2021-2022学年吉林省长春市榆树市中考数学模拟预测题含解析

合集下载

2022届吉林省(省命题)中考数学模拟试题(含答案解析)

2022届吉林省(省命题)中考数学模拟试题(含答案解析)

2022届吉林省(省命题)中考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2ba =1C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根 2.下列事件中,必然事件是( )A .抛掷一枚硬币,正面朝上B .打开电视,正在播放广告C .体育课上,小刚跑完1000米所用时间为1分钟D .袋中只有4个球,且都是红球,任意摸出一球是红球3.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( )A .m >﹣2B .m ≥﹣2C .m ≥﹣2且m ≠0D .m >﹣2且m ≠04.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )A .20°B .35°C .15°D .45°5.﹣12的绝对值是( )A .﹣12B .12 C .﹣2 D .26.如图所示的几何体,它的左视图是( )A.B.C.D.7.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.8.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%9.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.105C.103D.15310.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±2二、填空题(本大题共6个小题,每小题3分,共18分)11.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.12.在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为_____.13.= .14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.15.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.16.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.三、解答题(共8题,共72分)17.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.18.(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.19.(8分)如图,点A,B在O上,直线AC是O的切线,OC OB.连接AB交OC于D.(1)求证:AC DC=(2)若2AC=,O的半径为5,求OD的长.20.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.21.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.22.(10分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.23.(12分)如图,已知一次函数y=32x﹣3与反比例函数kyx=的图象相交于点A(4,n),与x轴相交于点B.填空:n 的值为 ,k 的值为 ; 以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; 考察反比函数k y x=的图象,当2y ≥-时,请直接写出自变量x 的取值范围. 24.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线OBCDA 表示轿车离甲地距离y (千米)与时间x (小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x 的值;在两车行驶过程中,当轿车与货车相距20千米时,求x 的值.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、D【答案解析】测试卷分析:根据图像可得:a <0,b >0,c <0,则A 错误;12b a->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D .2、D【答案解析】测试卷解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.3、C【答案解析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【题目详解】解:∵抛物线288y mx x =--和x 轴有交点, 20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩, 解得:m 2≥﹣且m 0≠.故选C .【答案点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键.4、A【答案解析】根据∠ABD =35°就可以求出AD 的度数,再根据180BD ︒=,可以求出AB ,因此就可以求得ABC ∠的度数,从而求得∠DBC【题目详解】解:∵∠ABD =35°, ∴的度数都是70°,∵BD 为直径, ∴的度数是180°﹣70°=110°,∵点A 为弧BDC 的中点, ∴的度数也是110°, ∴的度数是110°+110°﹣180°=40°,∴∠DBC ==20°, 故选:A .【答案点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.5、B【答案解析】根据求绝对值的法则,直接计算即可解答.【题目详解】111()222-=--=, 故选:B .【答案点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.6、D【答案解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、B【答案解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B .8、D【答案解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x a x x a+-=+故选D.9、B【答案解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴2255E G GG''+'=∴C四边形EFGH5故选B.【答案点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.10、C【答案解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、6【答案解析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【题目详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,∴=故答案为6.【答案点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.12、4【答案解析】根据锐角的余弦值等于邻边比对边列式求解即可.【题目详解】∵∠C=90°,AB=6,∴2cos3BCBAB==,∴BC=23AB=4.【答案点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,sinAA∠=的对边斜边,cosAA∠=的邻边斜边,tanAAA∠=∠的对边的邻边.13、2【答案解析】测试卷分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.∵22=4,∴=2.考点:算术平方根.14、25°.【答案解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、5 6【答案解析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【题目详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【答案点睛】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.16、x≥1.【答案解析】测试卷分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.三、解答题(共8题,共72分)17、(1)证明见解析;(2)证明见解析;(3)证明见解析.【答案解析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO ≌△CDE 得出AB =CD ,即可判断出四边形ABCD 是平行四边形,最后判断出CD =AD 即可.【题目详解】(1)如图,连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠2+∠3=∠1+∠COD =90°,∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE ;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°,∴∠2=∠1=30°,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【答案点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.18、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【题目详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.19、(1)证明见解析;(2)1.【答案解析】(1)连结OA ,由AC 为圆的切线,利用切线的性质得到∠OAC 为直角,再由OC OB ,得到∠BOC 为直角,由OA=OB 得到OAB OBA ∠=∠,再利用对顶角相等及等角的余角相等得到CAD CDA ∠=∠,利用等角对等边即可得证; (2)在Rt OAC △中,利用勾股定理即可求出OC ,由OC=OD +DC ,DC=AC ,即可求得OD 的长.【题目详解】(1)如图,连接OA ,∵AC 切O 于A ,∴OA AC ⊥,∴1290∠+∠=︒又∵OC OB ,∴在Rt BOD 中:390B ∠+∠=︒∵OA OB =,∴2B ∠=∠,∴13∠=∠,又∵34∠=∠,∴14∠=∠,∴AC DC =;(2)∵在Rt OAC ∆中:2AC =, 5OA =, 由勾股定理得:22OC AC OA =+222(5)3=+=,由(1)得:2DC AC ==,∴321OD OC DC =-=-=.【答案点睛】此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.20、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【答案解析】(1)由直方图可知A 的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B 的人数为10及总人数可知m 的值;(2)根据平均数、众数和中位数的定义求解即可.【题目详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分), 众数为75分,中位数为第13个数据,即75分.【答案点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.21、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【答案解析】测试卷分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1. ∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根22、4小时.【答案解析】本题依据题意先得出等量关系即客车由高速公路从A 地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【题目详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:60048045,2x x += 解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时.【答案点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.23、 (1)3,1;3);(3) x 6≤-或x 0>【答案解析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x =,得到k 的值为1;(2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D 的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x 的取值范围.【题目详解】解:(1)把点A (4,n )代入一次函数y=32x-3,可得n=32×4-3=3; 把点A (4,3)代入反比例函数k y x =,可得3=4k ,解得k=1.(2)∵一次函数y=32x-3与x 轴相交于点B , ∴32x-3=3, 解得x=2,∴点B 的坐标为(2,3),如图,过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,∵A (4,3),B (2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2, 在Rt △ABE 中,22223123AE BE ++==∵四边形ABCD 是菱形,∴13AB ∥CD ,∴∠ABE=∠DCF ,∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB=∠DFC=93°,在△ABE 与△DCF 中, AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴1313∴点D 的坐标为(133).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.24、(1)30;(2)当x =3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.【答案解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)先求出线段CD 对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【题目详解】解:(1)根据图象信息:货车的速度V 货=300605=, ∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为30;(2)设CD 段函数解析式为y =kx+b (k≠0)(2.5≤x≤4.5).∵C (2.5,80),D (4.5,300)在其图象上,2.5804.5300k b k b +=⎧⎨+=⎩,解得110195k b =⎧⎨=-⎩, ∴CD 段函数解析式:y =110x ﹣195(2.5≤x≤4.5);易得OA :y =60x ,11019560y x y x =-⎧⎨=⎩,解得 3.9234x y ==, ∴当x =3.9时,轿车与货车相遇;(3)当x =2.5时,y 货=150,两车相距=150﹣80=70>20,由题意60x ﹣(110x ﹣195)=20或110x ﹣195﹣60x =20,解得x =3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.【答案点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.。

吉林省长春市吉大附中实验校2021-2022学年中考押题数学预测卷含解析

吉林省长春市吉大附中实验校2021-2022学年中考押题数学预测卷含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.若代数式21x 有意义,则实数x 的取值范围是( ) A .x >0B .x≥0C .x≠0D .任意实数2.如图,△ABC 中,D 、E 分别为AB 、AC 的中点,已知△ADE 的面积为1,那么△ABC 的面积是( )A .2B .3C .4D .53.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB=ADB .AC 平分∠BCD C .AB=BDD .△BEC ≌△DEC4.下列各数中,最小的数是( ) A .0B .2C .1D .π-5.如图,在正方形网格中建立平面直角坐标系,若,,则点C 的坐标为( )A.B.C.D.6.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.7.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)9.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c10.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°二、填空题(共7小题,每小题3分,满分21分)11.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x 钱,则可列关于x 的方程为______.12.如图,在矩形ABCD 中,顺次连接矩形四边的中点得到四边形EFGH .若AB=8,AD=6,则四边形EFGH 的周长等于__________.13.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________. 14.反比例函数y=1k x与正比例函数y=k 2x 的图象的一个交点为(2,m ),则12k k =____.15.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.16.在实数范围内分解因式:226x =_________17.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .三、解答题(共7小题,满分69分)18.(10分)计算:﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60°19.(5分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.20.(8分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?21.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.(1)求A,B两点间的距离(结果精确到0.1km).(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)22.(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a = ,b = .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C)和2位女同学(D ,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23.(12分)某生姜种植基地计划种植A,B 两种生姜30亩.已知A,B 两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B 两种生姜各种多少亩?(2)若要求种植A 种生姜的亩数不少于B 种的一半,那么种植A,B 两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?24.(14分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解析】根据分式和二次根式有意义的条件进行解答. 【详解】解:依题意得:x 2≥1且x≠1. 解得x≠1. 故选C . 【点睛】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数. 2、C 【解析】根据三角形的中位线定理可得DE ∥BC ,DE BC =12,即可证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方可得ADE ABC S S ∆∆=14,已知△ADE 的面积为1,即可求得S △ABC =1.【详解】∵D 、E 分别是AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE BC =12, ∴△ADE ∽△ABC ,∴ADE ABC S S ∆∆=(12)2=14, ∵△ADE 的面积为1, ∴S △ABC =1. 故选C . 【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方得到ADE ABC S S ∆∆=14是解决问题的关键. 3、C 【解析】解:∵AC 垂直平分BD ,∴AB=AD ,BC=CD ,∴AC 平分∠BCD ,平分∠BCD ,BE=DE .∴∠BCE=∠DCE . 在Rt △BCE 和Rt △DCE 中,∵BE=DE ,BC=DC , ∴Rt △BCE ≌Rt △DCE (HL ). ∴选项ABD 都一定成立. 故选C . 4、D 【解析】根据实数大小比较法则判断即可. 【详解】π-<0<1,故选D . 【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.5、C【解析】根据A点坐标即可建立平面直角坐标.【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,∴C(2,-1)故选:C.【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.6、B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.7、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.8、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.9、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.10、C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.二、填空题(共7小题,每小题3分,满分21分)11、x45x3 57 --=【解析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】设羊价为x钱,根据题意可得方程:453 57x x--=,故答案为:453 57x x--=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,10,=∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=12BD=5,同理,FG∥BD,FG=12BD=5,GH∥AC,GH=12AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.13、3 5【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:3 5 .故答案为3 5 .14、4 【解析】利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m 和1k 、2k 的关系. 【详解】把点(2,m)代入反比例函数和正比例函数中得,12k m =,22mk =,则124k k =.【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键. 15、15° 【解析】分析:根据等腰三角形的性质得出∠ABC 的度数,根据中垂线的性质得出∠ABD 的度数,最后求出∠DBC 的度数. 详解:∵AB=AC ,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°, ∵MN 为AB 的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.416、2((. 【解析】先提取公因式2后,再把剩下的式子写成x 2-2,符合平方差公式的特点,可以继续分解. 【详解】2x 2-6=2(x 2-3)=2((.故答案为2((). 【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止. 17、1 【解析】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=r ,则OM=80-r ,MF=40,然后在Rt △MOF 中利用勾股定理求得OF 的长即可. 【详解】过点O 作OM ⊥EF 于点M ,反向延长OM 交BC 于点N ,连接OF ,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.三、解答题(共7小题,满分69分)18、1+33.【解析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60°=﹣1+4﹣(2﹣3)+23,=﹣1+4﹣2+3+23,=1+33.【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.19、(1)m≥﹣;(2)m的值为2.【解析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m +2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m ≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =1(a ≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键.20、(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解析】(1)销售量y 为200件加增加的件数(80﹣x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x ﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x 2+3000x ﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W 随x 的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800, 所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x ﹣60)y=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:W=﹣20x 2+3000x ﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x 2+3000x ﹣108000,对称轴为x=﹣30002(20)⨯-=75, ∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W 随x 的增大而减小,∴x=76时,W 有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.21、(1)1.7km ;(2)8.9km ;【解析】(1)根据锐角三角函数可以表示出OA 和OB 的长,从而可以求得AB 的长;(2)根据锐角三角函数可以表示出CD ,从而可以求得此时雷达站C 和运载火箭D 两点间的距离.【详解】解:(1)由题意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km ,∴AO=OC•tan34°,BO=OC•tan45°,∴AB=OB ﹣OA=OC•tan45°﹣OC•tan34°=OC (tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km ,即A ,B 两点间的距离是1.7km ;(2)由已知可得,∠DOC=90°,OC=5km ,∠DCO=56°,∴cos ∠DCO=,OC CD即5cos56,CD = ∵sin34°=cos56°,∴50.56CD=, 解得,CD≈8.9答:此时雷达站C 和运载火箭D 两点间的距离是8.9km .【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.22、 (1)a =16,b =17.5(2)90(3)35【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5; (2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.23、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.24、-1【解析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.。

吉林省长春市名校调研系列卷(市命题)2022年中考二模数学试题含解析

吉林省长春市名校调研系列卷(市命题)2022年中考二模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个2.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.72C.82D.93.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.54.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.5.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y (cm2),则y与x之间的函数图象大致是()A.B.C.D.6.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:23B.2:3:4 C.13 2 D.1:2:3.若不考虑接缝,它是一个半径为12cm,圆心角为60的扇形,7.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为35cmD.圆锥形冰淇淋纸套的高为63cm8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6y的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正x比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-9.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.10.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩二、填空题(共7小题,每小题3分,满分21分)11.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 12.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.13.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.14.比较大小:3_________10(填<,>或=).15.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.16.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.三、解答题(共7小题,满分69分)18.(10分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.19.(5分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.20.(8分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:AC CE=;(2)若32DEDF=,求tan∠CED的值.21.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.23.(12分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)24.(14分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.∴ab<3,正确.∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.2、B【解析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=72.【详解】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=.故选B.3、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE,又∵AE=BE,∴AE2=AG•BF=2,∴(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.4、DA 、根据函数的图象可知y 随x 的增大而增大,故本选项错误;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项错误;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项错误;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项正确.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.5、B【解析】根据题意,Q 点分别在BC 、CD 上运动时,形成不同的三角形,分别用x 表示即可.【详解】(1)当0≤x ≤2时,BQ =2x 14242y x x =⨯⨯=当2≤x ≤4时,如下图()()()()211144448242428222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知故选:B .【点睛】6、D【解析】试题分析:图中内切圆半径是OD ,外接圆的半径是OC ,高是AD ,因而AD=OC+OD ;在直角△OCD 中,∠DOC=60°,则OD :OC=1:2,因而OD :OC :AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D .考点:正多边形和圆.7、C【解析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm ,圆心角为60的扇形弧长是:()60π124πcm 180⨯=, 设圆锥的底面半径是rcm ,则2πr 4π=,解得:r 2=.即这个圆锥形冰淇淋纸套的底面半径是2cm . )22122235cm -=.故选:C .【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系: ()1圆锥的母线长等于侧面展开图的扇形半径;()2圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.8、B【解析】根据矩形的性质得到,CB ∥x 轴,AB ∥y 轴,于是得到D 、E 坐标,根据勾股定理得到ED ,连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G ,根据轴对称的性质得到BF=B′F ,BB′⊥ED 求得BB′,设EG=x ,根据勾股定理即可得到结论.【详解】解:∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴.∵点B 坐标为(6,1),∴D 的横坐标为6,E 的纵坐标为1.∵D ,E 在反比例函数6y x =的图象上, ∴D (6,1),E (32,1), ∴BE =6﹣32=92,BD =1﹣1=3, ∴ED 22BE BD +3132.连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G . ∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD 3132BF =3×92, ∴BF 13, ∴BB 13设EG =x ,则BG =92﹣x . ∵BB ′2﹣BG 2=B ′G 2=EB ′2﹣GE 2, ∴222299(()()2213x x --=-, ∴x =4526, 45∴CG=42 13,∴B′G=54 13,∴B′(4213,﹣213),∴k=1 21 .故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.9、D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.10、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题(共7小题,每小题3分,满分21分)11、【解析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.12、1:2【解析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.13、28 5认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.14、<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴10,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.15、四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.16、14【解析】取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.【详解】解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.∵I是AE的中点,∴===3,则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.故答案为14.【点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.17、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1.故答案为1.点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.三、解答题(共7小题,满分69分)18、1【解析】解:取时,原式.19、(1),13(2)29【解析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种,∴两人获胜的概率都是13.(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为1.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生, ∴两局游戏能确定赢家的概率为:29. (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.20、(1)见解析;(2)tan ∠CED 15 【解析】(1)欲证明AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴AC CE =;∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴2236CD AD AC a =-=, ∴36152tan tan 5310a DC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.21、(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.【解析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【详解】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:23380{42360x yx y+=+=,解得:40{100xy==.答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:20×40+2×100=1(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.考点:二元一次方程组的应用.23、90(31)米【解析】解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.∵∠DEC=90°,∴四边形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=DE AD,∴DE=180•sin30°=180×12=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=BF BD,∴BF=180•sin60°=180×3903(米).∴BC=BF+FC=903+90=90(3+1)(米).答:小山的高度BC为90(3+1)米.24、52【解析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.。

2024年吉林省长春市榆树市九年级中考考前模拟预测数学试题

2024年吉林省长春市榆树市九年级中考考前模拟预测数学试题

2024年吉林省长春市榆树市九年级中考考前模拟预测数学试题一、单选题1.如图,数轴上的两个点分别表示数a 和2-,则a 可以是( )A .3-B .1-C .1D .22.2023年吉林省旅游项目春季集中开工活动在全省各地同时举行,本次参与全省集中开工的旅游项目达到72个,其中,新建项目14个,续建项目58个,总投资1083亿元,将1083亿用科学记数法表示为( )A .101.08310⨯B .111.08310⨯C .121.08310⨯D .120.108310⨯ 3.下列各式中,计算正确的是( )A .325a a a +=B .32a a a -=C .()325a a =D .235a a a ⋅= 4.“斗”是我国古代称量粮食的量器,它无盖.如图所示.下列图形是“斗”的俯视图的是( )A .B .C .D .5.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边OA 、OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,就可以知道射线OC 是AOB ∠的角平分线.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等,B .两角及其夹边分别相等的两个三角形全等.C .两角分别相等且其中一组等角的对边相等的两个三角形全等.D .三边分别相等的两个三角形全等.6.如图,ABC V 内接于圆,90ACB ∠=︒,过点C 的切线交AB 的延长线于点28P P ∠=︒,.则C A B ∠=( )A .62︒B .31︒C .28︒D .56︒7.如图,在Rt ABC △中,90C ∠=︒,利用尺规在BC BA 、上分别截取BE BD 、,使BE B D =;分别以点D 和点E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G .若3,4,AC BC P ==为AB 上一动点,则GP 的最小值为( )A .32B .43C .53D .548.如图,在Rt ABC V 中,90,OAB OA AB ∠=︒=,点A 、B 在反比例函数(0)k y k x =>的图象上,点A 的坐标(,2)m ,则k 的值为( )A .2B 1C .2D .2.5二、填空题9.因式分解:24a -=.10.若关于x 的一元二次方程260x x k -+=有两个不相等的实数根,则k 的取值范围是. 11.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费元.12.如图,扇形的半径2OA =,90AOB ∠=︒,C 是»AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为点D 、E .若CD CE =,则图中阴影部分图形的面积为.(结果保留π)13.如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,则AFB '∠的大小为度.14.赛龙舟是中国端午节的习俗之一,也是一项广受欢迎的民俗体育运动.某地计划进行一场划龙舟比赛,图①是比赛途中经过的一座拱桥,图②是该桥露出水面的主桥拱的示意图,可看作抛物线的一部分,建立如图所示的平面直角坐标系,桥拱上的点到水面的竖直高度y (单位:m )与到点O 的水平距离x (单位:m )近似满足函数关系()20.01309y x =--+.据调查,龙舟最高处距离水面2m ,为保障安全,通过拱桥时龙舟最高处到桥拱的竖直距离至少3m .若每条龙舟赛道宽度为9米,则通过拱桥的龙舟赛道最多可设计条.三、解答题15.先化简,再求值:22142x x x ⎛⎫÷+ ⎪--⎝⎭,其中2x . 16.春和景明,阳光和煦,小明和小亮相约周末外出游玩.现有三个景点可供游客选择,A :长春净月潭国家森林公园,B :长春市动植物公园,C :长影世纪城.请用画树状图(或列表)的方法求小明和小亮两名同学恰好选择同一景点游玩的概率.17.在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长1200m 的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务,求计划平均每天修建的长度.18.在Rt ABC △中,90ACB ∠=︒,D 是斜边AB 上的一点,作DE BC ⊥,垂足为E ,延长DE 到F ,连接CF ,使A F ∠=∠.(1)求证:四边形ADFC 是平行四边形.(2)连接CD ,若CD 平分ADE ∠,CF 10=,12CD =,求四边形ADFC 的面积. 19.图①、图②、图③均是95⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC V 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求作图,保留适当的作图痕迹,图① 图② 图③(1)在图①中,作四边形ABDC ,使四边形ABDC 为中心对称图形;(2)在图②中,作四边形ABCE ,使四边形ABCE 为轴对称图形;(3)在图③中,作四边形ABFC ,使四边形ABFC 为轴对称图形.20.春节热映档电影《热辣滚烫》给我们每个人都上了一课:只要心中有梦想,只要自己不放弃不服输,一切都有可能!所以停止内耗,开始行动,愿我们每个人都能拥有热辣滚烫的人生!这部电影折射出的道理点醒了很多人,也唤醒了无数喜欢内耗拖延的人!因此,为了了解身边人对这部电影的评价,小尚在周边随机选取了20名亲朋好友进行调查,并按一定的分类标准将其平均分成甲乙两组,对该电影进行打分(百分制,分数为x ,x 为整数).通过对数据进行整理分析,描述如下:信息一:甲组成员的影评成绩如下表:其中9095C x ≤<:这组的成绩数据为:92,92,92,94. 信息二:乙组成员的影评成绩分布见如下扇形统计图:其中在9095C x ≤<:这组的成绩数据为:93,93,93. 信息三:根据以上提供的三个信息,回答下列问题:(1)m=________,n=________,=a________;(2)影评分数在95100D x≤≤:区间的视为“电影铁粉”,若乙组中共有200人参与此次影评活动,则乙组中有________人为“电影铁粉”.(3)由于甲组成员不掺杂粉丝膜拜心理,仅仅针对电影内容做出评价,故评价更为客观.现将甲乙两组平均数按7:3的比例进行加权,得到此次影评的最终成绩为________.21.在某海域开展的“海上联合”反潜演习中,我方军舰要到达C岛完成任务.已知军舰位于B市的南偏东25︒方向上的A处,且在C岛的北偏东58︒方向上,B市在C岛的北偏东28︒方向上,且距离C岛372km,此时,我方军舰沿着AC方向以30/hkm的速度航行,问:我方军舰大约需要多长时间到达C 1.73≈,sin534 5︒≈,cos533 5︒≈,tan534 3︒≈)22.甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和()my与甲组挖掘时间x(天)之间的关系如图所示.(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数. 23.如图①,AB 是O e 的直径,8AB =,点C 在O e 上且位于直线AB 上方,将半径OC 绕点O 顺时针旋转40︒,点C 的对应点为点D ,连接CD ,BD .(1)以CD 为边的O e 内接正多边形的边数为;(2)当直径AB 平分COD ∠时,求»AC 的长;(3)如图②,连接AC 并延长,交BD 的延长线于点E ,当ABE V 是等腰三角形时,直接写出扇形AOD 的面积.24.在平面直角坐标系中,点O 为坐标原点,抛物线2(y x bx b =+是常数)经过点(2,0)-.点A 在抛物线上,其横坐标为m .点B 是平面直角坐标系中的一点,其坐标为(21,3)m +.点C 是抛物线的顶点.(1)求该抛物线对应的函数表达式;(2)当点B恰好落在抛物线上,且点A不与点O重合时,求线段AB的长;(3)连结OA、OC、AC,当OACV是钝角三角形时,求m的取值范围;(4)当3m≤-时,连结BA并延长交抛物线的对称轴于点D,过点A作直线4x=的垂线,垂足-与抛物线有两个交点(不包括点C)时,设为点E,连结BC、CE、ED.当折线CE EDDACG的面积是四边形DBCE的这两个交点分别为点F、点G,当四边形DACF(或四边形)面积的一半时,直接写出所有满足条件的m的值.。

吉林省长春市榆树市拉林河片九校联考2023届九年级中考第二次模拟考试数学试卷(含解析)

吉林省长春市榆树市拉林河片九校联考2023届九年级中考第二次模拟考试数学试卷(含解析)

2023年吉林省长春市榆树市拉林河片中考数学二模试卷一、选择题(每题3分,本大题共8小题,共24分)1.(3分)﹣6的相反数是( )A.﹣6B.﹣C.D.62.(3分)北京时间2022年4月16日9时56分,近地点高度约384 000米的神舟十三号载人飞船返回舱成功着陆,圆满完成任务.384 000这个数用科学记数法表示为( )A.384×103B.0.384×105C.38.4×104D.3.84×1053.(3分)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中( )A.英B.雄C.凯D.旋4.(3分)某厂家去年八月份的口罩产量是50万个,十月份的口罩产量是72万个.若设该厂家八月份到十月份的口罩产量的月平均增长率为x,则下面所列方程正确的是( )A.50(1+x)2=72B.50(1﹣x)2=72C.50(1+x2)=72D.50(1﹣x2)=725.(3分)在平面直角坐标系中,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是( )A.(﹣1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣2,1)6.(3分)如图,正六边形ABCDEF内接于⊙O,点M在上( )A.60°B.45°C.30°D.15°7.(3分)如图,在△ABC中,∠ACB=90°,BC=4.按以下步骤作图:①分别以B、C为圆心,大于,两弧相交于点M和点N;②作直线MN;③以点D为圆心,DC的长为半径画圆弧,连结CE,则BE的长为( )A.1.8B.2.4C.3.2D.4.88.(3分)如图,在平面直角坐标系中,点A(m﹣2,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1>y2,则m的取值范围是( )A.m<1B.m>1C.m<2D.m>2二、填空题(每题3分,本大题共6小题,共18分)9.(3分)最简二次根式与二次根式是同类二次根式 .10.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是 (写出一个即可).11.(3分)正八边形一个外角的大小为 度.12.(3分)七巧板起于我国先秦时期,19世纪传到国外,被称为“唐图”.图①是边长为4的正方形“唐图”,则图②中头部小正方形的面积为 .13.(3分)如图,正六边形ABCDEF内接于⊙O.若⊙O的周长为12π,则该正六边形的边长是 .14.(3分)如图,在平面直角坐标系中,正方形OABC的点A在y轴的负半轴上,抛物线y=a(x+2)2+c (a>0)的顶点为E,且经过点A、B.若△ABE为等腰直角三角形 .三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(x+1)(x+3)+(x﹣2)2,其中.16.(6分)有两个不透明的布袋A、B,分别装有3个小球,布袋A中的小球分别标有数字﹣1,0,2,1,1,它们除数字不同外其他均相同.从布袋A、B中各随机摸出一个小球,用画树状图(或列表),求摸出的两个小球的数字之和是正数的概率.17.(6分)2022北京冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十二月,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月销售“冰墩墩”的数量是“雪容融”的2倍,“雪容融”的销售总额是8000元,“冰墩墩”的销售总额是24000元18.(7分)2022年是中国共产主义青年团建团100周年,某校举办了一次关于共青团知识的竞赛,七、八年级各有300名学生参加了本次活动,从这两个年级各随机抽取了20名学生的成绩(单位:分)进行调查分析.下面给出了部分信息:a.七年级学生的成绩整理如下:57&nbsp;69&nbsp;72&nbsp;75&nbsp;76&nbsp;78&nbsp;79 80 81 8183 83 83 85 86 86 88 88 92 96b.八年级学生成绩的频数分布直方图如图.(数据分成四组:60≤x<70,70≤x<80,80≤x<90,90≤x≤100),其中成绩在80≤x<90的数据如下:80 82&nbsp;83 85 85 85 87 88 88 89c.两组样本数据的平均数、中位数、众数如下表所示:年级平均数中位数众数七年级80.982m八年级81.2n85根据所给信息,解答下列问题:(1)m= ;n= .(2)根据统计数据,你认为七、八两个年级哪个年级的成绩更好些,请说明理由.(至少从一个角度进行说明)(3)成绩达到85分及以上为优秀,估计参加本次活动的七年级和八年级学生中,此次测试成绩达到优秀的总人数.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.20.(7分)3月23日下午,“天宫课堂”第二课如约举行,某校组织师生全员观看.为了解同学们对“天宫课堂”讲授知识的掌握情况(单位:分)进行了整理、描述和分析.下面给出了相关信息.a.30名同学“天宫课堂”知识测试成绩的统计图如下.b.30名同学“天宫课堂”知识测试成绩的频数分布直方图如下.(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)c.测试成绩在70≤x<80这一组的是70,73,74,75,75,78.d.小夏同学的“天宫课堂”知识测试成绩为88分.根据以上信息,回答下列问题:(1)小夏同学的测试成绩在抽取的30名同学的成绩中从高到低排名第 .(2)抽取的30名同学的成绩的中位数为 .(3)序号为1~10的学生是七年级的,序号为11~20的学生是八年级的,序号为21~30的学生是九年级的.若七年级学生成绩的方差记为s12,九年级学生成绩的方差记为s22,则s12 s22.(填“>”、“=”或“<”)(4)成绩80分及以上记为优秀,该校初中三个年级720名同学都参加测试,估计成绩优秀的同学约为 人.21.(8分)缂丝,是中国传统丝绸艺术品中的精华.缂丝织造技艺主要是使用古老的木机(如图①)及若干竹制的梭子和拨子,将五彩的蚕丝线缂织成一幅色彩丰富的织物.缂丝工匠现要完成一件织品,工作一段时间后,并从函数角度进行了如下实验探究.【数据观察】记录的工作时间x (时)和织品长度y (厘米)的数据变化工作时间x(时)02468织品长度y(厘米)3 3.6 4.2 4.8 5.4【探索发现】(1)建立平面直角坐标系,如图②,纵轴表示织品长度y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,如果不在同一条直线上,说明理由.【结论应用】(1)记录的工作时间达到5小时,求织品的长度.(2)如果每天工作10小时,要完成长为240厘米的织品,共需要多少天?22.(9分)如图,AD 是△ABC 的中线,点E 是AD 上一点,过点B 作AD 的平行线,两平行线交于点F【方法感知】如图①,当点E 与点D 重合时,易证:△AEC ≌△FBE .(不需证明)【探究证明】如图②,当点E 与点D 不重合时,求证:四边形ACEF 是平行四边形.小新同学受到【方法感知】中的启发,经过思考后延长CE 交BF 于点M .请完成小新同学的证明过程.【结论应用】如图③,当CA ⊥AB ,∠ABC =30°时,且点N 为AB 中点.(1)= .(2)当AC=2时,BF的长为 .23.(10分)如图,在矩形ABCD中,AB=6,到点A停止.在点P运动的同时,点Q从点A出发以每秒1个单位的速度沿AD﹣DC运动.当点P回到点A停止时(t>0).(1)用含t的代数式表示线段AP的长.(2)以PQ为边作矩形PQMN,使点M与点A在PQ所在直线的两侧,且PQ=2MQ.①当点Q在边AD上,且点M落在CD上时,求t的值.②当点M在矩形ABCD内部时,直接写出t的取值范围.(3)点E在边AB上,且AE=2,在线段PQ上只存在一点F,直接写出t的取值范围.24.(12分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象交x轴于点A(﹣3,0)和点B(1,0).(1)此二次函数的图象与y轴的交点的纵坐标为 .(2)求此二次函数的关系式.(3)当﹣2≤x≤3时,求二次函数y=ax2+bx+2的最大值和最小值.(4)点P为二次函数y=ax2+bx+2(﹣3<x<)图象上任意一点,其横坐标为m,点Q的横坐标为﹣2m﹣4.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.直接写出线段PQ与二次函数y=ax2+bx+2(﹣3<x<)的图象只有1个公共点时,m的取值范围.2023年吉林省长春市榆树市拉林河片中考数学二模答案一、选择题(每题3分,本大题共8小题,共24分)1.解析:根据概念,与﹣6只有符号不同的数是6.故选:D.2.解析:将384000这个数用科学记数法表示为3.84×105,故选:D.3.解析:由图知该正方体中,和“欢”相对的字是“凯”,故选:C.4.解析:根据题意得:50(1+x)2=72.故选:A.5.解析:将A点绕原点O逆时针旋转90°得到A1,即将Rt△OBA点绕原点O逆时针旋转90°得到Rt△OB1A4,如图,所以OB1=OB=2,A2B1=AB=1,所以点A3的坐标是(﹣1,2).故选:A.6.解析:连接OC,OD,∵多边形ABCDEF是正六边形,∴∠COD=60°,∴∠CMD=COD=30°,故选:C.7.解析:由作法MN垂直平分BC,∴BD=CD,∴BC为⊙O的直径,∴∠BEC=90°,∵∠ACB=90°,AC=3,∴AB==8,∵CE•AB=,∴CE==,在Rt△BCE中,BE==.故选:C.8.解析:∵点A(m﹣2,y1),B(m,y5)都在二次函数y=(x﹣1)2+n的图象上,∴y6=(m﹣2﹣1)3+n=(m﹣3)2+n,y3=(m﹣1)2+n,∵y7>y2,∴(m﹣3)3+n>(m﹣1)2+n,∴(m﹣2)2﹣(m﹣1)3>0,即﹣4m+2>0,∴m<2,故选:C.二、填空题(每题3分,本大题共6小题,共18分)9.解析:=2,∵简二次根式与二次根式,∴4﹣3x=5,解得x=.故答案为:.10.解析:根据题意得Δ=22﹣3k>0,解得k<1.所以k可以取8.故答案为0.11.解析:∵多边形的外角和等于360°.∴360°÷8=45°,故答案为:45.12.解析:由题意,大正方形的对角线长为4,∴小正方形的边长为×4=,∴头部小正方形的面积为:=2.故答案为:2.13.解析:连接OA,OB,∵正六边形ABCDEF内接于⊙O,⊙O的周长为12π,∴⊙O的半径为6,∵∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=3,∴正六边形ABCDEF的边长为6,故答案为:6.14.解析:∵抛物线y=a(x+2)2+c(a>5)的顶点为E,且经过点A、B,∴抛物线的对称轴是直线x=﹣2,且A,过E作EF⊥x轴于F,交AB于D,∵△ABE为等腰直角三角形,∴AD=BD=2,∴AB=2,DE=,∵四边形OABC是正方形,∴OA=AB=BC=OC=7,EF=4+2=3,∴A(0,﹣4),﹣7),把A、E的坐标代入y=a(x+2)2+c得:,解得:a=,故答案为:.三、解答题(本大题共10小题,共78分)15.解:原式=x2+3x+x+3+x2﹣4x+8=2x2+7,当x=时,原式=2×()2+7=5×5+7=10+4=17.16.解:列表如下:﹣105﹣2﹣3﹣50 1713 3012由表知,共有9种等可能结果,所以摸出的两个小球的数字之和是正数的概率为.17.解:设“雪容融”的销售单价为x元,根据题意,得,解得x=80,经检验,x=80是原方程的根,答:“雪容融”的销售单价是80元.18.解:(1)根据七年级的成绩可知,83分出现次数最多;由题意知,八年级学生的成绩中第10,82分,∴n==81,故答案为:83;81;(2)八年级的成绩更好些,理由:八年级的成绩的平均数和众数高于七年级;(3)由题意知,七年级成绩优秀的人数占比为,∴估计七年级和八年级此次测试成绩优秀的总人数为300×+300×.答:估计七年级和八年级此次测试成绩优秀的总人数约为225人.19.解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.20.解:(1)由频数分布直方图可知,成绩在80≤x<90的有7人,结合70≤x<80这组的数据可得,成绩为78分处在第11名,故答案为:11;(2)将这30名学生的成绩从小到大排列后,处在中间位置的两个数都是74分,故答案为:74;(3)从图1中,6~10号,1~10号学生的成绩分布的离散程度较小,即它的方差较小,因此九年级的方差s13较小,故答案为:<;(4)720×=240(名),故答案为:240.21.解:【探索发现】(1)描出以表格中数据为坐标的各点,如图:(2)上述各点在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,将(0,3),4.6)代入得:,解得,∴这条直线所对应的函数表达式为y=5.3x+3;【结论应用】(1)当x=7时,y=0.3×8+3=4.2,答:织品的长度是4.5厘米;(2)当y=240时,3.3x+3=240,解得x=790,∴要完成长为240厘米的织品,需要790÷10=79(天),答:要完成长为240厘米的织品,需要79天.22.【探究证明】证明:如图②,延长CE交BF于点M.∵D是BC的中点,AD∥BF,∴CE=EM,∠AEC=∠FME,∵AC∥EF,∴∠ACE=∠FEM,在△AEC和△FME中,,∴△AEC≌△FME(ASA),∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;【结论应用】解:(1)如图③中,连接DN.∵BD=DC,BN=AN,∴DN∥AC,DN=,∴NE:EC=DN:AC=4:2,∵四边形ACEF是平行四边形,∴AF=EC,∴NG:GA=NE:AF=NE:EC=1:4,故答案为:;(2)如图③﹣7中,连接DN.在Rt△ABC中,AC=2,∴BC=2AC=8,∵BD=CD,∴AD=BC=3,∵DN∥AC,∴DE:EA=DN:AC=1:2,∴DE=,AE=,∵DE∥BM,BD=DC,∴CE=EM,∴BM=2DE=,∵△ACE≌△FEM,∴FM=AE=,∴F=BM+FM=.故答案为:.23.解:(1)∵点P从点A出发以每秒2个单位的速度运动,∴当点P与点B重合时,则2t=8;当点P返回到点A时,则2t=6×8,当0<t≤3时,AP=2t,当3<t<6时,AP=12﹣3t.(2)①点Q在边AD上,且点M落在CD上,∵四边形ABCD和四边形PQMN都是矩形,DQ=2﹣t,∴∠D=∠A=∠PQM=90°,∴∠DQM=∠APQ=90°﹣∠AQP,∴△DQM∽△APQ,∴===,,∴DQ=AP,∴2﹣t=×2t,解得t=1.②当3<t≤2时,如图1,当点M在矩形ABCD内部时,当2<t≤3时,如图2,当2<t≤6时,如图3,则t﹣8=12﹣2t;如图4,点P与点A重合,QD=6﹣2=2,作MG⊥CD于点G,则∠QGM=∠D=∠AQM=90°,∴∠MQG=∠QAD=90°﹣∠AQD,∴△MQG∽△QAD,∴==,∴MG=QD=,∴点M恰好落在AB边上,∴当点M在矩形ABCD内部时,<t<6,综上所述,当点M在矩形ABCD内部时<t<6.(3)以AE为直径作⊙O,则点Q在⊙O外,当0<t≤2时,如图5,则线段PQ上只存在一点F,∴0<2t≤2,解得0<t≤5;如图6,PQ与⊙O相切于F,使∠AFE=90°,连接OF,则PQ⊥OF,∵∠BAD=90°,AQ=t,∴PQ===t,∵∠OFP=90°,∴==tan∠APQ==,∴OP=OF,∴6t﹣1=,解得t=,当8<t≤3时,如图2,此时线段PQ上不存在一点F;当2<t≤6时,如图7,则线段PQ上只存在一点F,∴2≤12﹣2t<2,解得8<t≤6,综上所述,t的取值范围是0<t≤6或t=.24.解:(1)在y=ax2+bx+2中,令x=2得y=2,∴二次函数的图象与y轴的交点的纵坐标为2,故答案为:2;(2)将A(﹣3,0)和B(72+bx+2得:,解得,∴二次函数的关系式为y=﹣x3﹣x+3;(3)∵y=﹣x3﹣x+8=﹣3+,∴抛物线顶点为:(﹣6,),对称轴为直线x=﹣2,∵﹣2<﹣1<3,且﹣1<0,∴当﹣7≤x≤3时,二次函数y=﹣x2﹣x+2在x=﹣1时取得最大值,而|﹣2﹣(﹣7)|<|3﹣(﹣1)|,∴x=6时,二次函数y=﹣x4﹣x+2在x=3时取得最小值,∴当﹣2≤x≤4时,二次函数y=﹣x4﹣x+7最大值是,(4)PQ=|﹣8m﹣4﹣m|=|﹣3m﹣3|,当﹣3m﹣4>6时,PQ=﹣3m﹣4,当﹣7m﹣4<0时,PQ=5m+4,∴﹣3m﹣4>0满足题意,解得m<﹣,①P到对称轴直线x=﹣1的距离为﹣1﹣m,当PQ<7(﹣1﹣m)时2+bx+3(﹣3<x<)的图象只有1个公共点∴﹣3m﹣6<2(﹣1﹣m),解得m>﹣3,∴﹣2<m<﹣,②如图:x=时,y=﹣x2﹣x+2=,在y=﹣x2﹣x+2中得﹣x7﹣x+7=,解得x=或x=﹣,∴当﹣3<m<﹣时,线段PQ与二次函数y=ax2+bx+2(﹣7<x<)的图象只有5个公共点.综上所述,线段PQ与二次函数y=ax2+bx+2(﹣8<x<)的图象只有5个公共点或﹣8<m≤﹣.。

吉林省长春市榆树市重点名校2021-2022学年中考一模数学试题含解析

吉林省长春市榆树市重点名校2021-2022学年中考一模数学试题含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在a 2□4a □4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .C .D .2.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233π-C .233π-D .233π- 3.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )A .极差是20B .中位数是91C .众数是1D .平均数是914.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A .6B .8C .10D .125.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )A.160元B.180元C.200元D.220元6.如果2a b=(a,b均为非零向量),那么下列结论错误的是()A.a//b B.a-2b=0 C.b=12a D.2a b=7.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1078.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km9.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°10.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.12.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.13.分解因式:3a2﹣12=___.14.一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5 不同外,其他完全相同.从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为8的概率是__________.15.若点M(1,m)和点N(4,n)在直线y=﹣12x+b上,则m___n(填>、<或=)16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 17.一元二次方程x ﹣1=x 2﹣1的根是_____.三、解答题(共7小题,满分69分)18.(10分)老师布置了一个作业,如下:已知:如图1ABCD 的对角线AC 的垂直平分线EF 交AD 于点F ,交BC 于点E ,交AC 于点O .求证:四边形AECF 是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.19.(5分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.21.(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?22.(10分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.23.(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元.求w 与x 之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(14分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F . 求证:△AEF ≌△DEB ;证明四边形ADCF 是菱形;若AC=4,AB=5,求菱形ADCFD的面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:能够凑成完全平方公式,则4a 前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是. 故选B .考点:1.概率公式;2.完全平方式.2、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】由旋转可知AD=BD ,∵∠ACB=90°∴CD=BD ,∵CB=CD ,∴△BCD 是等边三角形,∴∠BCD=∠CBD=60°,∴BC=23π,∴阴影部分的面积2602360π⨯23π. 故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算. 3、D【解析】试题分析:因为极差为:1﹣78=20,所以A 选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B 选项正确;因为1出现了两次,最多,所以众数是1,所以C 选项正确; 因为9178988598905x ++++==,所以D 选项错误. 故选D .考点:①众数②中位数③平均数④极差.4、B【解析】由条件可以得出△BPQ ∽△DKM ∽△CNH ,可以求出△BPQ 与△DKM 的相似比为12,△BPQ 与△CNH 相似比为13,由相似三角形的性质,就可以求出1S ,从而可以求出2S .【详解】∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴∠BQP=∠DMK=∠CHN ,∴△ABQ ∽△ADM ,△ABQ ∽△ACH , ∴12AB BQ AD DM ==,13AB BQ AC CH ==, ∵EF=FG= BD=CD ,AC ∥EH ,∴四边形BEFD 、四边形DFGC 是平行四边形,∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH ,又∵∠BQP=∠DMK=∠CHN ,∴△BPQ ∽△DKM ,△BPQ ∽△CNH , ∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =, 1320S S +=,∴11920S S +=,即11020S =,解得:12S =,∴214S S =42=⨯8=,故选:B .【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S 2=4S 1,S 3=9S 1是解题关键.5、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【详解】解:设原价为x 元,根据题意可得:80%x =140+20,解得:x =1.所以该商品的原价为1元;故选:C .【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.6、B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误.故选B.7、B【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将4670000用科学记数法表示为4.67×106, 故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.8、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km 记作+6km ,那么向南走8km 记作﹣8km .故选:B .【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.9、C【解析】试题分析:根据n 边形的内角和公式(n-2)×180º 可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n 边形的内角和公式.10、C试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y =mx +n 的图象经过第一、二、四象限,反比例函数mn y x =的图象在第二、四象限. 故选D.二、填空题(共7小题,每小题3分,满分21分)11、20π【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8π,由勾股定理得,母线长,故圆锥的侧面积=12×8π×5=20π, 故答案为:20π.【点睛】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.12、1【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=1.故答案为1.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.13、3(a+2)(a ﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a 2﹣12=3(a 2﹣4)=3(a+2)(a ﹣2).14、29根据题意列出表格或树状图即可解答.【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,∴) (82 9P=两个数字之和为,故答案为:29.【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式.15、>【解析】根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣12<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.16、A【解析】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.17、x=0或x=1.【解析】利用因式分解法求解可得.【详解】∵(x ﹣1)﹣(x +1)(x ﹣1)=0,∴(x ﹣1)(1﹣x ﹣1)=0,即﹣x (x ﹣1)=0,则x =0或x =1,故答案为:x =0或x =1.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.三、解答题(共7小题,满分69分)18、(1)能,见解析;(2)见解析.【解析】(1)直接利用菱形的判定方法分析得出答案;(2)直接利用全等三角形的判定与性质得出EO=FO ,进而得出答案.【详解】解:(1)能;该同学错在AC 和EF 并不是互相平分的,EF 垂直平分AC ,但未证明AC 垂直平分EF ,需要通过证明得出;(2)证明: ∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠FAC =∠ECA .∵EF 是AC 的垂直平分线,∴OA =OC .∵在△AOF 与△COE 中,FAO ECO OA OCAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOF ≌△COE (ASA ).∴EO =FO .∴AC 垂直平分EF .∴EF 与AC 互相垂直平分.∴四边形AECF 是菱形.【点睛】本题主要考查了平行四边形的性质,菱形的判定,全等三角形的判定与性质,正确得出全等三角形是解题关键. 19、12【解析】设矩形的长为x 步,则宽为(60﹣x )步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x+864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.20、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x ﹣40)[200﹣10(x ﹣50)]=﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.21、20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22、(1)见解析;(2)6013DE =. 【解析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明;对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==.由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.23、 (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.24、(1)证明详见解析;(2)证明详见解析;(3)1.【解析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB .∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形, ∴DF =AB =5, ∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.。

吉林省长春市榆树市2021-2022学年初中数学毕业考试模拟冲刺卷含解析

吉林省长春市榆树市2021-2022学年初中数学毕业考试模拟冲刺卷含解析

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线a ∥b ,点A 在直线b 上,∠BAC=100°,∠BAC 的两边与直线a 分别交于B 、C 两点,若∠2=32°,则∠1的大小为( )A .32°B .42°C .46°D .48°2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .3.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B 813C .82432D 8134.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧BC 的长是( )A .2πB .3π C .4π D .6π 5.关于x 的一元二次方程x 2-2x -(m -1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥6.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( ) A .6×105B .6×106C .6×107D .6×1087.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n )1020 50 100 200 500 …… 击中靶心次数(m ) 8 194492178451……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( ) A .0.6B .0.7C .0.8D .0.98.如图,已知⊙O 的半径为5,AB 是⊙O 的弦,AB=8,Q 为AB 中点,P 是圆上的一点(不与A 、B 重合),连接PQ ,则PQ 的最小值为( )A .1B .2C .3D .89.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 10.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A.223B.5C.322D.35511.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×10712.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2B.12cm2C.24cm2D.48cm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE 沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.14.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.15.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(20,53),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______16.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.17.如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK .若∠MKN =40°,则∠P 的度数为___18.如图,在正方形ABCD 中,BC=2,E 、F 分别为射线BC ,CD 上两个动点,且满足BE=CF ,设AE ,BF 交于点G ,连接DG ,则DG 的最小值为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简22121211x x x x x ÷---++,然后从﹣1,0,2中选一个合适的x 的值,代入求值. 20.(6分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?21.(6分)某汽车专卖店销售A,B 两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:A 型汽车B 型汽车上周 1 3 本周 21(1)求每辆A 型车和B 型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?22.(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距千米,慢车速度为千米/小时.(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.(4)直接写出两车相距300千米时的x值.23.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O 的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为32,求BC的长.24.(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)25.(10分)解方程:252112xx x+--=1.26.(12分)解不等式组43(2)52364x xxx--<-⎧⎪⎨-≥-⎪⎩并写出它的整数解.27.(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据平行线的性质与对顶角的性质求解即可.【详解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.2、C【解析】列表得,2 (2,1)(2,2)(2,0)(2,-1)0 (0,1)(0,2)(0,0)(0,-1)-1 (-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41=164,故选C.考点:用列表法(或树形图法)求概率.3、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=32E1D1=32×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(32)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.4、B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.5、A【解析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.6、C【解析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可. 【详解】解:6000万=6×1. 故选:C . 【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键. 7、D 【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解. 【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90. 故选:D. 【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题. 8、B 【解析】连接OP 、OA ,根据垂径定理求出AQ ,根据勾股定理求出OQ ,计算即可. 【详解】解:由题意得,当点P 为劣弧AB 的中点时,PQ 最小, 连接OP 、OA ,由垂径定理得,点Q 在OP 上,AQ=12AB=4, 在Rt △AOB 中,22OA AQ -, ∴PQ=OP-OQ=2,故选:B.【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.9、C【解析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.10、D【解析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴2,2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH⊥AF,∴1122AC CF AF CH⋅=⋅,12CH=⨯,∴CH=5.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.11、A【解析】4400000=4.4×1.故选A.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12、C【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=12ab=12×6cm×8cm=14cm1.故选:C.【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、133或394.【解析】①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB13,∵∠A=∠A,∴△ADH∽△ABC,∴DH AH ADBC AC AB==,即51213DH AH x==,解得:DH=513x,AH=1213x,∵E是AB的中点,∴AE=12AB=132,∴HE=AE﹣AH=132﹣1213x,由折叠的性质得:A'D=AD=x,A'E=AE=132,∴sin∠A=sin∠A'=1312521313`132xHEA E-==,解得:x=133;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=132,DH=513x,∴A'H=A'D﹣DH=x﹣513=813x,∴cos∠A=cos∠A'=8`121313`132xA HA E==,解得:x=394;综上所述,AD的长为133或394.故答案为133或394.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线14、2122+或1【解析】图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=121 222 BC=+,图2,当∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt'CMB是等腰直角三角形,所以BM=2+1,所以CM+BM=2BM+BM=2+1,所以BM=1.【详解】请在此输入详解!15、-12【解析】过E点作EF⊥OC于F,如图所示:由条件可知:OE=OA=5,532043EF BCtan BOCOF OC====,所以EF=3,OF=4,则E点坐标为(-4,3)设反比例函数的解析式是y=kx,则有k=-4×3=-12.故答案是:-12.16、AC⊥BD【解析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】∵四边形EFGH 是矩形,∴∠FEH=90°,又∵点E 、F 、分别是AD 、AB 、各边的中点,∴EF 是三角形ABD 的中位线,∴EF ∥BD ,∴∠FEH=∠OMH=90°,又∵点E 、H 分别是AD 、CD 各边的中点,∴EH 是三角形ACD 的中位线,∴EH ∥AC ,∴∠OMH=∠COB=90°,即AC ⊥BD .故答案为:AC ⊥BD .【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.17、100°【解析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.18、5﹣1【解析】先由图形确定:当O 、G 、D 共线时,DG 最小;根据正方形的性质证明△ABE ≌△BCF (SAS ),可得∠AGB=90°,利用勾股定理可得OD 的长,从而得DG 的最小值.【详解】在正方形ABCD 中,AB=BC ,∠ABC=∠BCD ,在△ABE 和△BCF 中,AB BC ABC BCD BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△BCF(SAS),∴∠BAE=∠CBF ,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴点G 在以AB 为直径的圆上,由图形可知:当O 、G 、D 在同一直线上时,DG 有最小值,如图所示:∵正方形ABCD ,BC=2,∴AO=1=OG∴∴1,1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、-11,2x -. 【解析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=22121·1x x x x-+- -21x + =21(1)·1)(1)x x x x -+-( -21x + =121)1x x x x (--++ =()121)1x x x x x x --++( =-1x. 当x=-1或者x=1时分式没有意义 所以选择当x =2时,原式=12-. 【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.20、(1)答案见解析(2)36°(3)4550名【解析】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人, ;(2)360×40400=36°; (3)反对中学生带手机的大约有6500×280400=4550(名). 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.21、 (1) A 型车售价为18万元,B 型车售价为26万元. (2) 方案一:A 型车2辆,B 型车4辆;方案二:A 型车3辆,B 型车3辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A 型车售价为x 元,B 型车售价为y 元,则:396262x y x y +=⎧⎨+=⎩解得:1826x y =⎧⎨=⎩ 答:A 型车售价为18万元,B 型车售价为26万元.(2)设A 型车购买m 辆,则B 型车购买(6-m )辆,∴ 130≤18m +26(6-m ) ≤140,∴:2≤m ≤134方案一:A 型车2辆,B 型车4辆;方案二:A 型车3辆,B 型车3辆;∴方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.22、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y 与x 之间的函数关系式为y=150x ﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.【解析】(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤203时的函数关系式中求出x值,此题得解.【详解】解:(1)∵当x=0时,y=10,∴甲乙两地相距10千米.10÷10=1(千米/小时).故答案为10;1.(2)设快车的速度为a千米/小时,根据题意得:4(1+a)=10,解得:a=2.答:快车速度是2千米/小时.(3)快车到达甲地的时间为10÷2=203(小时),当x=203时,两车之间的距离为1×203=400(千米).设当4≤x≤203时,y与x之间的函数关系式为y=kx+b(k≠0),∵该函数图象经过点(4,0)和(203,400),∴40{204003k bk b+=+=,解得:150{600kb==-,∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10.(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),∵该函数图象经过点(0,10)和(4,0),∴600{40nm n=+=,解得:150{600mn=-=,∴y与x之间的函数关系式为y=﹣150x+10.当y=300时,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴当x=2小时或x=4小时时,两车相距300千米.【点睛】本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值.23、(1)证明见解析;(2)BC=1.【解析】(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半径是2,∴2,2,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BCBO=ACOP3262,∴BC=1.【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.24、29.8米.【解析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度.【详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒=,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==,AB 40=米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米,BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【点睛】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.25、12x =- 【解析】先把分式方程化为整式方程,解整式方程求得x 的值,检验即可得分式方程的解.【详解】 原方程变形为2532121x x x -=--, 方程两边同乘以(2x ﹣1),得2x ﹣5=1(2x ﹣1), 解得12x =- . 检验:把12x =-代入(2x ﹣1),(2x ﹣1)≠0, ∴12x =-是原方程的解, ∴原方程的12x =-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.26、不等式组的解集是5<x ≤1,整数解是6,1【解析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5,解不等式②得:x ≤1,∴不等式组的解集是5<x ≤1,∴不等式组的整数解是6,1.【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法27、(1)y =-12(x -3)2+5(2)5 【解析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC 的长为()A.16 B.14 C.12 D.62.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a3.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)4.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A.1 B.1.5 C.2 D.2.55.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.116.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为() A.1 B.2 C.3 D.47.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为()A .32°B .30°C .26°D .13°8.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .22C 3D 39.已知二次函数2y ax bx c =++的x 与y 的不符对应值如下表:x3- 2-1- 01 2 3 y1111-1-15且方程20ax bx c ++=的两根分别为1x ,2x 12()x x <,下面说法错误的是( ). A .2x =-,5y = B .212x << C .当12x x x <<时,0y >D .当12x =时,y 有最小值 10.两个有理数的和为零,则这两个数一定是( ) A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数二、填空题(共7小题,每小题3分,满分21分) 11.若a 2+3=2b ,则a 3﹣2ab+3a =_____. 12.函数y=123x x ++ 中,自变量x 的取值范围是 _____. 13.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心.大于12MN 的长为半径画弧,两弧在第二象限内交于点p (a ,b ),则a 与b 的数量关系是________.14.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.15.如图所示,扇形OMN 的圆心角为45°,正方形A 1B 1C 1A 2的边长为2,顶点A 1,A 2在线段OM 上,顶点B 1在弧MN 上,顶点C 1在线段ON 上,在边A 2C 1上取点B 2,以A 2B 2为边长继续作正方形A 2B 2C 2A 3,使得点C 2在线段ON 上,点A 3在线段OM 上,……,依次规律,继续作正方形,则A 2018M=__________.16.已知线段c 是线段a 和b 的比例中项,且a 、b 的长度分别为2cm 和8cm ,则c 的长度为_____cm .17.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____. 三、解答题(共7小题,满分69分)18.(10分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.19.(5分)已知如图,在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连接CE . (1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.20.(8分)如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.21.(10分)如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .22.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x >0)元,让利后的购物金额为y 元.(1)分别就甲、乙两家商场写出y 关于x 的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.23.(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.24.(14分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D⎛⎫--⎪⎝⎭,.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE 的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.2、C【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.3、A【解析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.5、C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.6、B【解析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.7、A【解析】连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.【详解】连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,故选A.【点睛】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.8、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.9、C【解析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y =1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=12时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.10、D解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.12、x≠﹣32.【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【详解】解:根据分式有意义的条件得:2x+3≠1解得:32x≠-.故答案为32x≠-.【点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.13、a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.14、1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,12),C(1,k),D(2,2k),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴,∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OAC COM AOM k S S S k ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1,故答案为1.【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键.15、20151252.【解析】探究规律,利用规律即可解决问题.【详解】∵∠MON=45°,∴△C 2B 2C 2为等腰直角三角形,∴C 2B 2=B 2C 2=A 2B 2.∵正方形A 2B 2C 2A 2的边长为2,∴OA3=AA 3=A 2B 2=12A 2C 2=2.OA 2=4,OM=OB 2, 同理,可得出:OA n =A n-2A n =12A n-2A n-2=312n -, ∴OA 2028=A 2028A 2027=201512,∴A 2028201512.故答案为201512. 【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型. 16、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c 2=2×8, 解得c =±1(线段是正数,负值舍去),故答案为1.【点睛】此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.17、1【解析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.三、解答题(共7小题,满分69分)18、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =, ∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因). (3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1t =2t =.综上所述P 的坐标为()1,2--或()1,4-或31,2⎛+- ⎝⎭或31,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.19、(1)90°;(1)AE 1+EB 1=AC 1,证明见解析.【解析】(1)根据题意得到DE 是线段BC 的垂直平分线,根据线段垂直平分线的性质得到EB =EC ,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴DE 是线段BC 的垂直平分线,∴EB =EC ,∴∠ECB =∠B =45°,∴∠AEC =∠ECB +∠B =90°;(1)AE 1+EB 1=AC 1.∵∠AEC =90°,∴AE 1+EC 1=AC 1,∵EB =EC ,∴AE 1+EB 1=AC 1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20、(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(32-,﹣1)、(32-+,﹣1)【解析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1), 设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==, ∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1), 过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m , ∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ), 化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得, x 1=0,x 1=﹣3, ∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得, x 1=3412--,x 1=3412-+, ∴点E 的坐标为(3412--,﹣1)或(3412-+,﹣1); ②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、(3412--,﹣1)、(3412-+,﹣1).21、这栋楼的高度BC 4003 【解析】 试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD 中,1003tan BD AD BAD ⋅∠= 在Rt ACD 中,tan 1003CD AD CAD ⋅∠==. ∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.22、(1)y 1=0.85x ,y 2=0.75x+50 (x >200),y 2=x (0≤x≤200);(2)x >500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x <500时,到甲商场购物会更省钱.【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【详解】(1)甲商场写出y 关于x 的函数解析式y 1=0.85x ,乙商场写出y 关于x 的函数解析式y 2=200+(x ﹣200)×0.75=0.75x+50(x >200),即y 2=x (0≤x≤200);(2)由y 1>y 2,得0.85x >0.75x+50,解得x >500,即当x >500时,到乙商场购物会更省钱;由y 1=y 2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y 1<y 2,得0.85x <0.75x+500,解得x <500,即当x <500时,到甲商场购物会更省钱;综上所述:x >500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x <500时,到甲商场购物会更省钱.【点睛】本题考查了一次函数的应用,分类讨论是解题关键.23、(1)y =-12(x -3)2+5(2)5 【解析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.24、(1)y 242016333x x =++;(2)2448333y x x =-++;(3)E (12,0). 【解析】(1)根据抛物线C 1的顶点坐标可设顶点式将点B 坐标代入求解即可;(2)由抛物线C 1绕点B 旋转180°得到抛物线C 2知抛物线C 2的顶点坐标,可设抛物线C 2的顶点式,根据旋转后抛物线C 2开口朝下,且形状不变即可确定其表达式;(3)作GK ⊥x 轴于G ,DH ⊥AB 于H ,由题意GK =DH =3,AH =HB =EK =KF 32=,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK ∽△GFK ,由其对应线段成比例的性质可知AK 长,结合A 、B 点坐标可知BK 、BE 、OE 长,可得点E 坐标.【详解】解:(1)∵抛物线C 1的顶点为532D ⎛⎫-- ⎪⎝⎭,, ∴可设抛物线C 1的表达式为y 25()32a x =+-,将B (﹣1,0)代入抛物线解析式得:250(1)32a =-+-, ∴9304a -=, 解得:a 43=, ∴抛物线C 1的表达式为y 245()332x =+-,即y 242016333x x =++. (2)设抛物线C 2的顶点坐标为(,)m n∵抛物线C 1绕点B 旋转180°,得到抛物线C 2,即点(,)m n 与点532D ⎛⎫-- ⎪⎝⎭,关于点B (﹣1,0)对称 5321,022m n --∴=-= 1,32m n ∴== ∴抛物线C 2的顶点坐标为(132,) 可设抛物线C 2的表达式为y 21()32k x =-+∵抛物线C 2开口朝下,且形状不变 43k ∴=- ∴抛物线C 2的表达式为y 241()332x =--+,即2448333y x x =-++. (3)如图,作GK ⊥x 轴于G ,DH ⊥AB 于H .由题意GK=DH=3,AH=HB=EK=KF32 =,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴AK GK GK KF=,∴3332 AK=,∴AK=6,633 BK AK AB=∴=--=,∴BE=BK﹣EK=333 22 -=,∴OE31122 BE OB=-=-=,∴E(12,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.。

相关文档
最新文档