数学北师大版七年级下册多项式除以多项式

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)

北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)
北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)
一、教学内容
本节课我们将深入探讨北师大版七年级数学下册第1章“整式的除法”中的1.7节,第2课时“多项式除以单项式”的内容。具体包括以下要点:
1.理解并掌握多项式除以单项式的运算法则;
2.能够正确运用多项式除以单项式的运算解决实际问题;
五、教学反思
在今天的课程中,我们探讨了多项式除以单项式的知识点。回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,从学生的反馈来看,他们对这个Байду номын сангаас识点的掌握程度参差不齐。在讲解过程中,我尽量用简单的语言和生动的案例进行解释,但仍有部分学生在实际操作时遇到困难。针对这一点,我考虑在接下来的课程中增加一些针对性的练习,以巩固学生对多项式除以单项式的理解和运用。
-指导学生如何处理除法运算中出现的余数,以及如何将余数转化为分数或小数;
-强调检查计算结果的重要性,包括验证商与余数是否正确。
举例:学生在解决类似“计算(3x^3 - 5x^2 + 2x) ÷ (2x - 1)”这样的问题时,可能会在合并同类项或处理余数时遇到困难。
四、教学流程
(一)导入新课(用时5分钟)
2.培养学生运用数学语言进行表达和交流,增强数学建模和抽象思维能力;
3.在解决多项式除以单项式问题时,学会分析问题、归纳总结,提高数学推理和数据分析能力;
4.培养学生合作探究、自主学习的意识,提高数学学习的兴趣和自信心;
5.引导学生关注数学在现实生活中的应用,增强数学应用的意识和实践能力。
三、教学难点与重点
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

1.7+第2课时+多项式除以单项式课件2023-2024学年北师大版七年级数学下册

1.7+第2课时+多项式除以单项式课件2023-2024学年北师大版七年级数学下册

多项式除以单项式法则的应用
阅读教材本课时“例2”与“做一做”的内容,回答下列问题.
1.讨论:(1)课本“例2(1)”中,将多项式除以单项式转化为各 单项式除以单项式 运算,再把所得的 商 相加.
(2)课本“例2(2)(3)”中,多项式中有一项带有负号,应将
负号一并作为该项的一部分进行运算
.
(3)课本“例2(4)”中,作为除式的单项式本身带有负号,可先确 定各项商的 符号,再将所得的 商相加.
七年级·数学·北师大版·下册
7 整式的除法 第2课时 多项式除以单项式
素养目标
1.根据乘除的性质,能将多项式除以单项式转化为多项式乘 以单项式.
2.由单项式与多项式的乘法分配律,探究多项式与单项式的 除法.
3.能熟练运用多项式除以单项式的运算法则进行运算. ◎重点:掌握多项式除以单项式法则. ◎难点:体会转化思想.
2.在“做一做”中,小明爬山的总路程是 vt1+12vt2 ,故下山的 总路程 vt1+12vt2 ,下山的时间应为 (vt1+12vt2)÷4v=14t1+18t2 , 这是什么运算?
多项式除以单项式.
·导学建议· 多项式除以单项式运算的基本思想是“转化”,乘法与除法之 间的转化,加法与减法之间的转化.要注意引导学生思考是如何 转化的.
(3)将乘法再转化为除法:a×m1 +b×m1 +c×m1 = a÷m+b÷m+c÷m .
(4)总结:(a+b+c)÷m=a÷m+b÷m+c÷m.
归纳总结 多项式除以单项式,先把这个多项式的每一项 除以这个单项式,再把所得的商 相加 . 【学法指导】由多项式乘以单项式的乘法分配律,我们发现 多项式除以单项式也符合“分配”,故实际运算中可直接将多项 式的每一项除以单项式,而不必再相互转化.

北师大版七年级下册数学各章知识点总结复习整理

北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)
符号表示:
(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳

(完整版)北师大版七年级下册数学各章知识点总结(最新整理)

(完整版)北师大版七年级下册数学各章知识点总结(最新整理)

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)ppa aa -=≠p 是正整数。

七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

北师大版七年级数学下册数学各章节知识点总结

北师大版七年级数学下册数学各章节知识点总结

第一章:整式的运算同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律.2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入"进行计算。

二、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m﹒a n=a m+n.4、此法则也可以逆用,即:a m+n = a m﹒a n。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

三、幂的乘方1、幂的乘方是指几个相同的幂相乘。

(a m)n表示n个a m相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m)n =a mn.3、此法则也可以逆用,即:a mn =(a m)n=(a n)m。

四、积的乘方1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab)n=a n b n。

3、此法则也可以逆用,即:a n b n =(ab)n。

五、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算. (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式).(3)对于含有3个或3个以上的运算,法则仍然成立.2、不同点:(1)同底数幂相乘是指数相加。

北师大版七年级数学下册1.7 第2课时多项式除以单项式

北师大版七年级数学下册1.7 第2课时多项式除以单项式

7整式的除法第2课时多项式除以单项式图1-7-4多媒体出示图片)张大爷家有一块长方形的田地,它的面积是6a2+2a,宽为四:课堂总结反思1.下列计算正确吗?(1)(3x2y-6xy)÷(-6xy)=0.5x()(2)(5a3b-10a2b2-15ab3)÷(-5ab)=a2+2ab+3b2()(3)(2x2y-4xy2+6y3)÷(-12y)=-x2+2xy-3y2()2.填空题:(35a3+28a2+7a)÷(-7a)=3.选择题:长方形的面积是4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3b B.8a-6bC.4a-3b+1 D.8a-6b+24.计算:(3a2b-2ab2+2ab)÷2ab.面巩固新知识;另一方面,教师可以及时地了解学生对新知识的掌握情况,为下一步的教学做好准备.【课堂总结】通过这节课学习多项式除以单项式的运算后,你有何感想?处理方式:学生归纳总结.1.多项式除以单项式是通过转化成单项式除以单项式的运算实现的.由此,我体会到温故知新,转化思想的重要性.2.在具体应用多项式除以单项式的运算法则时应注意以下几点:①商为1时,不可漏写.②可以先确定每一个商的符号,然后写成代数和的形式.布置作业必做题:课本P31习题1.14中T1,T3.选做题:课本P32习题1.14中T2.课堂总结并不仅仅是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师予以鼓励,激发学生的学习兴趣与自信心,这对于学生今后的数学学习有着莫大的帮助.【板书设计】提纲挈领,重点突出.【教学反思】①[授课流程反思]反思,更进一步提升.。

北师大七年级数学下册知识点总结

北师大七年级数学下册知识点总结

北师大版七年级数学下册知识点总结第一章 整式的运算一、整式1、单项式:表示数与字母的积的代数式。

另外规定单独的一个数或字母也是单项式。

单项式中的数字因数叫做单项式的系数。

注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是72- 单项式的次数是指所有字母的指数的和。

2、多项式:几个单项式的和叫做多项式。

(几次几项式)每一个单项式叫做多项式的项,注意项包括前面的符号。

多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

3、整式;单项式与多项式统称为整式。

(最明显的特征:分母中不含字母)4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。

二、整式的加减:①先去括号; (注意括号前有数字因数)②再合并同类项。

(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。

m n m n a a a +=•2、幂的乘方:底数不变,指数相乘。

nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。

10=a (0≠a ) 注意00没有意义。

5、负整数指数幂: p p a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。

m n m n a a a -=÷注意:以上公式的正反两方面的应用。

常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。

整 式 多项式: 。

同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。

对顶角的性质:垂线的性质:性质1:过一点有 。

性质2:连接直线外一点 。

平行线的性质:1、平行公里:过 性质2:平行于 平行。

整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。

三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。

任意三角形都有三条角平分线,并且它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。

这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。

北师大版七年级数学下册 1. 7《多项式除以单项式》课件(共16张PPT)

北师大版七年级数学下册 1. 7《多项式除以单项式》课件(共16张PPT)

9x2 y 3xy 6xy2 3xy
3x2y
(4) (3x2 y xy2 1 xy) ( 1 xy)
2
2
3x2 y 1 xy xy2 1 xy 1 xy 1 xy
2
222
6x 2 y 1
想一想,下列计算正确-1(吗或?1)不要丢掉
(1) (3x2 y 6xy) 6xy 0.5x ( )
1
(1)
K
1 3
(3a2b3 )2
2(ab)2
(2a 2b)
(2) (a b)2 b(2a b) 2a (3a)
பைடு நூலகம்
谈谈你的收获
多项式除以单项式法则 多项式除以单项式,先把这个多项式的每 一项分别除以单项式,再把所得的商相加。
布置作业
1、课本31页,习题1.14 1、2、3题 2、做出本章的思维导图 3、搜集2-3道你认为本章很典型的题目
春天不播种, 夏天就不生长, 秋天就不能收获, 冬天就不能品尝!!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和自信,而勇气和 自信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有翼,为何一生 匍匐前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚搏,才是充 实的生活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一颗石子。 最凄美的爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想的那么 美好,但也不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的过程, 而不是一步到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出路, 气度决定高度,细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 有一切宇宙智慧。所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以 希望为哨兵。如果一个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才 在道路上设下重重的障碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。 真正的心理健康,是不设防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成 功,我可以拼命!我会努力站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己 本身之主人者,将永远成不了他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋 斗。眼泪的存在,是为了证明悲伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最 大原因,是对自己的能力缺乏充分的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的, 有很多东西飘然于我们的视野与心灵之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有 不甘和怨气来源于你的不自信和没实力。你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。 平静的湖面锻炼不出精悍的水手;安逸的生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在 于一念之差。人生就像一个动物园,当你以为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。 如果不想被打倒,只有增加自身的重量。如果你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是 欺骗不了的,一个人要生活得光明磊落。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪 里。世上最累人的事,莫过于虚伪的过日子。当你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾, 而错过则是永远的遗憾!很多事情努力了未必有结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改 变,解决之道在于改变自己。积极向上的心态,是成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进; 即使江河波涛汹涌,船只也航行。经验是由痛苦中粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别 人为你做了什么,而要问你为别人做了什么。要有最遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中, 就会变得低级庸俗。涓涓细流一旦停止了喧哗,浩浩大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去, 曾经的辉煌,仅仅是是曾经。其实我们往往失败不是在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服 今天,懦夫哀叹昨天,懒汉坐等明天。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。 人们总是在努力珍惜未得到的,而遗忘了所拥有的。时间告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫��

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结一、整式的乘除。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(m、n 为正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m、n为正整数)。

- 例如:(3^2)^3 = 3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(n为正整数)。

- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2。

5. 零指数幂。

- 规定:a^0 = 1(a≠0)。

6. 负整数指数幂。

- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。

- 例如:2^-3=(1)/(2^3)=(1)/(8)。

7. 整式的乘法。

- 单项式乘以单项式:系数相乘,同底数幂相乘。

例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。

- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(x + 3)=2x^2+6x。

- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。

8. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。

- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。

数学北师大版七年级下册多项式除以多项式

数学北师大版七年级下册多项式除以多项式

“整式的除法”教学设计——戚晓东教案一.教学目标1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式、多项式除以单项式,并且结果都是整式)。

2、理解整式除法运算的算理,发展有条理的思考及表达能力。

二.教学重难点重点是单项式除以单项式、多项式除以单项式的运算性质和运算规律,并能运用有关运算性质和运算法则进行一些简单的计算。

三.教具准备:多媒体课件第一课时单项式除以单项式1.试一试:用你熟悉的方法计算:(1) 12a5c2÷3a2=_____(2) -4r4s2 ÷ 4rs2 =______概括:单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。

2.【例题分析】例1 计算:(1) 24a3b2÷3ab2 ,(2) -21a2b3c÷3ab ,(3) (6xy2)2÷3xy .解:(1) 24a3b2÷3ab2=(24÷3)(a3÷a)(b2÷ b2)=8a3-1×1=8a2(2) -21a2b3c÷3ab=(-21÷3)a2-1b3-1c=-7ab2c(3) (6xy2)2÷3xy=36x2y4 ÷3xy=12xy3例2 计算:(1) 12(a-b)5÷3(a-b)2 ,(2) (3y-x)3 ÷(x-3y)2 ,(3) (2a2)4 ÷(a3)2解: (1) 12(a-b)5÷3(a-b)2=(12÷3)(a-b)5-2=4(a-b)3(2) (3y-x)3 ÷(x-3y)2= (3y-x)3 ÷ (3y-x)2= (3y-x)3-1= 3y-x(3) (2a2)4 ÷(a3)2=16a8 ÷a6=16a8-6=16a2【例题分析】例3. 地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)分析: 本题只需做一个除法运算:(1.9×1027)÷( 5.98×1024),我们可以先将1.9除以5.98,再将1027除以1024,最后将商相乘.解: (1.9×1027)÷( 5.98×1024)=(1.9 ÷5.98) ×1027-24≈0.318×103 =318答:木星的质量约是地球的318倍.3.比较归纳,概括原理(1)议一议:如何进行单项式除以单项式的运算呢?与同伴交流.(通过议一议,让学生经历从特殊到一般,从具体到抽象的归纳推理过程,自然地得出单项式除以单项式的除法法则.)(2)你能用文字概括单项式除以单项式的运算法则吗?与同伴交流.(通过运用自己的文字语言对法则的概括,得出单项式除以单项式的除法法则,让学生再次体验这一法则得来的过程,进一步体会幂的意义,提高学生的归纳、表达能力.)(3)你能比较单项式除以单项式的除法法则与单项式乘以单项式的乘法法则之间的联系和区别吗?找出它们的异同点.与同伴交流.(通过让学生对知识之间的对比,进一步理解数学知识之间的相互联系,同时更加理解单项式除以单项式的除法运算规律.)4.应用巩固,拓展问题(1)做一做:(课本例题)(鼓励学生独立完成,然后通过同学之间相互评价,让学生再次回顾单项式除以单项式这一性质得来的过程,并概括运算过程中应注意的问题.)(2)练一练:(课本中的练习)(通过练一练,让学生进一步理解单项式除以单项式的法则和意义,通过对式子的比较,让学生进一步体验单项式除以单项式的除法性质的产生过程和同底数幂的除法的意义.)(3)做一做:把下图左圈里的每一个整式分别除以2x2y,并将商写在右圈的相应位置上.(通过本题的做一做,引导学生体验单项式除以单项式的除法性质,同时对学生渗透了集合与对应的思想.)(4)做一做:地球到太阳的距离约是1.5×108千米,光的速度约是每秒3.0×105千米,那么太阳光从太阳到地球需要多少时间呢?(让学生通过解决一些实际问题,进一步体验单项式除以单项式和同底数幂相除的运算性质,通过本例还可以让学生进一步感受大数目,发展学生的数感.)5.课内深化,提升能力(1)下列计算:①a6÷a2=a3中正确的个数有()A、1B、2C、3D、4(2)填空:①= 。

北师大版七年级数学下册拓展材料:如何进行多项式除以多项式的运算(含答案)

北师大版七年级数学下册拓展材料:如何进行多项式除以多项式的运算(含答案)

如何进行多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下:例1 计算)4()209(2+÷++x x x规范解法∴ .5)4()209(2+=+÷++x x x x解法步骤说明:(1)先把被除式2092++x x 与除式4+x 分别按字母的降幂排列好.(2)将被除式2092++x x 的第一项2x 除以除式4+x 的第一项x ,得x x x =÷2,这就是商的第一项.(3)以商的第一项x 与除式4+x 相乘,得x x 42+,写在2092++x x 的下面.(4)从2092++x x 减去x x 42+,得差205+x ,写在下面,就是被除式去掉x x 42+后的一部分.(5)再用205+x 的第一项x 5除以除式的第一项x ,得55=÷x x ,这是商的第二项,写在第一项x 的后面,写成代数和的形式.(6)以商式的第二项5与除式4+x 相乘,得205+x ,写在上述的差205+x 的下面.(7)相减得差0,表示恰好能除尽.(8)写出运算结果,.5)4()209(2+=+÷++x x x x例2 计算)52()320796(2245--÷+-+-x x x x x x .规范解法∴ )52()320796(2245--÷+-+-x x x x x x 163323-+-=x x x ……………………………余29-x .注 ①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数.另外,以上两例还可用分离系数法求解.如例2.∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .8.什么是综合除法?由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊.如:计算)3()432(3-÷-+x x x .因为除法只对系数进行,和x 无关,于是算式(1)就可以简化成算式(2).还可以再简化.方框中的数2、6、21和余式首项系数重复,可以不写.再注意到,因除式的首项系数是1,所以余式的首项系数6、21与商式的系数重复,也可以省略.如果再把代数和中的“+”号省略,除式的首项系数也省略,算式(2)就简化成了算式(30的形式:将算式(3)改写成比较好看的形式得算式(4),再将算式(4)中的除数-3换成它的相反数3,减法就化为了加法,于是得到算式(5).其中最下面一行前三个数是商式的系数,末尾一个数是余数.多项式相除的这种算法,叫做综合除法,它适合于除式为一次式,而且一次项系数为1.例1 用综合除法求12333234+-+-x x x x 除以1-x 的商式和余式.规范解法∴ 商式2223-+-=x x x ,余式=10.例2 用综合除法证明910152235-+-x x x 能被3+x 整除.规范证法 这里)3(3--=+x x ,所以综合除法中的除数应是-3.(注意被除式按降幂排列,缺项补0.)因余数是0,所以910152235-+-x x x 能被3+x 整除.当除式为一次式,而一次项系数不是1时,需要把它变成1以后才能用综合除法..例3 求723-+x x 除以12+x 的商式和余数.规范解法 把12+x 除以2,化为21+x ,用综合除法.但是,商式2322+-≠x x ,这是因为除式除以2,被除式没变,商式扩大了2倍,应当除以2才是所求的商式;余数没有变.∴ 商式43212+-=x x ,余数437-=. 为什么余数不变呢?我们用下面的方法验证一下. 用723-+x x 除以21+x ,得商式2322+-x x ,余数为437-,即 ∴ 437232213223-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-+x x x x x ()4374321122-⎪⎭⎫ ⎝⎛+-+=x x x . 即 323-+x x 除以12+x 的商式43212+-=x x ,余数仍为437-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“整式的除法”教学设计
——戚晓东教案
一.教学目标
1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式、多项式除以单项式,并且结果都是整式)。

2、理解整式除法运算的算理,发展有条理的思考及表达能力。

二.教学重难点
重点是单项式除以单项式、多项式除以单项式的运算性质和运算规律,并能运用有关运算性质和运算法则进行一些简单的计算。

三.教具准备:多媒体课件
第一课时单项式除以单项式
1.试一试:
用你熟悉的方法计算:
(1) 12a5c2÷3a2=_____
(2) -4r4s2 ÷ 4rs2 =______
概括:
单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。

2.【例题分析】
例1 计算:
(1) 24a3b2÷3ab2 ,
(2) -21a2b3c÷3ab ,
(3) (6xy2)2÷3xy .
解:(1) 24a3b2÷3ab2
=(24÷3)(a3÷a)(b2÷ b2)
=8a3-1×1
=8a2
(2) -21a2b3c÷3ab
=(-21÷3)a2-1b3-1c
=-7ab2c
(3) (6xy2)2÷3xy
=36x2y4 ÷3xy
=12xy3
例2 计算:
(1) 12(a-b)5÷3(a-b)2 ,
(2) (3y-x)3 ÷(x-3y)2 ,
(3) (2a2)4 ÷(a3)2
解: (1) 12(a-b)5÷3(a-b)2
=(12÷3)(a-b)5-2
=4(a-b)3
(2) (3y-x)3 ÷(x-3y)2
= (3y-x)3 ÷ (3y-x)2
= (3y-x)3-1
= 3y-x
(3) (2a2)4 ÷(a3)2
=16a8 ÷a6
=16a8-6
=16a2
【例题分析】
例3. 地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)
分析: 本题只需做一个除法运算:
(1.9×1027)÷( 5.98×1024),我们可以先将1.9除以5.98,再将1027除以1024,最后将商相乘.
解: (1.9×1027)÷( 5.98×1024)
=(1.9 ÷5.98) ×1027-24
≈0.318×103 =318
答:木星的质量约是地球的318倍.
3.比较归纳,概括原理
(1)议一议:如何进行单项式除以单项式的运算呢?与同伴交流.
(通过议一议,让学生经历从特殊到一般,从具体到抽象的归纳推理过程,自然地得出单项式除以单项式的除法法则.)
(2)你能用文字概括单项式除以单项式的运算法则吗?与同伴交流.(通过运用自己的文字语言对法则的概括,得出单项式除以单项式的除法法则,让学生再次体验这一法则得来的过程,进一步体会幂的意义,提高学生的归纳、表达能力.)
(3)你能比较单项式除以单项式的除法法则与单项式乘以单项式的乘法法则之间的联系和区别吗?找出它们的异同点.与同伴交流.
(通过让学生对知识之间的对比,进一步理解数学知识之间的相互联系,同时更加理解单项式除以单项式的除法运算规律.)
4.应用巩固,拓展问题
(1)做一做:(课本例题)
(鼓励学生独立完成,然后通过同学之间相互评价,让学生再次回顾单项式除以单项式这一性质得来的过程,并概括运算过程中应注意的问题.)
(2)练一练:(课本中的练习)
(通过练一练,让学生进一步理解单项式除以单项式的法则和意义,通过对式子的比较,让学生进一步体验单项式除以单项式的除法性质的产生过程和同底数幂的除法的意义.)(3)做一做:
把下图左圈里的每一个整式分别除以2x2y,并将商写在右圈的相应位置上.
(通过本题的做一做,引导学生体验单项式除以单项式的除法性质,同时对学生渗透了集合与对应的思想.)
(4)做一做:
地球到太阳的距离约是1.5×108千米,光的速度约是每秒3.0×105千米,那么太阳光从太阳到地球需要多少时间呢?
(让学生通过解决一些实际问题,进一步体验单项式除以单项式和同底数幂相除的运算性质,通过本例还可以让学生进一步感受大数目,发展学生的数感.)
5.课内深化,提升能力
(1)下列计算:
①a6÷a2=a3
中正确的个数有()
A、1
B、2
C、3
D、4
(2)填空:①= 。

②(2a-3)3÷(3-2a)= .
(3)计算:①-7a2b2÷(-a2b) ②(2x3y3)3÷(-3x2y4)
③(-4ab2)÷2ab2·④-10(a+b)4(a-b)2÷5(a+b)3(a-b)
(4)已知:a:b:c=2:3:5,计算(10a+12b+15c)÷(a+b+c)的值。

6.回顾联系,形成结构
想一想:本节课学了哪些知识?有哪些性质?在运用性质时应注意什么?
试比较单项式除以单项式与单项式乘以单项式的运算性质之间和区别和联系.
(通过四个问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)。

相关文档
最新文档