毕业设计-人脸识别系统设计

合集下载

基于opencv的人脸识别毕业设计

基于opencv的人脸识别毕业设计

基于opencv的人脸识别毕业设计一、引言人脸识别技术是一种通过对图像或视频中的人脸进行识别和验证的技术。

随着计算机视觉和深度学习技术的发展,人脸识别技术已被广泛应用于安防监控、人脸支付、智能门禁等领域。

本文将以基于opencv 的人脸识别技术为研究对象,设计一种高效、准确的人脸识别方案,作为毕业设计的主题。

二、背景介绍1. 人脸识别技术发展历程人脸识别技术的发展经历了传统图像处理、特征提取、模式识别等阶段,近年来,随着深度学习技术的成熟,人脸识别技术取得了突破性进展。

基于深度学习的人脸识别算法不仅能够实现高精度的人脸检测和识别,还能适应不同光照、姿态和表情下的人脸识别任务。

2. opencv在人脸识别中的应用opencv是一个开源的计算机视觉库,提供了丰富的图像处理和机器视觉算法库。

opencv的简单易用、跨评台兼容等特性,使其成为人脸识别技术开发中的重要工具。

许多经典的人脸检测、人脸识别算法都有基于opencv的实现。

三、研究内容与目标本文拟以基于opencv的人脸识别技术为研究对象,结合深度学习技术和opencv图像处理算法,设计一种高效、准确的人脸识别方案。

具体研究内容和目标如下:1. 掌握opencv图像处理和人脸识别的基本原理与算法;2. 分析深度学习在人脸识别中的应用,并结合opencv实现深度学习模型;3. 设计并实现一个基于opencv的人脸检测和识别系统;4. 评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较。

四、研究方法与流程1. 研究方法本研究将采用文献调研、实验分析和系统设计等方法,通过阅读相关文献,深入了解深度学习和opencv在人脸识别中的应用;结合实际数据集,分析人脸识别算法的性能和特点;基于opencv和深度学习框架,设计实现人脸识别系统,并进行性能评估。

2. 研究流程(1)文献综述:梳理文献,了解人脸识别领域的研究现状和发展趋势;(2)数据准备:收集人脸图像数据集,用于实验分析和算法训练;(3)算法实现:基于opencv和深度学习框架,实现人脸检测和识别算法;(4)系统设计:设计一个基于opencv的人脸识别系统,包括图像预处理、特征提取和匹配识别等模块;(5)性能评估:通过实验评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较;(6)撰写毕业设计论文。

基于python的人脸识别系统毕业设计

基于python的人脸识别系统毕业设计

《基于 Python 的人脸识别系统毕业设计》摘要:本毕业设计旨在设计并实现一个基于Python 的人脸识别系统。

通过对人脸识别相关技术的研究与应用,构建了一个具备一定性能的人脸识别模型。

系统采用了先进的图像处理算法和深度学习方法,能够实现对人脸图像的准确识别和分类。

本文详细介绍了系统的设计思路、关键技术、实现过程以及实验结果与分析,展示了该人脸识别系统在实际应用中的潜力和可行性。

一、概述随着科技的不断发展,人脸识别技术在安防、金融、交通等众多领域展现出了巨大的应用价值。

人脸识别系统能够快速、准确地识别人的身份,为人们的生活和工作带来了极大的便利。

本毕业设计基于Python 编程语言,致力于开发一个具有较高性能的人脸识别系统,以满足实际应用的需求。

二、人脸识别系统的相关技术(一)人脸检测技术人脸检测是人脸识别系统的基础,其目的是在图像或视瓶中检测出人脸的位置和大小。

常用的人脸检测方法包括基于特征的方法和基于深度学习的方法。

基于深度学习的方法如卷积神经网络(CNN)具有较高的检测准确率和鲁棒性,在实际应用中得到了广泛的应用。

(二)特征提取技术特征提取是从人脸图像中提取出能够表征人脸身份的特征向量的过程。

传统的特征提取方法如主成分分析(PCA)、线性判别分析(LDA)等,虽然在一定程度上能够提取特征,但效果有限。

近年来,深度学习中的卷积神经网络能够自动学习到深层次的人脸特征,具有更好的性能。

(三)人脸识别算法人脸识别算法是将提取的特征向量进行比对和匹配,以确定人脸的身份。

常见的人脸识别算法包括基于欧式距离的算法、基于余弦相似度的算法等。

在本毕业设计中,采用了基于卷积神经网络的人脸识别算法,通过训练模型来学习人脸特征的映射关系。

三、系统的总体设计(一)系统架构本人脸识别系统采用了分层的架构设计,包括数据采集层、图像处理层、特征提取与识别层、用户界面层等。

数据采集层负责获取人脸图像数据;图像处理层对图像进行预处理,如灰度化、归一化等;特征提取与识别层利用训练好的模型进行特征提取和识别;用户界面层提供友好的人机交互界面,方便用户进行操作和管理。

(完整)人脸识别毕业设计

(完整)人脸识别毕业设计

信息科学与技术学院毕业论文课题名称:基于特征识别的人脸检测系统学院:信息科学与技术学院完成日期:二○一七年五月十九日摘要我的毕业设计题目是基于特征的人脸检测系统,这个系统不仅仅能够检测人脸,还具有识别人脸的功能。

检测人脸检测部分的算法采用的是于仕祺老师的LBP特征加Gentle AdaBoost 分类器相结合的算法,提取识别特征部分的算法采用的是Google在2015年提出的基于深度学习策略的一种人工神经网络FaceNet,较为新颖,其准确率高,在光照不足,姿态和表情变化剧烈时仍能保持稳定,具有很强的鲁棒性。

该系统的界面使用MFC编写,在具体实现中了应用了多线程编程技术实现了一个简单的生产者消费者模型,从而提高了系统的识别效率,另外,对人脸的识别模块还使用了Python,C++混合编程技术引入了Google的开源深度学习框架Tensorflow作为对FaceNet的具体实现,数据库使用的是SQL Server2012,连接数据库使用的是微软公司的ADO 组件.该系统主要有信息采集模块和实时监控模块两个部分,前者完成对任务样本的信息采集工作,后者完成在实时监控的情况下对出现在画面中的人脸进行检测和识别,检测部分的速度可以达到40~60的FPS,识别部分由于计算量较大,只能达到2~5的FPS。

该系统经过简单的硬件支持和部署之后,基本可以完成在实际场景中的简单应用,具有一定的学术研究和实际应用价值。

关键词:人脸检测;人脸识别;机器学习;Tensorflow;实时监控IABSTRACTThe topic of this graduation project is Face Detection System based on characteristics which achieves the face detection and face recognition two functions. The algorithm of face detection part uses a kind of enhanced algorithm based on LBP feature and Gentle AdaBoost classifier proposed by ShiQi Yu,the algorithm of extracting face feature used in recognition part uses a kind of manual neural network FaceNet based on deep learning strategy proposed by Google in 2015.FaceNet has reached high arruracy and it is robustness to the change of illumination,posture and expression。

毕业设计 人脸识别

毕业设计 人脸识别

毕业设计人脸识别人脸识别技术在近年来得到了广泛的应用和研究,尤其是在安防领域。

作为一种非接触式的生物识别技术,人脸识别具有许多优势,如高精度、方便快捷等。

因此,越来越多的机构和企业开始将人脸识别技术应用于各个领域,比如门禁系统、手机解锁、支付验证等。

在这样的背景下,我选择了人脸识别作为我的毕业设计课题。

首先,我将对人脸识别技术的原理和算法进行深入研究。

人脸识别技术主要包括人脸检测、特征提取和匹配三个步骤。

在人脸检测阶段,我们需要使用一些图像处理的方法,如Haar特征、卷积神经网络等,来准确定位和提取人脸区域。

接下来,在特征提取阶段,我们需要将人脸图像转化为一组特征向量,这些特征向量能够准确地描述人脸的特征。

最后,在匹配阶段,我们需要将待识别的人脸特征与数据库中的特征进行比对,找出最相似的人脸信息。

通过对这些算法的研究和实践,我将能够更好地理解人脸识别技术的工作原理,并能够根据实际情况进行优化和改进。

其次,我将设计一个基于人脸识别的门禁系统。

门禁系统是人脸识别技术的一种常见应用场景。

通过将人脸识别技术应用于门禁系统中,可以实现更加安全和便捷的进出管理。

在设计过程中,我将考虑到系统的稳定性、安全性和实用性。

首先,我将选择一些高质量的摄像头和传感器,以确保图像的清晰度和准确性。

其次,我将设计一个完善的数据库系统,用于存储和管理人脸信息。

同时,我还将考虑到系统的实时性和响应速度,以确保快速准确地识别出合法用户。

最后,我还将加入一些智能化的功能,比如活体检测和表情识别等,以提高系统的安全性和可靠性。

另外,我还计划进行一些实验和测试,以验证人脸识别技术的性能和可靠性。

在实验过程中,我将使用一些公开的人脸数据集,并结合一些评价指标,比如准确率、召回率和误识率等,来评估人脸识别算法的性能。

通过这些实验和测试,我将能够更好地了解人脸识别技术的优势和局限性,并能够根据实际情况进行优化和改进。

最后,我将总结和归纳我的毕业设计成果,并撰写一篇详细的论文。

毕业设计-人脸识别系统设计【范本模板】

毕业设计-人脸识别系统设计【范本模板】

第一章前言第一节课题背景一课题的来源随着安全入口控制和金融贸易方面应用需要的快速增长,生物统计识别技术得到了新的重视。

目前,微电子和视觉系统方面取得的新进展,使该领域中高性能自动识别技术的实现代价降低到了可以接受的程度。

而人脸识别是所有的生物识别方法中应用最广泛的技术之一,人脸识别技术是一项近年来兴起的,但不大为人所知的新技术。

人们更多的是在电影中看到这种技术的神奇应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的详细资料和犯罪记录。

这并非虚构的情节。

在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。

在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域.二人脸识别技术的研究意义1、富有挑战性的课题人脸识别是机器视觉和模式识别领域最富有挑战性的课题之一,同时也具有较为广泛的应用意义。

人脸识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容.如今,虽然在这方面的研究已取得了一些可喜的成果,但是FRT在实用应用中仍面临着很严峻的问题,因为人脸五官的分布是非常相似的,而且人脸本身又是一个柔性物体,表情、姿态或发型、化妆的千变万化都给正确识别带来了相当大的麻烦。

如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。

2、面部关键特征定位及人脸2D形状检测技术在人脸检测的基础上,面部关键特征检测试图检测人脸上的主要的面部特征点的位置和眼睛和嘴巴等主要器官的形状信息。

灰度积分投影曲线分析、模板匹配、可变形模板、Hough变换、Snake算子、基于Gabor小波变换的弹性图匹配技术、主动性状模型和主动外观模型是常用的方法。

可变形模板的主要思想是根据待检测人脸特征的先验的形状信息,定义一个参数描述的形状模型,该模型的参数反映了对应特征形状的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。

人脸识别毕业设计论文

人脸识别毕业设计论文

人脸识别毕业设计论文人脸识别毕业设计论文人脸识别技术是一种通过计算机对人脸图像进行分析和识别的技术。

随着科技的不断进步,人脸识别技术在各个领域得到了广泛的应用,如安全监控、人脸支付、智能手机解锁等。

本文将探讨人脸识别技术的原理、应用以及未来发展方向。

一、人脸识别技术的原理人脸识别技术的原理主要包括人脸检测、人脸特征提取和人脸匹配三个步骤。

首先,系统需要通过摄像头等设备检测到人脸区域,并将其与背景进行分离。

然后,通过特征提取算法,将人脸图像转化为数字特征向量,以便后续的比对。

最后,通过与数据库中的特征向量进行匹配,确定输入人脸的身份。

二、人脸识别技术的应用1. 安全监控领域人脸识别技术在安全监控领域发挥着重要作用。

传统的监控摄像头只能提供实时影像,但无法对监控区域进行有效的识别和分析。

而引入人脸识别技术后,监控系统可以自动识别出陌生人、犯罪嫌疑人等,并及时报警。

这种技术的应用可以大大提高安全监控的效率和准确性。

2. 人脸支付领域随着移动支付的普及,人脸支付成为一种便捷的支付方式。

通过人脸识别技术,用户可以在手机上进行人脸扫描,完成支付过程。

相比传统的密码支付方式,人脸支付更加安全和便利,无需记忆复杂的密码,同时也减少了密码被盗用的风险。

3. 智能手机解锁领域人脸识别技术也广泛应用于智能手机解锁。

用户只需将手机对准自己的脸部,系统便可通过人脸识别技术判断是否解锁。

相比传统的密码解锁方式,人脸解锁更加方便快捷,同时也提高了手机的安全性。

三、人脸识别技术的挑战与未来发展虽然人脸识别技术在各个领域取得了显著的应用效果,但仍然存在一些挑战。

首先,光线、角度、表情等因素对人脸识别的准确性有一定影响,需要进一步改进算法以提高识别率。

其次,隐私问题也是人脸识别技术面临的一大挑战。

人脸图像的采集和存储可能涉及个人隐私,需要加强数据保护和合规管理。

未来,人脸识别技术仍有很大的发展空间。

一方面,随着硬件设备的不断升级,如高清摄像头、深度摄像头等,人脸图像的采集质量将得到提高,进而提高人脸识别的准确性。

人脸识别考勤系统 毕业设计

人脸识别考勤系统 毕业设计

人脸识别考勤系统毕业设计人脸识别考勤系统是一种利用现代人脸识别技术结合考勤管理系统的智能化设备。

它通过摄像头捕捉员工面部特征,将其与已注册的员工信息进行比对,确保员工的真实身份和考勤记录准确无误。

由于其高效、准确的优势,已经广泛应用于企业、学校、机关等场所。

本文将就人脸识别考勤系统的特点、设计原理以及实际应用进行深入探讨,从而为毕业设计提供指导和参考。

一、系统设计原理1.1 人脸识别技术人脸识别技术是指通过图像处理和模式识别技术,对图像中的人脸进行识别和验证。

常见的人脸识别技术包括特征提取、特征匹配和模式识别。

人脸识别系统通常包括人脸检测、人脸特征提取、特征匹配三个主要步骤。

1.2 考勤管理系统考勤管理系统是一种用于员工考勤记录管理的软件。

它可以记录员工的上下班时间、加班情况等信息,实现考勤数据的统计和分析,并生成考勤报表。

1.3 人脸识别考勤系统设计原理人脸识别考勤系统主要包括人脸采集、人脸特征提取、人脸比对和考勤记录等功能。

系统首先通过摄像头采集员工的面部图像,然后对图像进行人脸检测和特征提取,提取出人脸的关键特征点。

接着将提取出的人脸特征点与已注册的员工信息进行比对,确定员工的真实身份。

最后将员工的考勤记录保存至系统数据库中,以供考勤管理系统进行数据统计和生成报表。

二、系统特点2.1 高效性人脸识别考勤系统采用自动化识别技术,无需员工手动打卡,能够实现全天候的自动考勤记录,极大提高考勤效率。

2.2 准确性人脸识别技术在识别精度上具有很高的准确性,可以有效避免因忘记打卡、代打卡等情况导致的考勤纠纷,确保考勤记录的准确无误。

2.3 安全性人脸识别考勤系统采用个人面部特征进行识别,具有较高的防伪性,能够有效防止考勤作弊和身份冒用的情况。

2.4 数据化系统能够将员工的考勤记录自动保存至数据库中,可以方便快捷地进行考勤数据统计和分析,生成各类考勤报表,提供决策参考。

三、系统实际应用3.1 企业在企业内部,人脸识别考勤系统可以替代传统的打卡机制,提高考勤效率,减少人力成本。

基于人脸识别的智能门锁系统设计毕业设计

基于人脸识别的智能门锁系统设计毕业设计

基于人脸识别的智能门锁系统设计毕业设计基于人脸识别的智能门锁系统设计摘要:本文主要介绍了一种基于人脸识别的智能门锁系统设计方案。

随着科技的发展和人们对生活便利性的需求不断增加,传统的门锁系统已经无法满足人们的需求。

本设计方案通过利用人脸识别技术,实现了更加安全、方便的门禁控制系统。

该系统采用了先进的人脸识别算法,结合图像处理和人工智能技术,能够准确识别用户的面部特征,并根据匹配结果自动解锁门禁。

本文还对系统的硬件设计和软件实现进行了详细说明,并对系统的可行性和安全性做出了评估,最后展望了未来的发展方向。

1. 引言随着社会的不断进步和科技的迅猛发展,传统的钥匙门锁已经不能满足人们对安全、便利的需求。

特别是在公共场所和企事业单位,使用传统的钥匙门锁管理门禁会带来许多不便和安全隐患。

基于人脸识别的智能门锁系统应运而生,通过利用人脸识别技术和智能算法,可以实现更高级的门禁控制系统。

2. 系统设计方案2.1 系统概述基于人脸识别的智能门锁系统主要由硬件设备和软件系统组成。

硬件设备包括摄像头、人脸识别模块、门禁控制模块等;软件系统则包括人脸图像处理算法、数据库管理系统等。

2.2 人脸识别算法为了实现准确的人脸识别,本系统采用了深度学习算法。

首先,将训练集中的人脸图像输入到神经网络中进行训练和特征提取;然后,通过比对输入的人脸图像与数据库中的特征向量,来判断是否匹配成功。

为了提高系统识别准确性,还可以结合动态人脸识别和活体检测技术。

2.3 硬件设计硬件设计主要包括摄像头模块、人脸识别模块和门禁控制模块。

摄像头模块用于采集用户的面部图像,并传输给人脸识别模块进行处理;人脸识别模块用于提取用户面部特征并进行比对;门禁控制模块则用于控制门锁的开关。

此外,还可以增加语音提示和指纹识别等功能,提高系统的多样性和安全性。

2.4 软件实现软件实现主要包括人脸图像处理算法和数据库管理系统。

人脸图像处理算法负责将采集到的人脸图像进行预处理、特征提取和匹配;数据库管理系统用于存储用户的人脸特征向量和相应的权限信息。

基于opencv人脸识别毕业设计

基于opencv人脸识别毕业设计

基于opencv人脸识别毕业设计英文回答:My graduation project is based on face recognitionusing OpenCV. Face recognition is a popular field in computer vision, and OpenCV provides a powerful library for image processing and computer vision tasks. In this project, I aim to develop a system that can accurately recognize and identify faces in real-time.To achieve this, I will start by collecting a datasetof face images. This dataset will consist of images of different individuals, with variations in lighting conditions, facial expressions, and poses. I will then use OpenCV to preprocess these images, extracting relevant features and reducing noise.Next, I will train a machine learning model using the preprocessed images. There are several algorithms that can be used for face recognition, such as Eigenfaces,Fisherfaces, and Local Binary Patterns Histograms (LBPH). I will experiment with different algorithms and select the one that gives the best performance for my dataset.Once the model is trained, I will integrate it into a real-time face recognition system. This system will use a webcam to capture live video and apply the trained model to recognize faces in the video stream. When a face is detected, the system will compare it with the faces in the dataset and determine the identity of the person.In addition to face recognition, I also plan to implement some additional features in my project. For example, I will add a face detection module that can detect and locate faces in an image or video. This can be useful for applications such as automatic tagging of people in photos or video surveillance systems.Furthermore, I will explore the possibility of emotion recognition using facial expressions. By analyzing the facial features and expressions, the system can determine the emotional state of the person, such as happiness,sadness, or anger. This can have applications in various fields, such as market research, psychology, and human-computer interaction.Overall, my graduation project aims to develop a robust and accurate face recognition system using OpenCV. By combining image processing techniques, machine learning algorithms, and real-time video processing, I hope to create a system that can be applied in various domains, from security and surveillance to social media and entertainment.中文回答:我的毕业设计基于OpenCV的人脸识别技术。

人脸识别系统毕业设计

人脸识别系统毕业设计

人脸识别系统毕业设计人脸识别系统毕业设计随着科技的不断进步和人们对安全性的日益重视,人脸识别系统逐渐成为一种被广泛应用的技术。

作为一种生物识别技术,人脸识别系统能够通过摄像头捕捉到的人脸图像,进行特征提取和比对,从而实现对个体身份的识别。

在毕业设计中,我选择了开发一个人脸识别系统,旨在探索和应用这一前沿技术。

首先,我将介绍人脸识别系统的原理和应用。

人脸识别系统主要包括图像采集、图像预处理、特征提取和比对等环节。

图像采集使用摄像头捕捉到人脸图像,图像预处理则对采集到的图像进行去噪、对齐等操作,以提高后续处理的准确性。

特征提取是人脸识别系统的核心环节,通过对图像进行分析和计算,提取出人脸的特征信息,如眼睛、鼻子、嘴巴等位置和形状。

最后,比对阶段将提取到的特征与数据库中已有的特征进行对比,从而确定个体的身份。

人脸识别系统在安防领域有着广泛的应用。

例如,它可以用于门禁系统,通过识别人脸来控制门的开关,实现自动化的出入管理。

此外,人脸识别系统还可以用于监控系统,通过对摄像头捕捉到的人脸图像进行实时识别,及时发现和报警异常行为。

在社交娱乐领域,人脸识别系统也有着很多的应用,如人脸美化、人脸动画等。

可以说,人脸识别系统在各个领域都有着广泛的应用前景。

接下来,我将介绍我设计的人脸识别系统的具体实现。

首先,我选择了OpenCV作为主要的开发工具,因为它是一个功能强大且开源的计算机视觉库,可以方便地进行图像处理和特征提取。

其次,我使用了深度学习的方法来提高人脸识别的准确性。

深度学习是一种模仿人脑神经网络的计算模型,通过多层次的神经元网络结构,可以自动学习和提取图像中的特征。

我使用了卷积神经网络(CNN)作为主要的模型,通过大量的训练数据和反向传播算法,让网络自动学习人脸的特征。

在实际的应用中,我设计了一个简单的人脸识别系统原型。

该系统包括一个摄像头和一个显示屏,用户可以站在摄像头前,系统会自动捕捉到用户的人脸图像,并进行特征提取和比对,最后在显示屏上显示出用户的身份信息。

基于单片机的人脸识别毕业设计

基于单片机的人脸识别毕业设计

基于单片机的人脸识别毕业设计摘要:随着科技的发展和进步,人脸识别技术已经逐渐成为了新的趋势。

传统的人脸识别技术多采用计算机软件进行处理,但是这种方式需要大量的存储空间和计算能力,并且不太适合于现场实时识别。

为了解决这个问题,本文提出了一种基于单片机的人脸识别系统,并且成功实现了人脸识别功能。

该系统包括人脸采集、人脸处理和人脸识别三个部分。

首先,通过摄像头采集人脸图像,并将其存储于单片机中。

然后,利用图像处理算法对采集的人脸图像进行预处理,从而得到相关特征。

最后,将特征与已知人脸库进行匹配,从而实现真正的人脸识别。

整个系统的核心部分是基于ARM Cortex-M3的STM32F103单片机。

关键词:人脸识别;单片机;图像处理;特征提取;匹配算法Abstract:Keywords: face recognition; microcontroller; image processing; feature extraction; matching algorithm1.引言人脸识别技术是现代生物识别技术中最受欢迎和重要的一种。

随着科技的发展和进步,人脸识别技术已经得到了广泛的应用,比如安全防范、结构自动化、人机交互等。

传统的人脸识别技术多采用计算机软件进行处理,但是这种方式需要大量的存储空间和计算能力,并且不太适合于现场实时识别。

为了解决这个问题,研究者们便开始将人脸识别技术移植到单片机上,以实现轻便、小巧、节能和高性能的要求。

2.系统设计基于上述考虑,本文提出了一种基于单片机的人脸识别系统,并且成功实现了人脸识别功能。

该系统包括人脸采集、人脸处理和人脸识别三个部分。

整个系统的架构图如图1所示。

![image.png](attachment:image.png)图1 人脸识别系统架构图2.1 人脸采集人脸采集部分主要通过摄像头采集人脸图像,并将其存储于单片机中。

在本系统中,使用USB摄像头作为人脸采集的设备,并通过USB接口将采集到的图像传输至单片机中。

人脸识别毕业设计(一)2024

人脸识别毕业设计(一)2024

人脸识别毕业设计(一)引言概述:人脸识别技术作为一项以人脸为特征进行身份识别的技术,已经在各个领域得到广泛应用。

本文旨在探讨人脸识别技术在毕业设计中的应用,通过分析和研究相关理论和实践案例,深入分析人脸识别技术的原理、特点以及存在的问题与挑战,为毕业设计的实施提供指导。

正文内容:1. 人脸识别技术的原理- 人脸特征提取算法分析- 人脸检测与定位技术介绍- 人脸特征匹配与识别原理解析- 数据库存储与管理方法探讨- 人脸识别技术与其他生物识别技术的比较2. 人脸识别技术的应用场景- 人脸识别在公共安全领域的应用- 人脸识别在社交娱乐领域的应用- 人脸识别在金融行业的应用- 人脸识别在智能家居领域的应用- 人脸识别在医疗健康领域的应用3. 人脸识别技术存在的问题与挑战- 鲁棒性和准确性的平衡问题- 光照、姿态和表情等因素的干扰- 隐私与安全性问题的考虑- 大规模人脸数据集的获取与管理- 在特定人群中的适用性和可靠性问题4. 人脸识别技术的改进方法与思路- 基于深度学习的人脸识别算法研究- 多模态信息融合技术的应用- 非刚性人脸对齐与图像增强技术的优化- 基于人脸属性的识别方法探索- 迁移学习在人脸识别中的应用研究5. 人脸识别技术的发展前景与建议- 人脸识别技术在社会发展中的作用和前景- 高性能硬件在人脸识别技术中的应用- 用户体验与用户隐私平衡的考虑- 加强人脸识别技术的标准化建设- 探索人脸识别技术与其他技术的结合总结:本文围绕人脸识别技术的应用于毕业设计进行了深入的研究和分析,从技术原理、应用场景、问题与挑战、改进方法以及发展前景等各个方面进行了探讨。

尽管人脸识别技术还存在一些问题和挑战,但是其在各个领域的应用前景广阔。

为了保证人脸识别技术的可靠性和合规性,需要进一步加强标准化建设和隐私保护措施,并探索与其他相关技术的相互融合与应用。

基于python的人脸识别系统毕业设计

基于python的人脸识别系统毕业设计

基于Python的人脸识别系统毕业设计1. 简介本篇文章将介绍一个基于Python的人脸识别系统的毕业设计方案。

人脸识别技术是近年来快速发展的一项技术,它可以应用于安全监控、身份验证、人脸检索等领域。

本毕业设计旨在通过使用Python编程语言和一些开源库,搭建一个简单但功能强大的人脸识别系统。

2. 设计目标本人脸识别系统的设计目标如下:•实现基本的人脸检测功能,能够从图片或者摄像头中准确地检测出人脸。

•实现人脸特征提取功能,将检测到的人脸转换成特征向量。

•实现人脸比对功能,能够判断两张人脸是否属于同一个人。

•支持多种算法和模型,如Haar级联分类器、Dlib库、OpenCV等。

•提供友好的用户界面,方便用户进行操作和查看结果。

3. 系统架构本系统将采用以下架构:1.数据预处理:对输入数据进行预处理,包括图像去噪、图像增强等操作,以提高人脸检测的准确性。

2.人脸检测:使用选定的算法和模型进行人脸检测,将图像中的人脸框出来。

3.人脸特征提取:对每个检测到的人脸进行特征提取,得到对应的特征向量。

4.人脸比对:将两个特征向量进行比对,判断是否属于同一个人。

5.用户界面:提供一个简单直观的用户界面,方便用户上传图片、选择算法和查看结果。

4. 技术实现4.1 数据预处理数据预处理是一个重要的步骤,可以通过去噪、增强等操作来提高后续步骤的准确性。

常用的数据预处理方法包括:•图像去噪:使用滤波器等方法去除图像中的噪声。

•图像增强:调整图像亮度、对比度等参数,使得图像更加清晰。

4.2 人脸检测本系统将采用Haar级联分类器作为默认的人脸检测算法。

Haar级联分类器是一种基于机器学习的对象检测方法,具有较高的准确性和速度。

除了Haar级联分类器,还可以使用Dlib库和OpenCV等其他开源库进行人脸检测。

4.3 人脸特征提取本系统将采用深度学习模型来进行人脸特征提取,常用的模型包括FaceNet、DeepFace等。

人脸识别技术的研究与设计毕业论文

人脸识别技术的研究与设计毕业论文

人脸识别技术的研究与设计毕业论文标题:基于人脸识别技术的研究与设计摘要:随着人脸识别技术的快速发展,其在安全监控、身份验证和图像等领域扮演着重要角色。

本论文旨在研究和设计基于人脸识别技术的系统,提供一种可行的解决方案。

首先,介绍人脸识别的原理和发展趋势。

然后,讨论设计和开发的关键要素,包括图像采集、特征提取、特征匹配和系统性能评估等。

最后,通过实验验证自己所提出的系统在实际应用中的有效性与准确性。

关键词:人脸识别,图像采集,特征提取,特征匹配,系统性能评估引言:人脸作为人类最基本的身份特征之一,一直以来都受到人们广泛关注。

人脸识别技术的发展为人们的生活和工作带来了极大的便利。

与传统的身份验证方法相比,人脸识别技术不需要接触式设备,而是通过对人脸图像的采集、提取和匹配等步骤实现自动识别。

然而,由于人脸图像的干扰、变化和质量等因素的存在,使得人脸识别技术的研究和设计变得复杂而具有挑战性。

本论文旨在对人脸识别技术进行深入研究,并基于所得到的研究成果设计一个高效、准确的人脸识别系统。

论文结构如下:一、人脸识别技术的原理和发展趋势二、系统设计与开发1.图像采集:通过选择合适的设备、摄像头和光线条件,实现高质量的人脸图像采集。

2.图像预处理:对采集的图像进行去噪、归一化和对齐等处理,提高识别系统的性能。

3.特征提取:通过选取适当的特征提取算法,提取人脸图像中的关键特征,并将其转化为数学表示。

4.特征匹配:利用已有的特征数据库与待识别的人脸特征进行比对,并计算相似度得分。

5.系统性能评估:通过对识别系统的准确率、召回率、误识率等指标进行评估,验证其性能以及对抗各种挑战的能力。

三、实验结果与讨论本部分将通过实验验证所设计的人脸识别系统的有效性与准确性,并对系统的性能进行分析。

同时,还将讨论实验结果中存在的问题,并提出解决方案。

结论:本论文针对人脸识别技术的研究与设计进行了全面的探讨。

通过分析人脸识别技术的原理和发展趋势,设计了一个基于人脸识别技术的高效、准确的系统。

人脸识别毕业设计

人脸识别毕业设计

人脸识别毕业设计人脸识别是一种通过计算机技术对人脸进行识别和验证的技术。

它广泛应用于安全领域,如身份认证、门禁控制、视频监控等。

本篇文章将介绍一个基于人脸识别的毕业设计,并详细说明其设计思路和实现方法。

该毕业设计的目标是设计并实现一个基于人脸识别的访客登记系统。

该系统将用于学校的访客管理,主要功能包括访客信息的登记、人脸图像的采集、人脸识别和访客记录的管理。

首先,我们需要搭建一个适合人脸识别的硬件环境。

我们可以选择一台性能较高的计算机作为服务器,连接一个高清摄像头用于采集人脸图像。

为了提高人脸识别的准确率,我们可以选择一款具备较高分辨率和快速捕捉速度的摄像头。

其次,我们需要设计一个用户界面,用于访客信息的登记和管理。

该界面应具备友好的用户交互性,方便访客进行信息输入,并提供访客记录的查询和管理功能。

我们可以使用图形界面开发工具,如Qt或Java Swing,来实现该用户界面。

接下来,我们需要选择合适的人脸识别算法。

常见的人脸识别算法包括Eigenface、Fisherface和LBPH等。

我们可以通过对比不同算法的准确率、速度和稳定性,选择最适合我们系统的算法。

此外,我们还可以使用一些预处理技术,如直方图均衡化和人脸对齐,来提高人脸图像的质量。

然后,我们需要训练一个人脸识别模型。

训练模型的过程包括收集一组已知身份的人脸图像,提取人脸特征,并使用这些特征来训练模型。

我们可以使用一些开源的人脸识别库,如OpenCV或Dlib,来辅助我们完成这些步骤。

在实现该毕业设计的过程中,我们需要对人脸识别和图像处理等技术进行深入学习,并结合实际情况进行调试和优化。

我们还可以考虑使用一些辅助技术,如人脸活体检测和光线补偿,来进一步提高系统的准确性和稳定性。

总之,基于人脸识别的访客登记系统是一个具有挑战性和实用性的毕业设计。

通过深入学习和实践,我们可以掌握人脸识别和图像处理等技术,并将其应用于实际场景中,为学校的访客管理提供一种高效、安全、便捷的解决方案。

人脸识别毕业设计论文

人脸识别毕业设计论文

人脸识别毕业设计论文人脸识别技术是一种通过计算机进行人脸的检测、分析和识别的技术。

随着计算机技术的不断发展和应用的广泛,人脸识别技术被广泛应用于安全监控、刑侦破案、人机交互等领域。

本文将对人脸识别技术的原理、应用和发展前景进行研究和分析。

首先,人脸识别技术的原理主要分为三个步骤:人脸检测、人脸特征提取和人脸匹配。

在人脸检测的过程中,通过对图像的分析和处理,确定图像中是否存在人脸。

接下来,在人脸特征提取的过程中,通过对检测到的人脸进行分析,提取出人脸的特征信息,如眼睛、鼻子、嘴巴等特征点的位置和尺寸。

最后,在人脸匹配的过程中,将提取到的人脸特征与数据库中的人脸特征进行比较和匹配,以确定人脸的身份。

其次,人脸识别技术在实际应用中有广泛的应用前景。

首先,在安全监控领域,人脸识别技术可以应用于公共场所的出入口监控、机场、地铁等重要区域的安全检测等场景,提高安全性和便利性。

另外,人脸识别技术在刑侦破案方面也有重要的应用价值,可以帮助警方通过监控录像等材料,确定犯罪嫌疑人的身份,加快案件的破案速度。

此外,人脸识别技术还可以应用于人机交互领域,实现面部表情识别、情绪识别等,为用户提供更加智能化、个性化的服务。

最后,人脸识别技术还面临一些挑战和问题。

首先,人脸识别技术需要大量的样本数据进行训练和学习,但目前公开的人脸库很少,导致训练的准确度和鲁棒性较低。

另外,人脸识别技术在复杂环境下的识别准确度也存在一定的问题,如光线、角度、表情等因素的干扰。

此外,人脸识别技术的安全性也是一个值得关注的问题,例如人脸合成、伪造等攻击手段的出现,可能影响识别系统的准确性和可靠性。

总的来说,人脸识别技术是一种具有广泛应用前景的技术,在安全监控、刑侦破案和人机交互等领域都有重要的应用价值。

但在实际应用中,还需要进一步解决技术上的问题和挑战,提高人脸识别技术的准确性、鲁棒性和安全性,以更好地满足社会需求,并推动技术的进一步发展。

人脸识别毕业设计简单嘛

人脸识别毕业设计简单嘛

人脸识别毕业设计简单嘛人脸识别技术是一项在当今社会得到广泛应用的先进技术。

它利用计算机视觉和模式识别技术,通过摄像头或视频设备捕获人脸图像,并对图像进行分析和识别。

在各种场合下都可以看到人脸识别技术的应用,比如安防监控、手机解锁、门禁系统、社交媒体等。

随着技术的不断发展,人脸识别技术已经成为信息技术领域的一个热门研究方向,采用人脸识别作为毕业设计课题是非常具有挑战性和前瞻性的选择。

人脸识别毕业设计的可行性。

目前,计算机视觉、图像处理和模式识别等相关技术已经非常成熟,对于人脸识别技术具有很好的支持和应用基础。

学生们可以通过学习相关的理论知识和技术方法,结合实际情况设计和实现一个基于人脸识别的系统。

当前市场上也存在着很多成熟的人脸识别技术和产品,学生们可以结合这些现有的资源和技术,进行深入的研究和分析。

人脸识别技术的学术和实际意义。

人脸识别技术作为一项前沿的信息技术,具有非常广阔的应用前景。

在安防监控领域,人脸识别技术可以帮助警方或安保人员快速准确地识别出目标对象,提高工作效率和安全性。

在手机解锁和支付领域,人脸识别技术可以提高用户的便利性和安全性。

在医疗领域,人脸识别技术可以用于病人识别和医疗信息管理。

在教育领域,人脸识别技术可以用于学生考勤和教师管理。

人脸识别技术的研究和应用对社会具有非常重要的意义。

接下来,人脸识别毕业设计的实施过程。

在设计一个人脸识别系统时,首先需要对人脸图像进行采集和处理。

这就需要学生们熟练掌握图像采集、处理和特征提取等基本技术方法。

然后,需要设计和选择合适的特征提取算法和分类器,用于对人脸进行识别和分类。

在此过程中,学生们需要深入了解和掌握各种特征提取算法和分类器的原理和特点,选择合适的算法和方法,进行实验和分析。

需要设计和实现一个完整的人脸识别系统,并进行实际的测试和评估。

这就需要学生们具备一定的编程能力和系统实现能力,能够将理论知识转化为具体的软件系统。

人脸识别毕业设计的评价和展望。

人脸考勤系统毕业设计

人脸考勤系统毕业设计

人脸考勤系统毕业设计人脸考勤系统毕业设计,这个话题可真有趣,听上去就像是科技和日常生活的结合。

想象一下,以前我们上学,老师点名的时候,那可真是个“人间悲剧”,一个个叫到名字,有的同学还在睡觉,有的在玩手机,真是“心不在焉”。

现在好了,科技进步,连考勤都可以用人脸识别来搞定,真是让人想拍手叫好。

人脸考勤系统,乍一听是不是觉得很高大上,其实就是用一台机器,扫一扫你脸上的肉,系统就知道你来了。

哎,真是个懒人福音,想想以后只要站那儿,刷个脸就能打卡,简直是现代版的“懒人经济”。

这系统可不是一蹴而就的,背后可有一番苦心思。

得有个摄像头,这玩意儿像个侦探,专门盯着你的脸,没事儿的时候,它就“咔嚓”一声,帮你拍个照,搞个档案。

听着简单吧,其实它得把每个人的脸都记得清清楚楚。

这个过程可不是一帆风顺的,得不断调试,确保每张脸都能被识别出来。

阳光太强,或者同学的脸被书本挡住,那可就尴尬了,系统呆呆地不知道该识别哪个“影子”。

想想以前,我们用手打卡,那简直是“翻山越岭”,一不小心就错过了打卡时间。

现在有了人脸识别,直接站在门口,轻松搞定。

这样一来,大家就可以放心去上课,不用担心迟到,或者说错过打卡,轻轻松松就能把这件事情解决。

系统还会记录每个人的到达时间,万一有同学想作弊,假装来得早,那可就露馅了,哈哈。

再说说系统的数据分析功能。

别小看这些数据,它们可是帮助学校了解每位同学上课情况的“金钥匙”。

通过分析到课率,学校可以知道哪些课最受欢迎,哪些同学最爱缺课。

这就好比一个“水落石出”的过程,能够让老师们及时调整教学方法,提升课堂效果。

让每位同学都能感受到,学习不仅仅是为了考试,更是为了获取知识,真的是“因材施教”。

人脸考勤系统也不是完全没有问题。

就比如,有的同学可能喜欢化妆,今天的脸和昨天的脸完全不一样,系统也许会把他识别成另外一个人,哈哈,这下可好,真的是“人脸识别”变成了“人脸误识别”。

这种小插曲还挺好玩的,想想每个人的脸都有千变万化,可能今天是一张冷酷的面孔,明天又是一张甜美的笑脸,谁能说得准呢?系统可得时刻保持警觉,不然就得天天在那儿“求饶”了。

基于人脸识别的智能门禁系统设计毕业设计

基于人脸识别的智能门禁系统设计毕业设计

基于人脸识别的智能门禁系统设计毕业设计基于人脸识别的智能门禁系统设计智能门禁系统是一种基于现代科技的安全管理设备,旨在通过使用人脸识别技术,提供更加高效、安全且便捷的门禁控制。

本篇文章将介绍基于人脸识别的智能门禁系统设计的相关内容,包括系统原理、技术流程、硬件需求以及实施方案等。

1. 系统原理智能门禁系统的核心原理是基于人脸识别技术。

该技术通过摄像头采集用户的脸部图像,然后使用图像处理算法提取图像特征点,进而对比数据库中的已注册人脸特征,以确定用户身份是否合法。

系统使用高精度的人脸识别算法,具备较高的识别准确率和速度。

2. 技术流程基于人脸识别的智能门禁系统主要包括以下技术流程:2.1 用户注册系统首次使用时,用户需要进行注册。

用户将自己的脸部图像通过摄像头进行采集,并由系统对图像进行处理和分析,提取关键的人脸特征点,并将其存储在系统的人脸数据库中。

注册过程通常需要多次采集和验证,以提高注册准确性和可靠性。

2.2 人脸识别当用户需要进入特定区域时,系统将通过摄像头获取用户的脸部图像,并使用图像处理算法提取特征点。

然后,系统通过与数据库中已注册的人脸特征进行对比,来验证用户的身份。

如果特征匹配成功,系统将开启门禁,允许用户进入。

否则,门禁将保持关闭。

2.3 异常处理在人脸识别过程中,可能会出现一些异常情况,例如光线不足、遮挡物、低质量的图像等。

为了解决这些问题,系统需要使用一些处理算法,例如人脸增强、姿态校正和质量评估等,以提高识别成功率和稳定性。

3. 硬件需求实现基于人脸识别的智能门禁系统需要使用以下硬件设备:3.1 摄像头摄像头用于采集用户的脸部图像,要求具备较高的分辨率和帧率,以提供清晰的图像。

同时,摄像头也需要具备一定的适应性,能够在不同的环境条件下正常工作。

3.2 控制器控制器用于控制门禁的开关,并与其他硬件设备进行通讯。

控制器应具备稳定可靠的性能,能够支持高效的人脸识别算法,并能够与数据库进行快速的匹配比对。

人脸识别系统任务书

人脸识别系统任务书

广西大学毕业设计(论文)任务书课题名称人脸识别系统学院电气工程学院专业自动化班级2006级(2)班学号0602100246姓名孙宏帅指导教师(签名)年月日教研室主任(签名)年月日课题的题目和要求:一、设计题目为《人脸识别系统》要求1、了解人脸的特征,识别技术的原理。

2、了解什么是人脸识别、人脸识别的过程。

3、掌握人脸识别系统的工作原理以及系统模块设计。

4、设计一套人脸识别系统,说明运用的是人脸的哪些特征以及如何处理图像。

二、设计的技术要求与数据(或论文主要内容):1. 根据人脸识别的工作原理要求,2.论述人脸识别的特点及优劣。

3.其余的设计原始资料,要求根据设计需要自行补充收集。

三、设计(论文)工作起始日期:自2008年 1 月21日起,至2008 年 6 月13 日止。

四、进度计划与完成的工作:1)扫清理论障碍,做好整个系统设计原理的初期准备。

第1周2)研究具体实现方案,以及相应的控制策略。

第2~4周3)完成系统主控单元的硬件和软件设计5~7周4)撰写学位论文,系统测试。

第8~12周5)系统整合、论文修改完善、答辩。

第13周五、主要参考文献、资料:[1] 沈文,Engle lee ,詹卫前等. A VR单片机C语言开发入门指导北京:清华大学出版社2006-1[2] 金春林,邱慧芳,张皆喜。

A VR系列单片机C语言编程与应用实例北京:清华大学出版社2003-11-01[3] 周立功。

A VR嵌入式系统基础教程北京:北京航空航天大学出版社2005[4] 黄任. A VR单片机与CPLD/FPGA综合应用入门北京:北京航空航天大学出版社2004-8[5]梁森《自动检测技术及应用》机械工业出版社第三版 2007年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章前言第一节课题背景一课题的来源随着平安入口限制和金融贸易方面应用须要的快速增长,生物统计识别技术得到了新的重视。

目前,微电子和视觉系统方面取得的新进展,使该领域中高性能自动识别技术的实现代价降低到了可以接受的程度。

而人脸识别是全部的生物识别方法中应用最广泛的技术之一,人脸识别技术是一项近年来兴起的,但不大为人所知的新技术。

人们更多的是在电影中看到这种技术的奇妙应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的具体资料和犯罪记录。

这并非虚构的情节。

在国外,人脸识别技术早已被大量运用在国家重要部门以及军警等安防部门。

在国内,对于人脸识别技术的探讨始于上世纪90年头,目前主要应用在公安、金融、网络平安、物业管理以及考勤等领域。

二人脸识别技术的探讨意义1、富有挑战性的课题人脸识别是机器视觉和模式识别领域最富有挑战性的课题之一,同时也具有较为广泛的应用意义。

人脸识别技术是一个特别活跃的探讨领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容。

如今,虽然在这方面的探讨已取得了一些可喜的成果,但是FRT在好用应用中仍面临着很严峻的问题,因为人脸五官的分布是特别相像的,而且人脸本身又是一个柔性物体,表情、姿态或发型、化妆的千变万化都给正确识别带来了相当大的麻烦。

如何能正确识别大量的人并满意实时性要求是迫切须要解决的问题。

2、面部关键特征定位及人脸2D形态检测技术在人脸检测的基础上,面部关键特征检测试图检测人脸上的主要的面部特征点的位置和眼睛和嘴巴等主要器官的形态信息。

灰度积分投影曲线分析、模板匹配、可变形模板、Hough变换、Snake算子、基于Gabor小波变换的弹性图匹配技术、主动性状模型和主动外观模型是常用的方法。

可变形模板的主要思想是依据待检测人脸特征的先验的形态信息,定义一个参数描述的形态模型,该模型的参数反映了对应特征形态的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。

由于模板变形利用了特征区域的全局信息,因此可以较好地检测出相应的特征形态。

由于可变形模板要采纳优化算法在参数空间内进行能量函数微小化,因此算法的主要缺点在于两点:一、对参数初值的依靠程度高,很简洁陷入局部最小;二、计算时间长。

针对这两方面的问题,我们采纳了一种由粗到细的检测算法:首先利用人脸器官构造的先验学问、面部图像灰度分布的峰谷和频率特性粗略检测出眼睛、鼻子、嘴、下巴的大致区域和一些关键的特征点;然后在此基础上,给出了较好的模板的初始参数,从而可以大幅提高算法的速度和精度。

眼睛是面部最重要的特征,它们的精确定位是识别的关键。

基于区域增长的眼睛定位技术,该技术在人脸检测的基础上,充分利用了眼睛是面部区域内脸部中心的左上方和右上方的灰度谷区这一特性,可以精确快速的定位两个眼睛瞳孔中心位置。

该算法采纳了基于区域增长的搜寻策略,在人脸定位算法给出的大致人脸框架中,估计鼻子的初始位置,然后定义两个初始搜寻矩形,分别向左右两眼所处的大致位置生长。

该算法依据人眼灰度明显低于面部灰度的特点,利用搜寻矩形找到眼部的边缘,最终定位到瞳孔的中心。

试验表明,本算法对于人脸大小、姿态和光照的变更,都有较强的适应实力,但在眼部阴影较重的状况下,会出现定位不准。

佩戴黑框眼镜,也会影响本算法的定位结果。

3、面部感知系统的重要内容基于视觉通道信息的面部感知系统,包括人脸检测和跟踪、面部特征定位、面部识别、人脸归类(年龄、种族、性别等的判别)、表情识别、唇读等分系统,如图1-1所式,可以看出,继人脸检测和跟追之后,面部特征定位通常是面部感知的一个必备环节,是后续工作的基础,具有重要的意义。

尽管人脸识别不能说是其他面部感知模块的必备功能,但是,可以确定的是,利用已知的身份信息,结合特定人的先验学问,可以提高表情分析、唇读和语音识别、手势识别乃至手写体识别的牢靠性。

而计算机对运用者身份确认的最干脆的应用就是基于特定运用者的环境设置:如运用者的特性化工作环境,信息的共享和隐私爱护等等。

图1-1面部感知系统结构图其次节人脸识别的国内外发展概况现在人脸识别技术已经应用在很多领域中,并起到了举足轻重的作用,人脸识别探讨起先于1966年PRI的Bledsoe的工作,经过三十多年的发展,人脸识别技术取得了长足的进步,现在就目前国内外的发展状况来进行展述。

一国外的发展概况[1]见诸文献的机器自动人脸识别探讨起先于1966年PRI的Bledsoe的工作,1990年日本研制的人像识别机,可在1秒钟内中从3500人中识别到你要找的人。

1993年,美国国防部高级探讨项目署 (Advanced Research Projects Agency)和美国陆军探讨试验室(Army Research Laboratory)成立了Feret(Face Recognition Technology) 项目组,建立了feret 人脸数据库,用于评价人脸识别算法的性能。

美国陆军试验室也是利用vc++开发,通过软件实现的,并且FAR为49%。

在美国的进行的公开测试中,FAR,为53%。

美国国防部高级探讨项目署,利用半自动和全自动算法。

这种算法须要人工或自动指出图像中人的两眼的中心坐标,然后进行识别。

在机场开展的测试中,系统发出的错误警报太多,国外的一些高校(卡内基梅隆高校(Carnegie Mellon University)为首,麻省理工高校(Massachusetts Institute of Technology )等,英国的雷丁高校(University of Reading))和公司(Visionics 公司Facelt 人脸识别系统、Viiage 的FaceFINDER 身份验证系统、Lau Tech 公司Hunter系统、德国的BioID 系统等)的工程探讨工作也主要放在公安、刑事方面,在考试验证系统的实现方面深化探讨并不多。

二国内的发展概况[2]人脸识别系统现在在大多数领域中起到举足轻重的作用,尤其是用在机关单位的平安和考勤、网络平安、银行、海关边检、物业管理、军队平安、智能身份证、智能门禁、司机驾照验证、计算机登录系统。

我国在这方面也取得了较好的成就,国家863项目“面像检测与识别核心技术”通过成果鉴定并初步应用,就标记着我国在人脸识别这一当今热点科研领域驾驭了确定的核心技术。

北京科瑞奇技术开发股份有限公司在2002年开发了一种人脸鉴别系统,对人脸图像进行处理,消退了照相机的影响,再对图像进行特征提取和识别。

这对于人脸鉴别特殊有价值,因为人脸鉴别通常运用正面照,要鉴别的人脸图像是不同时期拍摄的,运用的照相机不一样。

系统可以接受时间间隔较长的照片,并能达到较高的识别率,在计算机中库藏2300人的正面照片,每人一张照片,运用相距1--7年、差别比较大的照片去查询,首选率可以达到50%,前20张输出照片中包含有与输入照片为同一人的照片的概率可达70% 。

2005年1月18日,由清华高校电子系人脸识别课题组负责人苏光大教授主持担当的国家"十五"攻关项目《人脸识别系统》通过了由公安部主持的专家鉴定。

鉴定委员会认为,该项技术处于国内领先水平和国际先进水平。

本论文主要对该人脸识别系统进行模块划分,并介绍各模块的功能,重点介绍图像预处理模块,对其内的子模块的功能和算法进行具体讲解并描述,主要介绍光线补偿、图像灰度化、高斯平滑、均衡直方图、图像对比度增加,图像预处理模块在整个系统中起着极其关键的作用,图像处理的好坏干脆影响着后面的定位和识别工作。

其次章系统的需求分析与方案选择人脸识别系统现在应用于很多领域中,但是人脸识别技术也是一项近年来兴起的,且不大为人所知的新技术。

在我国以及其他国家都有大量的学者正在探讨之中,不断的更新人脸识别技术,以便系统的识别精确率达到新的高度。

第一节可行性分析在开发该人脸识别软件之前,我们查询了前人所写过的诸多论文以及源程序,在开发之时,结合了资料中的算法并揉进了自己的一些思想,使程序可以对人脸图片进行简易识别。

一技术可行性图像的处理方法很多,我们可以依据须要,有选择地运用各种方法。

在确定脸部区域上,通常运用的方法有肤色提取。

肤色提取,则对脸部区域的获得则比较精确,胜利率达到95%以上,并且速度快,削减很多工作。

图像的亮度变更,由于图像的亮度在不同环境的当中,必定受到不同光线的影响,图像就变得太暗或太亮,我们就要对它的亮度进行调整,主要实行的措施是对图像进行光线补偿。

高斯平滑:在图像的采集过程中,由于各种因素的影响,图像中往往会出现一些不规则的随机噪声,如数据在传输、存储时发生的数据丢失和损坏等,这些都会影响图像的质量,因此须要将图片进行平滑操作以此来消退噪声。

灰度变换:进行灰度处理,我们要保证图像信息尽可能少的丢失。

同样在进行灰度变换前,我们也要对图像的信息进行统计,找出一个比较合理的灰度值,才能进行灰度变换。

灰度均衡:灰度变换后,就要进行灰度均衡,可以依据灰度分布来进行灰度均衡。

对比度增加:将所要处理的区域和四周图像区域进一步拉开他们的对比度,使它们更加明显,主要通过像素的聚集来实现。

二操作可行性该人脸识别软件须要如下的运行环境:CPU:500M及以上;内存:64 M及以上。

安装有Windows 98、Windows Me、Windows 2000、Windows NT等操作系统中的其中一种。

另还装有摄像头可进行随机拍照和识别。

因此,从操作可行性来看,只要系统用户的硬件软件设备满意以上条件,即可用该人脸识别软件进行人脸的识别。

其次节需求分析一应用程序的功能需求分析该软件最主要的功能就是要能识别出人脸,首先该系统须要对通过摄像头拍照而获得到的原始的人脸图片进行一系列处理才可进行下一步的工作,该处理过程也称图像预处理。

预处理这个模块在整个人脸识别系统的开发过程中占有很重要的地位,只有预处理模块做的好,才可能很好的完成后面的人脸定位和特征提取这两大关键模块。

因此本设计中所要完成的主要功能如下所述:图像获得功能:该模块主要是从摄像头拍照后进行获得图片,也可以从图片库中获得,获得后的图片可以在软件的界面中显示出来以便进行识别。

图像预处理功能:该模块主要包括图像光线补偿、图像变成灰色、高斯平滑、均衡直方图、实现图像对比度增加、二值化变换等。

人脸定位功能:该模块主要是将处理后的人脸图片进行定位,将眼睛、鼻子、嘴巴标记出来,以便进行特征提取。

特征提取功能:该模块是在定位后的人脸图片中将眼睛、鼻子、嘴巴的特征值提取出来。

识别功能:该模块是将从图片中提取的特征值和后台数据库中的值进行比较来完成识别功能。

相关文档
最新文档