80年代末到90年代初在铸件总量停滞甚至下降的时候日本的铝铸件产量一直保持着年递10%左右的高增长率[1]。

又以汽车工业为例由于要降低能耗汽车需减重各国广泛地采用铝等有色铸件代替钢铁铸件。

到2001年小汽车总重将降低为800kg其中钢铁零部件为200kg铝合金零部件为275kg镁合金将增为40kg[2]。

而汽车零部件70%为铸件由此可以看出铸造铝合金的研究及应用将继续得到发展。

铸造铝合金的研究一直备受关注由于铝合金的熔点相对较低故许多学者以其为对象研究铸造过程的机理。

同时为全面发挥铝合金潜力在铝合金熔炼工艺及铸造工艺上的研究较多如:铝合金净化、变质、细化、合金化、纯化等这些先进的工艺技术研究旨在改善铸造合金的工艺性进一步提高合金的性能生产出优质铸件以满足人们对铸件的越来越高的要求。

此外许多特种铸造铝合金也相继研制出如高强度铸造铝合金ZL205A,Pb可达500MPa;耐热铸造铝合金ZL208使用温度为250~350℃[3]。

铝合金变质处理的现状和发展趋势

铝合金变质处理的现状和发展趋势

铝合金变质处理的现状和发展趋势铝合金变质处理的现状和发展趋势近年来,随着科技的不断进步和工业的飞速发展,铝合金作为一种轻质、高强度和耐腐蚀的金属材料,被广泛应用于航空航天、汽车制造、建筑工程等领域。

而铝合金的性能优化和改善往往需要通过变质处理来实现。

本文将对铝合金变质处理的现状和发展趋势进行全面评估,并对其进行深度和广度兼具的探讨。

一、铝合金变质处理的现状1. 变质处理的定义和意义变质处理是指将铝合金加热至一定温度,然后经过一定时间的保温,最后迅速冷却,以改善铝合金的力学性能和耐热性能的工艺过程。

这一过程在铝合金的加工和制造过程中起着至关重要的作用,可以显著提高铝合金的硬度、强度、耐腐蚀性和耐热性,从而扩大了铝合金的应用范围。

2. 变质处理的方法和技术目前,常见的铝合金变质处理方法包括固溶处理、时效处理和固溶时效处理。

固溶处理是指将铝合金加热至固溶温度,使合金元素溶解在铝基固溶体中,然后通过快速冷却来固定固溶体的组织。

时效处理是在固溶处理的基础上,通过加热和保温的方式使固溶体中形成沉淀相,从而提高合金的硬度和强度。

固溶时效处理则是将固溶处理和时效处理结合起来,以获得最佳的性能。

3. 变质处理的应用领域与发展趋势铝合金的变质处理在航空航天、汽车制造、建筑工程等领域有着广泛的应用。

随着各行业对材料性能要求的不断提高,对铝合金变质处理工艺的需求也日益增加。

未来,铝合金变质处理将更加注重工艺的精密化、一体化和智能化,以满足不同行业对材料性能的多样化需求。

二、铝合金变质处理的发展趋势1. 技术与设备的改进随着科技的进步,铝合金变质处理技术日益成熟,新型的变质处理设备也不断涌现。

高温固溶设备、快速冷却设备、智能化控制系统等先进设备的应用,使得变质处理工艺更加精准、高效和可控。

2. 环保与节能在当前环保和节能的大背景下,铝合金变质处理工艺也向着环保、节能的方向不断发展。

新型的变质处理工艺应当注重能源的利用效率、废气的处理和材料的循环利用,以降低对环境的影响。

铝合金变质处理及炉料处理_黄良余

铝合金变质处理及炉料处理_黄良余

1 + 2 和 1 + 3 的炉料 ,成分 、熔炼工艺相同 ,获得的 显微组织明显不同 ,前者显微组织中的 CuAl2 沿α(Al) 枝晶界连续分布 ,数量较多 ;后者的 CuAl2 数量不多 ,部 分 CuAl2 已固溶于α(Al) 中 ,呈点状 ,部分力学性能明显 提高 。
1 + 4 的炉料含铜量增加 ,熔制的合金 σb ,σ0. 2大幅 度上升 ,δ,ψ仍有较高的值 ,综合力学性能最好 。
关键词 : 铝合金熔体 精炼 变质 炉料处理
中图分类号 :TG146. 2 + 1 文献标识码 :A 文章编号 :1001 - 2449( 2001) 05 - 0031 - 03
1 铝合金变质处理
铝合金的变质处理可分为 3 类 :细化初晶α(Al) 或 初晶硅 ,改变和细化共晶硅的形状以及改变有害杂质相
0. 03
(点) 状的有多个结晶面的晶格常数和α(Al) 的相近 ,细
CBC
0. 05 0. 07
2~4 0. 8~1. 5 0. 3~0. 5
化效果最好 。
3 黄良余 ,男 ,1931 年出生 ,教授 ,上海交通大学 ,通讯地址 :上海市浦东南码头路 1186 弄 130 支弄 33 号 2002 室 (200125) ,电话 :021 - 50778584 收稿日期 :2001 - 04 - 20 修回日期 :2001 - 05 - 18
制造方法 熔炼温度/ ℃ Al3Ti 晶粒尺寸/μm Al3Ti 晶粒个数/ mm2
细化初晶的元素有多种 ,常见是钛 、硼 、锆 、稀土等 , 其细化机理较复杂 ,至今尚有争论 。细化初晶硅的机理 已基本解决 ,磷是细化初晶硅的唯一选择 。
一般认为 ,AlTi5B1 是α(Al) 的最佳细化剂 ,使用最 广泛 。市场上供应的 AlTi5B 形状 、大小 ,制造方法等不 同 ,中小厂家多使用廉价的合金锭 ;轧制成盘条状的 ,晶 粒细 ,细化效果好 ,使用方便 ,但价格较高 。

合金中的变质处理

合金中的变质处理

D
12
第一类变质处理
细化初晶α(Al)
细化初晶α(Al)的 元素常见的有钛、硼、 锆、稀土等。主要是 以中间合金或盐类形 式加入铝合金熔液中。 加入的变质剂与铝液 发生反应后生成TiAl3、 AlB2、TiB2、TiC、 B4C等起晶粒细化作 用。
细化初晶硅
对于过共晶铝硅合金,组织
中存在着大块多边形及板片状 共晶硅。含硅量越多,初晶硅
液态金属中某些元素相互 作用产生晶核或有效形核 质点的添加剂。
D
4
原理
在浇注前,将一些细小的形核变质剂 加入到液态金属中,会在金属液中形成大 量分散的人工制造的非自发晶核,促进 金属液非均匀形核,从而获得细小的铸 造晶粒,达到细化晶粒,改善组织形态的 目的。
D
5
常用的形核变质剂
铝合金一般选含Ti、Zr、B、C等元素 的化合物作晶粒细化剂。
D
1
简介
理想的铸锭组织是铸锭整个截 面上具有均匀、细小的等轴晶。这 是因为等轴晶各向异性小,加工时 变形均匀、性能优异、塑性好,利 于铸造及随后的塑性加工。要得到 这种组织,通常需要对熔体进行细 化处理。凡是能促进形核、抑制晶 粒长大的处理,都能细化晶粒。变 质处理是铝工业生产中常用于细化 晶粒的方法之一。
变 质 剂
更佳。
D
6
原理
吸附变质剂的特点是熔点低, 能显著降低合金的液相线温度;原 子半径大,在合金中固溶量小。在 晶体生长时,吸附变质剂富集在相 界面上,阻碍晶体长大,又能形成 较大的成分过冷,使晶体分枝形成 细的缩颈而易于熔断,促进晶体的 游离和晶核的增加。
其缺点是由于低熔点共晶体存 在于枝晶和晶界间,常引起热脆。
因此,对不同的金属应选用不同的变质剂。例如向铸 铁中加入少量硅铁、硅钙、镁、稀土;向铝硅合金中加入 少量钠,向铜合金中加入少量铋和锂等。

铝合金铸造基础知识

铝合金铸造基础知识
R14含硅量多(14-16%),属于过共晶,由于硅含量高,相对应的耐磨性较 好,我厂专门用来生产耐磨性要求较高的拨叉。
5 、铝硅合金中其它元素的作用:
镁:可提高强度和屈服极限,提高了合金的切削加工性。 锌:锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含 量在规定范围中。 铁:铁以FeAl3、Fe2Al7和Al-Si- Fe的片状或针状组织存在于合金中,降低 机械性能,这种组织还会使合金的流动 性减低,热裂性增大,但由于铝合金对模具 的粘附作用十分强烈,当铁含量在 0.6%以下时尤为强烈。当超过0.6%后,粘模现 象便大为减轻,故含铁量一般应控制在0.6~1%范围内对压铸是有好处的,但最高 不能超过1.5%。 锰:锰在铝合金中能减少铁的有害影响,能使铝合金中由铁形成的片状或针状 组织变为细密的晶体组织,故一般铝合金允许有0.5%以下的锰存在。含锰量过高时, 会引起偏析。 镍:镍在铝合金中能提高合金的强度和硬度,降低耐蚀性。镍与铁的作用一样, 能减少合金对模具的熔蚀,同时又能中和铁的有害影响,提高合金的焊接性能。 钛:能显著细化铝合金的晶粒组织,提高合金的机械性能,降低合的热裂倾向。
三.铸造基本知识
1、定义:铸造就是液态金属的一种成型方式。 2、铸造的分类: 铸造的种类较多,有传统的砂型铸造、重力铸造、熔模铸造、高压铸造、低压铸造、 消失模具铸造、离心铸造、陶瓷型铸造、连续铸造等。 3、我厂采用的铸造方法主要有以下几种: ⑴、金属型铸造(重力铸造) 金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,在重力的作用下结晶凝固 以获得铸件的一种铸造方法。凝固顺序是自下而上的。 ⑵、高压铸造 压力铸造是将液态或半液态金属, 在高压作用下, 以高的速度填充压铸模的型腔, 并在压力下快速凝固而获得铸件的一种方法。压铸时常用压力是从几兆帕至几十兆帕 (即几十到几百个大气压) , 填充初始速度在 0.5~70m/s 范围内。因此, 高压和高速 是压铸法与其他铸造法的根本区别, 也是重要特征 。

铝硅合金变质的方法及效果【详解】

铝硅合金变质的方法及效果【详解】

铝硅合金是一种以铝、硅为主成分的锻造和铸造合金,一般含硅量为11%,同时加入少量铜、铁、镍以提高强度,密度约为2.6~2.7g/cm3,导热系数约为101~126W/(m·℃),杨氏模量为71.0GPa,冲击值约为7~8.5J,疲劳极限为±45MPa。

铝硅合金由于质量轻、导热性能好,又具有一定强度、硬度以及耐蚀性能,因此,在汽车工业及机器制造业中广泛用来制作一些滑动摩擦条件下使用的零件。

变质处理的意义:铸造铝硅合金因具有密度低、强度高、耐磨耐热性好、热膨胀系数小等优点,是铸造铝合金中应用范围广、产量大的一类合金。

铝硅二元相图为典型的共晶型相图,共晶点硅的质量分数为11.7%,共晶温度为577℃。

硅在铝中固溶度为1.65%,室温时固溶度约为0.05%,根据硅含量的高低,将铝硅合金分为亚共晶型、共晶型和过共晶型合金。

在常规铸造铝硅合金的组织中,存在针状的共晶硅和粗大的形状复杂的初晶硅,恶化了合金的性能。

在工业上采用变质处理来改变硅相的形貌,使其以有利的形状、较小的尺寸均匀分布在基体中,对于提高铸造铝硅合金的性能具有很好的效果。

变质的方法及效果:能对铝硅合金中共晶硅起到变质作用的元素有多种,如Na、Sr、Ba、Bi、Sb和稀土元素Ce等。

其中变质作用最为显著、在生产上应用广泛的是Na,近年来Sr变质也逐渐在生产上得到应用。

当用含有氟化钠成分的复合盐类变质剂(例如成分为ωN▪F=45%,ωN▪Cl=40%,ωKCl=15%)对铝液进行处理,或往铝液中加入AI-Sr合金,以使铝液中含有残留Na为ωNa0.001~0.003%或残留Sr为ωSr=0.01~0.03%时,能得到良好的变质效果,使合金组织中的共晶硅变成纤维状从而显著提高合金的强度和塑性。

变质处理除了改变硅晶体结构外,还使合金的共晶程度有所改变。

用Na进行变质处理,会使共晶点右移,即使共晶含硅量增高,因此当处理前合金为共晶成分时,经过处理后即变为亚共晶成分。

铝合金变质处理的研究

铝合金变质处理的研究
八、注意事项
(一)在做断口间施加1min工频电压试验时,应将氧化锌避雷 器等过电压吸收装置从系统中拆除。
(二)因不同型号真空泡的技术参数不一样,个别真空泡试验 不合格时,尽量采用同型号的管子更新。平常应注意保持真空开关 的清洁,及时清理绝缘子、绝缘拉杆等绝缘件上的尘土。
(三)因不同厂家不同型号的真空开关的特性参数不一样,甚 至同一批开关之间也有差别,所以检修时应以出厂时厂家提供的参 数作为检修标准。建议在订货时要求生产厂家将订购产品的有关特 性参数如真空开关的行程、超行程、真空度等印在真空开关的背面 或真空开关柜的门背面。
参考文献: [1]Dumitrescu C, Groza I, and Geage A. Contribution to the
Modification of Aluminium-Silicon Complex Alloys for Car Pistons[J].Metalergia,1978,54(8):473-478. [2]全燕鸣.过共晶型铝硅合金研究的进展[J].轻合金加工技术,1996(2):26-31. [3]张瑜,王宇鑫,廖文俊,王华钰,杨颖,严彪.稀土元素对过共晶铝硅合金的变
基于上述观点出发,本文采用不同种类变质剂对Al-16.4%Si合 金进行变质处理,考察了不同种类变质剂的对其组织形态及力学性 能的影响。
二、试样制备与试验方法
以纯铝、单质硅(质量分数99.9%以上)为原料制备母合金Al16.4%Si,分割成四块。用石墨干锅在CRL-D型电阻炉内于760℃熔化 保温,加C2Cl6精炼除气,扒渣后浇入金属模中得一组拉伸试样A; B、C、D组试样采用相同熔炼工艺,并分别加入变质剂稀土、三元盐 (15%KCl+40%NaCl+45%NaF)及稀土和三元盐的混合物。各组试样配 料和所加变质剂种类及百分比如表1。

铸造铝合金变质处理

铸造铝合金变质处理

铸造铝合金变质处理铝合金是一种常见的轻质、高强度金属材料,具有良好的导热性和耐腐蚀性,在各个领域都有广泛的应用。

然而,铝合金材料的性能还有进一步提升的空间。

通过变质处理,可以改变铝合金的晶体结构和性能,使其更加适用于特定的工程应用。

变质处理是指通过加热和冷却等工艺操作,使铝合金材料的晶体结构和性能发生变化的过程。

变质处理的目的是通过控制材料的组织结构,调节其硬度、强度、韧性和耐腐蚀性等性能,以满足不同工程应用的需求。

铝合金的变质处理主要包括时效处理和固溶处理两种方式。

时效处理是指在合金经过固溶处理后,通过一定时间的加热保温,使合金中的固溶体逐渐析出出现硬化相,从而提高合金的强度和硬度。

固溶处理则是通过加热将合金中的固溶体溶解,使晶体内的溶质原子均匀分布,提高合金的塑性和韧性。

在变质处理中,合金的成分和热处理工艺参数是影响处理效果的关键因素。

合金的成分决定了合金的相变温度和固溶体的溶解度,而热处理工艺参数则决定了合金的组织结构和性能。

因此,在进行变质处理前,需要对合金的成分和热处理工艺进行充分的分析和调整。

变质处理的具体工艺流程如下:首先是固溶处理,将铝合金加热至固溶温度,使固溶体溶解;然后进行淬火,迅速冷却合金,使固溶体快速凝固;接着是时效处理,将淬火后的合金加热至时效温度,保持一定的时间,使析出相形成;最后冷却至室温,变质处理完成。

变质处理可以显著提高铝合金的性能。

通过时效处理,合金的硬度和强度得到提高,适用于对强度要求较高的工程结构。

固溶处理则能够提高铝合金的塑性和韧性,适用于对冲击韧性要求较高的应用场景。

不同的变质处理方式可以根据具体需求进行选择和调整,以获得最佳的性能。

变质处理也有一些注意事项。

首先,变质处理需要严格控制加热和冷却速度,以避免产生不均匀的组织结构。

其次,合金的成分和热处理工艺参数需要进行合理的选择和调整,以确保处理效果的稳定和可靠。

最后,变质处理后的合金需要进行适当的表面处理,以提高其耐腐蚀性和装饰性。

不同变质处理对铝合金组织性能的影响

不同变质处理对铝合金组织性能的影响

不同变质处理对铝合金组织性能的影响摘要:在铸造Al-15%Si合金熔炼过程中分别加入变质剂P盐、P盐+Al-Sr中间合金对其进行变质处理,分析不同变质剂及它们的复合形式对合金力学性能和显微组织的影响。

实验结果表明,P盐和Al-Sr 中间合金都对合金组织有一定的细化作用,其中P盐主要细化初晶硅,P盐+Al-Sr中间合金的复合变质剂能同时细化初晶硅和共晶硅。

实验证明加入复合变质剂后合金的显微组织细化程度最高,力学性能最为优越。

关键词:铸造Al-Si合金、变质处理、显微组织、性能引言铝合金是目前采用最多的轻金属合金材料,而铸造Al-Si系列合金是铝合金系中应用最早、最广泛的铝合金,它是重要的合金之一,具有优异的铸造性能,良好的力学性能与物理化学性能。

它是目前研究和应用最为广泛的铸造铝合金,其产量占铸铝总产量的80%~90%,适用于各种铸造方法。

因此,研究Al-Si系列合金的组织性能特点,进一步探寻在普通生产工艺中强化铝硅合金性能的方法,具有重要的理论意义和工程应用价值。

铸造Al-Si合金具有良好的力学性能、铸造性能和切削性能,广泛应用于航空航天和你汽车工业。

Al-Si未变质处理时,共晶Si以粗大的针、片状存在,严重割裂了合金基体,降低了合金的强度和塑性。

Sr对共晶硅起到很好的变质作用,同时却促进了粗大的柱状和树枝状Al晶粒的形核生长,这说明对铸造Al-Si合金仅变质处理是不够的,还有必要对枝晶进行等轴化和细化,消除这种组织对合金力学性能的不利影响。

本文采用了不同的变质剂对Al-15%Si合金进行变质处理,研究了变质处理对合金组织的影响规律,同时初步探讨变质剂对Al-Si合金的细化变质机理。

1、实验方案设计1.1材料的选择本实验的目的在于研究不同变质剂对于铝合金组织及其性能的影响,为了实验的顺利进行以及实验过程之中出现较少的干扰因素,选择二元Al-Si合金作为本次实验的研究对象,由于变质处理作用的主要机制在于改变铸态下的Si的形态、数量及其分布,再加之合金液体要具有相对较好的流动性,最终确定Al-15Si作为实验材料。

ADC12铝合金的细化变质处理最终版

ADC12铝合金的细化变质处理最终版

ADC12铝合金的细化变质处理一、实验目的1)熟练ADC12铝合金的熔炼、精炼、细化和变质处理过程。

2)了解ADC12铝合金的组织变质处理的基本原理和方法。

3)分析晶粒细化剂(Al-5Ti-B)对ADC12合金的组织的细化效果及其影响。

4)分析变质剂(Sr) 对ADC12合金的组织的变质效果及其影响。

5)了解各种变质的的单因素影响及正交实验的效果。

二、原理概述由于Al-Si共晶合金(ADC12)有很好的铸造性能,且铸件轻、比强度高、热膨胀系数小、耐腐蚀性能高及切屑性能好, 故被广泛用于航天航空、汽车等工业。

在再生铝合金ADC12铸件中,α-Al相是最主要的组织。

在铸态时,α-Al相呈树枝状,并且比较粗大,其取向没有一定的规律,较为杂乱,这使得其性能不是很好。

Fe在A l合金中通常被认为是最有害的杂质元素, 常见的Fe相为α-Fe 相( A l8 S iFe2 )和β-Fe 相( Al5 SiFe) 两种。

硬而脆的针状的β-Fe相会破坏金属基体的连接强度, 大幅降低合金的力学性能(如抗拉强度)。

Fe在A l 合金中作为有害元素会显著降低合金的力学性能, 影响断裂粗糙程度等。

1.铝硅合金的细化处理铝硅合金细化处理的目的主要是细化合金基体α-Al的晶粒。

晶粒细化是通过控制晶粒和形核和长大来实现的。

细化处理的基本原理是促进形核,抑制长大。

对晶粒细化的基本要求是:1)含有稳定的异质固相形核颗粒、不易溶解。

2)异质形核颗粒与固相α-Al间存在良好的晶格匹配关系。

3)异质形核颗粒应非常细小,并在铝熔体中呈高度弥散分布。

4)加入细化剂不能带入任何影响铝合金性能的有害元素或杂质。

晶粒细化剂的加入一般采用中间合金的方式。

常用晶粒细化剂有以下几种类型:二元Al-Ti合金、三元Al-Ti-B合金、Al-Ti-C合金以及含稀土的中间合金。

它们是工业上广泛应用的最经济、最有效的铝合金晶粒细化剂。

这些合金元素加入到铝熔体中后,会与Al发生化学反应,生成 TiAl3、TiC、B4C等金属间化合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造铝合金变质处理
一、引言
铝合金是一种重要的结构材料,具有良好的力学性能和耐腐蚀性。

然而,铝合金在铸造过程中会产生一些缺陷,如晶粒过粗、析出相不均匀等,从而影响其力学性能。

为了改善铝合金的性能,铸造后常常需要进行变质处理。

本文将探讨铝合金变质处理的原理、方法和应用。

二、铝合金变质处理的原理
铝合金变质处理是通过热处理方法改变合金的组织结构,达到调节性能的目的。

变质处理的原理主要包括相变、析出和固溶。

1. 相变:在变质处理过程中,铝合金中的一些固溶相会发生相变,从而引起组织结构的变化。

常见的相变有固溶相变、过饱和固溶相变和共析相变等。

2. 析出:在变质处理过程中,一些固溶相会从固溶体中析出,形成新的相或颗粒。

这些析出相的形成可以改变合金的硬度、强度和耐腐蚀性能。

3. 固溶:固溶是指将合金加热至高温状态,使固溶体中的溶质原子分散均匀。

通过固溶处理,可以消除合金内部的偏析和缺陷,提高合金的均匀性和稳定性。

三、铝合金变质处理的方法
铝合金变质处理的方法主要包括热处理和化学处理两种。

1. 热处理:热处理是指将铝合金加热至一定温度,保持一段时间后冷却。

常见的热处理方法有固溶处理和时效处理。

- 固溶处理:固溶处理是将合金加热至固溶温度,使溶质原子充分溶解在基体中,然后快速冷却。

固溶处理可以消除合金内部的偏析和缺陷,提高合金的均匀性和稳定性。

- 时效处理:时效处理是在固溶处理后,将合金加热至较低的温度,保持一定时间后冷却。

时效处理可以使合金中的析出相得到充分的析出和成长,从而改善合金的强度和硬度。

2. 化学处理:化学处理是指利用化学反应改变合金的组织结构。

常见的化学处理方法有酸洗、碱洗和电解处理等。

这些化学处理方法可以去除合金表面的氧化物和杂质,提高合金的表面质量和耐腐蚀性能。

四、铝合金变质处理的应用
铝合金变质处理广泛应用于航空航天、汽车制造、电子设备等领域。

1. 航空航天领域:航空航天领域对铝合金的性能要求较高,因此变质处理是必不可少的工艺。

通过变质处理,可以提高铝合金的强度、
韧性和耐腐蚀性,满足航空航天领域对材料性能的要求。

2. 汽车制造领域:铝合金在汽车制造中的应用越来越广泛,通过变质处理可以改善铝合金的强度、刚度和耐腐蚀性,提高汽车的安全性能和燃油经济性。

3. 电子设备领域:铝合金在电子设备中的应用也越来越多,通过变质处理可以提高铝合金的导电性能和耐热性能,满足电子设备对材料性能的要求。

五、总结
铸造铝合金变质处理是改善铝合金性能的重要工艺。

通过热处理和化学处理等方法,可以改变铝合金的组织结构,提高其力学性能和耐腐蚀性能。

铝合金变质处理在航空航天、汽车制造和电子设备等领域有着广泛的应用前景。

未来,随着科学技术的发展,铝合金变质处理技术将会不断改进,为各个领域的发展提供更好的材料支持。

相关文档
最新文档