定义域公式总结

合集下载

完整版)专升本高等数学知识点汇总

完整版)专升本高等数学知识点汇总

完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。

当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。

2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。

2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。

三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。

2、幂函数:y=x^u,(u是常数)。

它的定义域随着u的不同而不同。

图形过原点。

3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。

图形过(0,1)点。

4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。

图形过(1,0)点。

5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。

4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。

四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。

改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

高等数学公式结论汇总

高等数学公式结论汇总

2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学公式结论归纳汇总—经管类专业:会计学、工商管理、国际经济与贸易、电子商务—理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年4月26日星期五曲天尧编写一、函数、极限、连续:1. 基本初等函数的图像与性质小结:①常数函数:y=c(c为任意常数)②幂函数: (a为实数)定义域:随a的不同而不同,但无论a取什么值,x^a在内总有定义。

值域:随a的不同而不同有界性:单调性:若a>0,函数在内单调增加;若a<0,函数在内单调减少。

奇偶性:要知道这些函数那些是奇函数,那些是偶函数周期性:每种函数的图像.③指数函数:定义域:值域:有界性:单调性:若a>1 函数单调增加;若0<a<1 函数单调减少奇偶性:周期性:注意:图形过(0,1)点,即a0=1直线y=0为函数图形的水平渐近线今后用的较多这个函数的图形,性质要记清楚④对数函数:定义域:值域:有界性:单调性:a>1时,函数单调增加;0<a<1时,函数单调减少奇偶性:周期性:主要性质:与指数函数互为反函数,图形过(1,0)点,直线x=0为函数图形的铅直渐近线e=2.7182……,无理数经常用到以e为底的对数⑤三角函数:定义域:值域:[-1,1] 有界性:[-1,1] 有界函数单调性:(-T/2,T/2)单调递增奇偶性:奇函数周期性:以为周期的周期函数;定义域:值域:[-1,1] 有界性:[-1,1] 有界函数单调性:奇偶性:偶函数周期性:定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,⑥反三角函数:定义域:[-1,1] 值域:有界性:单调性:单调增加奇偶性:奇函数周期性:定义域:[-1,1] 值域:有界性:单调性:单调减少奇偶性:周期性:定义域:值域:有界性:单调性:单调增加奇偶性:奇函数周期性:定义域:值域:有界性:单调性:单调减少;奇偶性:周期性:以上是六种基本初等函数,关于它们的常用运算公式都应掌握!2. 指数式与对数式的性质:由此可知,今后常用关系式,如:3. 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg ·平方和公式:tan 2x+1=sec 2x ; cot 2x+1=csc 2x. ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ4. 极限的性质、结论、计算小结:①结论:⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q nn ;②数列求极限关键在于求所给数列的前n 项和,现将数列求和方法总结如下:<2>已知数列{a n }为等差数列,Sn 为其前n 项和,则(2) 分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3) 倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4) 错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.)())(⎪⎩=≠⎪⎩=11111q na q q na(5) 通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和.(6) 裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和. 常用裂项形式有:①111(1)1n n n n =-++;②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=.③极限四则运算:已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

函数的定义域和值域

函数的定义域和值域

函数的定义域和值域函数的定义域、值域⼀、知识回顾第⼀部分:函数的定义域1.函数的概念:设集合A 是⼀个⾮空的数集,对于A 中的任意⼀个数x ,按照确定的法则f ,都有唯⼀的确定的数y 与它对应,则这种关系叫做集合A 上的⼀个函数,记作()x f y =,(A x ∈)其中x 叫做⾃变量,⾃变量的取值范围(数集A )叫做这个函数的定义域.如果⾃变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或ax y=,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的⾃变量取值范围,实际问题还需要结合实际意义在确定⾃变量的范围,注意:定义域是个集合,所以在解答时要⽤集合来表⽰. 3.区间表⽰法:设a ,R b ∈,且b a <.满⾜b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满⾜b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满⾜b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表⽰时,包括端点时,⽤实⼼的点,不包括时⽤空⼼点表⽰.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定⽅法:保证函数有意义,或者符合规定,或满⾜实际意义. (1)分式的分母不为零. (2)偶次⽅根式的⼤于等于零. (3)对数数函数的真数⼤于零.(4)指数函数与对数函数的底⼤于零且不等于1. (5)正切函数的⾓的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是⼀个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ?=的定义域的⽅法为解不等式:A x ∈)(?,求出x 的取值范围.②已知()[]x f y ?=的定义域为A ,求)(x f y =的定义域的⽅法:A x ∈,求)(x ?的取值范围即可.第⼆部分:函数的值域函数值域的确定⽅法:(1)直接观察法对于⼀些⽐较简单的函数,其值域可通过观察得到. (2)分离常数法:分⼦、分母是⼀次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可⽤分离常数法,此类问题⼀般也可以利⽤反函数法.(3)换元法:运⽤代数代换,将所给函数化成值域容易确定的另⼀函数,从⽽求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常⽤此法求解. (4)配⽅法:适⽤于⼆次函数值域的求值域. (5)判别式法:适⽤于⼆次函数型值域判定.(6)单调性法:利⽤单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利⽤已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利⽤不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种⼏何意义,如两点间的距离公式直线斜率等等,这类题⽬若运⽤数形结合法,往往会更加简单,⼀⽬了然,赏⼼悦⽬.⼆、精选例题第⼀部分:函数的定义域例1.函数x x y +-=1的定义域为()A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意??≥≤≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是()A .()0,+∞B .(),0-∞C.()(),11,0-∞--UD.()()(),11,00,-∞--+∞U U【解析】由?≠-≠+001x x x 得,01<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是()5.0,2A ??[]4,1.-B []5,5.-C []7,3.-D 【解析】Θ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.⼜由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是??25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】Θ函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是() {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠?≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠?≠++x x x x 且故选.C 例6.已知()x f21-求函数??-xx f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-x x ()2100312≤≤?≤-?x x x故函数-x x f 213的定义域是??∈21,0x例7.若函数y =的定义域是R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,⽆意义,∴0≠k ;当068y kx x k =-++为开⼝向下的⼆次函数,图像向下延伸,函数值总会出现⼩于零的情况,进⽽,0k 时,同时要求0≤?,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以??≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---Y⼜121<<-x,解得22<<-x ,即)2(x f 的定义域为)2,2(-)2(12)1()(xf x x f x F +++=的定义域即为)(x m 和)2(x f 的定义域的交集,即)0,21()21,2(---Y )2,2(-I =)0,21()21,2(---Y故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(---Y .例9.已知函数()23x x f x a b =?+?,其中常数,a b 满⾜0ab ≠. (1)若0ab >,判断函数()f x 的单调性;(2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+-∵121222,0(22)0x x x x a a <>?-<,121233,0(33)0x x x xb b <>?-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=? +?>当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第⼆部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x Θ01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,Y2.分离常数法:分⼦、分母是⼀次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可⽤分离常数法,此类问题⼀般也可以利⽤反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++=故值域为?≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++,所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运⽤代数代换,将所给函数化成值域容易确定的另⼀函数,从⽽求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常⽤此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,⽆最⼩值所以函数2y x =5(,]4-∞.4.三⾓换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x Θ1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤Θ4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配⽅法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+,因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤,所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的⼀元⼆次⽅程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=?y .解得2321≤≤y ,当1=y 时,0=x ,⽽??∈23,211,故函数的值域为??23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x ,令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数,所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e Θ011>-+∴y y ,解得11<<-y ,所以函数的值域为()1,1-.9.不等式法:例9.求函数xx y 4+=的值域;【解析】当0>x 时,4424=?≥+=xx x x y (当x =2时取等号);所以当0>x 时,函数值域为),4[+∞. 当02)4(-=?-≤+-=xx x x y (当2-=x 时取等号);所以当010.数形结合法函数解析式具有明显的某种⼏何意义,如两点间的距离公式直线斜率等等,这类题⽬若运⽤数形结合法,往往会更加简单,⼀⽬了然,赏⼼悦⽬. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和,由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ?,()23()1,2--ABPxyBPA根据三⾓形两边之差⼩于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、课堂训练第⼀部分:函数定义域1.函数()x x x y +-=1的定义域为(){}0.≥x x A{}1.≥x x B{}{}01.Y ≥x x C{}10.≤≤x x D解析:由题意得()≥≥-001x x x ≥≤≥?001x x x 或即[){}0,1Y +∞∈x ,故选.C 2.()xx f 11211++=的定义域为 .【解析】由分式函数分母不为0得:≠≠+≠++001101121x x x解得≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈?x ??? ??-31,1Y ??? ??0,31Y ()+∞,0Y3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数??-141x f 的定义域. 【解析】①Θ函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x 故函数()x f 2的定义域为[]1,1-∈x . ②Θ函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数??-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】Θ函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上⽅,则()x f 的定义域为().{}1.x x B {}11.-≠x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-?x 得;10<≤x当0>+x 1-≠?x 得.10-≠6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==⽤x a ,表⽰z .(2)设ABC ?的三边分别为c b a ,,,且⽅程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ?的形状. 【解析】(1),,log 11log 11 zya a ay ax --==则,log 11log log ,log log log 11log 11zay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原⽅程可以转化为0)(10lg22222=-+-a b c x x ⼜因为⽅程有等根,则0)(10lg 4)2(2222=---=?ab c ,必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ?为直⾓三⾓形.第⼆部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x Θ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域. 【解析】将函数配⽅得:()412 +-=x y []2,1-∈x Θ由⼆次函数的性质可知:当1=x 时,,4min =y 当1-=x 时,8max =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+??? ??+=++=t t t y⼜,0≥t 由⼆次函数性质知,当0=t 时,;1min =y 当t 不断增⼤时,y 值趋于∞+,故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域.【解析】定义域满⾜?≥+-≥-023032x x x 3≥?x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开⼝向上,知2y 在[)+∞,3上也单调递增. 从⽽知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y例6.求13+--=x x y 的值域【解析】可化为 ??>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域. 【解析】0≥x Θ33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配⽅,得().5622+++=x y ().65,6622+≥∴≥++y x Θ∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】Θ1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1;①当1≠y 时,⽅程①在R 内有解,则()()(),011412≥---+=?y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31??例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为⽆上界的增函数所以21,y y y =在[)+∞,1上也为⽆上界的增函数所以当1=x 时,21y y y +=有最⼩值2,原函数有最⼤值22 2= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt Θ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ??≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是()525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有().A 最⼤值2,最⼩值2- .B 最⼤值3,最⼩值1- .C 最⼤值4,最⼩值0 .D 最⼤值1,最⼩值3-4.已知函数31++-=x x y 的最⼤值为M ,最⼩值为m ,则Mm的值为() 41.A 21.B 22.C 23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()43 13512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83??试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤?≥-x x 故选.C 2.【答案】A【解析】425425216022≤+??+-=--≤x x x Θ, 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()??>≤<-≤-=3,231,421,2x x x x y []2,2-∈?y ,故选A4.【答案】C【解析】两边平⽅,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,284max min ==y y 故选C . 5.【答案】B 【解析】∴≥+392x Θ3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥?≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最⼤值.即().1≤x f8.【解析】1212210431012>>≥>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ?中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最⼤. PB PA y +==AB 故()()3742212=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的所以在21=x 时,取得最⼩值.即??+∞∈,21y .11.【解析】()(),412191,9483≤-≤∴≤≤x f x f Θ即有(),212131≤-≤x f令(),21,31,21∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t21,311Θ,∴函数()t g y =在区间21,31上单调递增,,9731min =??? ??=∴g y ∴=??? ??=.8721max g y 函数的值域为87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最⼩者,则()x f 的最⼤值是什么?7.已知??-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y(1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为??+∞-? -∞-,3232,Y ,求k 的值.11.(1)已知函数?≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最⼩值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425??--求m 的取值范围.【参考答案】1.【解析】25052-≥?≥+x x ,即??+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10,Y y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+??-=+-=∴t t t y ,⼜o t ≥,∴结合⼆次函数的图像知()815≥t y .故原函数的值域为?≥815y y . 4.【解析】Θ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=?y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=?y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,⽽2≠y .∴原函数的值域为[]2,5-.6.【解析】在同⼀直⾓坐标系中作出三个函数的图像,由图像可知,()x f 的最⼤值是2+=x y 和42+-=x y 交点的纵坐标,易得()3 8max =x f . 7.【解析】Θ??-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x 4145-≤≤-∴x 故函数()32+x f 的定义域是??--∈41,45x 8.【解析】(1)配⽅,得().222+-=x y [),5,1∈x Θ∴函数的值域为{}.112<≤y y(2)对根号⾥配⽅得:()30922≤≤?+--=y x y 即[]3,0∈∴y .。

函数的定义域及求法讲解

函数的定义域及求法讲解

函数一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k∈Z ;4、一次函数、二次函数、指数函数的定义域为R;5、定义域的相关求法:利用函数的图象或数轴法;利用其反函数的值域法;6、复合函数定义域的求法:推理、取交集及分类讨论.例题:1、求下列函数的定义域3、已知函数y=lgmx2-4mx+m+3的定义域为R,求实数m的取值范围.解析:利用复合函数的定义域进行分类讨论当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R;当m≠0时,则 mx2-4mx+m+3>0,①m<0时,显然原函数定义域不为R;②m>0,且△=-4m2-4mm+3<0 时,即0<m<1,原函数定义域为R, 所以当m∈0,1 时,原函数定义域为R.4、求函数y=logx + 1 x≥4 的反函数的定义域.2解析:求原函数的值域由题意可知,即求原函数的值域,x≥2∴y≥3∵x≥4,∴log2所以函数y=logx + 1 x≥4 的反函数的定义域是3,+∞.2x的定义域.5、函数f2x的定义域是-1,1,求flog2解析:由题意可知2-1≤2x≤21→ fx定义域为1/2,2→ 1/2≤logx≤2→ √ ̄2≤x≤4.2x的定义域是√ ̄2,4.所以flog2二、函数的值域及求法1、一次函数y=kx+bk≠0的值域为R;2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,y≤-△/4a ;3、反比例函数的值域:y≠0 ;4、指数函数的值域为0,+∞;对数函数的值域为R;5、正弦、余弦函数的值域为-1,1即有界性;正切余切函数的值域为R;6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.例题::求下列函数的值域解析:1、利用求反函数的定义域求值域先求其反函数:f-1x=3x+1/x-2 ,其中x≠2,由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2}2、利用反比例函数的值域不等于0由题意可得,因此,原函数的值域为1/2,+∞4、利用分离变量法和换元法设法2x=t,其中t>0,则原函数可化为y=t+1/t-1 → t=y+1/y-1 >0∴y>1或y<-1 5、利用零点讨论法由题意可知函数有3个零点-3,1,2, ①当x<-3时,y=-x-1-x+3-x-2=-3x ∴y>9 ②当-3≤x<1时,y=-x-1+x+3-x-2=-x+6 ∴5<y≤9 ③当1≤x<2时,y=x-1+x+3-x-2=x+4 ∴5≤y<6 ④当x ≥2时,y=x-1+x+3+x-2=3x ∴y≥6 综合前面四种情况可得,原函数的值域是5,+∞6、利用函数的有界性三、函数的单调性及应用1、 A为函数fx定义域内某一区间,2、单调性的判定:作差fx1-fx2判定;根据函数图象判定;3、复合函数的单调性的判定:fx,gx 同增、同减,fgx 为增函数,fx,gx一增、一减,fgx 为减函数.例题:2、设a>0且a≠1,试求函数y=loga4+3x-x2的单调递增区间.解析:利用复合函数的单调性的判定由题意可得原函数的定义域是-1,4,设u=4+3x-x2 ,其对称轴是 x=3/2 ,所以函数u=4+3x-x2 ,在区间-1,3/2 上单调递增;在区间3/2 ,4上单调递减.u 在其定义域内为增函数,由x↑→u↑→y↑ ,得函数①a>1时,y=loga4+3x-x2的单调递增区间.u=4+3x-x2的单调递增区间-1,3/2 ,即为函数y=loga②0<a<1时,y=logu 在其定义域内为减函数,由x↑→u↓→y↑ ,得a4+3x-x2的单调递增区间.函数u=4+3x-x2的单调递减区间3/2 ,4,即为函数y=loga2-ax 在0,1上是x 的减函数,求a的取值范围;3、已知y=loga解析:利用复合函数的单调性的判定由题意可知,a>0.设u=gx=2-ax,则gx在0,1上是减函数,且x=1时, =2-a .gx有最小值umin=2-a>0则可,得a<2.又因为u=gx=2-ax>0,所以, 只要 umin又y=log2-ax 在0,1上是x 减函数,u=gx在0,1上是减函数,au是增函数,故a>1.即x↑→u↓→y↓ ,所以y=loga综上所述,得1<a<2.4、已知fx的定义域为0,+∞,且在其上为增函数,满足fxy=fx+fy,f2=1 ,试解不等式fx+fx-2<3 .解析:此题的关键是求函数值3所对应的自变量的值由题意可得,f4=f2+f2=2 ,3=2+1=f4+f2=f4×2=f8又fx+fx-2=fx2-2x所以原不等式可化成fx2-2x<f8所以原不等式的解集为{x|2<x<4}四、函数的奇偶性及应用1、函数fx的定义域为D,x∈D ,f-x=fx → fx是偶函数;f-x=-fx→是奇函数2、奇偶性的判定:作和差f-x± fx=0 判定;作商fx/f-x= ±1,fx≠0 判定3、奇、偶函数的必要条件是:函数的定义域关于原点对称;4、函数的图象关于原点对称奇函数;函数的图象关y轴对称偶函数5、函数既为奇函数又为偶函数 fx=0,且定义域关于原点对称;6、复合函数的奇偶性:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.例题:解析:①利用作和差判断由题意可知,函数的定义域是R,设x为R内任意实数,即,fx = -fx ,∴原函数是奇函数.②利用作商法判断由题意可知,函数的定义域是R,设x为R内任意实数,2∵fx 的图象关于直线x=1对称,∴ f1-1-x=f1+1-x ,x∈R ,即fx =f2-x ,又∵ fx在R上为偶函数,→ f-x=fx=f2-x=f2+x∴ fx是周期的函数,且2是它的一个周期.五、函数的周期性及应用1、设函数y=fx的定义域为D,x∈D,存在非0常数T,有fx+T=fx → fx为周期函数,T为fx的一个周期;2、正弦、余弦函数的最小正周期为2π,函数y=Asinωx+φ和y=Acosωx+φ的最小正周期是T = 2π/|ω| ;3、正切、余切函数的最小正周期为π,函数y=Atanωx+φ和y=Acotωx+φ的周期是T=π/|ω| ;4、周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法;5、一般地,sinωx 和cosωx类函数加绝对值或平方后周期减半,tanωx 和cotωx类函数加绝对值或平方后周期不变如:y=|cos2x| 的周期是π/2 ,y=|cotx|的周期是π.例题:1、求函数 y = |sinx|+|cosx|的最小正周期.解析:利用周期函数的定义y = |sinx|+|cosx|=|-sinx|+|cosx|=|cosx + π/2|+|sinx + π/2|即对于定义域内的每一个x,当x 增加到x + π/2时,函数值重复出现,因此函数的最小正周期是π/2 .3、 求函数y=sin3x+tan2x/5 的最小正周期.解析:最小公倍数法和公式法,设fx 、gx 是定义在公共集合上的两上三角周期函数,T 1、、T 2分别是它们的周期,且T 1≠T 2,则fx± gx 的最小正周期等于T 1、、T 2的最小公倍数.注:分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数.由题意可知,sin3x的周期是T1= 2π/3,tan2x/5的周期是T2=5π/2,∴原函数的周期是T=10π/1 =10π .4、求函数y=|tanx|的最小正周期.解析:利用函数的图象求函数的周期函数y=|tanx|的简图如图:由函数y=|tanx|的简图可知,其最小正周期是π.5、设fx是-∞,+∞上周期为2的奇函数,当0≤x≤1时,fx=x,求f解析:利用周期函数的定义由题意可知,f2+x = fx∴ f =f =f =-f =-0.5。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式以下是高一三角函数的一些知识点和公式:1. 三角函数的基本性质:周期性:sin(x) 和 cos(x) 的周期都是2π。

奇偶性:sin(x) 是奇函数,cos(x) 是偶函数。

有界性:sin(x) 和 cos(x) 的取值范围都是 [-1, 1]。

2. 三角函数的定义域和值域:定义域:对于所有实数 x,sin(x) 和 cos(x) 的定义域都是 R。

值域:sin(x) 和 cos(x) 的值域都是 [-1, 1]。

3. 三角函数的周期性和对称性:周期性:sin(x) 和 cos(x) 的周期都是2π。

对称性:sin(x) 在(0, π) 上是增函数,在(π, 2π) 上是减函数;cos(x) 在(0, π/2) 和(π, 3π/2) 上是减函数,在(π/2, π) 和(3π/2, 2π) 上是增函数。

4. 三角函数的和差公式:sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsiny5. 三角函数的倍角公式:sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx / (1 - tan²x)6. 三角函数的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]7. 三角函数的和差化积公式:sin(x+y)-siny=2sin((x-y)/2)cos((x+3y)/2)cos(x+y)-coxy=-2sin((x-y)/2)cos((x+3y)/2)8. 其他常用公式:sin²θ + cos²θ = 1(勾股定理)tanθ = sinθ / cosθ(正切的定义)arcsin(x)、arccos(x)、arctan(x) 等反三角函数。

高中数学公式总结-默写版

高中数学公式总结-默写版

高中数学公式总结-默写版高中数学公式总结必要条件是指某个条件必须满足,否则结论就不成立。

充要条件是指某个条件既是必要条件,又是充分条件,只要满足这个条件,结论就一定成立。

一、集合如果集合A中有n个元素,那么集合A的所有不同的子集个数为2^n,所有非空真子集的个数是2^n - 1.二、函数1.二次函数y = ax^2 + bx + c的图像的对称轴方程是x = -b/2a,顶点坐标是(-b/2a。

f(-b/2a))。

用待定系数法求二次函数的解析式时,解析式的设法有3种形式,即标准式、顶点式和一般式。

2.若AB = A,则B = A;若AB = B,则A = AUB。

3.真值表p q 非p p或q p且q真真假真真真假真真假假真真真假假假真假假4.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有大于不大于至少有n个至多有(n-1)个对所有x,成立存在某x,不成立p或q 非p且非q5.充要条件充分条件是指某个条件成立,则结论一定成立;必要条件是指结论成立,则该条件一定成立。

2.f(x) = ax^2 + bx + c。

恒成立的充要条件是a。

0;f(x) = ax^2 + bx + c < 恒成立的充要条件是a < 0;f(x) = ax^2 + bx + c ≥ 恒成立的充要条件是a ≥ 0,且a = 0时b ≥ 0;f(x) = ax^2 + bx + c ≤ 恒成立的充要条件是a ≤ 0,且a = 0时b ≤ 0.3.单调性单调增:①f'(x)。

0;②f''(x) ≥ 0.单调减:①f'(x) < 0;②f''(x) ≤ 0.4.奇偶性1)前提:函数f(x)在区间(-a。

a)内有定义。

2)奇函数:f(-x) = -f(x);其图像关于原点对称。

偶函数:f(-x) = f(x);其图像关于y轴对称。

3、若函数y=f(x)是奇函数,且在x=0处有定义,则f(0)=0.4、多项式函数P(x)=ax^n+an-1x^(n-1)+。

(2021年整理)函数定义域值域求法(全十一种)

(2021年整理)函数定义域值域求法(全十一种)

(完整)函数定义域值域求法(全十一种)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)函数定义域值域求法(全十一种))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)函数定义域值域求法(全十一种)的全部内容。

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域.例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2 由①解得 3x -≤或5x ≥. ③由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x 〉5.故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。

例2 求函数2x161x sin y -+=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<- ④由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的定义域为]0(]4(ππ--,,评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知)x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:已知)x (f 的定义域是[a ,b]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域.例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域.解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

高一函数值域定义域知识点

高一函数值域定义域知识点

高一函数值域定义域知识点函数是数学中一种重要的概念,它描述了一种输入和输出之间的关系。

在高一阶段,学生们开始学习函数的概念和基本性质,其中包括值域和定义域的概念与计算。

本文将详细介绍高一函数值域定义域的知识点。

一、函数的定义函数是一种映射关系,它将一个集合中的每个元素唯一地对应到另一个集合中的一个元素。

通常用 f(x) 表示函数,其中 f 是函数名,x 是函数的自变量,f(x) 是函数的因变量或函数值。

函数也可以用一个公式或规则来表示。

例如,y = 3x + 2 就是一个函数,它表示自变量 x 的值经过一定的计算规则后得到因变量 y 的值。

二、定义域定义域是函数中自变量的取值范围。

换句话说,它表示输入可以是哪些实数。

定义域通常用符号 D(f) 表示。

对于一个简单的函数f(x) = √x,这个函数的定义域是x ≥ 0,因为平方根只有在非负实数范围内有定义。

对于复合函数,定义域需要满足所有子函数的定义域的交集。

比如对于函数 f(x) = 1/(x-2),我们需要使得 x-2 ≠ 0,即x ≠ 2。

因此,定义域是除了 2 之外的所有实数。

三、值域值域是函数中因变量的取值范围。

换句话说,它表示输出可以是哪些实数。

值域通常用符号 R(f) 表示。

对于函数 f(x) = x^2,由于平方的结果始终为非负实数,所以该函数的值域是y ≥ 0,即非负实数。

对于含有分式的函数,我们需要特别注意分母不能为零。

例如函数 f(x) = 1/(x-1),由于分母不能为零,所以值域是实数集合 R 除去 1。

四、计算方法在计算函数的定义域和值域时,需要遵循一些规则和技巧。

1. 对于代数函数,通常需要考虑分式、开方和对数等特殊情况。

2. 对于复合函数,需要先确定每个子函数的定义域,然后求交集作为最终的定义域。

3. 对于复合函数的值域计算,通常需要将子函数的值域作为定义域代入到父函数中进行计算。

4. 对于一些特殊函数,如反比例函数和根号函数,需要注意它们的定义域和值域的特点。

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。

通过配方,结合sinx的取值范围,得到函数的值域。

sinx换为cosx也可以。

③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。

④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。

⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。

cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。

或者转化成两点连线的斜率。

以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。

二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。

定义域和值域

定义域和值域

定义域、解析式、值域方法总结(一)定义域:1. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)2. 求函数的定义域有哪些常见类型?函数定义域求法:● 分式中的分母不为零;● 偶次方根下的数(或式)大于或等于零;● 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。

●正切函数x y tan = ⎪⎭⎫ ⎝⎛∈+≠∈Z ππk k x R x ,2,且 ●反三角函数的定义域● 函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

3. 如何求复合函数的定义域?义域是_____________。

[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(l o g 2x f 的定义域为 。

分析:由函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。

解:依题意知: 2log 212≤≤x解之,得 42≤≤x∴ )(log 2x f 的定义域为{}42|≤≤x x 二.函数解析式求法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数 【2 】界说域和值域的求法总结一.常规型即给出函数的解析式的界说域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的界说域.例1 求函数8|3x |15x 2x y 2-+--=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2由①解得 3x -≤或5x ≥.③ 由②解得 5x ≠或11x -≠④③和④求交集得3x -≤且11x -≠或x>5.故所求函数的界说域为}5x |x {}11x 3x |x {>-≠-≤ 且.例2 求函数2x 161x sin y -+=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π,③由②解得4x 4<<-④由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的界说域为]0(]4(ππ--,,评注:③和④如何求公共部分?你会吗?二.抽象函数型抽象函数是指没有给出解析式的函数,不能常规办法求解,一般表示为已知一个抽象函数的界说域求另一个抽象函数的解析式,一般有两种情形.(1)已知)x (f 的界说域,求)]x (g [f 的界说域.(2)其解法是:已知)x (f 的界说域是[a,b ]求)]x (g [f 的界说域是解b )x (g a ≤≤,即为所求的界说域.例3 已知)x (f 的界说域为[-2,2],求)1x (f 2-的界说域. 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,是以3|x |0≤≤,从而3x 3≤≤-,故函数的界说域是}3x 3|x {≤≤-.(2)已知)]x (g [f 的界说域,求f(x)的界说域.其解法是:已知)]x (g [f 的界说域是[a,b ],求f(x)界说域的办法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的界说域.例4 已知)1x 2(f +的界说域为[1,2],求f(x)的界说域.解:因为51x 234x 222x 1≤+≤≤≤≤≤,,. 即函数f(x)的界说域是}5x 3|x {≤≤.三.逆向型即已知所给函数的界说域求解析式中参数的取值规模.特别是对于已知界说域为R,求参数的规模问题平日是转化为恒成立问题来解决.例5 已知函数8m m x 6m x y 2++-=的界说域为R 求实数m 的取值规模. 剖析:函数的界说域为R,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项的系数是m,所以应分m=0或0m ≠进行评论辩论.解:当m=0时,函数的界说域为R;当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要前提是1m 00)8m (m 4)m 6(0m 2≤<⇒⎩⎨⎧≤+--=∆>综上可知1m 0≤≤.评注:不少学生轻易疏忽m=0的情形,愿望经由过程此例解决问题.例6 已知函数3kx 4kx 7kx )x (f 2+++=的界说域是R,求实数k 的取值规模.解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的界说域为R,即03kx 4kx 2=++无实数①当k ≠0时,0k 34k 162<⨯-=∆恒成立,解得43k 0<<;②当k=0时,方程左边=3≠0恒成立.综上k 的取值规模是43k 0<≤.四.现实问题型 这里函数的界说域除知足解析式外,还要留意问题的现实意义对自变量的限制,这点要加倍留意,并形成意识.例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的界说域.解:设矩形一边为x,则另一边长为)x 2a (21-于是可得矩形面积.2x ax 21)x 2a (21x y -=-⋅=ax 21x 2+-=.由问题的现实意义,知函数的界说域应知足⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->0x 2a 0x 0)x 2a (210x2ax 0<<⇒.故所求函数的解析式为ax 21x y 2+-=,界说域为(0,2a ). 例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y 与x 的函数关系式,并求界说域.解:由题意知,此框架围成的面积是由一个矩形和一个半圆构成的图形的面积,如图.因为CD=AB=2x,所以x CD π=⋂,所以2x x 2L 2CD AB L AD π--=--=⋂, 故2x 2x x 2L x 2y 2π+π--⋅= Lx x )22(2+π+-=依据现实问题的意义知2L x 002x x 2L 0x 2+π<<⇒⎪⎩⎪⎨⎧>π--> 故函数的解析式为Lx x )22(y 2+π+-=,界说域(0,2L +π).五.参数型对于含参数的函数,求界说域时,必须对分母分类评论辩论.例9 已知)x (f 的界说域为[0,1],求函数)a x (f )a x (f )x (F -++=的界说域.解:因为)x (f 的界说域为[0,1],即1x 0≤≤.故函数)x (F 的界说域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a 1x a即两个区间[-a,1-a ]与[a,1+a ]的交集,比较两个区间左.右端点,知(1)当0a 21≤≤-时,F (x )的界说域为}a 1x a |x {+≤≤-; (2)当21a 0≤≤时,F (x )的界说域为}a 1x a |x {-≤≤; (3)当21a >或21a -<时,上述两区间的交集为空集,此时F (x )不能构成函数.六.隐含型有些问题从表面上看并不求界说域,但是不留意界说域,往往导致错解,事实上界说域隐含在问题中,例如函数的单调区间是其界说域的子集.是以,求函数的单调区间,必须先求界说域.例10 求函数)3x 2x (log y 22++-=的单调区间.解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-.即函数y 的界说域为(-1,3).函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的. 4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其界说域上单调增; 3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数,在区间)31[,上是减函数. 函数值域求法十一种1. 直接不雅察法对于一些比较简略的函数,其值域可经由过程不雅察得到.例1. 求函数x 1y =的值域. 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域. 解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配办法配办法是求二次函数值域最根本的办法之一.例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域. 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域.解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域.解:双方平方整顿得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的界说域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的规模可能比y 的现实规模大,故不能肯定此函数的值域为⎥⎦⎤⎢⎣⎡23,21.可以采取如下办法进一步肯定原函数的值域.∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来断定函数的值域时,若原函数的界说域不是实数集时,应分解函数的界说域,将扩展的部分剔除.4. 反函数法直接求函数的值域艰苦时,可以经由过程求其原函数的界说域来肯定原函数的值域.例6. 求函数6x 54x 3++值域. 解:由原函数式可得:3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其界说域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域艰苦时,可以应用已学过函数的有界性,反宾为主来肯定函数的值域.例7. 求函数1e 1e y x x +-=的值域. 解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域.解:由原函数式可得:y 3x cos x sin y =-,可化为:y 3)x (x sin 1y 2=β++ 即1y y3)x (x sin 2+=β+∵R x ∈ ∴]1,1[)x (x sin -∈β+ 即11y y312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,42 6. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域. 解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域.解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数 所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0( 7. 换元法 经由过程简略的换元把一个函数变为简略函数,其题型特点是函数解析式含有根式或三角函数公式模子,换元法是数学办法中几种最重要办法之一,在求函数的值域中同样施展感化.例11. 求函数1x x y -+=的值域.解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域.解:因0)1x (12≥+- 即1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β=1)4sin(2+π+β= ∵π≤π+β≤π≤β≤4540,0211)4sin(201)4sin(22+≤+π+β≤∴≤π+β≤-∴ 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域. 解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2β-=β⨯β-=∴4sin 412cos 2sin 21y 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -=而此时βtan 有意义. 故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域.解:)1x )(cos 1x (sin y ++=1x cos x sin x cos x sin +++=令t x cos x sin =+,则)1t (21x cos x sin 2-=22)1t (211t )1t (21y +=++-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤∴当2t =时,223y max +=,当22t =时,2243y +=故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243. 例15. 求函数2x 54x y -++=的值域.解:由0x 52≥-,可得5|x |≤故可令],0[,cos 5x π∈ββ= 4)4sin(10sin 54cos 5y +π+β=β++β=∵π≤β≤04544π≤π+β≤π∴当4/π=β时,104y max += 当π=β时,54y min -=故所求函数的值域为:]104,54[+-8. 数形结正当其题型是函数解析式具有显著的某种几何意义,如两点的距离公式直线斜率等等,这类标题若应用数形结正当,往往会加倍简略,一目了然,心旷神怡.例16. 求函数22)8x ()2x (y ++-=的值域.解:原函数可化简得:|8x ||2x |y ++-=上式可以算作数轴上点P (x )到定点A (2),)8(B -间的距离之和. 由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延伸线或反向延伸线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域. 解:原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=上式可算作x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和, 由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域. 解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可算作定点A (3,2)到点P (x,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差.即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,依据三角形双方之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-(2)当点P 正好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==-综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A.B 两点在x 轴的两侧,而求两距离之差时,则要使A,B 两点在x 轴的同侧. 如:例17的A,B 两点坐标分离为:(3,2),)1,2(--,在x 轴的同侧;例18的A,B 两点坐标分离为(3,2),)1,2(-,在x 轴的同侧.9. 不等式法应用根本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特点解析式是和式时请求积为定值,解析式是积时要乞降为定值,不过有时须要用到拆项.添项和双方平方等技能.例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域.解:原函数变形为:52x cot x tan 3xcot x tan 3xsec x ces 1x cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=+++=当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域.解:x cos x sin x sin 4y =x cos x sin 42=2764]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8xcos x sin 16y 322222224=-++≤-== 当且仅当x sin 22x sin22-=,即当32x sin 2=时,等号成立. 由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法 道理:因为)0c (d cx b ax y ≠++=在界说域上x 与y 是一一对应的.故两个变量中,若知道一个变量规模,就可以求另一个变量规模.例21. 求函数1x 2x31y +-=的值域. 解:∵界说域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-= 故213y 2y 1x ->+-=或213y 2y 1x -<+-= 解得23y 23y ->-<或 故函数的值域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323, 11. 多种办法分解应用例22. 求函数3x 2x y ++=的值域. 解:令)0t (2x t ≥+=,则1t 3x 2+=+(1)当0t >时,21t 1t 11t t y 2≤+=+=,当且仅当t=1,即1x -=时取等号,所以21y 0≤<(2)当t=0时,y=0.综上所述,函数的值域为:⎥⎦⎤⎢⎣⎡21,0注:先换元,后用不等式法例23. 求函数42432x x 21x x x 2x 1y ++++-+=的值域. 解:4234242x x 21x x x x 21x x 21y +++++++-=2222x 1x x 1x 1++⎪⎪⎭⎫ ⎝⎛+-= 令2tan x β=,则β=⎪⎪⎭⎫ ⎝⎛+-2222cos x 1x 1β=+sin 21x 1x 21sin 21sin sin 21cos y 22+β+β-=β+β=∴161741sin 2+⎪⎭⎫ ⎝⎛-β-= ∴当41sin =β时,1617y max =当1sin -=β时,2y min -= 此时2tan β都消失,故函数的值域为⎥⎦⎤⎢⎣⎡-1617,2 注:此题先用换元法,后用配办法,然后再应用βsin 的有界性. 总之,在具体求某个函数的值域时,起首要细心.卖力不雅察其题型特点,然后再选择适当的办法,一般优先斟酌直接法,函数单调性法和根本不等式法,然后才斟酌用其他各类特别办法.。

函数定义域值域求法 全十一种

函数定义域值域求法 全十一种

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,则必须满足 由①解得 3x -≤或5x ≥。

③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤Y 且。

例2 求函数2x161x sin y -+=的定义域。

解:要使函数有意义,则必须满足由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 故函数的定义域为]0(]4(ππ--,,Y评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知)x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

(2)已知)]x (g [f 的定义域,求f(x)的定义域。

其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。

例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。

解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

高中数学函数定义域知识点总结

高中数学函数定义域知识点总结

a 变化对图象的影 响
在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.
五、对数函数
(1)对数的定义
①若 ax =N (a > 0,且a ≠ 1) ,则 x 叫做以 a 为底 N 的对数,记作 x = loga N ,其
中 a 叫做 底数, N 叫做真数. ②负数和零没有对数.
③对数式与指数式的互化: x= loga N ⇔ ax = N (a > 0, a ≠ 1, N > 0) .
2a
2a
当x=
−b 2a
时,fmin (x) =
4ac − b2 4a
;当 a < 0 时,抛物线开口向下,函数在 (−∞, − b ] 2a
上递增,在[− b , +∞) 上递减,当 x = 2a
−b 2a
时,
fmax (x) =
4ac − b2 4a

三、幂函数
(1)幂函数的定义 一般地,函数 y = xα 叫做幂函数,其中 x 为自变量,α 是常数.
① 加 法 : loga M + loga N = loga (MN ) loga M − loga N = loga MN
②减法:
③数乘:= n loga M loga M n (n ∈ R)

log= ab M n
n b
loga
M
(b

0,
n

R)
loga N=
logb N (b > 0,且b ≠ 1) logb a
过定点
图象过定点 (0,1) ,即当 x = 0 时, y = 1.
奇偶性 单调性
函数值的 变化情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义域是指一个函数可以接受的输入值的集合。

在数学中,定义域可以用一些公式来表示。

下面是一些定义域公式的总结:
有理函数的定义域:对于一个有理函数 f(x) = P(x) / Q(x),其定义域为所有使分母 Q(x) 不等于 0 的实数。

根式函数的定义域:对于一个根式函数 f(x) = g(x)^(1/n),其中 n 为正整数,其定义域为使得 g(x) 非负的实数。

指数函数的定义域:对于一个指数函数 f(x) = a^x,其中 a 为正实数,其定义域为所有实数。

对数函数的定义域:对于一个对数函数f(x) = log_a(x),其中 a 为正实数,其定义域为所有正实数。

三角函数的定义域:对于正弦函数、余弦函数和正切函数,它们的定义域均为所有实数;对于余切函数、正割函数和余割函数,它们的定义域为使得分母不等于零的实数。

总之,对于一个函数的定义域,我们需要确定它可以接受哪些输入值,使得函数有意义。

不同类型的函数有不同的定义域公式,我们需要根据函数的类型和性质来确定它的定义域。

相关文档
最新文档