2024年中考数学一轮复习:一元一次方程专题+提升训练

合集下载

人教版2024年中考数学第一轮复习练习题—应用题分类复习

人教版2024年中考数学第一轮复习练习题—应用题分类复习

人教版2024中考数学第一轮复习练习题—应用题分类复习类型一、一元一次方程的应用1、某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?2、甲、乙两班学生到集市上购买苹果,苹果的价格如下:超过20千克购苹果数不超过10千克超过10千克但不超过20千克每千克价格10元9元8元甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为千克;②甲班第一次、第二次分别购买多少千克?3、有一批核桃要加工成罐头,甲工人每天能加工32公斤,乙工人每天能加工48公斤,且甲单独加工这批核桃要比乙多用10天.(1)这批核桃共多少公斤?(2)为了尽快加工完成,先由甲、乙两工人按原速度合作一段时间后,甲工人停工,而乙工人每天的生产速度提高25%,乙工人单独完成剩余部分,且乙工人的全部工作时间是甲工人工作时间的3倍还多1天,求乙工人共加工多少天?类型二、二元一次方程组的应用1、某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B 品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售2、“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有几只鸡和兔?3、根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高_____________cm,放入一个大球水面升高_____________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?类型三、分式方程的应用1、某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?2、为了响应“保护环境,低碳生活”的号召,张老师决定将上班的交通方式由开汽车改为骑自行车.张老师家距学校6千米,由于汽车的平均速度是自行车平均速度的4倍,所以张老师每天比原来提前30分钟出发,才能按原来的时间到校,求张老师骑自行车的平均速度是每小是多少千米.3、甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲、乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).类型四、一元一次不等式(组)的应用1、某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?2、某商店购进A,B两种教学仪器,已知A仪器价格是B仪器价格的1.5倍,用450元购买A仪器的数量比用240元购买B仪器数量多2台.(1)求A,B两种仪器单价分别是多少元?(2)该商店购买两种仪器共100台,且A型仪器数量不少于B型仪器数量的14,那么A型仪器最少需要购买多少台,求A型仪器执行最少购买量时购买两种仪器的总费用.3、某地区为筹备一项庆典,计划搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉50盆,乙种花卉30盆;搭配一个B种造型需甲种花卉40盆,乙种花卉60盆,且搭配一个A种造型的花卉成本是270元,搭配一个B种造型的花卉成本是360元.(1)试求甲、乙两种花卉每盆各多少元?(2)若利用现有的2295盆甲种花卉和2190盆乙种花卉进行搭配,则有哪几种搭配方案?(3)在(2)的搭配方案中花卉成本最低的方案是哪一种?最低成本是多少元?类型五、一元二次方程的应用1、如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?2、某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?3、周末,小明和小红约着一起去公园跑步锻炼身体若两人同时从A 地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A 地到达B 地后,小明以跑步形式继续前进到C 地(整个过程不休息),据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A 地到C 地锻炼共用多少分钟.类型六、一次函数的应用1、在创建全国文明城市过程中,官渡区决定购买A 、B 两种树苗对某路段道路进行绿化改造.已知购买A 种树苗5棵,B 种树苗3棵,需要840元;购买A 种树苗3棵,B 种树苗5棵,需要760元.(1)求购买A 、B 两种树苗每棵各需多少元?(2)现需购进这两种树苗共100棵,考虑到绿化效果和资金周转,购进A 种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过10000元,怎样购买所需资金最少?2、临沂到海口货运路线总长2400千米.交通法规定:货车在这条路线上行驶速度范围是:60≤x ≤100(单位:km/h ,x 表示货车的行驶速度,假设货车保持匀速行驶),该货车每小时耗油(x 32400−x 220+85x )升,柴油价格是10元/升.(1)求该货车在这条路线上行驶时全程的耗油量Q (升)关于车速x 之间的函数关系式.(2)求车速为何值时,该车全程油费最低,并求出最低油费.(3)刘师傅欲将一车香蕉由海南运往临沂,公司要求在32小时之内(包含32小时)到达.否则刘师傅将支付2000元的超时高额罚款.请计算刘师傅的最佳车速.3、某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费120元,购进A品牌文具袋3个和B品牌文具袋4个共花费88元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为w元.①求w关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不低于进货价格的45%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.类型七、二次函数的应用1、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg,销售价每涨价1元,月销售量就减少5kg.(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.2、小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当售价为30元时销量为200件,每涨1元少卖10件,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?3、某游乐场的圆形喷水池中心O有一喷水管OA,0.5OA 米,从A点向四周喷水,喷出的水柱为抛物线且形状相同.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在y轴上.已知在与池中心O点水平距离为3米时,水柱达到最高,此时高度为2米.(1)求水柱所在的抛物线(第一象限部分)的函数表达式;(2)身高为1.67m的小颖站在距离喷水管4m的地方,她会被水喷到吗?(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m处达到最高,则喷水管OA要升高多少?。

2025年广东省中考数学一轮复习:一元一次方程(附答案解析)

2025年广东省中考数学一轮复习:一元一次方程(附答案解析)

2025年广东省中考数学一轮复习:一元一次方程一.选择题(共10小题)1.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问多久后甲乙相逢?设乙出发x日,甲乙相逢,则可列方程()A.r27+5=1B.K27+5=1C.7+r25=1D.7+K25=1 2.我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.r47=K89D.K47=r89 3.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.3+2=K92D.3−2=K92)4.能运用等式的性质说明如图事实的是(A.如果a+c=b+c,那么a=b(a,b,c均不为0)B.如果a=b,那么a+c=b+c(a,b,c均不为0)C.如果a﹣c=b﹣c,那么a=b(a,b,c均不为0)D.如果a=b,那么ac=bc(a,b,c均不为0)5.《九章算术》是中国传统数学最重要的著作之一,书中记载:“今有人共买兔,人出七,盈十一;人出五,不足十三,问人数几何?”意思是:“有若干人共同出钱买兔,如果每人出七钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设有x个人共同买兔,依题意可列方程为()第1页(共16页)。

2024年中考数学一轮复习提高讲义:一元一次方程的应用(1)

2024年中考数学一轮复习提高讲义:一元一次方程的应用(1)

一元一次方程的应用(1)知识梳理1.运用方程解决实际问题的一般过程(1)审题:分析题意,找出题中的数量关系;(2)设元:选择一个适当的未知数,用字母表示(例如x);(3)列方程:根据相等关系列出方程;(4)解方程:求出未知数的值;(5)检验:检验求得的值是否正确和是否符合实际情形,并写出答案.2.设元的技巧(1)直接设元:即问什么设什么;(2)间接设元:即所设的不是所求的,需要将要求的量以外的量设为未知数,便于找出符合题意的等量关系;(3)辅助设元:把应用题中隐含的未知量设为未知数,作为桥梁来分析;(4)整体设元:在未知数的某一部分存在一个整体关系,可设这一部分为未知量,从而减少设元个数.3.找未知量和已知量之间等量关系的常用方法(1)从关键词中找相等关系;(2)利用基本公式找相等关系;(3)利用不变量找相等关系;(4)对于一种“量”,从不同角度进行表述形成一种相等关系.典型例题例 1一架飞机在两城之间飞行,风速为24千米/时,顺风飞行需 2 小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.分析应先设出飞机在无风时的速度为x,从而可知在顺风时的速度为飞机在无风中的速度加上风速,飞机在逆风中的速度等于飞机在无风中的速度减去风速,又已知飞机分别作顺风飞行和逆风飞行所需的时间,再根据路程相等,列出等式,求解即可.解 (1)设无风时飞机的速度为x千米/时,两城之间的距离为 S 千米.则顺风飞行时的速度v₁=x+24,逆风飞行的速度v₂=x−24.顺风飞行时:S=v₁t₁;逆风飞行时:S=v₂t₂.即S=(x+24)×25=(x−24)×3解得x=840.6答:无风时飞机的飞行速度为840 千米/时.(2) 两城之间的距离S=(x-24)×3=2448千米答:两城之间的距离为2448 千米.例 2一个两位数,十位上的数字与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原两位数.分析设个位上的数字为x,则十位上的数字为11-x,根据如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求解即可.解设原来个位上的数字为x,则十位上的数字为11-x,由题意,得10×(11-x)+x=63+10x+(11-x),解得:x=2,原来十位上的数字为9,即原来这个两位数29.例3某商场的一种品牌西服上涨25%后,因销售情况不好,故想恢复原价,则需要在现价的基础上降百分之几?分析本题是求“在现价的基础上降百分之几”,但题目中没有给出现价,若将原价设为a元,则现价为(1+25%) a,本题等量关系是:下降后的价钱=原价.解设此西服的原价为a元(a>0),需在现价的基础上降x%.根据题意,得(1+25%)a(1-x%)=a,解这个方程,得x=20.答:欲恢复原价,则需要在现价的基础上降20%.例4一个五位数,个位数为4,这个五位数加上6120后所得的新五位数的万位、千位、百位、十位、个位上的数恰巧分别为原五位数的个位、万位、千位、百位、十位上的数,试求原五位数.分析在解此题时,可以把原五位数去掉个位数4以后得到的四位数看作是一个整体,设其为x,就达到化难为易、化繁为简的目的了.解设原五位数去掉个位数后的四位数为x,则原五位数可表示为 10x+4,依题意,得(10x+4)+6120=4×10000+x,即9x-33876=0.解这个方程,得x=3764.答:原五位数为37644.双基训练1.已知甲、乙两数之和为5,甲数比乙数大2,求甲、乙两数.设乙数为x ,可列出方程是( ).A. x+2+x=5B. x-2+x=5C.5+x=x-2D. x(x+2)=52.A 、B 两地间相距S 千米,跑完全程甲需要2小时,乙需要3 小时,那么甲的速度比乙的速度快( ).A. S 千米/时B. 16S 千米/时C. 15千米/时D. 55千米/时3.小红一家假期外出旅游5天,已知这5天的日期之和为 40.则他们出发日期是( ).A.5 日B. 6 日C.7 日D. 8 日4.在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( ).A.80B.98C.108D. 2065.笼子里有x 只鸡和(13-x)只兔,则鸡兔同笼共有脚( ).A. 13只B.(26-x)只C.(52-x)只D.(52-2x)只6.七年级有甲、乙两个班,甲班有43 人,乙班有 49人,要使两班人数相等,应从乙班调( )人到甲班.A.6人B.5 人C. 4人D. 3 人7.爷爷与孙子下棋,爷爷赢一盘记2分,孙子赢一盘记3分,若下了m 盘后,两人得分相等,则m 的值可能为( ).A.5B.6C.7D.88.一家商店出售某种服装,将成本价每件提高30%标价(每件成本价为x 元),又以8折优惠出售,这时每件服装的实际售价为( )元.A.1.04xB.1.3xC.0.8xD. 138x 9.某商品价格为a 元,降价10%后,又降价10%,销售额猛增,商店决定再提价 20%,提价后这种商品的价格为( )元.A. aB. 1.08aC.0.97aD.0.96a10.某学生用800元压岁钱存了年利率为p%的一年期教育储蓄,则到期后可得本息和为 .11.两根竹竿,长度分别为2米和3米,若要把它们绑接成长度为4.2米的竹竿,则重叠部分的长度是 .12.将长为 20 厘米的铁丝做成一个长比宽多 2 厘米的长方形,则此长方形的长是 .13.某校1200名学生,节约零花钱为希望工程捐款,平均每位男生捐款6.8元,平均每位女生捐款7.1元,共得捐款8328元.这个学校男、女同学各有多少名?14.汽车运送一批货物,若每辆车装3t ,则剩 5t ,若每辆车装4t ,则可少用5 辆车,问共有汽车多少辆?货物有多少吨?15.一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港逆水航行需 3 小时,求水流速度增加后从乙港返回甲港需航行的时间.16.100位会员,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语,则既懂英语又懂俄语的有多少人?17.某钟表每小时比标准时间慢3分钟,若在清晨6时30分与准确时间对表,则当天中午该钟表指示时间为1 2时50分时,准确时间是多少?18.甲、乙、丙、丁四个数之和等于-90,若甲数减-4,乙数加-4,丙数乘-4,丁数除以-4 后彼此相等,那么这四个数中最大的一个数比最小的一个数大多少?19.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分后相遇,如果甲比乙早出发 40分钟,那么在乙出发1小时30分后相遇,求甲、乙两人的速度.20.有若干只鸡和兔子,它们共有88个头、244只脚,鸡和兔各有多少只?能力提升21.在足球甲B联赛的前11场比赛中,某队仅负一场,共积22分.按比赛规则,胜一场得三分,平一场得一分,负一场得零分,则该队共胜了( ).A.7 场B. 6场C.5场D. 4场22.兄弟两人今年分别是17岁和7岁,什么时候,哥哥的年龄是弟弟年龄的3倍,正确答案应该是( ).A.3年后B.3年前C.2年后D.2年前23.如果甲、乙、丙三人合做一项工程,每天可以完成工程的15,如果甲独做这项工作需15天,现在甲先做了7天,剩下的由乙、丙合做,完成这项工程还需要( ).A. 1.5 天B.2.5 天C. 4 天D. 6 天.24.从一内径为12厘米的圆柱形大茶壶向一内径为6厘米,内高为16厘米的圆柱形小空茶杯倒满水,大茶壶中水的高度下降( )厘米.A.6B.4C.3D. 225.如图10-1所示,已知小圆面积为X,大圆面积为2X+1,两圆公共部分面积为3,阴影部分面积为40,则X 等于( ).1 3443A.38/3B.4C. 15D.26.甲仓库有粮120吨,乙仓库有粮90吨,从甲仓库调运吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.27.一栋楼房内住有六家住户,分别姓赵、钱、孙、李、周、吴,这幢楼住户共订有 A,B,C,D,E,F 六种报纸,每户至少订了一种报纸,已知赵、钱、孙、李、周分别订了其中2,2,4,3,5种报纸,而A,B,C,D,E 五种报纸在这幢楼里分别有1,4,2,2,2家订户,则报纸F 在这幢楼里有家订户.28.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米,再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?29.如图10-2所示,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,求这个矩形色块图的面积.30.某市收取水费按以下规定:若每月每户不超过20立方米,则每立方米水价按1.2 元收费;若超过20立方米,则超过部分按每立方米2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这户居民这个月共用了多少立方米的水?拓展资源31.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船 4 小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米.若A,C 两地的距离为10千米,则A,B 两地的距离为 .32.有一个允许单向通过的窄道口,通常情况下,每分钟可以通过9辆车,一天王老师到达道口时,发现由于拥挤,每分钟只能3辆车通过道口,此时,自己前面还有 36辆车等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在交警的维持下,几分钟后,道口通行秩序恢复正常(维持秩序期间,每分钟仍有3辆车通过道口),结果王老师比拥挤情况下提前了6分钟通过道口,交警维持秩序的时间是多少分钟?33.某果品商店进行组合销售,甲种搭配:2千克 A水果,4千克B水果;乙种搭配:3千克A水果,8千克B 水果,1千克C水果;丙种搭配:2千克 A 水果,6千克B水果,1千克 C水果.已知 A 水果每千克2元,B水果每千克 1.2元,C 水果每千克 10元.某天该商店销售这三种搭配水果共441.2元.其中 A 水果的销售额为116元,C 水果的销售额为元?34.有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我一只,我们的羊数就一样了.”两个牧童各有多少只羊?35.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:“阿姨,您好!”售货员:“同学,你好,想买点什么?”李小波:“我只有100元,我想买10支钢笔和15本笔记本.”售货员:“好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.”根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?1. A2. B3. B4. C5. D6. D7. A8. A9. C 10.800(1+p%)11.0.4 米 12. 6厘米 13. 这个学校男生有640人,女生有560人14. 设共有汽车x辆,根据题意,得3x+5=4(x-5),解得:x=25,所以3×25+5=80吨.所以共有汽车25辆,货物有 80 吨.15.设船在静水中的速度为x,原来的水速为y,根据题意,得2(x-y)=3(x-2y),解得:x=4y;水流速度增加后,从乙港返回甲港需航行时间=2(x−y)x+2y=1(小时).16.设既懂英语又懂俄语的有x人,根据题意,得75+83-x+10=100,解得x=68,所以既懂英语又懂俄语的有 6 8人.17.方法一:设经过x分钟后为准确时间,根据题意,得x380=6060−3.解得x=400,即经过6时40分,故准确时间为13时 10分.方法二:设经过x时后为准确时间,则360(x−612)=x−1256,解得x=400,即经过6时40分,故准确时间为13时 10分.18.设四数相等时等数为 x,甲数为(x+4),乙为(x--4),丙数乘-4x,丁为−x4,根据题意,得(x−4)+(x+4)−x4+(−4x)=−90,解得:x=40,故四数分别为36,44,-10,-160,则最大数比最小数大44-(-160)=204.19.设甲的速度是x千米/时,则乙的速度为(181.8−x)千米/时,即(10-x)千米/时,根据题意,得23x=18(1−59×32),解得x=4.5,所以甲的速度是4.5千米/时,乙的速度是5.5千米/时.20.设鸡为x只,则兔为 88-x 只,根据题意,得2x+4(88-x)=244,解得x=54.所以鸡为54只,兔为88-54=34 只.21. B 22. D 23. C 24. B 25. C 26.50 27.628.设两容器注入同样多的水为x,根据题意,得(100+x)÷5=(30+x)÷3,解得x=75,所以甲、乙容器注入水后的总水量分别为:5×20+75=175与3×10+75=105,可使甲、乙容器注入水后的高度均为35厘米,即175÷5=35.29.设第二小的正方形的边长为x厘米,根据题意,得x+x+(x+1)=(x+2)+(x+3),解得:x=4,所以长方形的长为13厘米,宽为11厘米,面积=13×11=143平方厘米.30.设他这个月共用了x立方米的水,根据题意,得1.2×20+2(x-20)=1.5x,解得:x=32.所以他这个月共用了32立方米的水.31. A,B 两地之间的距离是203千米或20千米.32.(1)若从拥挤的路口,则 10分钟只能通过30辆车,前面还有6辆车,即便 10分钟后交通恢复正常也需10+69+7=1723分钟到达学校,而绕道而行需 15 分钟到达学校,1723>15,所以应选择绕道而行去学校.(2)设交警维持秩序的时间为x分钟,根据题意,得363−(x+36−3x9)=6,解得:x=3.所以交警维持秩序的时间为3分钟.33.150元(提示:从求甲、乙、丙三种搭配的套数入手,运用整体方法求解)34.设甲牧童有x 只羊.则乙有x-2只,根据题意,得2(x-2-1)=x+1.解得x=7,则7-2=5,所以甲牧童有7 只羊,乙牧童有5 只羊.35.设笔记本每本x元,则钢笔每支为(x+2)元,根据题意,得10(x+2)+15x=100-5.解得x=3,所以笔记本每本为3元,钢笔每支为x+2=5元.。

一元一次方程热点题型专项练--2023年中考数学一轮复习

一元一次方程热点题型专项练--2023年中考数学一轮复习

一元一次方程一、单选题1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 2.若2x =是关于x 的一元一次方程3ax b -=的解,则421a b -+的值是( ) A .7 B .8 C .7- D .8- 3.关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .54.下列说法中,正确的是( )A .若ac bc =,则a b =B .若22a b =,则a b =C .若a b c c =,则a b =D .若163x -=,则2x = 5.若关于x ,y 的多项式23237654x y mxy y xy -++化简后不含二次项,则m =( ) A .17 B .67 C .67- D .06.若代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,则有( ) A .1m = B .1m =- C .12m = D .1 2m =- 7.在四个数1,2,3,4中,是方程|x ﹣5|=2的解的是( )A .1B .2C .3D .48.下面是一个被墨水污染过的方程:23x x -=-,答案显示此方程的解是1x =,被墨水遮盖的是一个常数,则这个常数是( )A .2B .-2C .12-D .129.已知k 为非负整数,且关于x 的方程()33x kx -=的解为正整数,则k 的所有可能取值为( )A .2,0B .4,6C .4,6,12D .2,0,610.已知1x =是方程122()3-=-x x a 的解,那么关于y 的方程(4)24+=+a y ay a 的解是( ).A .y =1B .y =-1C .y =0D .方程无解11.若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解12.若关于x 的方程()()20192017620191k x x --=-+的解是整数,则整数k 的取值个数是( )A .5B .3C .6D .213.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .237230x xB .327230x xC .233072x xD .323072x x14.我国“DF -41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF -41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x 分钟能打击到目标,可以得到方程( )A .263406012000x ⨯⨯=B .2634012000x ⨯=C .26340120001000x ⨯=D .2634060120001000x ⨯⨯= 15.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .17 二、填空题16.关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.17.若 x =3 是关于 x 的一元一次方程 mx - n =3 的解,则代数式 10 - 3m + n 的值是___.18.已知2x ﹣3y ﹣5=0,则9y ﹣6x +16=________.19.如果212m ab -与23m ab +-是同类项,那么m 等于______.20.已知关于x 的方程32()mx x m +=-的解满足230x --=,则m 的值是____________. 21.已知关于x 的方程22()mx m x +=-的解满足1102x --=,则m 的值是_________. 22.已知关于x 的方程21132--=-x x a 的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______. 23.当a 取整数________时,关于x 的方程411633x ax ---=有正整数解.24.若关于x的方程234k x-=与方程1302x-=的解相同,则k的值为____________.25.当m取___ 时,关于x的方程mx+m=2x无解.三、解答题26.小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?27.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.28.小王看到两个超市的促销信息如图所示.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物标价198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?29.丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:按上述优惠条件,若小丽一次性购买乙种商品实际付款504元,求小丽购买商品的原价是多少?参考答案:1.C2.A解:将x =2代入ax -b =3中,得2a -b =3,∴421a b -+=2(2a -b )+1=231⨯+=7,3.C 方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,4.C解:A 、若ac =bc ,当c ≠0,则a =b ,故此选项错误; B 、若22a b =,则a b =±,故此选项错误;C 、若a b c c=,则a b =,故此选项正确; D 、若163x -=,则18x =-,故此选项错误; 5.B解:∴23237654x y mxy y xy -++ =()23236754x y m xy y +-+, ∴不含二次项,∴6﹣7m =0,解得m =67.6.C解:()()226251x y mx y -+-+-=226251x y mx y ---++=()21267m x y --+∴代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,∴120m -= 解得:12m =7.C当x -5≥0,则原式方程可变为:x -5=2,解得:x=7,当x -5<0,则原式方程可变为:x -5=-2,解得:x=3,8.A解:设这个常数为a ,则把1x =代入方程,得:2131a ⨯-=-,解得:2a =,9.A解:方程去括号得:3x −9=kx ,移项合并得:(3−k )x =9,解得:x =93k -, 由x 为正整数,k 为非负整数,得到k =2,0,10.C解:∴1x =是方程122()3-=-x x a 的解, ∴122(1)3a -=-, 解得1a =,将1a =代入(4)24+=+a y ay a 得:424y y +=+,解得0y =.11.D解:解方程3m (2x ﹣1)﹣n =3(2﹣n )x可得:(6m +3n ﹣6)x =3m +n∴有至少两个不同的解,∴6m +3n ﹣6=3m +n =0,即m =﹣2,n =6,把m =﹣2,n =6代入(m +n )x +3=4x +m 中得:4x +3=4x +m , ∴方程(m +n )x +3=4x +m 无解.12.C解:()()20192017620191k x x --=-+,(2019)2017620192019k x x --=--,(2019)2019620192017k x x -+=-+,4kx =, 解得:4x k=, ∴方程的解是整数,k 也是整数,∴k 可以为-4或-2或-1或1或2或4,共有6个数,故C 正确.13.D14.D解:因为1分钟60=秒,1公里1000=米, 所以可列方程为2634060120001000x ⨯⨯=, 15.B解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,16.-2解:由题意可得(0)x a a =≠,把x a =代入原方程可得:220a ab a ++=,等式左右两边同时除以a ,可得:20a b ++=, 即2a b +=-,故答案为:2-.17.7解:把x =3代入关于 x 的一元一次方程 mx - n =3得 3m - n =3-3m +n =-310 - 3m + n =10-3=7故答案为:7.18.1解:∴2x ﹣3y ﹣5=0,∴2x ﹣3y =5,∴9y ﹣6x +16=﹣3(2x ﹣3y )+16=﹣3×5+16=1,故答案为:1.19.320.5或-1解:230x --=,23x -=,23x -=±,解得:x =5-1或。

2024河南中考数学一轮知识点复习专题 一次方程(组) 课件

2024河南中考数学一轮知识点复习专题 一次方程(组) 课件
购进3件A商品和1件B商品总费用为360元.
(1)求A,B两种商品每件的进价分别为多少元.
【自主解答】 A,B两种商品每件的进价分别为100元、60元.
(2)若商场将A种商品提价 40% 后标价,在促销活动中,又按标价的 折
销售,结果仍可获利 12% ,求 的值.
[答案] = .
(3)若商场购进A,B两种商品共80件,A商品按每件150元销售,B商品按
当两个方程通过变形用含有一个未知数的式子来表示另一个未知数都比较复
杂时,往往选用加减法.
注意:求含有方程组中两个未知数的代数式的值时,常规思路是先解方程组
再代入求值,也可先观察代数式的特点,看将方程组中两个方程相加或相减
后是否能利用整体代入法直接得出所求代数式的值.
考点3 一次方程(组)的实际应用
方法
互为相反数或相等时,把这两个方程的两边分别相加或相减,就能消
去这个未知数,得到一个一元一次方程,实现消元,进而求得这个二
元一次方程组的解.
提分技法
选用二元一次方程组的解法的策略
当方程组中某一个未知数的系数是1(或 −1 )时,优先考虑代入法;
当两个方程中,同一个未知数的系数相等或互为相反数时,用加减法较简单;
每件80元销售,销售完这些商品后获得的总利润为3 400元,求分别购进A,B
甲、乙两个工程队接力完成.已知甲工程队每天修整16米,乙工程队每天修整2
4米,完成该任务两工程队共用时20天.求甲、乙两工程队分别修整街道多少米.


+
=

(1)若设甲工程队修整街道 米,则可列方程为_______________.


(2)若设甲工程队修整街道 米,乙工程队修整街道 米,则可列方程组

2024中考数学复习核心知识点精讲及训练—一次方程(组)及其应用(含解析)

2024中考数学复习核心知识点精讲及训练—一次方程(组)及其应用(含解析)

2024中考数学复习核心知识点精讲及训练—一次方程(组)及其应用(含解析)1、掌握等式的基本性质掌握代入消元法和加减消元法,能解二元一次方程组.2、能根据具体问题的实际意义,检验方程的解是否合理.3、经历用一次方程组解应用题的过程,提高分析问题和解决问题的能力【题型1:等式的性质】【典例1】(2022•青海)根据等式的性质,下列各式变形正确的是()A.若=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若﹣x=6,则x=﹣2【答案】A【解答】解:A、若=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、﹣x=6,则x=﹣18,故D不符合题意;故选:A.1.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:I=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【答案】B【解答】解:将等式I=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.2.(2021•安徽)设a,b,c为互不相等的实数,且b=a+c,则下列结论正确的是()A.a>b>c B.c>b>aC.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【答案】D【解答】解:∵b=a+c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.【题型2:一次方程(组)的相关概念】【典例2】(2023•永州)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.﹣3C.7D.﹣7【答案】A【解答】解:∵x=1是关于x的一元一次方程2x+m=5的解,∴2×1+m=5,∴m=3,故选:A.【典例3】(2023•眉山)已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.3【答案】B【解答】解:∵关于x、y的二元一次方程组为,①﹣②,得:2x﹣2y=2m+6,∴x﹣y=m+3,∵x﹣y=4,∴m+3=4,∴m=1.故选:B.1.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【答案】D【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.2.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【答案】A【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.3.(2020•重庆)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【答案】D【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.4.(2023•朝阳)已知关于x,y的方程组的解满足x﹣y=4,则a的值为2.【答案】2.【解答】解:,①﹣②得:x﹣y=a+2,又∵关于x,y的方程组的解满足x﹣y=4,∴a+2=4,∴a=2.故答案为:2.【题型3:一次方程(组)的解法】【典例4】(2021•广元)解方程:+=4.【答案】x=7.【解答】解:+=4,3(x﹣3)+2(x﹣1)=24,3x﹣9+2x﹣2=24,3x+2x=24+9+2,5x=35,x=7.【典例5】(2023•乐山)解二元一次方程组:.【答案】.【解答】解:,①×2得:2x﹣2y=2③,②+③得:5x=10,解得:x=2,把x=2代入①中得:2﹣y=1,解得:y=1,∴原方程组的解为:.1.(2023•河南)方程组的解为.【答案】.【解答】解:,①+②,得4x+4y=12,∴x+y=3③.①﹣③,得2x=2,∴x=1.②﹣①,得2y=4,∴y=2.∴原方程组的解为.故答案为:.2.(2021•桂林)解一元一次方程:4x﹣1=2x+5.【答案】见试题解答内容【解答】解:4x﹣1=2x+5,4x﹣2x=5+1,2x=6,x=3.3.(2023•常德)解方程组:.【答案】.【解答】解:①×2+②得:5x=25,解得:x=5,将x=5代入①得:5﹣2y=1,解得:y=2,所以原方程组的解是.4.(2023•衢州)小红在解方程时,第一步出现了错误:解:2×7x=(4x﹣1)+1,…(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.【答案】(1)见解析;(2)见解析.【解答】解:(1)如图:(2)去分母:2×7x=(4x﹣1)+6,去括号:14x=4x﹣1+6,移项:14x﹣4x=﹣1+6,合并同类项:10x=5,系数化1:x=.【题型4:一次方程(组)的应用】【典例6】(2023•深圳)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?【答案】(1)A玩具的进价为50元,每件B玩具的进价为75元;(2)100个.【解答】解:(1)设每件A玩具的进价为x元,则每件B玩具的进价为(x+25)元,根据题意得:2(x+25)+x=200,解得:x=50,可得x+25=50+25=75,则每件A玩具的进价为50元,每件B玩具的进价为75元;(2)设商场可以购置A玩具y个,根据题意得:50y+75×2y≤20000,解得:y≤100,则最多可以购置A玩具100个.1.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人.【解答】解:设该客车的载客量为x人,根据题意得:4x+30=5x﹣10,解得:x=40.答:该客车的载客量为40人.2.(2023•陕西)“绿水青山就是金山银山”,希望中学每年都会组织学生进行植树活动.今年该校又买了一批树苗,并组建了植树小组.如果每组植5棵,就会多出6棵树苗;如果每组植6棵,就会缺少9棵树苗.求学校这次共买了多少棵树苗?【答案】学校这次共买了81棵树苗.【解答】解:设学校这次共买了x棵树苗,则:=,解得:x=81,答:学校这次共买了81棵树苗.3.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x cm,地头长为4x cm,则左、右边的宽为x cm,根据题意得,100+(6x+4x)=4×[27+(6x﹣4x)],解得x=4,答:边的宽为4cm,天头长为24cm.4.(2023•安徽)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲地该商品的销售单价为40元,乙地该商品的销售单价为50元.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价为40元,乙地该商品的销售单价为50元.5.(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B 种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】见试题解答内容【解答】解:(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,依题意得:,解得:.答:购进一根A种跳绳需10元,购进一根B种跳绳需15元.(2)∵该班级计划购买A、B两种跳绳共45根,且购买A种跳绳m根,∴购买B种跳绳(45﹣m)根.依题意得:,解得:23≤m≤25.4,又∵m为整数,∴m可以取23,24,25,∴共有3种购买方案,方案1:购买23根A种跳绳,22根B种跳绳;方案2:购买24根A种跳绳,21根B种跳绳;方案3:购买25根A种跳绳,20根B种跳绳.(3)设购买跳绳所需总费用为w元,则w=10m+15(45﹣m)=﹣5m+675.∵﹣5<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣5×25+675=550.答:在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.1.(2023•青县校级模拟)如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.=C.x﹣2=y﹣2D.x+7=y﹣7【答案】C【解答】解:A、由x=y,得到x﹣y=0,原变形错误,故此选项不符合题意;B、由x=y,得到=,原变形错误,故此选项不符合题意;C、由x=y,得到x﹣2=y﹣2,原变形正确,故此选项符合题意;D、由x=y,得到x+7=y+7,原变形错误,故此选项不符合题意;故选:C.2.(2022秋•昆都仑区校级期末)为做好疫情防控工作,学校把一批口罩分给值班人员,如果每人分3个,则剩余20个;如果每人分4个,则还缺25个,设值班人员有x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+25【答案】A【解答】解:由题意得3x+20=4x﹣25.故选:A.3.(2023秋•瓦房店市校级期中)若x=﹣4是方程a+3x=﹣15的解,则a的值是()A.1B.﹣1C.﹣5D.﹣3【答案】D【解答】解:把x=﹣4代入方程得:a﹣12=﹣15,解得:a=﹣3.故选:D.4.(2023秋•南宁期中)一元一次方程2x+1=5的解为()A.x=3B.x=4C.x=2D.x=0【答案】C【解答】解:移项和合并同类项,可得:2x=4,系数化为1,可得:x=2.故选:C.5.(2022秋•乐亭县期末)解方程,去分母正确的是()A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)【答案】C【解答】解:,去分母得2(2x+1)=6﹣3(x﹣1).故选:C.6.(2022秋•丰宁县校级期末)若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1B.﹣1C.±1D.0【答案】B【解答】解:解2x=8,得x=4.由同解方程,得4a+2×4=4.解得a=﹣1,故选:B.7.(2022秋•凤翔县期末)已知3x|m|+(m+1)y=6是关于x、y的二元一次方程,则m的值为()A.m=1B.m=﹣1C.m=±1D.m=2【答案】A【解答】解:根据题意得|m|=1且m+1≠0,所以m=1或m=﹣1且m≠﹣1,所以m=1.故选:A.8.(2023春•莒南县期末)已知是方程组的解,则a+b=()A.2B.﹣2C.4D.﹣4【答案】B【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.9.(2023春•西城区校级期中)已知是二元一次方程y﹣kx=7的解,则k的值是()A.2B.﹣2C.4D.﹣4【答案】D【解答】解:根据题意得,﹣1﹣2k=7,解得:k=﹣4.故选:D.10.(2023•江山市模拟)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是()A.B.C.D.【答案】B【解答】解:∵用绳子去量长木,绳子还剩余4.5尺,∴x﹣y=4.5;∵将绳子对折再量长木,长木还剩余1尺,∴.∴所列方程组为.故选:B.11.(2023春•天元区校级期末)若解得x,y的值互为相反数,则k的值为()A.4B.﹣1C.2D.﹣5【答案】D【解答】解:由题意可知:x+y=0,∴,解得:,将代入2x﹣ky=6,得2×(﹣2)﹣2k=6,解得:k=﹣5.故选:D.二.解答题(共5小题)12.(2023•渝北区校级自主招生)解下列方程:(1)2x﹣3(x﹣1)=5(1﹣x);(2).【答案】见试题解答内容【解答】解:(1)2x﹣3(x﹣1)=5(1﹣x),去括号得:2x﹣3x+3=5﹣5x,移项得:2x﹣3x+5x=5﹣3,合并同类项得:4x=2,把系数化为1得:x=.(2)1﹣=,去分母得:15﹣3(x﹣3)=5(4﹣x),去括号得:15﹣3x+9=20﹣5x,移项得:﹣3x+5x=20﹣15﹣9,合并同类项得:2x=﹣4,把系数化为1得:x=﹣2.13.(2023秋•靖江市校级期中)已知关于x的方程(|k|﹣3)x2﹣(k﹣3)x+2m+1=0是一元一次方程.(1)求k的值;(2)若已知方程与方程3x=4﹣5x的解相同,求m的值.【答案】见试题解答内容【解答】解:(1)由题意得|k|﹣3=0,k﹣3≠0,∴k=﹣3;(2)3x=4﹣5x,3x+5x=4,x=,原方程为:6x+2m+1=0,把x=代入:3+2m+1=0,m=﹣2.14.(2022秋•莲池区校级期末)解下列方程组:(1);(2).【答案】(1);(2).【解答】解:(1)②﹣①得:4y=16,解得:y=4,把y=4代入②得:x+4=6,解得:x=2,则方程组的解为;(2)方程组整理得:,②×2﹣①得:5x=12,解得:x=,把x=代入②得:﹣y=8,解得:y=,则方程组的解为.15.(2022秋•榆阳区校级期末)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【答案】(1)调入6名工人;(2)10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.16.(2023春•铁锋区期末)列方程(组)或不等式(组)解应用题:学校为了支持体育社团开展活动,鼓励同学们加强锻炼,准备增购一些羽毛球拍和乒乓球拍.(1)根据图中信息,求出每支羽毛球拍和每支乒乓球拍的价格;(2)学校准备用5300元购买羽毛球拍和乒乓球拍,且乒乓球拍的数量为羽毛球拍数量的3倍,请问最多能购买多少支羽毛球拍?【答案】(1)每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元;(2)最多能购买20支羽毛球拍.【解答】解:(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,依题意得:,解得:.答:每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元.(2)设购买m支羽毛球拍,则购买3m支乒乓球拍,依题意得:80m+60×3m≤5300,解得:m≤.又∵m为整数,∴m的最大值为20.答:最多能购买20支羽毛球拍.1.(2023秋•秦淮区期中)如果方程(a﹣2)x|a﹣1|+3=9是关于x的一元一次方程,则a的值为()A.0B.2C.6D.0或2【答案】A【解答】解:由题意得:|a﹣1|=1且a﹣2≠0,解得a=0.故选:A.2.(2023秋•工业园区校级期中)现定义运算“*”,对于任意有理数a与b,满足a*b=,譬如5*3=3×5﹣3=12,,若有理数x满足x*3=12,则x的值为()A.4B.5C.21D.5或21【答案】B【解答】解:若x≥3,3x﹣3=12,解得x=5;若x<3,x﹣9=12,解得x=21(不符合题意,舍去).综上,x=5,故选:B.3.(2022秋•颍州区校级期末)某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)【答案】A【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.4.(2023秋•洛龙区期中)下列运用等式变形错误的是()A.由a=b,得a+6=b+6B.由a=b,得C.由,得a=b D.由﹣2a=﹣2b,得a=﹣b【答案】D【解答】解:A.∵a=b,∴a+6=b+6,故本选项不符合题意;B.∵a=b,∴=,故本选项不符合题意;C.∵=,∴a=b,故本选项不符合题意;D.∵﹣2a=﹣2b,∴a=b,故本选项符合题意.故选:D.5.(2023秋•新市区校级期中)如图,表中给出的是某月的日历,任意选取“Z”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是()A.49B.60C.84D.105【答案】D【解答】解:设中间的数为x,则上一行3个数分别是x﹣8,x﹣7,x﹣6,下一行3个数分别是x+8,x+7,x+6,则这7个数的和为x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,A.若7x=49,则x=7,不符合题意;B.若7x=60,则,不符合题意;C.若7x=84,则x=12,不符合题意;D.若7x=105,则x=15,符合题意;故选:D.6.(2023秋•蔡甸区期中)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率恰好为10%,则该商品可以打()折(利润率=×100%)A.7B.7.5C.8D.8.8【答案】D【解答】解:设这种商品可以按x折销售,则售价为(5×0.1x)元,那么利润为(5×0.1x﹣4)元,所以相应的关系式为5×0.1x﹣4=4×10%,解得:x=8.8.答:该商品可以打8.8折,故选:D.7.(2023•九龙坡区校级开学)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地需4分钟,乙骑自行车从B地到A地需6分钟.现乙从B地先发出1分钟后,甲才从A地出发,问多久后甲、乙相遇?设乙出发x分钟时,甲、乙相遇,则可列方程为()A.B.C.D.【答案】A【解答】解:∵甲骑自行车从A地到B地需4分钟,乙骑自行车从B地到A地需6分钟,∴甲的速度是,乙的速度是,由题意得.故选:A.8.(2023秋•雁塔区校级期中)若关于x、y的二元一次方程x+2y=2a﹣1的一组解为x=3,y=1,则a的值是()A.3B.2C.1D.﹣1【答案】A【解答】解:把x=3,y=1代入关于x、y的二元一次方程x+2y=2a﹣1得:2a﹣1=3+2×1,2a﹣1=5,2a=6,a=3,故选:A.9.(2023秋•深圳期中)关于x、y的二元一次方程组的解为,则关于m,n的二元一次方程组的解为()A.B.C.D.【答案】D【解答】解:设m+n=x',m﹣n=y',则关于m,n的二元一次方程组可以转化为,∵关于x、y的二元一次方程组的解为,∴关于x'、y'的二元一次方程组的解,∴,①+②得:2m=6,解得m=3,将m=3代入①得:n=﹣2,∴.故选:D.10.(2022秋•溧阳市期末)完全相同的4个白色小长方形如图所示放置,形成了一个长、宽分别为m、n 的大长方形则图中阴影部分的周长是()A.4n B.2m+n C.2m+2n D.3m﹣n【答案】A【解答】解:设白色小长方形的长为x,宽为y,根据题意得:x+2y=m,∵大长方形的长、宽分别为m、n,∴左边阴影部分的长为(m﹣2y),宽为(n﹣2y),右边阴影部分的长为2y,宽为(n﹣x),∴阴影部分的周长=2[(m﹣2y)+(n﹣2y)]+2[2y+(n﹣x)]=2(m+n﹣4y)+2(2y+n﹣x)=2(m+n﹣4y+2y+n﹣x)=2(m+2n﹣2y﹣x)=2[m+2n﹣(2y+x)]=2(m+2n﹣m)=4n,故选:A.11.(2023春•富县期末)若关于x,y的二元一次方程组的解满足,则k的取值范围是()A.k≤1B.k≤2C.k≤﹣1D.k≤﹣2【答案】A【解答】解:两方程相加,得3x+3y=5k﹣1,∴,∵,∴,解得:k≤1,故选:A.12.(2022春•朝天区期末)已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④【答案】D【解答】解:关于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:D.13.(2022秋•成都期末)已知关于x,y的二元一次方程组为,则3x+2y的值为7.【答案】7.【解答】解:,①+②得:3x+2y=7.14.(2023春•海林市校级期中)已知方程组和有相同的解,求a、b的值.【答案】见试题解答内容【解答】解:先解方程组,解得:,将x=2、y=3代入另两个方程,得方程组:,解得:.15.(2023春•兖州区期末)如图,欣欣食品加工厂与湖州、杭州两地有公路、铁路相连,该食品加工厂从湖州收购一批每吨2000元的枇杷运回工厂加工,制成每吨8000元的枇杷干运到杭州销售,已知公路运价为0.8元/(吨•千米),铁路运价为0.5元/(吨•千米),且这次运输共支出公路运输费960元,铁路运输费1900元.求:(1)该工厂从湖州购买了多少吨枇杷?制成运往杭州的枇杷干多少吨?(2)这批枇杷干的销售款比购买枇杷费用与运输费用的和多多少元?【答案】见试题解答内容【解答】解:(1)设该工厂从湖州购买了x吨枇杷,制成运往杭州的枇杷干y吨,根据题意得:,解得:.答:该工厂从湖州购买了50吨枇杷,制成运往杭州的枇杷干20吨.(2)8000×20﹣2000×50﹣960﹣1900=57140(元).16.(2023春•罗山县期末)某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.【答案】见试题解答内容【解答】解:(1)设每辆小客车能坐m名学生,每辆大客车能坐n名学生根据题意,得,解得,m+n=20+45=65,答:1辆小客车和1辆大客车都坐满后一次可送65名学生.(2)①由题意得:20a+45b=400,∴b=,∵a、b为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元),方案二租金:200×11+380×4=3720(元),方案三租金:200×2+380×8=3440(元),∵3720>3440,∴方案三租金最少,最少租金为3440元.答:这批枇杷干的销售款比购买枇杷费用与运输费用的和多57140元.17.(2023春•围场县期末)宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,菜杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售.打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a篮圆篮和a篮方篮共收入8600元,求a的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮;②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,求b的值.【答案】(1)a的值为20;(2)①圆篮共包装了44篮,则方篮共包装36篮;②b的值为9或18.【解答】解:(1)由题意,得160a+270a=8600,解得:a=20,答:a的值为20.(2)①设圆篮共包装了x篮,则方篮共包装y篮,由题意,得,解得:,答:圆篮共包装了44篮,则方篮共包装36篮.②设此时出售了m篮圆篮,n篮方篮杨梅,则,解这个关于m和n的方程组,可得:,∵n为正整数,∴>0,且b应为9的倍数,解得:,又∵b>0,∴b的值为9或18.答:b的值为9或18.1.(2023•衢州)下列各组数满足方程2x+3y=8的是()A.B.C.D.【答案】A【解答】解:A.当x=1,y=2时,方程左边=2×1+3×2=8,方程右边=8,∴方程左边=方程右边,选项A符合题意;B.当x=2,y=1时,方程左边=2×2+3×1=7,方程右边=8,7≠8,∴方程左边≠方程右边,选项B不符合题意;C.当x=﹣1,y=2时,方程左边=2×(﹣1)+3×2=4,方程右边=8,4≠8,∴方程左边≠方程右边,选项C不符合题意;D.当x=2,y=4时,方程左边=2×2+3×4=16,方程右边=8,16≠8,∴方程左边≠方程右边,选项D不符合题意.故选:A.2.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣7【答案】C【解答】解:移项得:3x﹣2x=7,合并同类项得:x=7.故选:C.3.(2023•南通)若实数x,y,m满足x+y+m=6,3x﹣y+m=4,则代数式﹣2xy+1的值可以是()A.3B.C.2D.【答案】D【解答】解:由题意可得,解得:,则﹣2xy+1=﹣2××+1=﹣+1=﹣+1=﹣+1=﹣+≤,∵3>>2>,∴A,B,C不符合题意,D符合题意,故选:D.4.(2021•重庆)若关于x的方程+a=4的解是x=2,则a的值为3.【答案】3.【解答】解:把x=2代入方程+a=4得:+a=4,解得:a=3,故答案为:3.5.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为1.【答案】1.【解答】解:依题意,得:6+m+8=15,解得:m=1.故答案为:1.6.(2023•连云港)解方程组.【答案】.【解答】解:,①+②得:5x=15,解得:x=3,将x=3代入①得:3×3+y=8,解得:y=﹣1,故原方程组的解为:.7.(2022•荆州)已知方程组的解满足2kx﹣3y<5,求k的取值范围.【答案】k<2.【解答】解:①+②得:2x=4,∴x=2,①﹣②得:2y=2,∴y=1,代入2kx﹣3y<5得:4k﹣3<5,∴k<2.答:k的取值范围为:k<2.8.(2022•岳阳)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元?(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?【答案】(1)A种跳绳的单价为30元,B种跳绳的单价为50元.(2)至多可以购买B种跳绳20根.【解答】解:(1)设A种跳绳的单价为x元,B种跳绳的单价为y元.根据题意得:,解得:,答:A种跳绳的单价为30元,B种跳绳的单价为50元.(2)设购买B种跳绳a根,则购买A种跳绳(46﹣a)根,由题意得:30(46﹣a)+50a≤1780,解得:a≤20,答:至多可以购买B种跳绳20根.9.(2023•河北)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在第一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)6分;(2)k的值为6.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.∴k的值为6.10.(2023•张家界)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生人数是600人,原计划租用13辆45座客车;(2)租用14辆45座客车更合算.【解答】解:(1)设参加此次研学活动的师生人数是x人,原计划租用y辆45座客车.根据题意,得,解得.答:参加此次研学活动的师生人数是600人,原计划租用13辆45座客车;(2)租45座客车:600÷45≈14(辆),所以需租14辆,租金为200×14=2800(元),租60座客车:600÷60=10(辆),所以需租10辆,租金为300×10=3000(元),∵2800<3000,∴租用14辆45座客车更合算.。

2025年中考数学一轮复习:一元一次方程(附答案解析)

2025年中考数学一轮复习:一元一次方程(附答案解析)

2025年中考数学一轮复习:一元一次方程一.选择题(共10小题)1.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x斗,那么可列方程为()A.3x+10(5﹣x)=30B.3+30−10=5C.10+30−3=5D.10x+3(5﹣x)=302.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2(x+9)C.3+2=2−9D.3(x﹣2)=2x+93.下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1 C.若a=b,则=D.若3=3,则a=b4.《九章算术》中记录了一个问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若设绳长为x尺,则下列符合题意的方程是()A.13x﹣4=14x﹣1B.3(x+4)=4(x+1)C.13x+4=14x+1D.3x+4=4x+15.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,则可列方程为()第1页(共16页)。

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)→➊考点精析←一、方程和方程的解的概念1.等式的性质(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.2.方程:含有未知数的等式叫做方程.3.方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.二、一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.一元一次方程0(0)ax b a +=≠的求解步骤变形名称具体做法去分母在方程两边都乘以各分母的最小公倍数去括号先去小括号,再去中括号,最后去大括号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边合并同类项把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a ,得到方程的解为bx a=-注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.三、二元一次方程(组)及解的概念1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.解二元一次方程组的基本思想解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.5.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.四、一次方程(组)的应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.→➋真题精讲←考向一一元一次方程的定义只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是0ax b +=(,a b 是常数且0a ≠).1.(2019·内蒙古呼和浩特·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.2x =2x =-21120m mx m x +﹣(﹣)﹣=211m ∴﹣=1m =0m =20x ﹣=20x --=2x =2x =-12112022x --=考向二解一元一次方程解一元一次方程的主要步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1.2.(2020·浙江杭州·中考真题)以下是圆圆解方程1323+--x x =1的解答过程.解:去分母,得3(x +1)﹣2(x ﹣3)=1.去括号,得3x +1﹣2x +3=1.移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.3.(2020·湖北恩施·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是().A .1-B .1C .0D .22211☆=+-=+x x x 21x =☆11x +=0x =4.(2020·广西玉林·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于()A .499B .500C .501D .1002考向三新定义、阅读理解、规律问题5.(2020·西藏中考真题)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于()A .18B .19C .20D .21⋯n6(1)165n n -+=-n1061=⨯+7161=⨯+13261=⨯+19361=⨯+⋯n6(1)165n n -+=-65103n -=18n =nnA6.(2018·湖南常德·中考真题)阅读理解:a ,b ,c ,d 是实数,我们把符号a b cd称为22⨯阶行列式,并且规定:a b a d b c cd=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:x y D x DD y D ⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是()A .21732D ==--B .14x D =-C .27y D =D .方程组的解为23x y =⎧⎨=-⎩2132-11122-21312147x DD-=-217y D D =-7.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.13-2*a4*(3)-2*4*(3)a =-2*(2)2m n m n=+-()22222162a a a *=+-=-()()()243422342*-=+-⨯-=2*4*(3)a =-16242a -=13a =-13-考向四一元一次方程的应用列方程解实际应用题的一般步骤:(1)审:审清题意,分清题中的已知量、未知量;(2)设:恰当设出关键未知数;(3)列:找出适当等量关系,列方程;(4)解:解方程;(5)验:检验所解值是否正确或是否符合实际意义;(6)答:规范作答,注意单位名称.8.(2023·浙江温州·统考中考真题)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g .设蛋白质、脂肪的含量分别为()g x ,()g y ,可列出方程为()A .5302x y +=B .5302x y +=C .3302x y +=D .3302x y +=【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x ,则: 1.530x x y ++=,即5302x y +=,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.9.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm 的导线,将其全部截成10cm 和20cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A .5种B .6种C .7种D .8种【答案】C【分析】设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意,得出152xy -=,进而根据,x y 为正整数,即可求解.【详解】解:设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意得,1020150x y +=,即152xy -=,∵,x y 为正整数,∴1,3,5,7,9,11,13x =则7,6,5,4,3,2,1y =,故有7种方案,故选:C.【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.10.(2019·贵州黔东南·中考真题)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.考向五二元一次方程(组)的定义(1)二元一次方程应满足:①含有2个未知数;②含有未知数的项的次数都是1;③是整式方程.(2)由两个二元一次方程组成的方程组叫二元一次方程组.11.(2020.湖北省中考模拟)下列方程中,是二元一次方程组的是A.4237x yx y+=⎧⎨+=⎩B.23225412a bx c-=⎧⎨-=⎩C.245xx y⎧=⎨+=⎩D.75x yxy+=⎧⎨=⎩4237x yx y+=⎧⎨+=⎩23225412a bx c-=⎧⎨-=⎩245xx y⎧=⎨+=⎩2x275x yx y+=⎧⎨-=⎩xy12.(2020·浙江绍兴·中考真题)若关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,则多项式A可以是_____(写出一个即可).11xy=⎧⎨=⎩11xy=⎧⎨=⎩2x yA+=⎧⎨=⎩11xy=⎧⎨=⎩考向六解二元一次方程组二元一次方程组的两种解法:①加减消元法;②代入消元法.13.(广西桂林·中考真题)若|321|0x y--=,则x,y的值为()A.14xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.11xy=⎧⎨=⎩32120x y x y--++-=321020x yx y--⎧⎨+-⎩==32=1=2xyxy-⎧⎨+⎩①②11xy=⎧⎨=⎩14.(2019·四川内江·中考真题)若,,x y z为实数,且2421x y zx y z+-=⎧⎨-+=⎩,则代数式2223x yz-+的最大值是_____.2223x y z-+()()241212x yzxy z⎧+-=⎪⎨-+=⎪⎩1y z=+1y z=+2x z=-()()()222222223231101526x y z z z z z z z-+=--++=--+=-++5z=-2223x y z-+15.(2023·江苏连云港·统考中考真题)解方程组3827x yx y+=⎧⎨-=⎩【答案】31xy=⎧⎨=-⎩【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨-=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =-.∴原方程组的解为3,1.x y =⎧⎨=-⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.16.(2023·湖南常德·统考中考真题)解方程组:213423x y x y -=⎧⎨+=⎩①②【答案】52x y =⎧⎨=⎩【分析】方程组利用加减消元法求解即可.【详解】解:将①2⨯得:242x y -=③+②③得:5x =将5x =代入①得:2y =所以52x y =⎧⎨=⎩是原方程组的解.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.17.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是()A .1B .2C .4D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n ÷变形,即可解答.法二:321x y m x y n +=-⎧⎨-=⎩①②中①-②得到()221m n x y -=++,再根据1x y +=求出23m n -=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=-⎧⎨-=⎩①②,+①②得421x m n =+-,解得214m n x +-=,将214m n x +-=代入②,解得2314m n y --=,1x y =+ ,21231144m n m n +---∴+=,得到23m n -=,2234222228m n m n m n -∴÷=÷===,法二:321x y m x y n +=-⎧⎨-=⎩①②①-②得:2221x y m n +=--,即:()221m n x y -=++,∵1x y +=,∴22113m n -=⨯+=,2234222228m n m n m n -∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.18.(2020·黑龙江穆棱·朝鲜族学校中考真题)若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为()A .3B .3,-3CD21a b =⎧⎨=⎩21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩3522+=⎧⎨-=⎩x y x y 75x =75x =45y =7415223555+=+⨯==x y 319.(山东滨州·中考真题)若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b+--⎧⎨++-=⎩的解是_______.3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩12a b a b +=⎧⎨-=⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩3526x my x ny -=⎧⎨+=⎩()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩42546a b a +=⎧⎨=⎩3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩12a b a b +=⎧⎨-=⎩12a b a b +=⎧⎨-=⎩3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3212ab⎧=⎪⎪⎨⎪=-⎪⎩考向七二元一次方程组的应用由实际问题抽象出二元一次方程组的主要步骤:①弄清题意;②找准题中的两个等量关系;③设出合适的未知数;④根据找到的等量关系列出两个方程并联立成二元一次方程组.20.(2023·湖南·统考中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x 只鸡,y 只兔.依题意,可列方程组为()A .35,4294x y x y +=⎧⎨+=⎩B .94,4235x y x y +=⎧⎨+=⎩C .35,2494x y x y +=⎧⎨+=⎩D .94,2435x y x y +=⎧⎨+=⎩【答案】C【分析】根据等量关系“鸡的只数+兔的只数35=”和“2⨯鸡的只数4+⨯兔的只数94=”即可列出方程组.【详解】解:设有x 只鸡,y 只兔,由题意可得:352494x y x y +=⎧⎨+=⎩,故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.21.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A .5种B .6种C .7种D .8种【答案】B【分析】设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,根据采购三种图书需500元列出方程,再依据x 的数量分两种情况讨论求解即可.【详解】解:设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,其中56,0,0,x y z ≤≤>>且,,x y z 均为整数,根据题意得,302520500x y z ++=,整理得,654100x y z ++=,①当5x =时,6554100y z ⨯++=,∴704,5zy -=∵0,0,y z >>且,y z 均为整数,∴当70410z -=时,2y =,∴15z =;当70430z -=时,6y =,∴10z =;当70450z -=时,10y =,∴5z =;②当6x =时,6654100y z ⨯++=,∴644,5zy -=∵0,0,y z >>且,y z 均为整数,∴当64420z -=时,4y =,∴11z =;当64440z -=时,8y =,∴6z =;当64460z -=时,12y =,∴1z =;综上,此次共有6种采购方案,故选:B .【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.22.(2023·湖南张家界·统考中考真题)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x人,原计划租用45座客车y辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆依题意得4515 60(3)y xy x+=⎧⎨-=⎩解得:60013xy=⎧⎨=⎩,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,142002800⨯=,103003000⨯=,∵28003000<∴租14辆45座客车较合算.【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键.23.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售A B、两种品牌的盐皮蛋,若购买9箱A种盐皮蛋和6箱B种盐皮蛋共需390元;若购买5箱A种盐皮蛋和8箱B 种盐皮蛋共需310元.(1)A 种盐皮蛋、B 种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A B 、两种盐皮蛋共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m -箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,答:A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元.(2)解:设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m -箱,购买A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,()()305230m m m m ⎧--≥⎪∴⎨≤-⎪⎩,解得35202m ≤≤,又m 为正整数,m ∴所有可能的取值为18,19,20,①当18m =,3012m -=时,购买总费用为30182012780⨯+⨯=(元),②当19m =,3011m -=时,购买总费用为30192011790⨯+⨯=(元),③当20m =,3010m -=时,购买总费用为30202010800⨯+⨯=(元),所以购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.。

备考2024年中考数学计算能力训练8 解一元一次方程

备考2024年中考数学计算能力训练8 解一元一次方程

备考2024年中考数学计算能力训练8 解一元一次方程一、选择题1.下列方程移项、系数化为1正确的是()A.由3+x=5,得x=5+3B.由2x+3=x+7,得2x+x=7+3C.由7x=﹣4,得x=﹣74D.由12y=2,得y=42.关于x的方程3﹣3a−x2=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣33.若−2a m b4与5a2b n可以合并成一项,则n m的值是()A.2 B.4 C.8 D.164.把方程x3−x+16=1去分母,下列变形正确的是()A.2x−(x+1)=1B.2x−(x+1)=6C.2x−x+1=1D.2x−x+1=6 5.解方程3-(x-6)=5(x-1)时,去括号正确的是()A.3-x+6=5x+5B.3-x-6=5x+1C.3-x+6=5x-5D.3-x-6=5x+16.将方程x0.3=1+1.2−0.3x0.2中分母化为整数,正确的是()A.10x3=10+12−3x2B.x3=10+1.2−0.3x0.2C.10x3=1+12−3x2D.x3=1+1.2−0.3x27.下列等式变形正确的是()A.若-3x=5,则x= −35B.若x3+x−12=1,则2x+3(x-1)=1 C.若5x-6=2x+8,则5x+2x=8+6D.若3(x+1)-2x=1则3x+3-2x=18.在解方程2x−12=1−3−x3时,去分母后正确的是()A.3(2x−1)=1−2(3−x)B.3(2x−1)=1−(3−x) C.3(2x−1)=6−2(3−x)D.2(2x−1)=6−3(3−x) 9.下列方程的变形中正确的是()A.由2x+6=-3移项得2x=-3+6B.由x−32−2x+16=1去分母得(x-3)-(2x+1)=6C.由2(x+1)-(x-1)=4去括号得2x+2-x+1=4D.由7x=4系数化为1得x=7410.已知关于x的一元一次方程x2023+5=2023x+2a的解为x=4,那么关于y的一元一次方程3−y2023+ 2023(y−3)=2a−5的解为()A.−2B.−1C.1D.2二、填空题11.关于x的方程3x+2m=9的解是x=1,则m的值是.12.已加关于x的一元一次方程2021x-3=4x+3b的解为x=7,则关于y的一元一次方程2021(1-y)+3=4(1-y)-3b的解为y =.13.若3x m+5y3与23x2y n的差仍为单项式,则m+n=.14.若x=5是关于x的方程4x+2k=7的解,则k=.15.如图是一个数表,现用一个矩形在数表中任意框出4个数,当a+b+c+d=32时,a=.16.小明做作业时,不小心将方程x−22−1=4x3+●中的一个常数污染了看不清楚,小芳告诉他该方程的解是负数,并且这个常数是负整数,该方程的解是.17.若关于x的方程2kx+m3=2+x−nk6,无论k为任何数时,它的解总是x=2,那么m+n=.18.点Q的横坐标为一元一次方程3x+7=32−2x的解,纵坐标为a+b的值,其中a,b满足二元一次方程组{2a−b=4−a+2b=−8,则点Q关于y轴对称点Q′的坐标为.三、计算题19.解方程:x−32+x−13=4.20.已知关于x的方程2−13(a−x)=2x的解是关于x的方程5x+5=5a的解相同,求a的值.21.当m满足什么条件时,关于x的方程|x-3|-|x-7|=m有一解?有无数多个解?无解?如果方程有解,请求出方程的解。

2024年中考数学一轮复习提高讲义:一元一次方程的解法

2024年中考数学一轮复习提高讲义:一元一次方程的解法

一元一次方程的解法知识梳理1. 定义一元一次方程必须同时满足下列三个条件:(1)含有一个未知数;(2)未知数的指数是1;(3)未知数的系数不为0.2.等式的性质(1) 等式的性质1:如果a=b,那么a±c=b±c.(2)等式的性质2:如果a=b,那么ac=bc.如果a=b(c≠0),那么ac =bc.3.解一元一次方程的步骤(1)去分母;(2)去括号;(3) 移项;(4)合并同类项;(5)两边同时除以未知数的系数.注:这些步骤的先后顺序并不是严格固定的,要根据问题灵活变动.4. 注意(1)化分母中的小数为整数时,要根据分数的基本性质,把分子、分母同时乘以一个不为0的数,不改变分数的局部的值,不涉及其他项.(2)去分母是根据等式的基本性质,因此方程中的每一项都要同时乘以分母的最小公倍数,不能漏乘,去掉分数线之后,分子要注意添加括号.典型例题例 1若方程 (m −2)x |m−1|+3=4是关于x 的一元一次方程,则m= .分析 本题的关键是弄清一元一次方程的概念,明确一元一次方程必须满足的条件.解 由题意可得 {m −2≠0|m −1|=1, 解得 m=0.例2已知x=2是方程2(x-3)+1=x+m 的解,则m= .分析 明确方程解的概念,把x=2代入原方程2(x-3)+1=x+m 中,得到关于m 的方程-2+1=2+m,求出该方程的解即可.解 把x=2代入原方程2(x-3)+1=x+m 中,得到关于m 的方程-2+1=2+m,解得m=-3.例3依据下列解方程0.3x+0.50.2=2x−13的过程,请在前面的横线上填写变形步骤,在后面的括号内填写变形依据,横线上填写注意事项.解 原方程可化为 3x+52=2x−13.( )( ),得3(3x+5)=2(2x-1).( )注意:去括号,得9x+15=4x-2.( ),得9x-4x=-2-15.( ),得5x=-17.(代数式运算、合并同类项法则),得 x =−175.( )分析 当分母中含有小数时,可以用分数的基本性质,把它们化为整数,再按照去分母、去括号、移项、合并同类项、系数化为1的步骤依次进行.解 原方程可化为 3x+52=2x−13.(分数的基本性质)(去分母),得3(3x+5)=2(2x-1).(等式性质 2)注意:不要漏乘去括号,得9x+15=4x-2.(去括号法则,乘法分配律)移项 ,得9x-4x=-2-15.( 等式的性质1 )合并同类项法则 ,得5x=-17.(代数式运算、合并同类项法则)系数化为1,得 x =−175( 等式性质2 )例 4m 等于什么数时,式子 m −m−13与 7−m+35的值相等?分析 根据题意列出关于m 的分式方程,然后解分式方程即可求得m 的值.解 令 m −m−13=7−m+35去分母,得 15m-5(m-1)=7×15-3(m+3)去括号,得15m-5m+5=105-3m-9移项合并,得13m=91系数化为1,得m=7因此,当m=7时,式子 m −m−13与 7−m+35的值相等.例 5问当a 、b 满足什么条件时,方程2x+5-a=1-bx:(1)有唯一解;(2)有无数解;(3) 无解.分析 先解关于x 的方程,把x 用a ,b 表示,最后再根据系数情况进行讨论.解 将原方程移项得2x+bx=1+a-5,合并同类项得:(2+b)x=a--4当2+b≠0,即b≠-2时,方程有唯一解 x =a−42+b ,当2+b=0且a-4=0时,即b=-2且a=4时,方程有无数个解,当2+b=0且a-4≠0时,即b=-2且a≠4时,方程无解.双基训练1.下列等式是一元一次方程的是( ).A.x²+3x =6B. 2x=4C.−12x −y =0D. x+12=x-42. 方程-6x=3,两边都除以-6,得( ).A.x =−12B. x=-2C. x=2D.x =123.如果x=y ,那么下列等式不一定成立的是( ).A. x+a=y+aB. x-a=y-aC. ax=ayD.x a =y a 4.下列变形正确的是( ).A.4x-5=3x+2变形得4x-3x=-2+5B.23x −1=12x +3变形得4x-1=3x+3C.3(x-1)=2(x+3)变形得3x-1=2x+6D.3x=2变形得 x =235.关于x 的方程 10kx³−x −9=0,有一个根是-1,则k 等于( ).A.−45B. 45C.1D. -16. 方程3x−13=1−4x−16去分母,正确的是( ).A.2(3x-1)=1-4x-1B.2(3x-1)=1-4x+1C.2(3x-1)=6-4x+1D.2(3x-1)=3-4x+17.根据条件x的相反数比x大6,可列出方程( ).A. -x-x=6B. -x+x=6C. -x-(-x)=6D. -x+6=x8.方程−13x=6的解是 .9.如果3x-1=4,那么代数式6x+5的值是 .10.已知x=-2是关于x 的方程12−x=2a的解,则a 的值是 .11.若关于x 的方程ax--6=15+a 的解与方程2x+4=0的解相同,则a 的值为 .12.若代数式3(x-1)与(x-2)是互为相反数,则x= .13.解下列方程:(1) 5x-2=7x+8 (2)512x−x4=13(3)4x-3(20-x)=-4 (4)y−12=2−y+2514.已知x 与3差的2倍比x 的3倍小7,求x.15.已知方程5x-2(x-1)=x-2m的解是x=-3,求m 的值.16.若代数式3x+2 与−13是互为倒数,求x的值.17.已知关于x的方程3x-2m+1=0与2-m=2x的解互为相反数,试求这两个方程的解及 m 的值.18.已知x=2是方程6x-mx+4=0的解,求m²−2m的值.19.已知当x=2时,代数式(3-a)x+a 的值是10,试求当x=-2时这个代数式的值.20.设k 为整数,且关于x的方程kx=6-2x的解为自然数,求k的值.能力提升21.已知等式ax=ay,则下列变形正确的是( ).A. x=yB. ay=-axC. -ax+1=ay+1D. 3-ax=3-ay22.已知关于x的方程(3a+8b)x+7=0无解,则ab是( ).A. 正数B.非负数C.负数D.非正数23.若k 为整数,则使方程(k-1999)x=2001-2000x的解也是整数的k 的值有( ).A.4个B.8个C.12个D. 16个24.若(2a+1)x²−3bx−c=0表示 x 的一元一次方程,则一定有( ).A.a=−12,b≠0,C为任意数B.a=−12b,c 为任意数C.a=−12,b≠0,c=0D.a=12,b=0,c≠025. 如果8x1−m2与16x2m−1可以合并,则m= .26.已知2(a-b)=7,则5b-5a= .27.解方程:(1)x−34[x−14(x−37)]=316(x−37)(2)12{12[12(12x−1)−1]−1}−1=200828.求方程7x−10.024=1−0.2x0.018−5x+10.012的解.29.已知关于x 的方程12ax+5=7x−32的解x 与字母系数a 都是正整数,求a 的值.30.已知关于x 的方程3x-3=2a(x+1)无解,试求a 的值.拓展资源31.讨论关于x的方程ax=b的解的情况,其中a,b为已知数.32. 解方程: x1×2+x2×3+⋯+x2005×2006=2005.33.解关于x的方程: m2(x+n)=13(x+m).34.阅读下题和解题过程:化简|x−2|+1−2(x−2),,使结果不含绝对值.解:当x−2≥0时,即x≥2时:原式=x−2+1−2x+4=−x+3;当x−2<0,即x<2时:原式=−(x−2)+1−2x+4=−3x+7.这种解题的方法叫“分类讨论法”.请你用“分类讨论法”解一元一次方程:2 2(|x+1|−3)=x+2.34.已知p,q 都是质数,并且以x为未知数的一元一次方程. px+5q=97的解是x=1,求代数式40p+101q +4的值.第八讲1. B2. A3. D4. D5. A6. C7. A8. x=-189.15 10. 5411.-7 12. 5413.(1)x=-5, (2)x=2, (3)x=8, (4)y=3 14. 由2(x-3)-3x=-7,得x=115. 把x=-3代入方程,得到关于m 的方程,解得m=2 16.由 −13(3x +2)=1,得 x =−5317. 由 x =2m−13,x =2−m 2,2m−13+2−m 2=0,得m=-4,第一个方程的解x=-3,第二个方程的解x=3.18.由m=8,得m²-2m=48 19. a=-4,x=-2时,代数式值为-1820. k=-1,0,1,4 21. D 22. D 23. D 24. A 25.2 26.- 3 5227.(1)x=0,(2)x=32158 28. x= 2525929. a=6 30.a =3231. (1) 当a≠0时,方程的解为 x =b a ;(2)当a=0,b≠0时,方程无解;(3)当a=b=0时,方程的解为任意有理数.32. x=2006 33. 当 m ≠23,为任意数时,方程有唯一解 x =2m−3mn 3m−2;当 m =23,n =23时,方程的解为任意有理数;当 m =23,n ≠23时,方程无解. 34.当x+1≥0时,即x≥-1时,原方程化为2(x+1-3)=x+2,2x-4=x+2.解得:x=6; 当x+1<0时,即x<-1时,原方程化为22(-x-1-3)=x+2,解得: x =−103. 35.2003。

2024年中考数学一轮复习单元真题测试提升卷及解析—方程(组)与不等式(组)

2024年中考数学一轮复习单元真题测试提升卷及解析—方程(组)与不等式(组)

2024年中考数学一轮复习单元真题测试提升卷及解析—方程(组)与不等式(组)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中,是一元一次方程的是A.243x x -=B.0x =C.21x y +=D.11x x-=【答案】B【解析】对于A,243x x -=的未知数的最高次数是2次,不是一元一次方程,故A 错误;对于B,0x =符合一元一次方程的定义,故B 正确;对于C,21x y +=是二元一次方程,故C 错误;对于D,11x x-=,分母中含有未知数,是分式方程,故D 错误.故选B.【点睛】本题考查了一元一次方程,解答此题明确一元一次方程的定义是关键.一元一次方程是指只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程就叫做一元一次方程.据此逐项分析再选择即可.2.(2023·新疆·统考中考真题)用配方法解一元二次方程2680x x -+=,配方后得到的方程是()A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=【答案】D【分析】方程两边同时加上一次项系数一半的平方即262-⎛⎫⎪⎝⎭计算即可.【详解】∵2680x x -+=,∴22268+6622x x --⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭-=,∴()22869+3x x -=--,∴()231x -=,故选:D .【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.3.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=【答案】D【分析】设221x y x -=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x-=,则原方程可变形为15y y +=,即2510y y -+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.4.(2022·浙江杭州)已知a,b,c,d 是实数,若a b >,c d =,则()A.a c b d +>+B.a b c d+>+C.a c b d+>-D.a b c d+>-【答案】A【分析】根据不等式的基本性质,即可求解.【详解】解:∵a b >,∴a c b c +>+,∵c d =,∴a c b d +>+.故选:A【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.5.(2020·湖北恩施?中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是().A .1-B .1C .0D .2【答案】C 【解析】【分析】根据题目中给出的新定义运算规则进行运算即可求解.【详解】解:由题意知:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.6.(2020·四川遂宁·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值()A .m =2B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可.【解析】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.(2022·湖南衡阳)不等式组2123x x x +≥⎧⎨<+⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】A【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】2123x x x +≥⎧⎨<+⎩①②解不等式①得:1x ≥-解不等式②得:3x <不等式组的解集为13x -≤<.故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是()A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .2286(5)x x ππ⨯=⨯⨯+D .22865x ππ⨯=⨯⨯【答案】A 【解析】【分析】根据题意可得相等关系的量为“水的体积”,然后利用圆柱体积公式列出方程即可.【详解】解:大量筒中的水的体积为:282x π⎛⎫⨯ ⎪⎝⎭,小量筒中的水的体积为:26(5)2x π⎛⎫⨯⨯+ ⎪⎝⎭,则可列方程为:2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭.故选A.【点睛】本题主要考查列方程,解此题的关键在于准确找到题中相等关系的量,然后利用圆柱的体积公式列出方程即可.9.(2023·四川眉山·统考中考真题)关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,则m 的取值范围是()A .32m <B .3m >C .3m ≤D .3m <【答案】D【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,∴()()22420m ∆=--->,∴3m <,故选:D .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.10.(2023·云南·统考中考真题)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是()A .1.24800400x x-=B .1.24800400x x-=C .40080041.2x x-=D .80040041.2x x-=【答案】D【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是x 米/分,可得:80040041.2x x-=故选:D .【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.二、填空题(本大题共10小题,每小题3分,共30分)11.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.【答案】13-【解析】【分析】根据给出的新定义分别求出2*a 与4*(3)-的值,根据2*4*(3)a =-得出关于a 的一元一次方程,求解即可.【详解】解:∵2*(2)2m n m n =+-,∴()22222162a a a *=+-=-,()()()243422342*-=+-⨯-=,∵2*4*(3)a =-,∴16242a -=,解得13a =-,故答案为:13-.【点睛】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键.12.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根,那么a 的取值范围是________.【答案】9a >【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x 的一元二次方程2610ax x ++=没有实数根,∴243640b ac a ∆=-=-<,解得:9a >;故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.13.(2023·黑龙江·统考中考真题)关于x 的不等式组501x x m +>⎧⎨-≤⎩有3个整数解,则实数m 的取值范围是__________.【答案】32m -≤<-/23m ->≥-【分析】解不等式组,根据不等式组有3个整数解得出关于m 的不等式组,进而可求得m 的取值范围.【详解】解:解不等式组501x x m +>⎧⎨-≤⎩得:1x m -5<≤+,∵关于x 的不等式组501x x m +>⎧⎨-≤⎩有3个整数解,∴这3个整数解为4-,3-,2-,∴211m -≤+<-,解得:32m -≤<-,故答案为:32m -≤<-.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m 的不等式组是解题的关键.14.(2020·黑龙江牡丹江?中考真题)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.【答案】八【解析】【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x 折,根据不等关系列出不等式求解即可.【详解】解:设应打x 折,则根据题意得:(180×x×10%-120)÷120=20%,解得:x=8.故商店应打八折.故答案为:八.【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.15.(2023·湖南常德·统考中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是_________.【答案】1k <【分析】若一元二次方程有两个不相等的实数根,则根的判别式24>0b ac ∆=-,建立关于k 的不等式,解不等式即可得出答案.【详解】解:∵关于x 的方程220x x k -+=有两个不相等的实数根,∴()224240b ac k ∆=-=-->,解得1k <.故答案为:1k <.【点睛】此题考查了根的判别式.一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:(1)0∆>⇔方程有两个不相等的实数根;(2)Δ0=⇔方程有两个相等的实数根;(3)Δ0<⇔方程没有实数根.16.(2023·浙江台州·统考中考真题)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有________人.【答案】3【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数,列方程求解,注意检验.【详解】设第一组有x 人,则第二组有(6)x +人,根据题意,得12366x x =+去分母,得12(6)36x x +=解得,3x =经检验,3x =是原方程的根.故答案为:3.【点睛】本题考查分式方程的应用,审题明确等量关系是解题的关键,注意分式方程的验根.17.(2020·湖北省直辖县级单位·中考真题)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.【答案】9【分析】设该对胜x 场,则负14-x 场,然后根据题意列一元一次方程解答即可.【解析】解:设该对胜x 场由题意得:2x+(14-x )=23,解得x=9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.18.(2023·四川内江·统考中考真题)已知a 、b 是方程2340x x +-=的两根,则243a a b ++-=___________.【答案】2-【分析】利用一元二次方程的解的定义和根与系数的关系,可得23,340a b a a +=-+-=,从而得到234+=a a ,然后代入,即可求解.【详解】解:∵a ,b 是方程2340x x +-=的两根,∴23,340a b a a +=-+-=,∴234+=a a ,∴243a ab ++-233a a ab =+++-()433=+--2=-.故答案为:2-.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.19.(2018·山东泰安·中考模拟)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是________【答案】a>4【分析】解出不等式组的解集,根据已知不等式组()32224x x a x x ⎧--⎪⎨+⎪⎩<>有解,可求出a 的取值范围.【解析】解:()32224x x a x x ⎧--⎪⎨+⎪⎩<①>②由①得x>2,由②得x<2a ,∵不等式组()32224x x a x x ⎧--⎪⎨+⎪⎩<有解,∴解集应是2<x<2a ,则2a >2,即a>4实数a 的取值范围是a>4.【点睛】本题考查的是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.三、解答题(本大题共11小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2022·湖北宜昌)解不等式13132x x --≥+,并在数轴上表示解集.【答案】1x ≤,在数轴上表示解集见解析【分析】通过去分母,去括号,移项,系数化为1求得1x ≤,在数轴上表示解集即可.【详解】解:13132x x --≥+去分母,得()()21336x x -≥-+,去括号,得22396x x -≥-+,移项,合并同类项得1x -≥-,系数化为1,得1x ≤,在数轴上表示解集如图:【点睛】本题考查了解一元一次不等式及在数轴上表示不等式的解集,解题的关键是正确的解一元一次不等式,解集为“≤”时要用实心点表示.22.(2021·浙江台州市·中考真题)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩.【点睛】此题考查解二元一次方程组,解题关键在于利用加减消元法.23.解方程:24111x x x =+--【答案】x=3.【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验.【解析】解:24111x x x =+--去分母得,2(1)41x x x +=+-解得,x=3,经检验,x=3是原方程的根,所以,原方程的根为:x=3.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.24.(2022·四川南充)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.【答案】(1)k 174≤;(2)k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【解析】(1)解:∵一元二次方程2320x x k ++-=有实数根.∴∆≥0,即32-4(k -2)≥0,解得k 174≤(2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.25.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫- ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时,则可得:232044x x x ⎛⎫⨯+-= ⎪⎝⎭,解得:240x =,答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.26.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,依题意,得:2020101.560x x -=,解得:x =40,经检验,x =40是所列方程的根,且符合题意,答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.【答案】20%【分析】设20202022-年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ⨯+建立方程,解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x ,由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =-<(不符合题意,舍去),答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.28.(2019·辽宁铁岭·中考真题)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件),日销售利润为w (元).(1)求y 与x 的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w (元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.【答案】(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到()()()26128010171210w x x x =--+=--+,根据二次函数的性质即可得到结论.【解析】解:(1)根据题意得,()20010810280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()()610280720x x --+=,解得:110x =,224x =(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,()()()261028010171210w x x x =--+=--+,100-< ,∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.29.(2020·湖北恩施·中考真题)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,根据总价=单价×数量结合总价不超过8500元,以及A 品牌足球的数量不小于B 品牌足球数量的2倍,即可得出关于m 的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解析】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得90072020x x =-解得:x=100经检验x=100是原方程的解x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元.(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m 的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W 最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.30.(2020•扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y =19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2+=7,+2=8,则x﹣y=,x+y=;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.【分析】(1)利用①﹣②可得出x﹣y的值,利用13(①+②)可得出x+y的值;(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①﹣②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①﹣2×②可得出a+b+c的值,即1*1的值.【解析】(1)2+=7①+2=8②.由①﹣②可得:x﹣y=﹣1,由13(①+②)可得:x+y=5.故答案为:﹣1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:20+3+2=32①39+5+3=58②,由2×①﹣②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:3+5+=15①4+7+=28②,由3×①﹣2×②可得:a+b+c=﹣11,即1*1=﹣11.故答案为:﹣11.31.(2022·四川凉山)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=b a-,x1x2=c a材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m2n+mn2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2=;x1x2=.(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【答案】(1)32;12-(2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t -进行变形求解即可.【解析】(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,∴123322b x x a -+=-=-=,1212c x x a ⋅==-.故答案为:32;12-.(2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n ,∴3322b m n a -+=-=-=,12c mn a ==-,∴22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根,∴3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∴t s -=t s -=t s -=11212t s s t st --===-当2t s -=时,11212t s s t st ---===-11s t -或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键.。

专题06 一元一次方程(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题06 一元一次方程(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题06一元一次方程【专题目录】技巧1:巧用一元一次方程求字母系数的值技巧2:特殊一元一次方程的解法技巧【题型】一、一元一次方程概念【题型】二、一元一次方程的解法【题型】三、一元一次方程应用之配套问题和工程问题【题型】四、一元一次方程应用之销售盈亏问题【题型】五、一元一次方程应用之比赛积分问题【考纲要求】1、了解等式、方程、一元一次方程的概念,掌握等式的基本性质.2、掌握一元一次方程的标准形式,熟练掌握一元一次方程的解法.3、会列方程(组)解决实际问题.【考点总结】一、一元一次方程【注意】一元一次方程的特征1.只含有一个未知数x2.未知数x 的次数都是13.等式两边都是整式,分母中不含未知数。

整式方程一元一次方程概念只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。

其一般形式是ax +b =0(a,b 为常数,且a ≠0).解法解法依据是等式的基本性质.性质①:若a =b ,则a ±m =b ±m ;性质②:若a =b ,则am =bm ;若a =b ,则db d a (d ≠0).解法的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.【技巧归纳】技巧1:巧用一元一次方程求字母系数的值【类型】一、利用一元一次方程的定义求字母系数的值1.已知方程(m -2)x |m|-1+16=0是关于x 的一元一次方程,求m 的值及方程的解.2.已知方程(3a +2b)x 2+ax +b =0是关于x 的一元一次方程,求方程的解.3.已知(m 2-1)x 2-(m +1)x +8=0是关于x 的一元一次方程,求式子199(m +x)(x -2m)+9m +17的值.【类型】一、利用方程的解求字母系数的值题型1:利用方程的解的定义求字母系数的值4.关于x 的方程a(x -a)+b(x +b)=0有无穷多个解,则()A .a +b =0B .a -b =0C .ab =0D .a b=05.关于x 的方程(2a +b)x -1=0无解,则ab 是()A .正数B .非正数C .负数D .非负数6.已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的整数k =__________.7.已知x =12是方程6(2x +m)=3m +2的解,求关于y 的方程my +2=m(1-2y)的解.8.当m 取什么整数时,关于x 的方程12mx -53=题型2:利用两个方程同解或解具有已知倍数关系确定字母系数的值9.如果方程x -43-8=-x +22的解与关于x 的方程2ax -(3a +5)=5x +12a +20的解相同,确定字母a 的值.题型3:利用方程的错解确定字母系数的值10.小马虎解方程2x -13=x +a 2-1,去分母时,方程右边的-1忘记乘6,其他步骤都正确,这时方程的解为x =2,试求a 的值,并正确解方程.参考答案1.解:-1=1,-2≠0,所以m =-2.将m =-2代入原方程,得-4x +16=0,解得x =4.2.解:+2b =0,,所以3a =-2b ,即a =-23b.当3a +2b =0时,原方程可化为ax +b =0,则x =-b a.将a =-23b 代入方程的解中,得x =-b a =32.3.解:2-1=0,+1≠0,所以m =1.当m =1时,原方程可化为-2x +8=0,解得x =4.当m =1,x =4时,199(m +x)(x -2m)+9m +17=199×5×2+9×1+17=2016.4.A 5.B 6.8,-8,10或267.解:将x =12代入方程6(2x +m)=3m +2,得2×12+3m +2,解得m =-43.将m =-43代入方程my +2=m(1-2y),得-43y +2=-43(1-2y),解得y =56.点拨:已知一元一次方程的解,确定关于某一个未知数的方程中另外一个字母的值,只需把未知数的值(方程的解)代入原方程,即可得出含另一个字母的方程,通过求解确定另一个字母的值,从而进行关于其他字母的计算.8.解:原方程可化为12mx -53=12x -23,所以12(m -1)x =1,所以(m -1)x =2.因为x 必须为正整数且m 为整数,故m -1=1或2.当m -1=1,即m =2时,x =2;当m -1=2,即m =3时,x =1.所以当m =2或3时,方程的解为正整数.9.解:x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2).去括号、移项、合并同类项,得5x =50.系数化为1,得x =10.把x =10代入方程2ax -(3a +5)=5x +12a +20,得2a×10-(3a +5)=5×10+12a +20,去括号、移项,得20a -3a -12a =5+50+20.合并同类项,得5a =75,系数化为1,得a =15.10.解:由题意得4x -2=3x +3a -1,移项、合并同类项,得x =3a +1.因为x =2,所以2=3a +1,则a =13.当a =13时,原方程为2x -13=x +132-1,解得x =-3.技巧2:特殊一元一次方程的解法技巧【类型】一、分子、分母含小数的一元一次方程题型1:巧化分母为11.解方程:4x -1.60.5-3x -5.40.2=1.8-x 0.1.2.解方程:2x +10.25-x -20.5=-10.题型2:巧化同分母3.解方程:x 0.6-0.16-0.5x 0.06=1.题型3:巧约分去分母4.解方程:4-6x 0.01-6.5=0.02-2x 0.02-7.5.【类型】二、分子、分母为整数的一元一次方程题型1:巧用拆分法5.解方程:x -12-2x -36=6-x 3.6.解方程:x 2+x 6+x 12+x 20=1.题型2:巧用对消法7.解方程:x 3+x -25=337-6-3x 15.题型3:巧通分8.解方程:x +37-x +25=x +16-x +44.【类型】三、含括号的一元一次方程题型1:利用倒数关系去括号92-x =2.题型2:整体合并去括号10.解方程:x -13x -13(x -9)=19(x -9).题型3:整体合并去分母11.解方程:13(x -5)=3-23(x -5).题型4:不去括号反而添括号12.解方程:12x -12(x -1)=23(x -1).题型5:由外向内去括号13-6+2=0.题型6:由内向外去括号14.解方程:243x =34x.参考答案1.解:去分母,得2(4x -1.6)-5(3x -5.4)=10(1.8-x).去括号、移项、合并同类项,得3x =-5.8.系数化为1,得x =-2915.点拨:本题将各分数分母化为整数1,从而巧妙地去掉了分母,给解题带来了方便.2.解:去分母、去括号,得8x +4-2x +4=-10.移项、合并同类项,得6x =-18.系数化为1,得x =-3.点拨:由0.25×4=1,0.5×2=1,可巧妙地将分母化为整数1.3.解:化为同分母,得0.1x 0.06-0.16-0.5x 0.06=0.060.06.去分母,得0.1x -0.16+0.5x =0.06.解得x =1130.4.解:原方程可化为4-6x 0.01+1=0.01-x 0.01.去分母,得4-6x +0.01=0.01-x.解得x =45.点拨:本题将第二个分数通过约分处理后,使两个分数的分母相同,便于去分母.5.解:拆项,得x 2-12-x 3+12=2-x 3.移项、合并同类项,得x 2=2.系数化为1,得x =4.点拨:方程通过拆项处理后,便于合并同类项,使复杂方程简单化.6.解:x 1.整理得x -x 5=1.解得x =54.点拨:因为x 2=x -x 2,x 6=x 2-x 3,x 12=x 3-x 4,x 20=x 4-x 5,所以把方程的左边每一项拆项分解后再合并就很简便.7.解:原方程可化为x 3+x -25=247+x -25,即x 3=247.所以x =727.点拨:此题不要急于去分母,通过观察发现-6-3x 15=x -25,两边消去这一项可避免去分母运算.8.解:方程两边分别通分后相加,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012.解得x =-36211.点拨:本题若直接去分母,则两边应同乘各分母的最小公倍数420,运算量大容易出错,但是把方程左右两边分别通分后再去分母,会给解方程带来方便.9.解:去括号,得x 4-1-3-x =2.移项、合并同类项,得-34x =6.系数化为1,得x =-8.点拨:观察方程特点,由于32与23互为倒数,因此让32乘以括号内的每一项,则可先去中括号,同时又去小括号,非常简便.10.解:原方程可化为x -13x +19(x -9)-19(x -9)=0.合并同类项,得23x =0.系数化为1,得x =0.11.解:移项,得13(x -5)+23(x -5)=3.合并同类项,得x -5=3.解得x =8.点拨:本题将x -5看成一个整体,通过移项、合并同类项进行解答,这样避免了去分母,给解题带来简便.12.解:原方程可化为12[(x -1)+1-12(x -1)]=23(x -1).去中括号,得12(x -1)+12-14(x -1)=23(x -1).移项、合并同类项,得-512(x -1)=-12.解得x =115.13.解:-2+2=0.[来源:学科网]去小括号,得136x -112=0.移项,得136x =112.系数化为1,得x =3.14.解:去小括号,得2[43x -23x +12]=34x.去中括号,得43x +1=34x.移项,合并同类项,得712x =-1.系数化为1,得x =-127.【题型讲解】【题型】一、一元一次方程概念例1、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为()A .9B .8C .5D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C .【题型】二、一元一次方程的解法例2、解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x+=-C .2(1)63x x +=-D .3(1)62x x+=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .例3、解方程:221123x x x ---=-【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】解:221123x x x ---=-()()6326221x x x --=--636642x x x -+=-+634662x x x -+=-+72x =27x =【题型】三、一元一次方程应用之配套问题和工程问题例4、某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x 名工人生产螺钉,依题意列方程为()A .1200x =2000(22﹣x )B .1200x =2×2000(22﹣x )C .1200(22﹣x )=2000xD .2×1200x =2000(22﹣x )【答案】D【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x ),即2×1200x=2000(22-x ),故选D .【题型】四、一元一次方程应用之销售盈亏问题例5、随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A .180B .170C .160D .150【答案】A【分析】设该超市该品牌粽子的标价为x 元,则售价为80%x 元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x 元,则售价为80%x 元,由题意得:80%x ﹣120=20%×120,解得:x =180.即该超市该品牌粽子的标价为180元.故选:A .【题型】五、一元一次方程应用之比赛积分问题例6、一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A .17道B .18道C .19道D .20道【答案】C 【分析】设作对了x 道,则错了(25-x )道,根据题意列出方程进行求解.【详解】设作对了x 道,则错了(25-x )道,依题意得4x-(25-x)=70,解得x=19故选C.一元一次方程(达标训练)一、单选题1.(2020·浙江·模拟预测)下列各式:①253-+=;②235=3x x x -+;③211x +=;④21=x ;⑤23x +;⑥4x =.其中是一元一次方程的有()A .1个B .2个C .3个D .4个【答案】B【分析】根据一元一次方程的定义逐个判断即可【详解】解:①不含未知数,故错②未知数的最高次数为2,故错③含一个未知数,次数为1,是等式且两边均为整式,故对④左边不是整式,故错⑤不是等式,故错⑥含一个未知数,次数为1,是等式且两边均为整式,故对故选:B【点睛】本题考查了一元一次方程的定义,熟练掌握并理解一元一次方程的定义是解本题的关键2.(2022·浙江温州·三模)解方程2233522x x x x x--+=--,以下去分母正确的是()A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-【答案】D【分析】利用等式的性质在分式方程两边分别乘()2x -即可.【详解】A ,()223352,x x x x +--=-故此选项不符合题意.B ,()223352,x x x x +--=-故此选项不符合题意.C ,()223352,x x x x +--=-故此选项不符合题意.D ,()223352,x x x x +--=-故此选项符合题意.故选:D .【点睛】本题主要考查了解分式方程去分母,根据等式的性质在分式方程两边分别乘以分母的最简公分母,熟练掌握等式的性质是解此题的关键.3.(2022·重庆沙坪坝·一模)若关于x 的方程25x a +=的解是2x =,则a 的值为()A .9-B .9C .1-D .1【答案】D【分析】把2x =代入方程计算即可求出a 的值.【详解】解:把2x =代入方程得:45a +=,解得1a =.故选:D .【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(2022·河北石家庄·二模)1x =是下列哪个方程的解()A .65x=-B .2233+=+x x C .21133x x x x -=--D .2x x =【答案】D【分析】把x =1代入各选项进行验算即可得解.【详解】解:A 、5−1=4≠6,故本选项错误;B 、2124⨯+=,3136⨯+=,4≠6,故本选项错误;C 、当x =1时,x -1=0即分式的分母为0,故本选项错误;D 、211=,故本选项正确.故选:D .【点睛】本题考查了方程的解的概念,使方程的左右两边相等的未知数的值是方程的解.5.(2022·广东·佛山市南海外国语学校三模)我国古代的《洛书》中记载了最早的三阶幻方—九宫图.在如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等,则m 的值是()A .5B .3C .1-D .2-【答案】A 【分析】根据幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等列出方程,即可求解.【详解】解:设幻方正中间的数字为a ,依题意得:124a m a ++=++,解得:5m =.故选A .【点睛】此题考查了一元一次方程的应用,正确理解题意是解题的关键.二、填空题6.(2022·四川达州·二模)方程2x -3=5的解为________.【答案】x =4【分析】根据解一元一次方程的解法求解即可得.【详解】解:2x -3=5,移项得2x =8,系数化为1得:x =4,故答案为:x =4.【点睛】题目主要考查解一元一次方程,熟练掌握方法是解题关键.7.(2022·四川广元·二模)已知:A ,B 在数轴上对应的数分别用a ,b 表示,且2(4)|12|0a b ++-=.若点C 点在数轴上且满足3AC BC =,则C 点对应的数为________.【答案】8或20##20或8【分析】先根据非负数的性质求出a ,b 的值,分C 点在线段AB 上和线段AB 的延长线上两种情况讨论,即可求解.【详解】解:∵2(4)|12|0a b ++-=∴a +4=0,b −12=0解得:a =−4,b =12∴A 表示的数是−4,B 表示的数是12设数轴上点C 表示的数为c∵AC =3BC∴|c +4|=3|c −12|当点C 在线段AB 上时则c +4=3(12−c )解得:c =8当点C 在AB 的延长线上时则c +4=3(c −12)解得:c =20综上可知:C 对应的数为8或20.【点睛】本题考查了非负数的性质,方程的解法,数轴两点之间的距离,运用分类讨论思想方程思想和数形结合思想是解本题的关键.三、解答题8.(2022·四川广元·一模)解方程:2(1)13x x x --=-.【答案】12x =-【分析】先去括号,再移项,合并同类项,最后把未知数的系数化“1”,从而可得答案.【详解】解:去括号,得2213x x x -+=-.移项及合并同类项,得21x =-.系数化为1,得12x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.9.(2022·湖南·长沙市长郡双语实验中学二模)“小口罩,大温暖”,为有效防控疫情,缓解基层防疫物资短缺问题,2020年2月10日,福山区首批4万只口罩免费派发.烟台市政府紧急调拨的这批民用口罩包括A ,B 两种不同款型,其中A 型口罩单价100元,B 型口罩单价80元.(1)先进行试点发放,某社区环卫工人共收到A ,B 两种款型的口罩100盒,总价值共计9200元,求免费发放给该社区环卫工人的A 型口罩和B 型口罩各多少盒?(2)我区某街道办事处决定将此项公益活动在其整个街道社区全面铺开,按照试点发放中A ,B 两种款型的数量比共发放2000盒.若该社区人口平均每500人发放A型口罩m盒,B型口罩(328m-)盒.求该街道社区人口总数.【答案】(1)免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒(2)该街道社区人口总数为50000人【分析】(1)设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,根据题意,列出方程,即可求解;(2)根据题意可得3286040m m-=,从而得到m=12,即可求解.(1)解:设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,依题意得:100100809200x yx y+=⎧⎨+=⎩,解得:6040xy=⎧⎨=⎩.答:免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒.(2)解:依题意得:328 6040m m-=,解得:m=12,∴m+3m−28=20.∴该街道社区人口总数=200020×500=50000(人).答:该街道社区人口总数为50000人.【点睛】本题主要考查了一元一次方程的应用,二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.一元一次方程(提升测评)一、单选题1.(2022·湖北十堰·一模)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数,羊价各是多少?如果我们设合伙人数为x ,则可列方程()A .54573x x +=+B .54573x x -=-C .45357x x +=+D .45357x x -=+【答案】A【分析】根据每人出5钱,还差45钱;若每人出7钱,还差3钱,可以列出相应的一元一次方程,本题得以解决.【详解】解:设合伙人数为x ,则可列方程为54573x x +=+;故选:A【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2022·浙江温州·二模)若代数式()()2132x x +++的值为8,则代数式()()2231x x -+-的值为()A .0B .11C .7-D .15-【答案】C【分析】由()()2132x x +++的值为8,求得x =0,再将x =0代入计算可得.【详解】解:∵()()2132x x +++的值为8,∴2x +2+3x +6=8,∴x =0,当x =0时,()()2231x x -+-=2×(-2)+3×(-1)=-7.故选:C .【点睛】本题考查了解一元一次方程,代数式的求值,掌握解一元一次方程的解法是解题的关键.3.(2022·河北·石家庄市第四十一中学模拟预测)已知m n =,下列等式不成立的是()A .2m n m +=B .0-=m nC .22m x n x -=-D .235m n n-=【答案】D【分析】根据等式的性质和合并同类项即可判断.【详解】由m n =,得2m n m m m +=+=,故A 成立;0m n m m -=-=,故B 成立;根据等式的性质,等式两边同加或减一个等式,左右两边仍相等,22m x n x -=-,故C 成立;2323m n n n n -=-=-,故D 不成立;故选D .【点睛】本题考查了等式的性质和合并同类项,熟记运算法则是解题的关键.4.(2022·河北保定·一模)已知分式:341(32a a a a -+---■的某一项被污染,但化简的结果等于2a +,被污染的项应为()A .0B .1C .23a a --D .32a a --【答案】B【分析】设被污染的部分为p ,然后根据等式的性质解关于p 的方程,求出p 的表达式即可.【详解】解:设被污染的部分为p ,则341()(232a a p a a a -+-=+--,∴241()232a p a a a --=+--,∴()()()132222a p a a a a --=+⨯--+,∴3122a p a a -=+--,∴22a p a -=-,∴1p =.故选:B .【点睛】本题主要考查了分式的混合运算和利用等式的性质解一元一次方程,解题的关键是根据等式的性质解方程和掌握分式混合运算顺序和运算法则.5.(2022·重庆·三模)下列四种说法中正确的有()①关于x 、y 的方程24107x y +=存在整数解.②若两个不等实数a 、b 满足()()244222a b a b +=+,则a 、b 互为相反数.③若2()4()()0a c a b b c ---=-,则2b a c =+.④若222x yz y xz z xy ---==,则x y z ==.A .①④B .②③C .①②④D .②③④【答案】B【分析】将24x y +提公因式2得2(2)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为107为奇数,即原等式不成立,即可判断①;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断②;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断③;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断④.【详解】解:∵262(3)x y x y +=+,∴如果x 、y 为整数,那么2(3)x y +为偶数,∵107为奇数,∴24107x y +=不存在整数解,故①错误;442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=∴22a b =,∵实数a 、b 不相等,∴a 、b 互为相反数,故②正确;2()4()()0a c ab bc ---=-222244440a ac c ab ac b bc -+-++-=()()22440a cb ac b +-++=2(2)0a cb +-=∴20ac b +-=,即2a c b +=,故③正确;∵222x yz y xz z xy---==∴2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,∴2222222211441144x xz z y yz z y xy x z xz x ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,∴11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩,∴x y z ==或0x y z ++=,故④不一定正确.综上可知正确的有②③.故选B .【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.二、填空题6.(2022·山东临沂·一模)如图,用一块长7.5cm 、宽3cm 的长方形纸板,和一块长6cm 、宽1.5cm 的长方形纸板,与一块小正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则小正方形的边长是______cm ,拼成的大正方形的面积是______cm 2.【答案】 4.581【分析】设小正方形的边长为x cm ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】解:设小正方形的边长为x cm ,则大正方形的边长为(6+7.5-x )cm 或(x +3+1.5)cm ,根据题意得:6+7.5-x =x +3+1.5,解得:x =4.5,则大正方形的边长为6+7.5-x =6+7.5-4.5=9(cm ),大正方形的面积为92=81(cm 2),故答案为:4.5;81.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,设出小正方形的边长并表示出大正方形的边长.7.(2022·上海静安·1=的解是________.【答案】x =1【分析】首先方程两边同时平方,把无理方程化为有理方程,再解方程即可求得【详解】解:方程两边同时平方,得3x -2=1,解得x =1,经检验,x =1是原方程的解,所以,原方程的解为x =1.故答案为:x =1.【点睛】本题考查了无理方程的解法,熟练掌握和运用无理方程的解法是解决本题的关键,注意要检验.三、解答题8.(2022·河北·育华中学三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a 、c 的值,;②求代数式222a c ac +-的值;(2)若将数轴折叠,使得点A 与点C 重合,求与点B 重合的点表示的数;(3)请在数轴上确定一点D ,使得AD =2BD ,则D 表示的数是.【答案】(1)①-2,6;②64(2)3(3)4或0【分析】(1)①根据平方和绝对值的非负性即可求出a 和c ,②把a 和c 的值代入222a c ac +-求值即可;(2)根据题意,求出b 的值,然后求出线段AC 的中点,即可求出结论;(3)设点D 表示的数为x ,然后根据点D 的位置分类讨论,分别根据2AD BD =列出方程即可分别求出结论.(1)解:①∵()2620c a -++=,∴20a +=,60c -=,解得2a =-,6c =.故答案为:-2,6.②把2a =-,6c =代入222a c ac +-,2224362464a c ac +-=++=;(2)解:∵b 是最小的正整数,∴1b =,∴线段AC 的中点为()2622-+÷=,设与点B 重合的点表示的数为n ,则(1+n )÷2=2,解得:n =3.∴与点B 重合的点表示的数是3.故答案为:3.(3)解:因为a =-2,b =1,c =6,设点D 表示的数为x ,若2AD BD =,分三种情况讨论:①若点D 在点A 的左侧,则x <-2且()221x x --=-,解得4x =(不符合题意,舍去);②若点D 在点A 、B 之间,则-2<x <1且()()221x x --=-,解得0x =;③若点D 在点B 右侧,则x >1且x -(-2)=2(x -1),解得:x =4.综上所述,点D 表示的数是0或4.故答案为:0或4.【点睛】此题考查了非负性的应用、数轴上两点之间的距离、中点公式和一元一次方程的应用,解题的关键是掌握平方、绝对值的非负性、数轴上两点之间的距离公式、中点公式和等量关系.。

【2023-2024届中考数学一轮复习】第5讲 一元一次方程及其应用(导学案+一等奖创新教案+精炼)

【2023-2024届中考数学一轮复习】第5讲 一元一次方程及其应用(导学案+一等奖创新教案+精炼)

【2023-2024届中考数学一轮复习】第5讲一元一次方程及其应用(导学案+一等奖创新教案+精炼)第5讲一元一次方程及其应用一、知识梳理一元一次方程解的概念1、什么是方程?方程和等式的区别是什么?2.什么是一元一次方程?它的标准形式和最简形式是什么?一元一次方程是只指含有未知数,且未知数的最高次数是的方程。

它的标准形式是:它的最简形式是:3.什么是方程的解,什么是解方程?解一元一次方程的一般步骤有哪些?它的根据是什么?1、:不要漏乘分母为1的项。

2、:注意符号3、:①将含有未知数的项移到等式的一边;将常数项移到另一边;②注意“变号”4、(乘法分配律的逆用)5、:除以一个数等于乘以这个数的倒数。

等式的性质等式有哪些性质,并以字母形式表示出来等式性质1:如果a=b,那么:a+c=等式性质2:如果a=b,那么:ac= ,a/c= (c≠0)二、题型、技巧归纳考点一、考查一元一次方程解的概念例1已知关于x的方程4x-3m=2的解是x=m,则m的值是技巧归纳:主要是在考查方程的解的定义的基础上求方程中参数的值例2.已知关于x 的方程2x+a-9=0 的解是x=2,则a 的值为()A. 2B. 3C. 4D.5例3、若x=2 是关于x 的方程2x+3m-1=0 的解,则m 的值为__.技巧归纳:未知数的系数化为1,就是在方程两边同时除以未知数的系数或同时乘未知数的系数的倒数.考点二含字母系数的一元一次方程例4 解关于x的方程:2a(a-4)x+4(a+1)x-2a=a2+4x技巧归纳:含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b 的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.考点三、求增长率问题例5 2009年全国教育计划支出1980亿元,比2008年增加380亿元,则2009年全国教育经费增长率为。

广东省2024年九年级中考数学一轮复习:一元一次方程 模拟练习(含解析)

广东省2024年九年级中考数学一轮复习:一元一次方程 模拟练习(含解析)

2024年广东省九年级数学中考一轮复习:一元一次方程模拟练习一、单选题1.(2023·广东清远·二模)方程的解是,则a等于()A.B.0C.3D.22.下列等式变形中,不正确的是()A.若,则B.若,则C.若,则D.若,则3.(2023·广东清远·二模)下列方程中,解是的方程是()A.B.C.D.4.若方程和方程的解相同,则()A.1B.2C.D.5.(2023·广东广州·一模)如图,用若干根相同的小木棒拼成图形,拼第一个图形需要3根小木棒,拼第二个图形需要5根小木棒,拼第3个图形需要7根小木棒……若按照这样的方法拼成的第n个图形需要2023根小木棒,则( )A.1010B.1011C.1012D.10136.已知代数式比多,则的值为()A.B.C.D.7.(2023·广东汕头·一模)某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套.为使每天加工的大、小齿轮刚好配套,设每天加工大齿轮的有x人,则下面所列方程正确的是()A.B.C.D.8.(2023·广东肇庆·三模)用黑色和白色的正方形的卡片按照如图所示的规律拼图案,即从第2个图案开始,每个图案都比前一个图案多3个黑色正方形.若第n个图案中黑色正方形的个数为55,则n的值为()A.17B.18C.19D.209.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为天,则可列出正确的方程为( )A.B.C.D.10.(2023·广东阳江·三模)放学后,小万到学习用品店购买笔记本和中性笔,共花费元,已知笔记本的单价是元,中性笔的单价是元,小万购买中性笔的数量再多两支就是笔记本的两倍,设小万购买笔记本的数量为,则可列方程为( )A.B.C.D.11.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒斗,那么可列方程为( )A.B.C.D.12.(2023·浙江杭州·二模)某公司本月信誉评分为96分,比上个月的信誉评分提高了.设该公司上个月的信誉评分为x.则()A.B.C.D.二、填空题13.(若是方程的解,则m的值为.14.(2023·广东佛山·二模)当时,代数式的值与代数式的值相等.15.方程2x﹣1=3的解是.16.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.按下面的程序计算,若开始输入的x值为正数,最后输出的结果为53,请写出符合条件的所有x的值.18.(2023·广东江门·一模)在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求的和中,“…”代表按此规律无限个数相加不断求和.我们可设.则有,即,解得,故.类似地,请你计算:.(直接填计算结果即可)19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则该商品每件的进价为元.20.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住人,那么有人无房可住;如果每间客房住人,那么就空出一间房.则该店有客房间.21.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设城中有x户人家,则可以列得方程为.22.(2023·广东清远·三模)小华和小兰两家相距2400米,他们相约到两家之间的剧院看戏,两人同时从家出发匀速前行,出发15分钟后,小华发现忘带门票,立即以原来速度的倍返回家中,取完东西后仍以返回时的速度去见小兰;而小兰在出发30分钟时到达剧院,等待10分钟后未见小华,于是仍以原来的速度,从剧院出发前往小华家,途中两人相遇.假设小华掉头、取票时间均忽略不计.两人之间的距离y (米)与小华出发时间x(分钟)之间的关系如图所示,则当两人相遇时,小兰距离剧院有米.三、解答题23.(2023·广东广州·一模)解一元一次方程:24.南昌的雾霾引起了小张对环保问题的重视.一次旅游小张思考了一个问题.从某地到南昌,若乘火车需要小时,若乘汽车需要小时.这两种交通工具平均每小时二氧化碳的排放量之和为千克,火车全程二氧化碳的排放总量比汽车的多千克,分别求火车和汽车平均每小时二氧化碳的排放量.25.根据小王在两个超市看到的商品促销信息解决下列问题:(1)当一次性购物标价总额是400元时,甲、乙两超市实付款分别是多少?(2)当一次性购物标价总额是多少时,甲、乙两超市实付款一样?26.某校在开展“健康中国”读书征文评比活动中,对优秀征文予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知个丙种奖品的价格是个甲种奖品价格的倍,个乙种奖品的价格比个甲种奖品的价格多元.用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍.(1)求个甲、乙、丙三种奖品的价格分别是多少元?(2)该校计划:购买甲、乙、丙三种奖品共个,其中购买甲种奖品的数量是丙种奖品的倍,且甲种奖品的数量不少于乙、丙两种奖品的数量之和.求该校完成购买计划最多要花费多少元?27.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?参考答案:1.C【分析】本题考查了一元一次方程的解的定义,把代入方程,得到一个关于a的一元一次方程是关键.【详解】解:把代入方程得:,解得:,故选:C.2.B【分析】根据等式的性质逐个判断即可.【详解】解:A.∵,∴,故本选项不符合题意;B.∵,,∴,故本选项符合题意;C.∵,∴,故本选项不符合题意;D.∵,∴,故本选项不符合题意;故选:B.【点睛】本题考查了等式的性质:等式性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.掌握不等式的性质是解题的关键.3.D【分析】求出每个一元一次方程的解即可做出判断.【详解】解:A.,解得,故选项不符合题意;B.,解得,故选项不符合题意;C.,解得,故选项不符合题意;D.,解得,故选项符合题意.故选:D.【点睛】此题考查了一元一次方程的解,熟练掌握一元一次方程的解法并正确求解是解题的关键.4.D【分析】先求出的解,再代入到得到关于a的一元一次方程,即可求解.【详解】解:解得,将代入,得,解得.故选D.【点睛】本题考查解一元一次方程与一元一次方程的解,正确理解一元一次方程的解是解题的关键.5.B【分析】探索遵循的规律是,建立方程计算即可.【详解】根据题意,遵循的基本规律是第n个图形需要根小木棒,∴,解得,故选B.【点睛】本题考查了整式的加减中规律探索,一元一次方程的解法,熟练掌握探索规律,灵活解方程是解题的关键.6.B【分析】利用解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为,进行计算即可解答.【详解】解:由题意得:,,,,,,故选:B.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.7.A【分析】本题考查了一元一次方程的应用,设加工大齿轮的有x人,则加工小齿轮的有人,根据1个大齿轮和2个小齿轮配成一套,列出方程即可.【详解】解:设加工大齿轮的有x人,则加工小齿轮的有人,根据题意得:.故选:A.8.C【分析】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.观察图形可知,第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;由此得出第n个图形共有个黑色正方形,即可求出n的值.【详解】解:∵第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;第n个图形共有个黑色正方形,若第n个图案中黑色正方形的个数为55,则,解得:.故选:C.9.B【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为天,快马送到所需时间为天,再利用速度路程时间,结合快马的速度是慢马的2倍,即可得出关于的分式方程,此题得解.【详解】解:规定时间为天,慢马送到所需时间为天,快马送到所需时间为天,又快马的速度是慢马的2倍,两地间的路程为900里,.故选:B.10.B【分析】本题考查了一元一次方程的应用;设小万购买笔记本的数量为,则小万购买中性笔的数量为支,根据题意列出方程,即可求解.【详解】解:设小万购买笔记本的数量为,则可列方程为,故选:B.11.A【分析】设清酒有斗,则醑酒有斗,然后根据一共有30斗谷子列出方程即可.【详解】解:设清酒有斗,由题意得,,故选:A.【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.12.C【分析】设该公司上个月的信誉评分为x.则本月的信誉评分可表示为,再建立方程即可.【详解】解:设该公司上个月的信誉评分为x.则;故选C【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键.13.2【分析】将代入方程中即可.【详解】解:将代入方程中,则,解得:,故答案为:2.【点睛】本题考查方程的解,能够熟练掌握方程解的概念是解决本题的关键.14.【分析】由题意可得:,求解即可.【详解】解:由题意可得:,解得,故答案为:.【点睛】此题考查了一元一次方程的求解,解题的关键是理解题意,正确列出方程.15.x=2.【分析】根据一元一次方程的解法即可得.【详解】2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.【点睛】本题考查了一元一次方程的解法,基本步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)把系数化为1.16.4【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【详解】∵4※x=4+x=20,∴x=4.故答案为:4.【点睛】本题考查了解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.17.1或5或17【分析】根据输出结果,由运算顺序,列一元一次方程求出结果.【详解】解:根据题意得:,解得,.根据题意得:,解得,.根据题意得:,解得,.故答案为:1或5或17.【点睛】本题考查有理数的混合运算,掌握用方程的思想解决此题,转化为一元一次方程解决此题是关键.18.【分析】设,仿照例题进行求解.【详解】设,则,,解得,,故答案为:.【点睛】本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.19.240【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】解:设这种商品每件的进价为x元,根据题意得:x(1+10%)=330×0.8解得:x=240.故答案为240.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.20.【分析】设该店有x间客房,根据两种入住方式的总人数相同建立方程,然后求解即可.【详解】设该店有x间客房由题意得:解得故答案为:8.【点睛】本题考查了一元一次方程的实际应用,理解题意,正确建立方程是解题关键.21.x+x=100【分析】设城中有x户人家,根据“今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完”,即可得出关于x的一元一次方程,此题得解.【详解】设城中有x户人家,依题意,得:x+x=100.故答案为:x+x=100.【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.120【分析】本题考查了一次函数的应用,解题关键是读懂函数图象;先求出小兰和小华的速度,再根据函数图象求出小华后来的速度和再次出发后两人相遇的时间,由此即可得出答案.【详解】解:由题意得,小华从发现没带门票到返回家中拿到票所用时间为10分钟,当小华拿到门票时,小兰用25分钟走了(米),小兰的速度:(米分),小兰家与剧院的距离为(米),小华家与剧院的距离为(米);又他们从家出发15分钟后,两人相距1200米,,即,解得,(米分),小华后来的速度为(米分);设小华再次从家出发到两人相遇所用时间为分,则,解得,,两人相遇时,小兰与剧院的距离为(米).故答案为:120.23.【分析】去括号、移项并合并同类项、系数化为1即可求解.【详解】解:去括号得:,移项、合并同类项得:,系数化为1得:,即方程的解为:.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤并正确解答是关键.24.火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【分析】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据火车全程二氧化碳的排放总量比汽车的多54千克即可得出关于x的一元一次方程,解之即可得出结论.【详解】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据题意得:3x﹣9(70﹣x)=54解得:x=57,∴70﹣x=70﹣57=13.答:火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【点睛】本题考查了一元一次方程的应用,根据数量关系总排放量=平均每小时的排放量×排放时间结合两种交通工具总排放量之间的关系列出关于x的一元一次方程是解题的关键.25.(1)甲超市付款340元,乙超市付款360元(2)1000元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是400元时,甲超市实付款=购物标价×0.85,乙超市实付款=400×0.9,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可.【详解】(1)解:当一次性购物标价总额是400元时,甲超市实付款为元,乙超市实付款为元.(2)解:由题意可知:当一次性购物标价总额不超过500元时,乙超市实付款一定比甲超市多.当一次性购物标价总额超过500元时,设一次性购物标价总额为x元时,甲、乙两超市实付款一样,由题意可得:,解得:,答:当一次性购物标价总额为1000元时,甲、乙两超市实付款一样.【点睛】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.26.(1)个甲、乙、丙三种奖品的价格分别是元、元、元;(2)该校完成购买计划最多要花费元【分析】(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,根据“用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍”列方程并解答;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,根据“购买甲种奖品的数量不少于乙、丙两种奖品的数量之和”列不等式并解不等式,设该校购买奖品的费用为元,根据题意列出关系式:,并根据这一次函数的性质即可求解.【详解】解:(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,依题意,得:解得:,经检验,是原方程的解,且符合题意,,,故:个甲、乙、丙三种奖品的价格分别是元、元、元;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,由题意有:,,设该校购买奖品的费用为元,则,随的增大而减小,时,取最大值,且.故:该校完成购买计划最多要花费元.【点睛】本题考查一元一次不等式和一元二次方程的应用,解决本题的关键是正确解读题意题意,找到符合题意的关系式及所求量的等量关系.27.(1)购进甲商品40件,乙商品60件;(2)进货方案有三种①甲48件,乙52件,②甲49件乙51件③甲50件乙50件;(3)购买甲商品10件,乙商品8件或者9件【分析】1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x 的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可【详解】(1)设:购进甲商品x件,购进乙商品(100-x)件.由已知得15x+35(100-x)=2700解得x=40答:购进甲商品40件,乙商品60件.(2)设:购进甲商品x件,购进乙商品(100-x)件.利润W=5x+10(100-x)根据题意可得5x+10(100-x)≤760和x≤50;解得48≤x≤50,∴进货方案有三种①甲48件,乙52件,②甲49件,乙51件③甲50件,乙50件(3)第一天:没有打折,故购买甲种商品:200÷20=10(件)第二天:打折,打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)答:购买甲商品10件,乙商品8件或者9件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.。

山西省阳泉市2024年中考数学一轮复习专题7一元一次方程

山西省阳泉市2024年中考数学一轮复习专题7一元一次方程

一、一元一次方程的基本概念和解法:一元一次方程是指只含有一个未知数,并且未知数的次数为一的方程。

一元一次方程的一般形式为:ax + b = 0,其中 a、b 为已知数,a ≠ 0。

解一元一次方程的基本思路是将含有未知数的项移到等号右边,将已知数移到等号左边,并且化简方程,使得未知数的系数为1、然后根据系数和常数项的求项,进行解方程的操作。

具体解法如下:1. 对于方程 ax + b = 0,如果 a = 0,则方程没有意义,无解。

如果a ≠ 0,则进行下一步。

2. 将含有 x 的项移动到等号的右边,将常数项移动到等号的左边,得到 -b = ax。

3.将方程化简,使得未知数的系数为1,即将方程两边同时除以a,得到x=-b/a。

4.得到方程的解x=-b/a,即为一元一次方程的解。

二、一元一次方程的常见题型及解题方法:1.解一元一次方程求解值的问题:问题描述:求解方程 ax + b = 0 的解 x 的值。

解题方法:根据一元一次方程的解法,根据已知数a和b,求解x的值。

2.方程两边同乘或同除以一个数的问题:问题描述:对方程 ax + b = 0,两边同乘一个数 k,或者两边同除以一个非零数 k,使得方程等价。

解题方法:对方程两边同时进行操作,得到等价的方程。

如果两边同乘一个数 k,得到 k(ax + b) = 0,可以化简得到 akx + bk = 0。

如果两边同除以一个非零数 k,得到 (ax + b)/k = 0,可以化简得到 ax + b = 0/k。

3.解一元一次方程应用题:问题描述:根据实际问题,建立一元一次方程,并求解未知数的值。

解题方法:根据题目给出的条件,建立一元一次方程,然后根据方程的解法,求解未知数的值。

三、一元一次方程的解题技巧和注意事项:1.注意方程的系数和常数项的求项,化简方程,使得未知数的系数为12.在进行方程的变形操作时,应保持等式两边的相等性。

3.利用分配率、合并同类项等运算性质,进行方程的化简。

2024年深圳市中考数学模拟题汇编:一元一次方程(附答案解析)

2024年深圳市中考数学模拟题汇编:一元一次方程(附答案解析)

2024年深圳市中考数学模拟题汇编:一元一次方程一.选择题(共10小题)1.如果方程2x=2和方程r2=r23−1的解相同,那么a的值为()A.1B.5C.0D.﹣52.下列解一元一次方程的过程正确的是()A.方程x﹣2(3﹣x)=1去括号得x﹣6+2x=1B.方程3x+2=2x﹣2移项得3x﹣2x=﹣2+2C.方程2r13−1=去分母得2x+1﹣1=3xD.方程0.1K20.2−0.2r0.10.5=1分母化为整数得K22−2r15=13.若x=1是方程ax+2x=1的解,则a的值是()A.﹣1B.1C.2D.−124.方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个()A.2个B.3个C.4个D.5个5.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若3r12−1−23=1,则3(3x+1)﹣2(1﹣2x)=66.下列等式变形错误的是()A.若a=b,则1+2=1+2B.若a=b,则3a=3bC.若a2=b2,则a=bD.若=,则a=b7.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢.”根据两人的对话可知,小华结账时实际付了()A.540元B.522元C.486元D.469元8.下列方程的变形中,正确的是()A.由﹣4x=9,得=−49B.由15=0,得x=5C.由7=﹣2x﹣6,得2x=6﹣7D.由3=x﹣4,得x=3+49.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)10.解方程K12−2r33=1,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)﹣2(2x+3)=6C.3x﹣1﹣4x+3=1D.3x﹣1﹣4x+3=6二.填空题(共5小题)11.“幻方”最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.12.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,3小时后甲船能比乙船多航行60千米,设水流速度是x千米/时,则可列方程.13.如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.14.我国的《九章算术》中记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为.15.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方一九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖列以及每条对角线上的3个数之和均相等,例如图(1)就是一个幻方,图(2)是一个未完成的幻方,则a的值是.三.解答题(共5小题)16.解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.17.已知a、b满足:(a+8)2+|b﹣4|=0,c=a+2b.且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=,b=,c=;(2)点P从点C出发,以每秒1个单位长度的速度向左运动,同时点Q从点B出发,以每秒2个单位长度的速度向左运动,当点Q到达点A时,两点停止运动.求点P、Q 在运动过程中,当t为何值时AP=3CQ?(3)点D是直线AB上一点,若|AD﹣BD|=2CD,则AB:BD的值为.18.如图,已知数轴上A,B,C三个点表示的数分别是a,b,c,且|c﹣10|=0,若点A沿数轴向右移动12个单位长度后到达点B,且点A,B表示的数互为相反数.(1)a的值为,b﹣c的值为;(2)动点P,Q分别同时从点A,C出发,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒m个单位长度的速度向终点A移动,点P表示的数为x.①若点P,Q在点B处相遇,求m的值;②若点Q的运动速度是点P的2倍,当点P,Q之间的距离为2时,求此时x的值.19.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)如果某人每月通话时间一般在300到400分钟,此人选择哪种付费方式更合算.请你通过方程知识给出合理化的建议.20.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含t的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?2024年深圳市中考数学模拟题汇编:一元一次方程参考答案与试题解析一.选择题(共10小题)1.如果方程2x=2和方程r2=r23−1的解相同,那么a的值为()A.1B.5C.0D.﹣5【考点】同解方程.【专题】一次方程(组)及应用;运算能力.【答案】D【分析】先求出方程2x=2,将解代入方程r2=r23−1,再解方程即可.【解答】解:解方程2x=2,得x=1,∵方程2x=2和方程r2=r23−1的解相同,∴将x=1代入方程r2=r23−1中,得r12=r23−1,3(a+1)=2(a+2)﹣6,3a+3=2a+4﹣6,解得a=﹣5,故选:D.【点评】此题考查了解一元一次方程,方程的解,正确理解同解方程的意义是解题的关键.2.下列解一元一次方程的过程正确的是()A.方程x﹣2(3﹣x)=1去括号得x﹣6+2x=1B.方程3x+2=2x﹣2移项得3x﹣2x=﹣2+2C.方程2r13−1=去分母得2x+1﹣1=3xD.方程0.1K20.2−0.2r0.10.5=1分母化为整数得K22−2r15=1【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【答案】A【分析】将各项中的方程变形得到结果,即可作出判断.【解答】解:A、方程x﹣2(3﹣x)=1去括号得x﹣6+2x=1,正确,该选项符合题意;B、方程3x+2=2x﹣2移项得3x﹣2x=﹣2﹣2,原过程错误,该选项不符合题意;C、方程2r13−1=去分母得2x+1﹣3=3x,原过程错误,该选项不符合题意;D、方程0.1K20.2−0.2r0.10.5=1分母化为整数得K202−2r15=1,原过程错误,该选项不符合题意;故选:A.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.若x=1是方程ax+2x=1的解,则a的值是()A.﹣1B.1C.2D.−12【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】A【分析】将x=1代入原方程即可计算出a的值.【解答】解:将x=1代入ax+2x=1得:a+2=1,解得a=﹣1.故选:A.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的相关知识是解题的关键.4.方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个()A.2个B.3个C.4个D.5个【考点】一元一次方程的解;一元一次方程的定义.【专题】一次方程(组)及应用;运算能力.【答案】见试题解答内容【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得=12r2,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.5.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若3r12−1−23=1,则3(3x+1)﹣2(1﹣2x)=6【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【答案】D【分析】根据等式的性质即可解决.【解答】解:A、若4x=2,则x=12,原变形错误,故这个选项不符合题意;B、若4x﹣2=2﹣3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=3,原变形错误,故这个选项不符合题意;D、若3r12−1−23=1,则3(3x+1)﹣2(1﹣2x)=6,原变形正确,故这个选项符合题意;故选:D.【点评】本题考查了等式的性质.熟知等式的性质是解题的关键.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.6.下列等式变形错误的是()A.若a=b,则1+2=1+2B.若a=b,则3a=3bC.若a2=b2,则a=bD.若=,则a=b【考点】等式的性质.【专题】方程与不等式;运算能力.【答案】C【分析】根据等式的性质2对A、B、D进行判断;根据平方根的定义对C进行判断.【解答】解:A.若a=b,而1+x2≠0,则1+2=1+2,所以A选项不符合题意;B.若a=b,则3a=3b,所以B选项不符合题意;C.若a2=b2,则a=b或a=﹣b,所以C选项符合题意;D.若=,则a=b,所以D选项不符合题意.故选:C.【点评】本题考查了等式的性质:熟练掌握等式的性质是解决问题的关键.7.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢.”根据两人的对话可知,小华结账时实际付了()A.540元B.522元C.486元D.469元【考点】一元一次方程的应用.【专题】销售问题;应用意识.【答案】C【分析】设小华结账时实际买了x个笔袋,根据总价=单价×数量结合多买一个打九折后比开始购买时便宜36元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设小华结账时实际买了x个笔袋,依题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,则18×0.9x=18×0.9×30=486.答:小华结账时实际付了486元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.下列方程的变形中,正确的是()A.由﹣4x=9,得=−49B.由15=0,得x=5C.由7=﹣2x﹣6,得2x=6﹣7D.由3=x﹣4,得x=3+4【考点】解一元一次方程;等式的性质.【专题】一次方程(组)及应用;运算能力.【答案】D【分析】根据等式的性质逐个判断即可.【解答】解:A.由﹣4x=9,得x=−94,故本选项不符合题意;B.由15=0,得x=0,故本选项不符合题意;C.由7=﹣2x﹣6,得2x=﹣6﹣7,故本选项不符合题意;D.由3=x﹣4,得x=3+4,故本选项符合题意;故选:D.【点评】本题考查了等式的性质和解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;推理能力.【答案】C【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.解方程K12−2r33=1,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)﹣2(2x+3)=6C.3x﹣1﹣4x+3=1D.3x﹣1﹣4x+3=6【考点】解一元一次方程.【专题】计算题.【答案】B【分析】方程两边乘以6得到结果,即可做出判断.【解答】解:去分母得:3(x﹣1)﹣2(2x+3)=6,故选:B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.二.填空题(共5小题)11.“幻方”最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【答案】﹣2.【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为﹣6,则﹣7+a+3=﹣6,即可得.【解答】解:∵0+(﹣1)+(﹣5)=﹣6,∴﹣7+a+3=﹣6,解得:a=﹣2,故答案为:﹣2.【点评】本题考查了有理数的加减,解题的关键是理解题意和掌握有理数加减运算的法则.12.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,3小时后甲船能比乙船多航行60千米,设水流速度是x千米/时,则可列方程3(30+x)﹣3(30﹣x)=60.【考点】由实际问题抽象出一元一次方程.【答案】3(30+x)﹣3(30﹣x)=60.【分析】根据题意,可得出两船的速度,根据3小时后甲船能比乙船多航行60千米,即可列出方程.【解答】解:设水流速度是x千米/时,则甲船顺水的速度是(30+x)千米/时,乙船逆水的速度是(30﹣x)千米/时,由题意得:3(30+x)﹣3(30﹣x)=60,故答案为:3(30+x)﹣3(30﹣x)=60.【点评】本题考查了由实际问题抽象出一元二次方程,表示出两船的速度是解题的关键.13.如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为1或134.【考点】一元一次方程的应用;数轴.【专题】几何动点问题;一次方程(组)及应用;应用意识.【答案】1或134.【分析】由题意得:点C表示的数是2+4t,点D表示的数是﹣12+6t,根据题意分:O 是CD中点;D是OC中点;C是OD中点;列出方程即可求出答案.【解答】解:由题意得:点C表示的数是2+4t,点D表示的数是﹣12+6t,O是CD中点,依题意有:2+4t﹣12+6t=2×0,解得t=1;D是OC中点,依题意有:2+4t+0=2×(﹣12+6t),解得t=134;C是OD中点,依题意有:﹣12+6t+0=2×(2+4t),解得t=﹣8(舍去).故t的值为1或134.故答案为:1或134.【点评】本题考查了一元一次方程的应用,数轴,解题的关键是正确找出题意中的等量关系,注意分类思想的应用.14.我国的《九章算术》中记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为9x﹣11=6x+16.【考点】由实际问题抽象出一元一次方程;数学常识.【专题】一次方程(组)及应用;应用意识.【答案】9x﹣11=6x+16.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,可列方程为:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.15.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方一九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖列以及每条对角线上的3个数之和均相等,例如图(1)就是一个幻方,图(2)是一个未完成的幻方,则a的值是9.【考点】一元一次方程的应用.【专题】数字问题;应用意识.【答案】9.【分析】设a下方的数为m,右上角的数为n,则第二横行三个数的和为11+m+15,由第一竖列三个数的和为39,可知每一横行、每一竖列、每条对角线上的3个数之和均等于39,于是列方程得11+m+15=39,求得m=13,则n+13+12=39,求得n=14,所以16+a+14=39,解方程求出a的值即得到问题的答案.【解答】解:设a下方的数为m,右上角的数为n,∵16+11+12=39,∴每一横行、每一竖列、每条对角线上的3个数之和均等于39,根据题意得11+m+15=39,解得m=13,∴n+13+12=39,解得n=14,∴16+a+14=39,解得a=9,故答案为:9.【点评】此题重点考查一元一次方程的解法、列一元一次方程解应用题等知识与方法,正确地用代数式表示第二横行三个数的和并且求出a下方的数是解题的关键.三.解答题(共5小题)16.解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【答案】(1)x=1;(2)y=1319.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.17.已知a、b满足:(a+8)2+|b﹣4|=0,c=a+2b.且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=﹣8,b=4,c=0;(2)点P从点C出发,以每秒1个单位长度的速度向左运动,同时点Q从点B出发,以每秒2个单位长度的速度向左运动,当点Q到达点A时,两点停止运动.求点P、Q 在运动过程中,当t为何值时AP=3CQ?(3)点D是直线AB上一点,若|AD﹣BD|=2CD,则AB:BD的值为125或6.【考点】一元一次方程的应用;数轴;非负数的性质:绝对值;非负数的性质:偶次方.【专题】分类讨论;实数;一次方程(组)及应用;运算能力.【答案】(1)﹣8,4,0;(2)为45或207;(3)125或6.【分析】(1)利用非负数的意义求得a,b的值,进而利用已知条件求得c值;(2)设P表示的数是﹣t,Q表示的数是4﹣2t,利用已知条件列出关于t的方程,解方程即可得出结论;(3)利用分类讨论的方法分三种情况列出方程,解方程即可得出点D对应的数值,利用点对应的数字表示出线段AB,BD的长度,则即可可求.【解答】解:(1)∵(a+8)2+|b﹣4|=0,a+8)2≥0,|b﹣4|≥0,∵a+8=0,b﹣4=0,∴a=﹣8,b=4,∵c=a+2b,∴c=﹣8+2×4=0,故答案为:﹣8,4,0;(2)设P表示的数是﹣t,Q表示的数是4﹣2t,∵AP=3CQ,∴﹣t﹣(﹣8)=3|4﹣2t|,解得t=45或t=207,∴当t为45或207时,AP=3CQ;(3)设D表示的数是x,①当x≤﹣8时,∵|AD﹣BD|=2CD,∴(4﹣x)﹣(﹣8﹣x)=2(﹣x),解得:x=﹣6(不符合题意,舍去);②当﹣8<x<4时,∵|AD﹣BD|=2CD,∴|x﹣(﹣8)﹣(4﹣x)|=2|x|,解得x=﹣1,∴AB=12,BD=5,∴AB:BD=12:5;③当x>4时,∵|AD﹣BD|=2CD,∴|x+8﹣(x﹣4)|=2x.∴2x=12,∴x=6.∴AB=12,BD=2,∴AB:BD=6.综上,AB:BD的值为125或6.故答案为:125或6.【点评】本题主要考查了数轴,非负数的应用,一元一次方程的应用,利用点在数轴上对应的数字表示出相应线段的长度是解题的关键.18.如图,已知数轴上A,B,C三个点表示的数分别是a,b,c,且|c﹣10|=0,若点A沿数轴向右移动12个单位长度后到达点B,且点A,B表示的数互为相反数.(1)a的值为﹣6,b﹣c的值为﹣4;(2)动点P,Q分别同时从点A,C出发,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒m个单位长度的速度向终点A移动,点P表示的数为x.①若点P,Q在点B处相遇,求m的值;②若点Q的运动速度是点P的2倍,当点P,Q之间的距离为2时,求此时x的值.【考点】一元一次方程的应用;数轴;相反数;绝对值.【专题】一次方程(组)及应用;应用意识.【答案】(1)﹣6,﹣4;(2)①m=13;②x=0或−43.【分析】(1)根据A、B两点间的距离为12且A、B两点表示的数互为相反数即可求a,b;再根据绝对值为非负数求出c,从而得出结论;(2)①根据相遇时Q走的路程是4,根据速度×时间=路程列方程求出m的值;②根据点P,Q的路程之差的绝对值等于2列出方程,解方程即可.【解答】解:(1)∵|c﹣10|=0,∴c=10,∵AB=12,a,b互为相反数,∴a=﹣6,b=6,∴b﹣c=6﹣10=﹣4,故答案为:﹣6,﹣4;(2)①∵点P的速度是每秒1个单位长度,点P,Q在点B处相遇,AB=12,∴点P从点A运动到点B所用时间为12秒,∵BC=4,∴12m=4,解得m=13;②设运动时间为t秒,根据题意:|16﹣t﹣2t|=2,解得t=6或143,∴x=a+t=0或−43,∴x=0或−43.【点评】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,两点间距离公式的应用,进行分类讨论是解题的关键.19.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)如果某人每月通话时间一般在300到400分钟,此人选择哪种付费方式更合算.请你通过方程知识给出合理化的建议.【考点】一元一次方程的应用;有理数的混合运算.【专题】一次方程(组)及应用;应用意识.【答案】(1)甲种方式付话费15元,乙种方式付话费28元.(2)当通话时间为300分钟但不超过360分钟时,选甲种付费方式合算,当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟但不超过400分钟时,选择乙种付费方式合算.【分析】(1)甲:0.15元/分钟×时间;乙:18+0.10元/分×时间;(2)设一个月通话x分钟时两种方式的费用相同,根据题意可得方程18+0.10x=0.15x,再分三种情况讨论即可.【解答】解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360,答:当通话时间为300分钟但不超过360分钟时,选甲种付费方式合算,当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟但不超过400分钟时,选择乙种付费方式合算.【点评】本题考查了一元一次方程的应用,找出正确的数量关系,列出方程是解题的关键.20.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)数轴上点B表示的数是﹣20,点P表示的数是10﹣5t(用含t的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含t的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【考点】一元一次方程的应用;两点间的距离;数轴.【专题】一次方程(组)及应用.【答案】见试题解答内容【分析】(1)根据两点距离公式求出B点表示的数,根据P点比A点表示的数小5t求出P点;(2)根据中点公式求出M、N两点表示的数,再根据两点距离公式求得MN便可;(3)根据P点在Q点左边和P点在Q点右边分别列出方程解答.【解答】解:(1)B点表示的数为:10﹣30=﹣20;C点表示的数为:10﹣5t;故答案为:﹣20;10﹣5t.(2)线段MN的长度不会发生变化.根据题意得,M点表示的数为:10−5r102=20−52;N点表示的数为:−20+10−52=−5r102;∴MN=|20−52+5r102|=15.(3)当P点在Q点右边时,P、Q两点相距4个单位,有:10﹣5t﹣(﹣20﹣3t)=4,解得,t=13;当P点在Q点左边时,P、Q两点相距4个单位,有:﹣20﹣3t﹣(10﹣5t)=4,解得,t=17;答:点P运动13秒或17秒时与点Q相距4个单位长度.【点评】本题主要考查了一元一次方程的应用,两点的距离,动点问题,中点的计算,列代数式,关键是运用数形结合的思想正确列出代数式和方程.(3)小题可以通过分情况讨论解决问题,不要漏解.。

2.2一元一次方程同步练习2024-2025学年九年级数学第一轮复习

2.2一元一次方程同步练习2024-2025学年九年级数学第一轮复习

2.2一元一次方程2024-2025学年九年级数学第一轮复习绝招课堂一、解方程步骤1.去分母:2.去括号:3.移项;4.合并同类项;5.系数化1。

二、解字母系数的一元一次方程 ax=b;1.若a≠0,则x=ba2.若a=0,b≠0,则x无解;3.若a=0,b=0,则x为任意实数。

三、应用类型1.和差倍分问题;2.等积变形问题;3.数字问题;4.行程问题(相遇、追及、航行);5.劳力调配问题;6.工程问题;7.储蓄问题; 8.商品利润问题。

【例题】某景区内的环形路是边长为800米的正方形ABCD,如图①和图②。

现有1号、2号两游览车分别从出口A 和景点C 同时出发.1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分。

探究:设行驶时间为t分。

(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y₂,y₂(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C? 并直接写出这一段时间内它与2号车相遇过的次数。

发现:如图②,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米。

情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车。

比较哪种情况用时较多? (含候车时间)决策:已知游客乙在DA 上从D 向出口A 走去。

步行的速度是50米/分,当行进到 DA 上一点P(不与点 D,A重合)时,刚好与2号车迎面相遇。

(1)他发现,乘1号车会比乘2号车到出口 A 用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小.在等候乘1号车还是步行这两种方式中,他该如何选择?课后练习一、选择题(共6 小题)1.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四。

2024年中考数学一轮复习练习题:一元一次方程及其应用(无答案)

2024年中考数学一轮复习练习题:一元一次方程及其应用(无答案)

2024年中考数学一轮复习练习题:一元一次方程及其应用一、选择题(本大题共10道小题)1. (2023·贵州贵阳)如果△+2=1,那么“△”所表示的数是( )A.-3B.-2C.-1D.02. (2023·温州中考)解方程-2(2x +1)=x,以下去括号正确的是( )A.-4x +1=-xB.-4x +2=-xC.-4x -1=xD.-4x -2=x3. (2023七上·龙湖)下列方程中,是一元一次方程的是( )A.x+(4-x)=0B.x+1=0C.x+y =1D.y 1+x =0 4. (2023七上·滨城)等号左右两边一定相等的一组是( )A.-(a+b)=-a+bB.a 3=a+a+aC.-2(a+b)=-2a-2bD.-(a-b)=-a-b5. (2023·贵州铜仁)下列等式变形中,不正确的是( )A.若a=b,则a+5=b+5B.若a=b,则33a b =C.若23a b =,则3a=2bD.若|a|=|b|,则a=b6. (2023·株洲)方程x 2-1=2的解是( ) A.x =2 B.x =3 C.x =5 D.x =67. (2023秋•瓜州县期末)在下列方程的变形中,正确的是( )A.由2x+1=3x,得2x+3x =1B.由x ,得xC.由2x ,得xD.由2,得-x+1=68. (2023·金华、丽水)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是( )A.3×2x +5=2xB.3×20x +5=10x ×2C.3×20+x +5=20xD.3×(20+x)+5=10x +29. (2023•龙沙区一模)甲乙丙三人做一项工作,三人每天的工作效率分别为a 、b 、c,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是( )A.甲的工作效率最高B.丙的工作效率最高C.c=3aD.b:c=3:210. (2023•内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( )A.x =(x ﹣5)﹣5;B.x =(x+5)+5;C.2x =(x ﹣5)﹣5;D.2x =(x+5)+5二、填空题(本大题共8道小题)11. 2023·张家界)已知方程2x -4=0,则x = .12. (2023•衢州)一元一次方程2x+1=3的解是x = .13. (2023•铜仁市)方程2x+10=0的解是.14. (2023·贵州贵阳)已知方程2x-4=0,则x=______.15. (2023七上·盐都月考)若x=5是关于x的方程4x+2k=7的解,则k= .16. (2023·贵州铜仁)方程3x-6=-6的解是_______.17. (2023•株洲)关于x的方程3x﹣8=x的解为x= .18. (2023•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.三、计算题(本大题共2道小题)19. (2023•凉山州)解方程:x1.20. (2023秋•虎林市期末)解下列方程:(1)5x+2(3x﹣7)=9﹣4(2+x);(2) 1.四、解答题(本大题共6道小题)21. (2023秋•潮阳区期末)已知关于x的方程2(x+1)﹣m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.22. (2023秋•蓬江区校级月考)已知关于x的方程3x﹣6(x)=4x和1有相同的解,求这个解.23. (2023秋•渝水区校级期中)若方程12-3(x+1)=7-x的解与关于x的方程6-2k=2(x+3)的解相同,求k的值.24. (2023·河北石家庄)幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m,n的值分别是多少?25. (2023·河北唐山)已知“▢-7=△+3”,其中▢和△分别表示一个实数.(1)若▢表示的数是3,求△表示的数;(2)若▢和△表示的数互为相反数,求▢和△分别表示的数;(3)当▢和△分别取不同的值时,在▢与△的+,-,×,÷,四种运算中,哪种运算的结果一定不会发生变化,请说明理由.26. (2023·衡水模拟)定义一种新的运算:对于任意的有理数a,b,都有a⊗b=a+b,a⊕b=a-b,等式右边是通常的加法、减法运算,如a=2,b=1时,a⊗b=2+1=3,a⊕b=2-1=1.(1)求(-2)⊗3+4⊕(-2)的值;(2)化简:(a2b)⊗3ab+5a2b⊕4ab;(3)若2x⊗1=-(x-2)⊕4,求x的值.。

2024年中考数学一轮复习单元真题测试基础卷及解析—方程(组)与不等式(组)

2024年中考数学一轮复习单元真题测试基础卷及解析—方程(组)与不等式(组)

2024年中考数学一轮复习单元真题测试基础卷及解析—方程(组)与不等式(组)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2019·四川南充·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为()A .9B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【解析】解:因为关于x 的一元一次方程2x a -2+m =4的解为x =1,可得:a -2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.2.(2022·浙江温州)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是()A .36B .36-C .9D .9-【答案】C【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∴26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.3.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-【答案】C【分析】解分式方程求出22mx -=,然后根据解是非负数以及解不是增根得出关于m 的不等式组,求解即可.【详解】解:分式方程去分母得:2m x x +-=-,解得:22mx -=,∵分式方程122m xx x+=--的解是非负数,∴202m-≥,且222m x -=≠,∴2m ≤且2m ≠-,故选:C .【点睛】本题考查了解分式方程,解一元一次不等式组,正确得出关于m 的不等式组是解题的关键.4.(2023·湖南常德·统考中考真题)不等式组32312x x x-<⎧⎨+≥⎩的解集是()A .5x <B .15x ≤<C .15x -≤<D .1x ≤-【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32312x x x -<⎧⎨+≥⎩①②解不等式①,移项,合并同类项得,5x <;解不等式②,移项,合并同类项得,1x ≥-故不等式组的解集为:15x -≤<.故选:C .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2021·安徽)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A .a b c >>B .c b a>>C .4()a b b c -=-D .5()a c ab -=-【答案】D 【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b a c =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.6.(2019·四川遂宁·中考真题)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是()A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠-【答案】C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【解析】解:分式方程去分母得:(24)2k x x --=,解得:44k x +=,根据题意得:404k +>,且424k +≠,解得:4k >-,且4k ≠.故选C .【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.7.(2023·四川眉山·统考中考真题)关于x 的不等式组35241x m x x >+⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是()A .54m -≤<-B .54m -<≤-C .43m -≤<-D .43m -<≤-【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+⎧⎨-<+⎩①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -≤+<-,∴54m -≤<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -≤+<-是解此题的关键.8.(2023·四川成都·统考中考真题)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为()A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+【答案】A【分析】设木长x 尺,根据题意“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺”,列出一元一次方程即可求解.【详解】解:设木长x 尺,根据题意得,1( 4.5)12x x +=-,故选:A.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.9.(2022·重庆)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-13【答案】D【分析】根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a≠-2,计算即可.【详解】∵411351x x x a -⎧-≥⎪⎨⎪-⎩①<②,解①得解集为2x -≤,解②得解集为15a x +<,∵不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,∴125a +->,解得a >-11,∵1211y a y y -=-++的解是y=13a -,且y≠-1,1211y a y y -=-++的解是负整数,∴a <1且a≠-2,∴-11<a <1且a≠-2,故a=-8或a=-5,故满足条件的整数a 的值之和是-8-5=-13,故选D .【点睛】本题考查了不等式组的解集,分式方程的特殊解,增根,熟练掌握不等式组的解法,灵活求分式方程的解,确定特殊解,注意增根是解题的关键.10.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是()A .1B .2C .4D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n ÷变形,即可解答.法二:321x y m x y n +=-⎧⎨-=⎩①②中①-②得到()221m n x y -=++,再根据1x y +=求出23m n -=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=-⎧⎨-=⎩①②,+①②得421x m n =+-,解得214m n x +-=,将214m n x +-=代入②,解得2314m n y --=,1x y =+ ,21231144m n m n +---∴+=,得到23m n -=,2234222228m n m n m n -∴÷=÷===,法二:321x y m x y n +=-⎧⎨-=⎩①②①-②得:2221x y m n +=--,即:()221m n x y -=++,∵1x y +=,∴22113m n -=⨯+=,2234222228m n m n m n -∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)11.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________.【答案】6【分析】解方程,将解得的12,x x 代入()()1222x x +⋅+即可解答.【详解】解:2340x x --=,对左边式子因式分解,可得()()410x x -+=解得14x =,21x =-,将14x =,21x =-代入()()1222x x +⋅+,可得原式()()42126=+⨯-+=,故答案为:6.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握计算方法是解题的关键.12.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可.【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.13.(2023·重庆·统考中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52ax ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.14.(2020·湖北孝感?中考真题)有一列数,按一定的规律排列成13,1-,3,9-,27,-81,….若其中某三个相邻数的和是567-,则这三个数中第一个数是______.【答案】81-【解析】【分析】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设三个数为n ,-3n ,9n ,据题意列式即可求解.【详解】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,-3n ,9n由题意:()n 3n 9n 567+-+=-,解得:n=-81,故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.15.(2023·四川宜宾·统考中考真题)若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________.【答案】2【分析】根据根与系数的关系即可求出答案.【详解】解:设方程的两个根分别为a ,b ,由题意得:()+2+1a b m =,4ab m =+,∴()2+111+++4m a b a bab m ==,∴()2+11+4m m =,解得:2m =,经检验:2m =是分式方程的解,检验:()()()()22Δ2144421424120m m =-+-+=⨯+-⨯+=>⎡⎤⎣⎦,∴2m =符合题意,∴2m =.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.16.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可.【详解】解:∵11b a b a ⊗=+,∴()211121(1)11x x x x x x x x x x x ++++⊗=+==+++,又∵21(1)++⊗=x x x x ,∴22121x x x x x++=+,∴()()()221210x x x x x ++-+=,∴()()2210x x x x +-+=,∴()2210x x +=,∵21(1)++⊗=x x x x 即0x ≠,∴210x +=,解得12x =-,经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-.【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.17.(2023·四川泸州·统考中考真题)关于x ,y 的二元一次方程组23326x y a x y +=+⎧⎨+=⎩的解满足x y +>a的一个整数值___________.【答案】7(答案不唯一)【分析】先解关于x 、y 的二元一次方程组的解集,再将x y +>代入,然后解关于a 的不等式的解集即可得出答案.【详解】将两个方程相减得3x y a +=-,∵x y +>∴3a ->∴3a >+∵489<<,∴23<<,∴536<<,∴a 的一个整数值可以是7.故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.18.(2023·湖北宜昌·统考中考真题)已知1x 、2x 是方程22310x x -+=的两根,则代数式12121x x x x ++的值为_________.【答案】1【分析】根据1x 、2x 是一元二次方程20ax bx c ++=的两个根,则有1212·b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩,求解即可.【详解】解:由题意得1212321·2x x x x ⎧+=⎪⎪⎨⎪=⎪⎩,原式321112==+.故答案:1.【点睛】本题考查了韦达定理,掌握定理是解题的关键.19.(2023·四川宜宾·统考中考真题)若关于x 的不等式组2151922x x a x x +>+⎧⎪⎨+≥-⎪⎩①②所有整数解的和为14,则整数a 的值为___________.【答案】2或1-【分析】根据题意可求不等式组的解集为15a x -<≤,再分情况判断出a 的取值范围,即可求解.【详解】解:由①得:1x a >-,由②得:5x ≤,∴不等式组的解集为:15a x -<≤,所有整数解的和为14,①整数解为:2、3、4、5,112a ∴≤-<,解得:23a ≤<,a 为整数,2a ∴=.②整数解为:1-,0,1,2、3、4、5,211a ∴-≤-<-,解得:10a -≤<,a 为整数,1a ∴=-.综上,整数a 的值为2或1-故答案为:2或1-.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.20.(2023·湖南·统考中考真题)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________.【答案】()2100011440x +=【分析】设这两年绿化面积的年平均增长率为x ,依题意列出一元二次方程即可求解.【详解】解:设这两年绿化面积的年平均增长率为x ,则依题意列方程为()2100011440x +=,故答案为:()2100011440x +=.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.三、解答题(本大题共11小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·江苏扬州·统考中考真题)解不等式组()2113,11,3x x x ⎧-+>-⎪⎨+-≤⎪⎩并把它的解集在数轴上表示出来.【答案】12x -<≤,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:()2113113x x x ⎧-+>-⎪⎨+-≤⎪⎩①②解不等式①得1x >-·,解不等式②,得:2x ≤,把不等式①和②的解集在数轴上表示出来:则不等式组的解集为:12x -<≤.【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩【答案】61x y =-⎧⎨=⎩【分析】方程组适当变形后,给②×3-①×2即可消去x ,解关于y 的一元一次方程,再将y 值代入①式,即可解出y .【详解】解:由3220021530x y x y -+=⎧⎨+-=⎩可得32202153x y x y -=-⎧⎨+=⎩①②②×3-①×2得3()2(322)313(20)52x y x y --=⨯-⨯-+,即4949y =,解得y=1,将y=1代入①式得32120x -⨯=-,解得6x =-.故该方程组的解为61x y =-⎧⎨=⎩.【点睛】本题考查解二元一次方程组.解二元一次方程主要用到“消元思想”,将二元一次方程组化为一元一次方程求解.主要方法有加减消元法和代入消元法,熟练掌握这两种方法并能灵活利用是解题关键.23.(2021·陕西中考真题)解方程:213111x x x --=+-.【答案】12x =-【分析】按照解分式方程的方法和步骤求解即可.【详解】解:去分母(两边都乘以()()11x x +-),得,22(1)31x x --=-.去括号,得,222131x x x -+-=-,移项,得,222113x x x --=--+.合并同类项,得,21x -=.系数化为1,得,12x =-.检验:把12x =-代入()()110x x +-≠.∴12x =-是原方程的根.【点睛】本题考查了分式方程的解法,熟知分式方程的解法步骤是解题的关键,尤其注意解分式方程必须检验.24.(2020·湖北随州·中考真题)已知关于x 的一元二次方程2(21)20x m x m +++-=.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根1x ,2x ,且121231x x x x ++=,求m 的值.【答案】(1)见解析;(2)8m =.【分析】(1)求出△的值即可证明;(2),根据根与系数的关系得到1212(21)2x x m x x m +=-+⎧⎨=-⎩,代入121231x x x x ++=,得到关于m 的方程,然后解方程即可.【解析】(1)证明:依题意可得2(21)4(2)m m ∆=+--2490m =+>故无论m 取何值,此方程总有两个不相等的实数根.(2)由根与系数的关系可得:1212(21)2x x m x x m +=-+⎧⎨=-⎩由121231x x x x ++=,得(21)3(2)1m m -++-=,解得8m =.【点睛】本题考查了利用一元二次方程根的判别式证明根的情况以及一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.25.(2020·宁夏中考真题)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离()m y 与步行时间()min x 之间的函数关系式如图中折线段AB BC CD --所示.(1)小丽与小明出发_______min 相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C 的坐标,并解释点C 的实际意义.【答案】(1)30;(2)①小丽步行的速度为80m/min ,小明步行的速度为100m/min ;②点()544320C ,,点C 表示:两人出发54min 时,小明到达甲地,此时两人相距4320m .【解析】(1)直接从图像获取信息即可;(2)①设小丽步行的速度为1m /min V ,小明步行的速度为2m /min V ,且21V V >,根据图像和题意列出方程组,求解即可;②设点C 的坐标为(),x y ,根据题意列出方程解出x ,再根据图像求出y 即可,再结合两人的运动过程解释点C 的意义即可.【详解】(1)由图像可得小丽与小明出发30min 相遇,故答案为:30;(2)①设小丽步行的速度为1m /min V ,小明步行的速度为2m /min V ,且21V V >,则121230305400(67.530)30V V V V +=⎧⎨-=⎩,解得:1280100V V =⎧⎨=⎩,答:小丽步行的速度为80m/min ,小明步行的速度为100m/min ;②设点C 的坐标为(),x y ,则可得方程()()(10080308067.5)5400x x +-+-=,解得54x =,()100+80(5430)4320m y =-=,∴点()544320C ,,点C 表示:两人出发54min 时,小明到达甲地,此时两人相距4320m .【点睛】本题考查了二元一次方程组的实际应用,一元一次方程的实际应用,从图像获取信息是解题26.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∴甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∴两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米则有5403609001.2100y y +=解得90y =经检验,90y =是原方程的解,符合题意∴乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.27.(2019·湖南衡阳·中考真题)某商店购进A 、B 两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等.(1)求购买一个A 商品和一个B 商品各需要多少元;(2)商店准备购买A 、B 两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A 、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【答案】(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有2种购买方案,方案①:购进A 商品65个、B 商品15个;方案②:购进A 商品64个、B 商品16个.【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,根据数量=总价÷单价结合花费300元购买A 商品和花费100元购买B 商品的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据A 商品的数量不少于B 商品数量的4倍并且购买A 、B 商品的总费用不低于1000元且不高于1050元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数即可找出各购买方案.【解析】解:(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意,得:30010010x x =+,解得:5x =,经检验,5x =是原方程的解,且符合题意,∴1015x +=.答:购买一个A 商品需要15元,购买一个B 商品需要5元.(2)设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051050m m m m m m ⎧-≥⎪-+≥⎨⎪-+≤⎩,解得:1516m ≤≤.∵m 为整数,∴15m =或16.∴商店有2种购买方案,方案①:购进A 商品65个、B 商品15个;方案②:购进A 商品64个、B 商品16个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.28.如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于6cm 2?(2)在(1)中,△PQB 的面积能否等于8cm 2?说明理由.【答案】(1)2或3秒;(2)不能.【解析】(1)设经过x 秒以后△PBQ 的面积为6cm 2,则12×(5﹣x )×2x =6,整理得:x 2﹣5x +6=0,解得:x =2或x =3.答:2或3秒后△PBQ的面积等于6cm2.(2)设经过x秒以后△PBQ面积为8cm2,则12×(5﹣x)×2x=8,整理得:x2﹣5x+8=0,因为△=25﹣32=﹣7<0,所以此方程无解,故△PQB的面积不能等于8cm2.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6cm2”,得出等量关系是解决问题的关键.(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.29.(2020·辽宁丹东·中考真题)某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?【答案】(1)y 与x 之间的函数表达式为202600y x =-+;(2)这种衬衫定价为每件70元;(3)价定为65元可获得最大利润,最大利润是19500元.【分析】(1)根据题意可以设出y 与x 之间的函数表达式,然后根据表格中的数据即可求得y 与x 之间的函数表达式;(2)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(3)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.【解析】解:(1)设y 与x 之间的函数解析式为y=kx+b (k≠0),把x=60,y=1400和x=65,y=1300代入解析式得,601400651300k b k b +=⎧⎨+=⎩,解得,202600k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为202600y x =-+;(2)设该种衬衫售价为x 元,根据题意得,(x-50)(-20x+2600)=24000解得,170x =,2110x =,∵批发商场想尽量给客户实惠,∴70x =,故这种衬衫定价为每件70元;(3)设售价定为x 元,则有:(50)(202600)w x x =--+=220(90)32000x --+∵505030%x -≤⨯∴65x ≤∵k=-20<0,∴w 有最大值,即当x=65时,w 的最大值为-20(65-90)2+32000=19500(元).所以,售价定为65元可获得最大利润,最大利润是19500元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.30.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n .【答案】(1)5313是“共生数”,6437不是“共生数”.(2)2148n =或3069.n =【分析】(1)根据“共生数”的定义逐一判断两个数即可得到答案;(2)设“共生数”n 的千位上的数字为,a 则十位上的数字为2,a 设百位上的数字为,b 个位上的数字为,c 可得:1a ≤<5,09,09,b c ≤≤≤≤且,,a b c 为整数,再由“共生数”的定义可得:32,c a b =+而由题意可得:9b c +=或18,b c +=再结合方程的正整数解分类讨论可得答案.【详解】解:(1)()5+3=21+3=8,⨯ 5313∴是“共生数”,()6+7=1324+3=14,≠⨯ 6437∴不是“共生数”.(2)设“共生数”n 的千位上的数字为,a 则十位上的数字为2,a 设百位上的数字为,b 个位上的数字为,c 1a ∴≤<5,09,09,b c ≤≤≤≤且,,a b c 为整数,所以:1000100201020100,n a b a c a b c =+++=++由“共生数”的定义可得:()22,a c ab +=+32,c a b ∴=+1023102,n a b ∴=+()34134,3n F n a b ∴==+ 百位上的数字与个位上的数字之和能被9整除,0b c ∴+=或9b c +=或18,b c +=当0,b c +=则0,b c ==则0,a =不合题意,舍去,当9b c +=时,则339,a b +=3,a b ∴+=当1a =时,2,7,b c ==此时:1227,n =()12274093F n ==,而4+0+9=13不为偶数,舍去,当2a =时,1,8,b c ==此时:2148,n =()2148716,3F n ==,而7+1+6=14为偶数,当3a =时,0,9,b c ==此时:3069,n =()30691023,3F n ==,而1+0+2+3=6为偶数,当18b c +=时,则9,b c ==而3318,a b +=则3a =-不合题意,舍去,综上:满足()F n 各数位上的数字之和是偶数的2148n =或3069,n =【点睛】本题考查的是新定义情境下的实数的运算,二元一次方程的正整数解,分类讨论的数学思想的运用,准确理解题意列出准确的代数式与方程是解题的关键.31.(2022·山西·中考真题)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程20(a 0)++=≠ax bx c 的根就是相应的二次函数2(0)y ax bx c a =++≠的图象(称为抛物线)与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(2b a -,244ac b a -)和一元二次方程根的判别式24b ac =-△,分别分0a >和0a <两种情况进行分析:(1)0a >时,抛物线开口向上.①当240b ac =-> 时,有240ac b -<.∵0a >,∴顶点纵坐标2404ac b a -<.∴顶点在x 轴的下方,抛物线与x 轴有两个交点(如图1).②当240b ac =-= 时,有240ac b -=.∵0a >,∴顶点纵坐标2404ac b a -=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图2).∴一元二次方程20(a 0)++=≠ax bx c 有两个相等的实数根.③当240b ac =-= 时,……(2)0a <时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A .数形结合B .统计思想C .分类讨论.D .转化思想(2)请参照小论文中当0a >时①②的分析过程,写出③中当0,0a ><△时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为【答案】(1)AC (或AD 或CD )(2)分析见解析;作图见解析(3)答案见解析【解析】【分析】(1)解一元二次方程的解转化为抛物线与x 轴交点的横坐标;还体现了分类讨论思想;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年中考数学一轮复习:一元一次方程专题 提升训练
一、单选题 1.下列各式中,是一元一次方程的是( )
A .x +2y =5
B .x 2+x -1=0
C .1x
D .3x +1= 10 2.已知等式537a b =-,则下列等式中,不一定成立的是( )
A .537a b -=-
B .5136a b +=-
C .3755a b =-
D .537ac bc =- 3.数学测试出了20道题,评分规则是做对一道得5分,做错或不做一道扣1分,小丽在这次测验中最后的得分是88分,则她做对的题数是( )
A .18道
B .17道
C .16道
D .15道 4.已知a 为自然数,关于x 的一元一次方程66x ax =+的解也是自然数,则满足条件的自然数a 共有( )
A .3个
B .4个
C .5个
D .6个 5.下列等式变形错误的是( )
A .若13x -=,则4x =
B .若342x x +=,则324x x -=-
C .若33x y -=-,则0x y -=
D .若1x x -=,则12x x -=
6.下列运用等式的性质进行的变形,正确的是( )
A .如果325a b -=-,那么28a b =-
B .如果1343a b +=+,那么333a b +=-.
C .如果2a b =-+,那么2a b +=
D .如果
1132x y --=,那么23x y = 7.解方程
31271412y y -+-=时,为了去分母应将方程两边同乘( ) A .16 B .12 C .8 D .4
8.小亮在计算41N -时,误将“-”看成“+”,结果得13,则41N -的值应为( ) A .28- B .54 C .69 D .54- 9.某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个苹果?设有x 个苹果,则可列方程为( ) A .3x +1=4x -2
B .
C .
D .
10.小明在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为325x x +=+■,他翻看答案,得知方程的解为2x =-,则这个常数是( ) A .-14
B .-6
C .2
D .6
11.如图,下表是2022年12月的月历,任意选取“+”型框中的5个数(如阴影部分所示).请你运用所学的数学知识来研究,则这5个数的和不可能是()
A.40B.65C.90D.105
二、填空题
13.若关于x的方程的解与方程437
x+=的解相同,则a;
三、解答题
(4)
321123
--+=-x x x
19.对于任意有理数a 和b ,我们规定:22a b a ab *=-,如234323415*=-⨯⨯=-.
(1)求56*的值;
(2)若()310x -*=,求x 的值.
20.某机械厂甲、乙两个生产车间承担生产同一种零件的任务,甲、乙两车间共有50人,甲车间平均每人每天生产零件30个.乙车间平均每人每天生产零件20个,甲车间每天生产零件总数与乙车间每天生产零件总数之和为1300个.
(1)求甲、乙两车间各有多少人?
(2)该机械厂改进了生产技术.在甲、乙两车间总人数不变的情况下,从甲车间调出一部分人到乙车间.调整后甲、乙两车间平均每人每天生产零件都比原来多5个,甲乙两车间每天生产零件总数之和是1480个,且甲、乙两车间每人的计件工资(按完成件数发放工资)分别是12元和9元,求甲、乙两车间每天计件收入总和.
21.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:
解方程:20.30.410.50.3
x x -+-= 解:原方程可化为:
203104153x x -+-=. ……第①步 方程两边同时乘以15,去分母,得:()()3203510415x x --+=. ……第①步 去括号,得:609502015x x --+=. ……第①步
上述小亮的解题过程中 (1)第①步的依据是_________________________________________________;
(2)第____(填序号)步开始出现错误,请写出这一步正确的式子_______________.
22.如图,数轴上点A 表示数a ,点C 表示数c ,且多项式329320x xy --的常数项是a ,次数是c .我们把数轴上两点之间的距离用表示两点的大写字母表示,比如,点A 与点C 之间的距离记作AC .
(1)求a ,c 的值;
(2)若数轴上有一点D 满足2CD AD =,求D 点表示的数为多少?
(3)动点B 从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A ,C 在数轴上运动,点A ,C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向左运动,点C 向右运动,AB BC =,求t 的值.
1 参考答案: 1.D
2.D
3.A
4.B
5.D
6.C
7.B
8.C
9.B
10.D
11.C
12.12
13.-6
14.22014(27)x x ⨯=-
15.43
16.110或95
17.3x =
18.(1)125
-(2)=1x -(3)2x =-(4)5x = 19.(1)35-(2)16
20.(1)甲车间有30人,乙车间有20人;(2)甲、乙两车间每天计件收入总和为15735元.
21.(1)等式基本性质2(2)①;609502015x x ---=
22.(1)20a =-,30c =;(2)D 点表示的数为70-或103
-
;(3)8t =。

相关文档
最新文档