六年级的奥数计算综合讲座

合集下载

小学六年级奥数讲座(二)

小学六年级奥数讲座(二)

第7讲 牛吃草问题【内容概述】牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度。

牛吃草问题的关键是求出工作总量的变化率。

下面给出几例牛吃草及其相关问题。

【典型问题】【1】草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”。

)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草,所以45÷3=15头牛1周可以吃1周新长出的草,即相当于给出15头牛专门吃新长出的草,于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l 头牛需吃12周。

【评注】我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了。

【一般方法】先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙); 再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙。

或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数。

【2】有三块草地,面积分别是4公顷、8公顷和10公顷,草地上的草一样厚而且长得一样快。

第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。

问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草),36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草),于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草,432÷4=108头牛吃一周吃2公顷+2公顷12周长的草,所以108-72=36头牛一周吃2公顷12-6=6周长的草,即36÷6=6头牛1周吃2公顷1周长的草。

六年级奥数第三讲:分数计算技巧--整体约分法

六年级奥数第三讲:分数计算技巧--整体约分法

六年级奥数第三讲:分数计算技巧--整体约分法六年级奥数第三讲:分数计算技巧——整体约分法专题精析】我们知道如何将331经行约分。

因为3和12都含有公约数3,所以331=3/12.对于比较复杂的分数,分子、分母含有相同运算的,可提取相同因数进行约分。

特别注意:整体相同,只能作为整体约去,不能单独一项一项的约。

小升初研究中,整体约分法是重点考查的计算技能之一。

整体约分法有三种表现形式:第一种:有相同的部分与运算:例题1:(4/214+2)/(1+5/757)=(第一组数分别是第二组的4倍)(4/5+2/5)/(1+5/7)=(提取公因数)(4/5×4+2/5×4)/(1+5/7)=(整体一样,可以整体约去)4/7练:(3/5+1/5)/(1+1/3+1/3+1/3)=(每一组数都是第一组数的倍数)(3/5×3+1/5×3)/(1+1/3+1/3+1/3)=(提取公因数)(3/5×3+1/5×3)/(1+3/3)=(整体一样,可以整体约去)1/2第二种:分子分母整体相同:例题2:(362+548×361)/(362×548-186)=(观察分子分母,584×361和548×362相近)(361+1)×548-186/(362×548-186)=(转换成584×361,分母变548-182)361×548+548-182/(362×548-186)=(分子分母整体相同,整体约去)361×548+362/256+725×255/2007+2006×2008+2007×2009+25 6×725-469/2007×2008-×2009-1练:第三种:分子分母中含有相同因数:1×3×11+2×6×22+3×9×33)/(1×2×17+2×4×34+3×6×51)=(每一组数都是第一组数的倍数)(1×2)×(3×2)×(11×2)+(1×3)×(3×3)×(11×3)/(1×2×17+1×2×2×1 7+1×3×2×17)=(提取公因数)1×3×11+(1×2)×(2×2)×(17×2)+(1×3)×(2×3)×(17×3)/一组数的倍数=(1×3×11+1×3×11×23+1×3×11×33)/(1×2×17+1×2×2×17+1×2×3×17)=(有相同的公因数整体约去)1+2+3=6例题3:(331×2×17×(1+2+3))/33=(提取公因数)2×17×(1+2+3)=(有相同的公因数整体约去)34练:。

年龄问题小学六年级数学奥数讲座讲含答案

年龄问题小学六年级数学奥数讲座讲含答案

年龄问题小学六年级数学奥数讲座讲含答案本文介绍了年龄问题在数学中的应用,这类问题通常涉及到年龄的差异,需要抓住这个特点来解答。

例如,题目给出哥哥和弟弟的年龄和以及4年后哥哥比弟弟大4岁,我们可以通过加上4岁来计算出哥哥的年龄,从而得出他们各自的年龄。

另一个例子是父亲比儿子大30岁,明年父亲的年龄是儿子的4倍,我们可以通过计算出年龄差来推算出儿子的年龄。

类似地,本文还给出了其他两个例子,分别涉及到多少年后妈妈的年龄是女儿的3倍和再过多少年父亲的年龄正好是___的2倍。

分析:老师比学生大了多少岁,就意味着老师比学生多经历了多少个学生的年龄。

所以,老师现在的年龄应该是学生的年龄加上老师比学生大的年龄差。

根据题目中的信息,可以列出一个方程组,解出老师的年龄。

解:设学生今年的年龄为x,老师比学生大的年龄差为y,则有:y = 36 - 3 = 33x + y = t (t代表老师今年的年龄)代入y=33,得:x + 33 = t又因为老师比学生大的年龄差不变,所以:t - x = y代入y=33,得:t - x = 33联立以上两个方程,解得:x = 15,t = 48答:老师今年48岁。

1、母亲比儿子大27岁,3年前,母亲的年龄是儿子的4倍,儿子现在多少岁?解:设儿子的年龄为x岁,则母亲的年龄为x+27岁。

根据题意,可列出方程:x+27)-3=4(x-3)解得x=15,因此儿子现在15岁。

2、爷爷比孙子大60岁,爷爷的年龄是孙子的16倍。

孙子多少岁?解:设孙子的年龄为x岁,则爷爷的年龄为16x岁。

根据题意,可列出方程:16x=x+60解得x=4,因此孙子现在4岁。

3、一家三口人的年龄和是100岁,妈妈比爸爸小1岁,妈妈的年龄是儿子的4倍。

爸爸、妈妈、儿子各多少岁?解:设爸爸的年龄为x岁,则妈妈的年龄为x-1岁,儿子的年龄为4y岁(其中y为儿子的年龄)。

根据题意,可列出方程:x+x-1+4y=100解得x=32,y=7,因此爸爸32岁,妈妈31岁,儿子7岁。

六年级奥数优胜教育第21讲:数论综合含答案

六年级奥数优胜教育第21讲:数论综合含答案

第二十一讲第二十一讲 数论综合数论综合例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。

将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。

请求出这24个四位数中最大的一个。

例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?例3:由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?例4:从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。

按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?例5:一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?例6:某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?A1.一个六位数2323□□5656□是□是88的倍数的倍数,,这个数除以88所得的商是所得的商是_______________或或_____.2.下面一个1983位数3333……3□4444……4中间漏写了一个数字中间漏写了一个数字((方框方框),),),已知这已知这已知这991个 991个个多位数被7整除,那么中间方框内的数字是整除,那么中间方框内的数字是_____. _____.3.只修改21475的某一位数字的某一位数字,,就可知使修改后的数能被225整除整除,,怎样修改?怎样修改?4.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数和它本身为约数..已知一个长方形的长和宽都是质数个单位的长和宽都是质数个单位,,并且周长是36个单位个单位..问这个长方形的面积至多是多少个平方单位?5. 把7、1414、、2020、、2121、、2828、、30分成两组,每三个数相乘,使两组数的乘积相等分成两组,每三个数相乘,使两组数的乘积相等. .B6.有这样的两位数有这样的两位数,,它的两个数字之和能被4整除整除,,而且比这个两位数大1的数的数,,它的两个数字之和也能被4整除整除..所有这样的两位数的和是所有这样的两位数的和是____. ____.7. 学生1430人参加团体操人参加团体操,,分成人数相等的若干队分成人数相等的若干队,,每队人数在100至200之间之间,,问哪几种分法分法? ?8. 四只同样的瓶子内分别装有一定数量的油四只同样的瓶子内分别装有一定数量的油,,每瓶和其他各瓶分别合称一次每瓶和其他各瓶分别合称一次,,记录千克数如下:8:8、、9、1010、、1111、、1212、、13.13.已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数,,求最重的两瓶内有多少油两瓶内有多少油? ?9.一个小于200的自然数的自然数,,它的每位数字都是奇数它的每位数字都是奇数,,并且它是两个两位数的乘积并且它是两个两位数的乘积,,那么这个自然数是然数是_____. _____.1010.试问.试问.试问,,能否将由1至100这100个自然数排列在圆周上个自然数排列在圆周上,,使得在任何5个相连的数中个相连的数中,,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明则需给出说明. .C11.11.一个学校参加兴趣活动的学生不到一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7,女同学的人数超过总数的2/5 。

小学六年级奥数系列讲座几何综合(含答案解析)

小学六年级奥数系列讲座几何综合(含答案解析)

几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。

六年级(上)奥数知识讲座:第一章 第三节 《拆项法》

六年级(上)奥数知识讲座:第一章 第三节 《拆项法》

第一章分数的简便计算第三节拆项法1.仔细观察题目的特点,找出解题的方法。

2.想办法将分数变化形式。

讨论:①.分数的分母依次是等差数列的和,可以用求和的公式进行整理。

②.将分数的分母变成等差数列求和的形式,然后根据1除以一个数的特点改写成倒数的形式,最后将分数的分母变换成两个连续自然数相乘的形式,这样就可以利用分数拆分的方法进行简便计算了。

每个分数的分母都是若干个连续自然数的和,可以将分母用等差数列求和的形式表示出来,再根据1除以一个数就是这个数的倒数的特点进行简便计算。

[技法点睛] 本题是直接利用拆项的方法,将每个分数拆成相应的减法形式。

[技法点睛] 本题分母中的两个因数相差3,故是分数的拆分和乘法分配率的综合应用。

[技法点睛] 本题中每个分数的分母是三个连续自然数的积,直接利用拆分的规律进行计算。

[完全解题] 这道题中各分数的分子都是1,分母依次是等差数列,可将其变形为[技法点睛] 本题中每个分数的分母都是若干个连续自然数的和,可以将分母用等差数列求和的形式表示出来,再根据1除以一个数就是这个数的倒数的特点进行简便计算。

例5 (2002·第十二届《祖冲之杯》小学数学竞赛)计算[完全解题] 观察每个分数的分母,可以发现,它们都是两个相邻自然数的积。

所以可以利用分数拆分的方法进行计算。

[技法点睛] 本题巧用分数拆分的方法,分数的分母是两个连续自然数的积,分子正好是这两个自然数的和,所以可拆成这两个自然数作分母的分数单位的和。

例6 (2003·浙江省小学数学活动课冬令营)计算:[技法点睛] 根据题目的特点巧妙地将一些分数拆成两个分数的和或者两个分数的差,然后再根据加减法的性质进行简便计算。

例7 (2002·我爱数学少年夏令营)计算:[完全解题] 先将题目中分母相同的分数结合在一起相加,再利用乘法的分配律进行简便计算。

例8 (2001·我爱数学少年夏令营)计算:。

小学六年级奥数系列讲座:浓度问题(含答案解析)

小学六年级奥数系列讲座:浓度问题(含答案解析)

浓度问题一、知识要点在百分数应用题中有一类叫溶液配比问题,即浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%解答浓度问题,首先要弄清什么是浓度。

在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。

浓度问题变化多,有些题目难度较大,计算也较复杂。

要根据题目的条件和问题逐一分析,也可以分步解答。

二、精讲精练【例题1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。

因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。

原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。

练习1:1.现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2.有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3.有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。

第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?【例题2】一种35%的新农药,如稀释到1.75%时,治虫最有效。

小学六年级奥数讲座(一)

小学六年级奥数讲座(一)

第1讲 计算综合(一)【内容概述】繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题。

1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”。

找到最长的分数线,将其上视为分子,其下视为分母。

2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数,所以需将带分数化为假分数。

3.某些时候将分数线视为除号,可使繁分数的运算更加直观。

4.对于定义新运算,我们只需按题中的定义进行运算即可。

【典型问题】【1】计算:872165433311361214187⨯÷-+⨯ 【分析与解】872165433311361214187⨯÷-+⨯=8721231136147⨯-+=823341223⨯=128174 【2】计算:2013111111-+-【分析与解】2013111111-+-=20122013111+-=1-40252012=40252013【3】已知41x 12111+++=118,则x 等于多少? 【分析与解】方法一:41x 12111+++=14x 42111+++=68x 14x 11+++=712x 68x ++=118,交叉相乘有88x+66=96x+56,x=1.25。

方法二:有1+41x 121++=811=1+83,所以2+41x 1+=38=2+32;所以x+41=23,那么x=1.25。

【4】求4、43、4443、44443、4444443、4444443、44444443、444444443、4444444443这10个数的和。

【分析与解】方法一:4+43+443+4443+44443+444443+4444443+44444443+444444443+4444444443=4+(44-1)+(444-1)+(4444-1)+(44444-1)+(444444-1)+(4444444-1)+(44444444-1)+(444444444-1)+(4444444444-1)=4+44+444+4444+44444+444444+4444444+44444444+444444444+4444444444-9 =94×(9+99+999++9999+99999+999999+9999999+99999999+999999999+9999999999)-9 =94×[(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)+(1000000-1)+(10000000-1)+(100000000-1)+(1000000000-1)+(10000000000-1)]-9=94×11111111100-9=4938271591。

六年级奥数(精品)数论综合

六年级奥数(精品)数论综合

第19讲数论综合知识点精讲一、特殊数的整除特征1.尾数判断法1)能被2整除的数的特征:2)能被5整除的数的特征:3)能被4(或25)整除的数的特征:4)能被8(或125)整除的数的特征:2.数字求和法:3.99的整除特性:4.奇偶位求差法:5.三位截断法:特别地:7×11×13=1001,abcabc=abc×1001二、多位数整除问题技巧:1>目的是使多位数“变短”,途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。

三、质数合数1.基本定义【质数】——【合数】——注:自然数包括0、1、质数、合数.【质因数】——【分解质因数】——用短除法和分拆相乘法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=a1×a2×a3×……×a n,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。

【互质数】——【偶数】——【奇数】——2.质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2.最小的奇质数是36)有无限多个3.质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数. 4.合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5.互质数1)什么样的两个数一定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式.因此,要分解的合数应写在等号左边,如:21=3⨯7,不能写成:3⨯7=21.6.偶数和奇数1)0属于偶数2)十进制中,个位数字是0,2,4,6,8的数是偶数;个位数字是1,3,5,7,9的数是奇数3)除2外所有的正偶数均为合数4)相邻偶数的最大公约数为2,最小公倍数是他们乘积的一半5)奇±奇=偶偶±偶=偶偶±奇=奇奇×奇=奇偶×奇=偶偶×偶=偶四、约数与倍数1.约数与倍数概念:2.一个数约数的个数:3.平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数:辗转相除法:5.两数的最大公约数乘以最小公倍数等于这两个数的乘积。

小学六年级奥数系列讲座:繁分数的运算(含答案解析).doc

小学六年级奥数系列讲座:繁分数的运算(含答案解析).doc

繁分数的运算繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1. 繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为 分母.2. -般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将帯分数化为假分数.3. 某些时候将分数线视为除号,可使繁分数的运算更加直观.4. 对于定义新运算,我们只需按题屮的定义进行运算即可.5. 本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级 [第1讲 循环小数与分数].第一届“华罗庚金杯”少年数学邀请赛•决赛一试第1题2. 计算:【分析与解】 注意,作为被除数的这个繁分数的分子、分母均含有19-.于是,我们想到改变运算顺序,如果分9子与分母在19丄后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加 9 我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995X0.5. 具体过程如下:1・计算:1x44 18 2 6【分析与解】原式二 7 1 - + -4 613--12 32323~8=417 128【典型问题】第五届“华罗庚金杯”少年数学邀请赛•复赛第1题5 9 _19^(+3 帯-5・22) 1993x04 1 6原式二£—粵---------- -( +竺)19 沪寻+ 5.22) 1995x0.5 199519--1 321V9 z 1993x0.4 4x0.4x0.5x二—三---- ( --------- + ---------- )19§一132 1995x0.4 1995x0.59- '1 1993 +2 0.4、| 0.4 」二1十( ---- X—) = 14-——=1-1995 0-5 0.5 4觀趣级数,兆京市第三届“迎春杯”数学竞赛•决赛第一題第1题3. ------------------------ 计算:1 :i+r1 ------1987■八~( 1 | 1986 1987 【分析与解】原式二1 =1------------------- 二]| 1987 3973 39731986"J - - •・,>,•… - 、广./ •”(g)(®级数:車*1999年仝国小学数学奥林匹克•决赛B卷第2題1 Q4•计算:已知二------ --- ,则x等于多少?l+t112+-TX+4【分析与解】方法一:——L一=X 4交叉相乘有 88x+66=96x+56, x=l. 25. 方法二有1 + —=- = 1 + -,2 + 占8 8X + 4 1+2+4X +1所以2 + —x+-41I 4x + l8x + 61 3;所以x+厂厂那么X-1.25.5.求4,43,443,…,44...43这10 个数的和.【分析与解】方法一:4+43+443 十...+ 44 (43)x ---------- V --------- '9个4二 4 + (44-1) + (444-1) + ・..+ (^£-1)10个44= 4 + 44 + 444 + ... + 44_4-9=-x(9 + 99 + 999 + ... + 999...9)-9 1()个 4 9 ' 10彳「9‘4=_X [(IO _I )+(IOO _I )+(IOOO _I )+…+Q22^g_i )]_9 9 io¥o 4二—xl 11.100 —9 二4938271591. Q v ---- v -- '9个1方法二:先计算这10个数的个位数字和为3x9+4=30;再计算这10个数的亿位数字和为4X2=8,加上千万位的进位的1,为8 + 1二回; 最后计算这10个数的十亿位数字和为4X1二4,加上亿位上没有进位,即为回. 所以,这10个数的和为4938271591.翅钱级数:車 lg95年全国小学数学奥林匹克•决赛A 卷第2题6. 如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?图1-1再计算这10个数的十位数字和为4X9=36, 加上个位的进位的3, 再计算这10个数的百位数字和为4X8=32, 加上十位的进位的3,再计算这10个数的千位数字和为4X7=28, 加上百位的进位的3, 为 28 + 3二3也; 再计算这10个数的万位数字和为4X6二24, 加上千位的进位的3, 为 24+3 = 20; 再计算这10个数的十万位数字和为4X5二20, 加上万位的进位的2,为20 + 2 = 2回; 再计算这10个数的百万位数字和为4X4=16, 加上十万位的进位的2,为16 + 2 = 1園; 再计算这10个数的千万位数字和为4X3=12, 加上百万位的进位的1,为12 + 1 = 1国;【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为:3 x (丄 + 丄 + 0.6 + 0.875) = 1 +0.75+1.8+2.625=6」75=6—3 440【分析与解】原式1996年全国小学数学奥林匹克•初赛B 卷第5题8规定⑶=2X3X4,⑷",⑸十5X6, (K )W ••••如果嵩一盅二帚口,那么方框内应填的数是多少?(17) ]_16xl7xl8「I 而_ "15x16x17- ~5北京市第二届“迎春杯”数学竞赛•决赛第二题第2题9. 从和式丄+丄+丄+丄+丄+丄中必须去掉哪两个分数,才能使得余下的分数之和等于1?2 4 6 8 10 12【分析与解】 因为丄+丄=丄,所以丄,丄,丄,丄的和为1,因此应去掉丄与丄.6 12 42 4 6 12 8 10(g)酸级数:卓"-1989年全国小学数学奧林匹克•决赛第4题10. 如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循坏小数,例如 1.892915929.那么在所有这种数屮。

年龄问题小学六年级数学奥数讲座讲含答案

年龄问题小学六年级数学奥数讲座讲含答案

小学数学奥数基础教程(六年级)年龄问题年龄问题是一些关于年龄的数学问题,是和差问题、倍数问题结合在一起的综合问题。

解答这类问题时,要抓住这类问题的特点:两人的年龄差始终是不变的。

例如:爸爸比儿子大25岁,若干年后(或若干年前),两人仍然是相差25岁。

例1、哥哥、弟弟两人的年龄和是40岁,4年后,哥哥比弟弟大4岁。

问甲、乙两人各是多少岁?分析:由“4年后,哥哥比弟弟大4岁”可知,哥哥、弟弟两人的年龄差是4岁,两人的年龄差是不变的。

假如我们给弟弟的年龄加上4岁,哥哥的岁数不变,那么两人的年龄和就变成40+4=44(岁)。

这时,44岁也就相当于两个哥哥的年龄,除以2就可求出哥哥的年龄。

解:(40+4)÷2=22(岁)22-4=18(岁)答:哥哥22岁,弟弟18岁。

例2、父亲比儿子大30岁,明年父亲的年龄是儿子的4倍,那么,今年儿子多少岁?分析:由题意可知,父亲比儿子大30岁,这个年龄差是不变的。

所以当明年父亲的年龄是儿子的4倍时,这个年龄差仍然是30岁。

由相差30岁,是儿子的4倍,可以看出30岁与(4-1)倍是对应的,其中的一份就是明年儿子的岁数。

解:①明年儿子的年龄:30÷(4-1)=10(岁)②今年儿子的年龄:10-1=9(岁)答:今年儿子9岁。

例3、妈妈今年35岁,恰好是女儿年龄的7倍。

多少年后,妈妈的年龄恰好是女儿的3倍?分析:根据“妈妈今年35岁,恰好是女儿的7倍”,可以求出今年女儿的年龄35÷7=5(岁)。

两人的年龄差是35-5=30岁。

若干年后,两人的年龄差30岁,妈妈的年龄是女儿的3倍,也就是30岁与(3-1)倍相对应,这样就可以求出若干年后女儿的年龄。

进而求出多少年后妈妈的年龄是女儿的3倍。

解:①今年女儿的年龄:35÷7=5(岁)②两人的年龄差:35-5=30岁③若干年后女儿的年龄:30÷(3-1)=15(岁)④多少年后妈妈的年龄是女儿的3倍:15-5=10(岁)综合算式:(35-35÷7)÷(3-1)-35÷7=10(岁)答:10年后妈妈的年龄是女儿的3倍。

小学六年级奥数系列讲座:简便运算(含答案解析)

小学六年级奥数系列讲座:简便运算(含答案解析)

简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。

这样一转化,就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级的奥数计算综合讲座
关于六年级的奥数计算综合讲座
计算综合
方法二:倒序相加,1+ 2+ 3+ 4+ 5+… 97+ 98+ 99+ 100
方法三:整数裂项(重点),
【分析与解】方法一:整数裂项
【分析与解】这个题看上去是一个关于小数的问题,实际上我们可以先把它们变成整数,然后再进行计算.即先计算1×3+2 4+3×5+4 6+…+97 99+98×100。

再除以100.
方法二:可以使用平方差公式进行计算.
评注:首先,我们要清楚数与数之间是相通的,小数的计算与整数的计算是有联系的.下面简单介绍一下整数裂项.
6.计算下列式子的值:
【分析与解】虽然很容易看出可是再仔细一看,并没有什么效果,因为这不像分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式12+22+32+…+n2= ×n×(n+1)×(2n+1),于是我们又有减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?
7.计算下列式子的'值:
【分析与解】显然直接求解难度很大,我们试着看看是否存在递推的规律.
显然12+1=2;
所以原式=198012×2=396024.
习题
计算17×18+18×19+19×20+…+29×30的值.
提示:可有两种方法,整数裂项,利用1到n的平方和的公式.
答案:(29×30×31-16×17×18)÷3=29×10×31-16×17×6=7358.。

相关文档
最新文档