2007年高考数学(理科)试卷及答案(安徽卷)

合集下载

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤,也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年高考数学(理科)试卷及答案(安徽卷)

2007年高考数学(理科)试卷及答案(安徽卷)

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x fB .[)+∞∞-∈=,,)(3x x x fC .),(,)(+∞-∞∈=x e x f xD .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,i ai212++=-2i ,则a 等于A .2B .—2C .22D .—22 5.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为 A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是A .0B .1C .2D .3 7.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154-C .122-D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(- C .)31arccos(-D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............二、填空题:本大题共4小题,每小题4分,共16分。

2007年普通高等学校招生全国统一考试(全国卷I)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I )数学(理科)试卷参考答案一、选择题: 1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D9.B10.D11.C12.A二、填空题: 13.3614.3()xx ∈R15.1316.三、解答题: 17.解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以1sin 2B =, 由ABC △为锐角三角形得π6B =。

(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭。

由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=。

2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭。

3A π⎛⎫<+< ⎪⎝⎭所以,cosA+sinC的取值范围为322⎛⎫⎪ ⎪⎝⎭,。

18.解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”。

知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=。

(Ⅱ)η的可能取值为200元,250元,300元。

(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=。

η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯=240(元)。

19.解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。

因为SA=SB ,所以AO=BO ,又45ABC=∠,故AOB △为等腰直角三角形,AO BO⊥, 由三垂线定理,得SA BC ⊥。

2004-2007年高考试题安徽卷理科数学及答案

2004-2007年高考试题安徽卷理科数学及答案

2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=−=+−=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+−=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx −的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π ,其中R 表示球的半径C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π−=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244−++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=−y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题 17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222−−+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=−−=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>−<>+>x ax ax x a 或解得由时 由.02,022<<−<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(−C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅−=−=−−=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos −=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos−π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=−.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>−+≠−a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =−=−∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=−−−−=−−=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k-1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231−−++k ka 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1.{a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121−⨯−+−+n n 当n 为偶数时,.121)1(2322−⨯−+=nn n a2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)源头学子小屋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P −−=)1()(一、选择题 (1)复数ii 2123−−=(A )i(B )i −(C )i −22(D )i +−22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02−,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222− (B )),(22−(C )),(4242−(D )),(8181− (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=−a y ax 的一条准线与抛物线x y 62−=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122−++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1−(C )251−− (D )251+− (9)设10<<a ,函数)22(log )(2−−=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(−∞(B )),0(+∞(C ))3log ,(a −∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+−≤−≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<−,则m = )3010.02≈(14)9)12(xx −的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD −中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<−+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+−c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++−=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(−=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n −≥++++222323222121log log log log2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ−=<<− (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ−=−=x y 因此 由题意得.,2243222Z k k x k ∈+≤−≤−πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++−=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=−=−≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+−c y x 的斜率为522>, 所以直线025=+−c y x 于函数3()sin(2)4y f x x π==−的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅−22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222−=⨯⨯−+=∠∴BN AN AB BN AN ANB故所求的二面角为).32arccos(−方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(−==PB AC.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==−=∴−=−−−=z y x MC z y x NC要使.54,0210,==−=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅−===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.30304||,||,.555AN BN AN BN ==⋅=− 2cos(,).3||||AN BN AN BN AN BN ⋅∴==−⋅2arccos().3−故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃−(Ⅱ)0,100,n S q q >−<<>又因为且或1,12,0,;2n n n n q q T S T S −<<−>−>>所以当或时即120,0,;2n n n n q q T S T S −<<≠−<<当且时即1,2,0,.2n n n n q q T S T S =−=−==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y −=,代入12222=+b y a x ,化简得02)(22222222=−+−+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +−=+=+由OB OA a y y x x OB OA +−=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y −=−=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++−+∴ 即232222cba c a =+,所以36.32222a b a c b a =−=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+−−2211log log (1)ln 2ln 2x x =−−+−22log log (1)x x =−− 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=−−<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=−−>,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(−=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++=,则121222323222log log log log k k p p p p p p p p k ++++≥−当n=k+1时,若正数11232,,,,k p p p p +满足112321k p p p p +++++=,令1232k x p p p p =++++11p q x =,22p q x =,……,22k k p q x= 则1232,,,,k q q q q 为正数,且12321k q q q q ++++=,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥−121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()log x k x ≥−+ ①同理,由1212221k k k p p p x ++++++=−,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥−−+−− ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥−++−−+−− 22()log (1)log (1)k x x x x =−++−− 1(k k ≥−−=−+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立2006年普通高等学校招生全国统一考试(安徽卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2007年普通高等学校招生考试安徽理

2007年普通高等学校招生考试安徽理

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4Πr 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)+P(B) 球的体积公式1+2+…+n2)1(+n n V =334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径13+23++n 3=4)1(22+n n第Ⅰ卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)下列函数中,反函数是其自身的函数为(A)[)+∞∈=,0,)(3x x x f (B )[)+∞∞-∈=,,)(3x x x f(C)),(,)(+∞-∞∈=x c x f x(D)),0(,1)(+∞∈=x xx f (2)设l,m,n 均为直线,其中m,n 在平面α内,“l ⊥α”是“l ⊥m 且l ⊥n ”的(A )充分不必要条件 (B )必要不充分条件(C)充分必要条件 (D )既不充分也不必要条件 (3)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1(4)若a 为实数,iai 212++=-2i ,则a 等于(A )2(B )-2(C )22 (D )-22(5)若}{2228xA x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0(B )1(C )2(D )3(6)函数π()3sin(2)3f x x =-的图象为C,:①图象C 关于直线π1211=x 对称;②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中正确论断的个数为 (A )0 (B )1(C )2(D )3(7)如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P的最小值为 (A )15-(B )154-(C )122- (D )12-(8)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为(A ))33arccos(-(B ))36arccos(-(C ))31arccos(-(D ))41arccos(- (9)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为 (A )3(B )5(C )25(D )31+(10)以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率()P ξμσ-<等于 (A ))(σμφ+-)(σμφ-(B ))1()1(--φφ(C ))1(σμφ-(D ))(2σμφ-(11)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为(A )0(B )1(C )3(D )52007年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............ 二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (12)若(2x 3+x1)n 的展开式中含有常数项,则最小的正整数n 等于 .(13)在四面体O -ABC 中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).(14)如图,抛物线y =-x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n -1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n -1,从而得到n -1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…, △Q n -1P n -1P n -1,当n →∞时,这些三角形的面积之和的极限为 .(15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分12分)已知0<a <)82cos()(,4πβπ+=x x f 为的最小正周期,),1),41(tan(-+=βa a 求ααβααsin cos )(2sin cos 22-++.(17) (本小题满分14分)如图,在六面体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.(Ⅰ)求证:A 1C1与AC共面,B1D1与BD共面;(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).(18) (本小题满分14分)设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0).(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.(19) (本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以t(t>0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.(20) (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到.....的只数...两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇(Ⅰ)写出ξ的分布列(不要求写出计算过程);(Ⅱ)求数学期望Eξ;(Ⅲ)求概率P(ξ≥Eξ).(21) (本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)a-1,第二年所交纳的储备金就变为a2(1+r)a-2,……,以T n表示到第n年末所累计的储备金总额.(Ⅰ)写出T n与T n-1(n≥2)的递推关系式;(Ⅱ)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案(1) 在下列函数中,反函数是其自身的函数为),0(,)(+∞∈=x xx f ,选D 。

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. 22cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n=2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤, 也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年高考数学试题(安徽.理)含答案

2007年高考数学试题(安徽.理)含答案

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( ) A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,,C .()e ()x f x x =∈-∞+∞,,D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <- B .1a ≤C .1a <D .1a ≥4.若a=,则a 等于( )AB .C .D .-5.若22{228}{lo g 1}xA xB x x -=∈<=∈>Z R ≤,,则()A B R ð的元素个数为( )A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A1B1- C.1 D18.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A.arccos ⎛ ⎝⎭B.arccos ⎛ ⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭9.如图,1F 和2F 分别是双曲线22221(00)x ya b a b -=>>, 的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) ABC.2D.110.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52007年普通高等学校招生全国统一考试(安徽卷)第9题图数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.12.若32nx ⎛+ ⎝的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE =(用,,a b c 表示).14.如图,抛物线21y x =-+与x 轴的正半轴交于点A , 将线段OA 的n 等分点从左至右依次记为121n P P P - ,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为 121n Q Q Q - ,,,,从而得到1n -个直角三角形11Q OP △,212121n n n Q PP Q P P --- △,,△.当n →∞时,这些三角形 的面积之和的极限为 .15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且 a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.CD1A1B1C 1Dyx1Q 2Q1n Q +21y x =+1P 2P2n P - 1n P - O第14题图(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+. 19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +求证:直线CD 的斜率为定值. 20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的2x第19题图 第17题图只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+, .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=.因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭a b ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法): 以D 为原点,以1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11DB 平行, 于是11AC 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··, (220)(220)0DB AC =-= ,,,,··, 1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=- ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= n ·,111120BB x y z =--+= n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D DC FD D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥,故11AC AC ∥,11AC 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,ABCD1A1B1C 1DMOE F则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD . (Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面11ABB A 内作1AM BB ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B =. 1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM = 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分.(Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x>时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. 故当1x >时,恒有2ln 2ln 1x x a x >-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(A a . 因为OAt =,所以222a a t +=.由于0t >,故有t = (1)由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=. 又因点A 在直线BC 上,故有1a c t+=, 2x =将(1)代入上式,得1a c +=,解得2c a =+(Ⅱ)因为(2D a +,所以直线CD 的斜率为1CD k ====-.所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:(Ⅱ)数学期望为2(162534)228E ξ=⨯+⨯+⨯=. (Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥.21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]nn n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-.即1122(1)n n a r d a r d d T r n r r r ++=+--. 如果记12(1)n n a r d A r r +=+,12n a r d d B n r r +=--, 则n n n T A B =+.其中{}n A 是以12(1)a r d r r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,d r-为公差的等差数列.。

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x ﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A 的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x ≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax 相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k 时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。

2007年全国高考数学-安徽理科

2007年全国高考数学-安徽理科

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4Πr 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)+P(B) 球的体积公式1+2+…+n2)1(+n n V =334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径13+23++n 3=4)1(22+n n第Ⅰ卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)下列函数中,反函数是其自身的函数为(A)[)+∞∈=,0,)(3x x x f (B )[)+∞∞-∈=,,)(3x x x f(C)),(,)(+∞-∞∈=x c x f x(D)),0(,1)(+∞∈=x xx f (2)设l,m,n 均为直线,其中m,n 在平面α内,“l ⊥α”是“l ⊥m 且l ⊥n ”的(A )充分不必要条件 (B )必要不充分条件(C)充分必要条件 (D )既不充分也不必要条件 (3)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1(4)若a 为实数,iai 212++=-2i ,则a 等于(A )2(B )-2(C )22 (D )-22(5)若}{2228xA x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0(B )1(C )2(D )3(6)函数π()3sin(2)3f x x =-的图象为C ,:①图象C 关于直线π1211=x 对称;②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中正确论断的个数为 (A )0 (B )1(C )2(D )3(7)如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P的最小值为 (A )15-(B )154-(C )122- (D )12-(8)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为(A ))33arccos(-(B ))36arccos(-(C ))31arccos(-(D ))41arccos(- (9)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为 (A )3(B )5(C )25(D )31+(10)以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率()P ξμσ-<等于 (A ))(σμφ+-)(σμφ- (B ))1()1(--φφ (C ))1(σμφ-(D ))(2σμφ-(11)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为(A )0(B )1(C )3(D )52007年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............ 二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (12)若(2x 3+x1)n 的展开式中含有常数项,则最小的正整数n 等于 .(13)在四面体O -ABC 中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).(14)如图,抛物线y =-x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n -1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n -1,从而得到n -1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…, △Q n -1P n -1P n -1,当n →∞时,这些三角形的面积之和的极限为 . (15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分12分)已知0<a <)82cos()(,4πβπ+=x x f 为的最小正周期,),1),41(tan(-+=βa a 求ααβααsin cos )(2sin cos22-++.(17) (本小题满分14分)如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.(Ⅰ)求证:A 1C1与AC共面,B1D1与BD共面;(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).(18) (本小题满分14分)设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0).(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.(19) (本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.(20) (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程);(Ⅱ)求数学期望Eξ;(Ⅲ)求概率P(ξ≥Eξ).(21) (本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)a-1,第二年所交纳的储备金就变为a2(1+r)a-2,……,以T n表示到第n年末所累计的储备金总额.(Ⅰ)写出T n与T n-1(n≥2)的递推关系式;(Ⅱ)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案(1) 在下列函数中,反函数是其自身的函数为),0(,)(+∞∈=x xx f ,选D 。

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤,也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年高考理科数学试题及参考答案(安徽卷)

2007年高考理科数学试题及参考答案(安徽卷)

高中数学考试1:不等式203x x ->+的解集是()(A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) :2:不等式252(1)x x +-≥的解集是() A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,, D .(]11132⎡⎫-⎪⎢⎣⎭,, 3:若x ,y 是正数,则22)21()21(xy yx +++的最小值是()A .3B .27C .4D .294:6.已知a 、b 均为正数,且a+b=1,则ba +的最大值为( )A.22B.2C.2D.45:2.设a 、b ∈R ,且a ≠b, a+b=2,则必有( )A.2122ba ab +≤≤B.2122ba ab +<< C.1222<+<ba ab D.1222<<+ab ba6:在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为()7. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )A 33C 2338:已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的中心,则1A B 与底面ABC 所成角的正弦值等于()A .13B .3C .3D .239:已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()33(C)310:如果数列{}n a是等差数列,则()(A)1845a a a a +=+(B)1845a a a a +<+ (C)1845a a a a +>+ (D)1845a a a a =11:在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )18912:设等差数列{}n a 的公差为d ,如果它的前n 项和Sn=-n 2,那么 ( )A 、2,12-=-=d n a nB 、2,12=-=d n a nC 、 2,12-=+-=d n a nD 、2,12=+-=d n a n13. 直三棱柱111A B C A B C -的各顶点都在同一球面上,若12A B A C A A ===, 120B A C ∠=︒,则此球的表面积等于。

2007年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2007年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题目(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1B.﹣1C.2D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B 与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3B.4C.5D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题目(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题目(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1B.﹣1C.2D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g (x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3B.4C.5D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A (3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题目(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x 轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.参与本试卷答题和审题的老师有:wsj1012;qiss;wkqd;danbo7801;豫汝王世崇;minqi5;wdlxh;wdnah;涨停;zhwsd;yhx01248;sllwyn;zlzhan (排名不分先后)菁优网2017年2月4日祝福语祝你马到成功,万事顺意!。

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)

2007年全国高考数学(理科)试卷(全国卷Ⅰ)(解析版)2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A. B. C. D.2.(4分)设a是实数,且是实数,则a=()A. B.1 C. D.23.(4分)已知向量,,则与()A.垂直 B.不垂直也不平行C.平行且同向 D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.5.(4分)设a,bR,集合1,ab,a={0,,b,则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A. B. C. D.8.(4分)设a1,函数f(x)=logax在区间a,2a上的最大值与最小值之差为,则a=()A. B.2 C. D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件 B.充分而不必要的条件C.必要而不充分的条件 D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A.4 B. C. D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosAsinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD,已知ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SABC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=ex﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)2;(Ⅱ)若对所有x0都有f(x)ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且ACBD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列an}中,a1=2,,n=1,2,3,…(Ⅰ)求an}的通项公式;(Ⅱ)若数列bn}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007?全国卷Ⅰ)α是第四象限角,,则sinα=()A. B. C. D.【分析】根据tanα=,sin2αcos2α=1,即可得答案.【解答】解:α是第四象限角,=,sin2αcos2α=1,sinα=﹣.2.(4分)(2007?全国卷Ⅰ)设a是实数,且是实数,则a=()A. B.1 C. D.2【分析】复数分母实数化,化简为abi(a、bR)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007?全国卷Ⅰ)已知向量,,则与()A.垂直 B.不垂直也不平行C.平行且同向 D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:向量,,得,⊥,4.(4分)(2007?全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007?全国卷Ⅰ)设a,bR,集合1,ab,a={0,,b,则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得ab=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又a≠0,a+b=0,即a=﹣b,,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007?全国卷Ⅰ)下面给出的四个点中,到直线x ﹣y1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)【分析】要找出到直线x﹣y1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y1=0的距离都为,但,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007?全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A. B. C. D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,A1B=C1B=a,A1C1=a,A1BC1的余弦值为,故选D.8.(4分)(2007?全国卷Ⅰ)设a1,函数f(x)=logax在区间a,2a上的最大值与最小值之差为,则a=()A. B.2 C. D.4【分析】因为a1,函数f(x)=logax是单调递增函数,最大值与最小值之分别为loga2a、logaa=1,所以loga2a﹣logaa=,即可得答案.【解答】解.a>1,函数f(x)=logax在区间a,2a上的最大值与最小值之分别为loga2a,logaa,loga2a﹣logaa=,,a=4,故选D9.(4分)(2008?上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件 B.充分而不必要的条件C.必要而不充分的条件 D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),h(﹣x)=f(﹣x)g(﹣x)=f(x)g(x)=h(x),“h(x)为偶函数”,而反之取f(x)=x2x,g(x)=2﹣x,h(x)=x22是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007?全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=315,当n=6时,C62=15,故选项为D11.(4分)(2007?全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A.4 B. C. D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AKl,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AKl,垂足为K(﹣1,2),AKF的面积是4故选C.12.(4分)(2007?全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A. B. C. D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007?全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有C31?A42=34×3=36种.14.(5分)(2007?全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)=3x(xR).【分析】由题意推出f(x)与函数y=log3x(x0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x0)互为反函数,f(x)=3x(xR)故答案为:3x(xR)15.(5分)(2007?全国卷Ⅰ)等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an}的公比为.【分析】先根据等差中项可知4S2=S13S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:等比数列an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,an=a1qn﹣1,又4S2=S13S3,即4(a1a1q)=a13(a1a1q+a1q2),解.故答案为16.(5分)(2007?全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007?全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosAsinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosAsinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosAsinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由ABC为锐角三角形得.(Ⅱ)===.由ABC为锐角三角形知,0A<,0﹣A,<A<,,所以.由此有,所以,cosAsinC的取值范围为(,).18.(12分)(2007?全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)P(ξ=3)=0.20.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.η的分布列为η 200 250 300 P 0.4 0.4 0.2 Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007?全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD,已知ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SABC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SOBC,垂足为O,连接AO,说明SO 底面ABCD.利用三垂线定理,得SABC.(Ⅱ)由(Ⅰ)知SABC,设ADBC,连接SE.说明ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SOBC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SABC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SOBC,垂足为O,连接AO,由侧面SBC底面ABCD,得SO底面ABCD.因为SA=SB,所以AO=BO,又ABC=45°,故AOB为等腰直角三角形,AOBO,由三垂线定理,得SABC.(Ⅱ)由(Ⅰ)知SABC,依题设ADBC,故SAAD,由,,.又,作DEBC,垂足为E,则DE平面SBC,连接SE.ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SOBC,垂足为O,连接AO,由侧面SBC底面ABCD,得SO平面ABCD.因为SA=SB,所以AO=BO.又ABC=45°,AOB为等腰直角三角形,AOOB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SABC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007?全国卷Ⅰ)设函数f(x)=ex﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)2;(Ⅱ)若对所有x0都有f(x)ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用ab≥2当且仅当a=b时取等号.得到f''(x)2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f''(x)=exe﹣x.由于,故f''(x)2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g''(x)=f''(x)﹣a=exe﹣x ﹣a,(ⅰ)若a2,当x0时,g''(x)=exe﹣x﹣a2﹣a0,故g(x)在(0,)上为增函数,所以,x0时,g(x)g(0),即f(x)ax.(ⅱ)若a2,方程g''(x)=0的正根为,此时,若x(0,x1),则g''(x)0,故g(x)在该区间为减函数.所以,x(0,x1)时,g(x)g(0)=0,即f(x)ax,与题设f (x)ax相矛盾.综上,满足条件的a的取值范围是(﹣,2.21.(14分)(2007?全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且ACBD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由ACBD知点P在以线段F1F2为直径的圆上,故x02y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x1),代入椭圆方程,并化简得(3k22)x26k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知BD|=再求出AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由ACBD知点P在以线段F1F2为直径的圆上,故x02y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k0时,BD的方程为y=k (x1),代入椭圆方程,并化简得(3k22)x26k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,AC|=.四边形ABCD的面积?BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007?全国卷Ⅰ)已知数列an}中,a1=2,,n=1,2,3,…(Ⅰ)求an}的通项公式;(Ⅱ)若数列bn}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即an的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k1时,==,又,所以=.也就是说,当n=k1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.参与本试卷答题和审题的老师有:wsj1012;qiss;wkqd;danbo7801;豫汝王世崇;minqi5;wdlxh;wdnah;涨停;zhwsd;yhx01248;sllwyn;zlzhan(排名不分先后)菁优网2017年2月4日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无........效.。

4.考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=PA .+PB . 球的体积公式 1+2+…+n2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径13+23++n 3=4)1(22+n n第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x fB .[)+∞∞-∈=,,)(3x x x fC .),(,)(+∞-∞∈=x e x f xD .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥1 4.若a 为实数,iai 212++=-2i ,则a 等于A .2B .—2C .22D .—225.若}{8222<≤Z ∈=-xx A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .36.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是 A .0 B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154-C .122-D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(-9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............二、填空题:本大题共4小题,每小题4分,共16分。

把答案填在答题卡的相应位置。

12.若(2x 3+x1)n 的展开式中含有常数项,则最小的正整数n 等于 。

13.在四面体O-ABC 中,D c b a ,,,===为BC 的中点,E 为AD 的中点,则= (用a ,b ,c 表示)。

14.如图,抛物线y=--x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n-1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n-1,从而得到n-1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…, △Q n-1P n-1P n-1,当n →∞时,这些三角形的面积之和的极限为 。

15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号..)。

①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体。

三、解答题:本大题共6小题,共79分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)已知0<a <)82cos()(,4πβπ+=x x f 为的最小正周期,),1),41(tan(-+=βa a b=(cos a ,2),且a ·b=m 。

求ααβααsin cos )(2sin cos 22-++的值。

17.(本小题满分14分)如图,在六面体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1⊥平面A 1B 1C 1D 1,DD 1⊥平面ABCD ,DD 1=2。

(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值圾示)。

18.(本小题满分14分)设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0)。

(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0,+∞)内的单调性并求极值;(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1。

19.(本小题满分12分)如图,曲线G的方程为y2=2x(y≥0)。

以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B。

直线AB与x轴相交于点C。

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值。

20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔。

以ξ表示笼内还剩下的果蝇.....的只数。

(Ⅰ)写出ξ的分布列(不要求写出计算过程);(Ⅱ)求数学期望Eξ;(Ⅲ)求概率P(ξ≥Eξ)。

21.(本小题满分14分)某国采用养老储备金制度。

公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利。

这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

(Ⅰ)写出T n与T n-1(n≥2)的递推关系式;(Ⅱ)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列。

2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分。

1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分。

12.713.c b a 414121++14.3115.①③④⑤三、解答题16.(本小题满分12分)本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分。

解:因为β为)8π2cos()(+=x x f 的最小正周期,故π=β 因a ·b=m ,又a ·b =2)41tan(cos -+βa a , 故.2)41tan(cos +=+m a a β 由于4πa ,所以 ααααααβαsin cos π)22sin(cos 2sin cos )(2sin cos 222-++=+++a=αααααααααsin cos )sin (cos cos 2sin cos 2sin cos 22-+=-+=1tan π2cos 2cos tan()2(2)1tan 4m ααααα+=+=+-17.(本小题满分14分)本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分。

解法1(向量法):以D 为原点,以DA,DC,1DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系xyz D -如图,则有A (2,0,0),B (2,2,0),C (0,2,0),).2,0,0(),2,1,0(),2,1,1(),2,0,1(1111D C B A(Ⅰ)证明:),0,2,2(),0,1,1(11-=-=AC C A),0,2,2(),0,1,1(11==B D .2,21111B D DB C A AC ==∴平行,与平行,与1111B D C A ∴ 于是11C A 与AC 共面,11D B 与BD 共面.(Ⅱ)证明:,)=,,(),,=(00222001-∙∙DD ,)=,,(),,0022022-∙∙ .1DD ⊥⊥∴,,是平面与111BDD B DB DD 内的两条相交直线,.11BDD B AC 平面⊥∴又平面,过AC ACC A 11.1111BDD B ACC A 平面平面⊥∴(Ⅲ)解:.210211201111),,=(),,,=(),,,=(----CC BB AA 设的法向量,为平面11111),,(ABB A z y x n = ,02,021111111==--=∙=+-=∙z y x BB n z x AA n于是).1,0,2(,2,1,0111====n z z y 则取 设的法向量,为平面11222),,(BCC B z y x m =.02,022212221=+-=∙=+--=∙z y CC m z y x BB m于是).1,2,0(,2,1,0222====m y z x 则取1cos ,5m n m n m n ∙== 11πarccos 5A BBC ∴---二面角的大小为解法2(综合法):(Ⅰ)证明:,平面平面ABCD D D D C B A D D ⊥⊥111111,111111,D C B A DC D D DA D D 平面,⊥⊥∴∥平面ABCD.于是11D C ∥CD ,11A D ∥DA.设E ,F 分别为DA ,DC 的中点,连结EF ,,,11F C E A 有E A 1∥F C D D 11,∥.1,1,1==DF DE D D ∴E A 1∥,1F C 于是11C A ∥.EF由DE=DF=1,得EF ∥AC , 故11C A ∥,AC11C A 与AC 共面.过点,,连结,则于点平面作OF OE F C O B E A O B O ABCD O B B . // , // 111111⊥ 于是. // // 1111OF OE C B OF A B OE =∴,,.,1111AD OE D A A B ⊥∴⊥ .,1111CD OF D C C B ⊥∴⊥所以点O 在BD 上,故.11共面与DB B D(Ⅱ)证明:,11AC D D ABCD D D ⊥∴⊥,平面 又BD ⊥AC (正方形的对角线互相垂直),111BDD B BD D D 是平面与内的两条相交直线, .11BDD B AC 平面⊥∴又平面,111111BDD B ACC A AC ACC A 平面平面,过⊥∴(Ⅲ)解:∵直线DB 是直线,1DB AC ABCD B B ⊥上的射影,在平面 根据三垂线定理,有AC ⊥.1B B过点A 在平面,,111MO MC M B B AM A ABB ,连结于内作⊥ 则,平面AMC B B ⊥1于是,,MO B B MC B B ⊥⊥11所以,∠AMC 是二面角.1的一个平面角C B B A -- 根据勾股定理,有.6,5,5111===B B C C A A 有,1B B OM ⊥,310,310,32,3211====∙CM AM BM B B OB O B OM =,512cos 222-=∙-+=∠CM AM AC CM AM AMC,51arccosπ-=∠AMC 二面角11πarccos 5A BBC ---的大小为18.(本小题满分14分)本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力,本小题满分14分.(Ⅰ)解:根据求导法则得.0,2In 21)( x xax x x f +-=' 故,0,2In 2)()( x a x x x xf x F +-='=于是.0,221)( x xx x x F -=-='故知F (x )在(0,2)内是减函数,在(2,+∞)内是增函数,所以,在x =2处取得极小值F (2)=2-2In2+2a.(Ⅱ)证明:由.022In 2)2()(0 a F x F a +-=≥的极小值知,于是由上表知,对一切.0)()(),,0( x xf x F x '=+∞∈恒有从而当.,0)(,0)(0)内单调增加在(故时,恒有+∞'x f x f x所以当.0In 2In 1,0)1()(12 x a x x f x f x +--=即时,故当.1In 2In 12+-x a x x x 时,恒有19.(本小题满分12分)本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力,综合分析问题的能力.本小题满分12分. 解:(Ⅰ)由题意知,A (a a 2,) 因为22,2OA t a a t =+=所以由于)1.(2,02a a t t +=故有由点B (0,t )C (c,0)的坐标知,直线BC 的方程为.1=+tyc x 又因点A 在直线BC 上,故有,12=+ta c a 将(1)代入上式,得,1)2(2=++a a a c a 解得.)2(22+++=a a c(Ⅱ)因为的斜率为所以直线CD a a D ),)2(2,2(++,1)2(2)2(2))2(22(2)2(22)2(2-=++=+++-++=-++=a a a a a a c a a k CD所以直线CD 的斜率为定值.20.(本小题满分13分)本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(1)ξ的分布列为(Ⅱ)数学期望为E ξ=.2)435261(282=⨯+⨯+⨯ (Ⅲ)所求的概率.28152812345)2()(=++++=≥=≥ξξξP E P21.(本小题满分14分)本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力,考查应用所学知识分析和解决实际问题的能力.本小题满分14分. 解:(Ⅰ)我们有).2()1(1≥++=-n a r T T n n n(Ⅱ)得反复使用上述关系式,对2,11≥=n a T=++++=++=---n a n n n n a r a r T a r T T )1()1()1(1221=.)1()1()1(12211n n a a a r a r a r a +++++++---①在①式两端同乘1+r ,得).1()1()1()1()1(21121r a r a r a r a T r n n n a n ++++++++=+--②②-①,得[]n n n n n a r r r d r a rT -++++++++=--)1()1()1()1(211=[],)1(1)1(1n n n a r a r r rd-++--+ 即1122(1)nn a r d a r d d T r n r r r ++=+-- 如果记,,)1(2121n r d rd r a B r r d r a A n nn -+-=++=则,n n n B A T +=其中{}{}是以为公比的等比数列为首项,以是以n n B r r r rdr a A ;)0(1)1(21 +++ 12a r d d dr r r+---为首项,为公差的等差数列。

相关文档
最新文档