力学性能试验(重点明确)
钢筋的力学性能试验
4.14 钢筋的力学性能试验1、试验目的:测定钢筋力学性能参数,评定钢材质量。
2、仪器设备:万能试验机、直尺、标距仪3、试样制备:从待测的钢盘盘条上任取三盘,每盘去掉端头500mm后各截取两段长度为350-600mm长的试样,一段用作拉伸试验,另一段用于测定镦头强度。
Q235盘条和冷拨丝只进行拉伸试验,取样方法与钢筋相同。
然后在标距仪上标距打点。
Q235盘条及冷拨丝用5mm进行标距,Φ7.1、Φ9.0 、Φ10.7PC钢筋用8倍进行标距。
4、试验步骤(1)分别测量三条试样的外径并记录。
(2)检查万能机的油路系统是否适当,测算试验吨位,检查码铊及夹具是否一致,开动并调整万能机。
(3)将试样安装于夹头正中,注意试样是否垂直,钢筋在夹头的长度是否一致,试样被夹紧后,向试样连续均匀而无冲击地施加荷载,应力增加速度应小于10Mpa/s。
(4)当试样达到屈服点可借助试验机测力盘的指针来确定,当测力盘的指针停止转动的恒定负荷或第一次回转的最小负荷即为所求屈服点负荷P S。
对无明显屈服现象的材料,必须用其它方法测定屈服强度。
(5)向试样连续施加负荷直至拉断,由测力盘上读出最大负荷P b。
5、试验结果计算(1)屈服点:δs =P s/F0×1000(Mpa)(2)抗拉强度:δb= Pb/F0×1000(Mpa)(3)伸长率:L 1-Lδ=————×100%LL0:试样原标距长度(mm)L1:试样拉断后标距长度(mm)F0:试样公称面积(mm2)RB150-Φ7.1、Φ9.0 、Φ10.7分别为40、64、90mm2,Q235Φ6.5为33mm2,冷拨钢丝按实测面积计算。
材料力学性能试验
二、实验原理及方法
3. 维氏硬度试验
维氏硬度试验是用一个相 对面夹角为136º的金刚石 正四棱锥体压头,在一定 载荷P(公斤力)作用下 压入试样表面如图3。
Hale Waihona Puke 图3维氏硬度实验原理图
在一般情况下,建议选用30公斤力的载荷。 载荷保持时间对黑色金属为10~15秒, 对有色金属为30±2秒。 维氏硬度广泛用来测定金属薄镀层或化学热处理后表面层 的硬度,以及较小工件的硬度试验。 的硬度,以及较小工件的硬度试验。
2. 显微硬度试验
显微硬度试验原理与维氏硬度完全相同,不过所加载荷更低一些, 一般小于200克力。所得压痕对角线长度也只有几微米至几十微米。
显微硬度试验可用于: (1)测定表面光洁度▽9以上的细小或片状零件的硬度, 零件表面薄层硬度及脆性材料硬度; (2)测定金相组织中某个相或组织硬度。
三、实验仪器及材料
四、实验内容及步骤
5.疲劳断口
金属构件在变动载荷长期作用下,由于累计损伤而引 起无征兆的低应力脆断叫疲劳断裂。典型的疲劳断口 形貌可分为三区:疲劳源、疲劳区、瞬断区。其断口 形貌如图所示。
四、实验内容及步骤
2.深入分析与理解几种典型断口的断裂机理
二、实验设备
KYKY -2800型扫描电子显微镜
三、实验原理及方法
利用二次电子信号 二次电子信号观察断口形 二次电子信号 貌。扫描电子显微镜是利用细 聚焦高能电子束在样品上逐点 扫描而激发出各种物理信息, 通过对这些信息的接收、放大 和显示成像,以便对试样微区 进行分析。扫描电镜观察样品 特点景深大、分辨本领比较高 ,是进行样品表面分析研究的 有效工具,尤其适合比较粗造 试样表面,如金属断口和显微 组织三维的形貌观察。
四、实验内容及步骤
材料力学性能测试实验报告
材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。
应变定义为其中△l是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图2所示。
图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。
直线部分的斜率E就是杨氏模量、σs点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图4所示。
图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。
然后利用式(4)计算弯曲弹性模量。
二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。
材料力学性能复习重点汇总
第一章包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(OP)或屈服强度(OS)增加;反向加载时弹性极限(OP)或屈服强度(OS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面一一解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
可以从河流花样的反“河流”方向去寻找裂纹源。
解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力一一派拉力、位错运动交互作用产生的阻力)决定。
派拉力:2G加2G 罕位错交互作用力aGbQ是与晶体本性、位错结构分布相关的比例系数,L是位错间距。
)2.晶粒大小和亚结构晶粒小一晶界多(阻碍位错运动)一位错塞积〜提供应力一位错开动一产生宏观塑性变形。
晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。
屈服强度与晶粒大小的关系:霍尔一派奇(Hall-Petch)o s= o i+kvd-1/23.溶质元素加入溶质原子一(间隙或置换型)固溶体〜(溶质原子与溶剂原子半径不一样)产生晶格畸变一产生畸变应力场〜与位错应力场交互运动一使位错受阻一提高屈服强度(固溶强化)。
4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力一绕过第二相一留下位错环一两质点间距变小一流变应力增大。
力学性能的测试
拉伸性能的测试
6.影响因素
(1)成型条件:由试样自身的微观缺陷和微观不同性引 起 (2)温度和湿度: (3)拉伸速度:塑料属于粘弹性材料,其应力松弛过程 与变形速率紧密相关,需要一ห้องสมุดไป่ตู้时间过程 (4)预处理:材料在加工过程中,由于加热和冷却的时 间和速度不同,易产生局部应力集中,经过在一定温 度下的热处理或称退火处理,可以消除内应力,提高 强度 (5)材料性质:结晶度、取向、分子量及其分布、交联 度 (6)老化:老化后强度明显下降
拉伸性能的测试
III试样(8字形)的制备和尺寸要求
拉伸性能的测试
IV型(长条形)试样及尺寸
拉伸性能的测试
3.实验速度:
拉伸性能的测试
塑料材料选择试样类型测试速度参考
拉伸性能的测试
4.操作步骤
①试样的状态调节和试验环境按国家标准规定。 ②在试样中间平行部分做标线,示明标距。 ③测量试样中间平行部分的厚度和宽度,精确到0.01mm, II型试样中间平行部分的宽度,精确到0.05mm,测3点,取 算术平均值。 ④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重 合,且松紧适宜。 ⑤选定试验速度,进行试验。 ⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂 在中间平行部分之外时,此试样作
力学性能的测试拉伸性能的测试拉伸性能测试原理及国标试样速度操作步骤数据的处理影响因素拉伸性能的测试原理拉伸试验是对试样延期纵轴方向施加静态拉伸负荷使其破坏通过测量试样的屈服力破坏力和试样标距间的伸长来求得试样的屈服强度拉伸强度和伸长率
力学性能的测试
拉伸性能的测试
拉伸性能测试原理及国标 裁样 试样速度 操作步骤 数据的处理 影响因素
拉伸性能的测试
1.参照标准——国标GB/T 1040-92
材料力学性能复习重点
期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
也叫金属的内耗。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。
即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。
缺口第二效应:缺口使塑性材料强度增高,塑性降低。
7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。
9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
03-力学性能试验-第五章-其他静载试验PPT课件
第五章 其他静载下金属力学性能试验
2021/3/9
三点弯曲试验示意图
四点弯曲试验示意图
1177
第五章 其他静载下金属力学性能试验
2021/3/9
1188
第五章 其他静载下金属力学性能试验
(一)弯曲试样上的弯矩和剪力
试样弯曲时,一般承受弯矩和剪力。在试样的横截面上一般有弯矩产 生的正应力和剪力产生的切应力。由材料力学基础知识,得出:
弯曲试验时,试样横截面上的应力分布是不均匀的,表 面的应力应变最大,可较灵敏地反映材料的表面缺陷。
试验标准:YB/T 5349-2006 金属弯曲力学性能试验方 法(GB/T 14452-1993 金属弯曲力学性能试验方法调整为 YB/T 5349-2006) 。
2021/3/9
1166
二、弯曲试验时的受力分析
第五章 其他静载下金属力学性能试验
力学性能试验
第五章 其他静载下金属力学性能试验
包雪鹏 2013.04.07
2021/3/9
11
第五章 其他静载下金属力学性能试验
第一节 金属压缩试验
一、压缩试验的工程应用及特点
单向压缩试验,简称压缩试验,即试样或标准试样的压缩, 而非零部件的压缩试验。压缩试验的特点:
3 铸铁压缩时的应力-应变曲线(图 5-3):铸铁压缩时的抗 压强度较拉伸时高。约为抗拉强度的2~5倍 。
2021/3/9
55
第五章 其他静载下金属力学性能试验
四、压缩试样
试样形状与尺寸的设计应保证:在试验过程中标距内为均 匀单向压缩;引伸计所测变形应与试样轴线上标距段的变形相 等;端部不应在试验结束之前损坏。
2021/3/9
力学性能试验
轴心抗压强度试验1、本试验方法适用于测定棱柱体混凝土试件的轴心抗压强度。
2、测定混凝土轴心抗压强度试验的试件应符合本标准第3章中的有关规定。
3、试验采用的试验设备应符合下列规定:1)轴心抗压强度试验所采用的压力试验机的精度应符合本标准4.3节的要求。
2)混凝土强度等级三C60时,试件周围应设防崩裂网罩。
当压力试验机上、下压板不符合本标准4.6.2条规定时,压力试验机上、下压板与试件之间应各垫以符合本标准第4.6节要求的钢垫板。
4、轴心抗压强度试验步骤应按下列方法进行:1)试件从养护地点取出后应及时进行试验,用干毛巾将试件表面与上下承压板面擦干净。
2)将试件直立放置在试验机的下压板或钢垫板上,并使试件轴心与下压板中心对准。
3)开动试验机,当上压板与试件或钢垫板接近时,调整球座,使接触均衡。
4)应连续均匀的加荷,不得有冲击。
所用加荷速度应符合本标准第6.0.4条中第3款的规定。
5)试件接近破坏而开始急剧变形时,应停止试验机油门,直至破坏。
然后记录破坏荷载。
5、试验结果计算及确定按下列方法进行:1)混凝土时间轴心抗压强度应按下式计算:Ff二—CP A式中f C P——混凝土轴心抗压强度(MPa);F—试件破坏荷载(N);A试件承压面积(mm2)。
混凝土轴心抗压强度计算值应精确至O.IMPa。
2)混凝土轴心抗压强度值的确定应符合本标准第6.0.5条中第2款的规定。
3)混凝土强度等级VC60时,用非标准试件测得的强度值均应乘以尺寸换算系数,其值为对200mm x200mm x400mm试件为1.05;对lOOmm x lOOmm x300mm试件为0.95.当混凝土强度等级三C60时,宜采用标准试件;使用非标准试件时,尺寸换算系数应由试验确定。
6、混凝土轴压抗压强度试验报告内容除应满足本标准第1.0.3条要求外,还应报告实测的混凝土轴心抗压强度值。
静力受压弹性模量试验1、本方法适用于测定棱性体试件的混凝土静力受压弹性模量(以下简称弹性模量)。
材料的力学性能重点总结
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料力学性能实验(2个)要点
《材料力学性能》实验教学指导书实验项目:1. 实验总学时:4 准静态拉伸2. 不同材料的冲击韧性材料科学与工程学院实验中心工程材料及机制基础实验室实验一准静态拉伸一、实验目的1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。
2.测定低碳钢的屈服极限σs,强度极限σb,断后延伸率δ和断面收缩率ψ。
3.测定铸铁的强度极限σb。
4.比较低碳钢和铸铁的力学性能的特点及断口形貌。
二、概述静载拉伸试验是最基本的、应用最广的材料力学性能试验。
一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。
另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。
静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。
在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度σs和抗拉强度σb)和塑性指标(伸长率δ和断面收缩率ψ)。
通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P—Δl曲线,习惯上称此曲线为试样的拉伸图。
图1即为低碳钢的拉伸图。
试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。
当载荷增加到一定值时,拉伸图上出现平台或锯齿状。
这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷Ps,Ps除以试样原始横截面面积Ao即得到屈服极限σs:σs=Ps A0试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。
这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。
由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。
当载荷达到最大值Pb后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到Pb 试样拉断。
力学性能实验
第一章材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E。
2.测定低碳钢拉伸时的强度性能指标:屈服应力σ和抗拉强度bσ。
s3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度σ。
b5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取dl10=或dl 5=,矩形截面比例试样通常取Al3.11=或Al65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b ) 图1-1拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
钢筋力学性能试验
钢筋力学性能试验第一部分金属拉力试验法(GB 228-2002)一、试验目的与试验范围本标准系规定金属及其合金常温静力拉伸性能的测定方法。
二、仪器拉力试验机、引伸计、游标卡尺三、主要试验步聚1、试样准备①测量截面积F及引伸计基础长度的标记②确定试样标距长度l2、服强度的测定①对有明显屈服现象的材料指针法:当测力度盘的指针停止转动的恒定负荷或第一次回转的最小负荷即为所求屈服点负荷P s图示法:在拉伸曲线上找出屈服平台的恒定负荷或第一次下降的最小负荷即为所求屈服点负荷P s。
屈服点按下式计算:σs=P s/F o (Mpa)②对无明显屈服现象的材料图解法:在负荷-伸长或负荷-夹头位移曲线上,按平行线法求得对应于B点的负荷即为所求屈服强度负荷P0.2。
引伸计法:将试样固定在夹头内,施加约相当于预期屈服强度10%的初负荷P o,安装引伸计。
继续施荷到2P o,保持5~10秒后再卸荷到P o,记下引伸计读数作为条件零点。
以后按两种方法“卸荷法”、“直接加荷法”,直到实测或计算的残余伸长等于或大于规定残余伸长值为止。
并求出P0.2。
屈服点按下式计算:σ0.2=P0.2/F o (Mpa)3、抗拉强度的测定向试样连续施荷直到拉断,由测力度盘或拉伸曲线上读出最大负荷P b。
4、伸第率的测定将试样拉断后的两段在拉断处紧密对接起来,尽量使其轴线位于一条直线上。
直测法:如拉断处到邻近标距端点距离大于1/3 ( l0 )时,可直接测量两端点间的距离l1。
移位法:如拉断处到邻近标距端点距离小于或等于1/3 ( l0 ) 时,则按移位法确定l1。
5、断面收缩率的测定试样在缩颈最小处两相互垂直方向上测量其直径,用二者的算术平均值计算F1。
6、弯曲后检查试样弯曲处的外面及侧面,如无裂缝、裂断或起层,即认为试样合格布。
四、计算抗拉强度按下式计算:σb=P b/F o (Mpa)伸长率按下式计算:δ=(l1-l0)/l0*(100%)断面收缩率按下计算:ψ=(F0-F1)/F0*(100%)l0--试样原标距长度,mml1--试样拉断后标距部分的长度,mmF0--试样原横截面积,mm2F1--试样裂断处的截面积,mm2P s--相当于所求应力之负荷,NP0.2--相当于所求应力之负荷,Nσs--屈服点,Mpaσ0.2--屈服强度,Mpaσb--抗拉强度,Mpaδ--伸长率,%ψ--断面收缩率,%第二部分金属冷、热弯曲试验法(GB 232-1999)一、试验目的与试验范围本标准用以检验金属承受规定弯曲程度的弯曲变形性能,并显示其缺陷。
力学性能试验
力学性能试验朱永惺南京汽轮电机厂第二章力学性能试验取样基本知识(P18)第一节试样类型及取样原则(P18)一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位置及试验制备》二、取样原则:1、取样对力学性能试验结果的影响;三要素:取样部位:1)加工过程中变形量各处不均匀2)材料内部各种缺陷分布和金属组织不均匀取样方向:材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。
例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。
取样数量:1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量;2)试验结果的分散性及经济因素2、样品的代表性;一般性规定:GB/T 2975-1998专门的规定:产品材料标准和协议:①材料的平均性能;②取样方向;一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致;三、力学性能试验的试样取样类型:1、从原材料上直接取样:2、从产品(结构或零部件)的一定部位上取样;3、把实物作为样品。
四、样坯切取方法:无论用什麽方法都应遵循以下原则:(1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验;(2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向;(3)取样的方向应按材料标准规定或双方协议执行;(4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。
如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。
力学性能教案
力学性能教案引言:力学性能是研究物体在外力作用下的变形、运动、力的大小和方向等物理量的学科。
力学性能的学习对于理解和应用力学原理具有重要的意义。
本教案将介绍力学性能的基本概念和相关实验内容,旨在培养学生对力学性能的理解和应用能力。
一、教学目标:1. 理解力学性能的基本概念和分类;2. 掌握力学性能实验的基本步骤和方法;3. 培养学生对力学性能的观察、分析和判断能力;4. 培养学生的团队协作和实验操作技能。
二、教学重点和难点:1. 力学性能的基本概念和分类;2. 力学性能实验的基本步骤和方法。
三、教学内容:1. 力学性能的基本概念力学性能是指物体在外力作用下的响应和性能表现。
主要包括以下几个方面:1.1 强度:物体在外力作用下抵抗破坏的能力。
常用强度指标有极限强度、屈服强度和抗拉强度等;1.2 刚度:物体在受力后产生的变形与受力之间的关系。
常用刚度指标有弹性模量和切割模量等;1.3 韧性:物体在断裂前可以吸收的能量。
常用韧性指标有断裂韧性和冲击韧性等;1.4 疲劳性能:物体在循环载荷作用下耐久性能的指标。
常用疲劳性能指标有疲劳寿命和循环载荷下的变形等。
2. 力学性能实验2.1 实验目的通过实验,观察、测量和分析不同材料和结构的力学性能,加深对力学性能的理解。
2.2 实验仪器和材料(根据实际情况列举相关的实验仪器和材料)2.3 实验步骤(根据实验的具体内容列举相关的实验步骤)2.4 实验数据处理和分析根据实验数据,计算和比较不同材料和结构的力学性能指标,探讨其差异和原因。
四、教学方法:1. 讲授法:通过教师讲解的方式,介绍力学性能的基本概念和实验内容;2. 实验操作法:组织学生进行力学性能实验,培养学生的实验操作技能;3. 案例分析法:通过分析实际案例,帮助学生更好地理解力学性能的应用和意义;4. 讨论交流法:组织学生进行小组讨论,共同解决实验中的问题和困惑。
五、教学评估:1. 实验报告:学生根据实验结果撰写实验报告,评估学生对力学性能实验的理解和应用能力;2. 课堂讨论:评估学生对力学性能概念和实验内容的理解程度;3. 学习反馈:通过问卷调查等方式,评估学生对教学内容和教学方法的反馈意见。
金属力学性能测试标准
金属力学性能测试标准金属材料作为工程领域中使用最广泛的材料之一,其力学性能的测试标准对于材料的质量控制和工程设计具有重要意义。
本文将从金属力学性能测试的目的、方法以及标准等方面进行详细介绍,以期为相关领域的研究人员和工程师提供参考。
一、目的。
金属力学性能测试的主要目的在于评估材料的力学性能,包括抗拉强度、屈服强度、延伸率、硬度等指标。
通过测试,可以了解材料在受力情况下的表现,为工程设计和材料选择提供依据。
同时,测试结果也可以用于质量控制和产品认证,确保产品符合相关标准和要求。
二、方法。
1. 抗拉强度测试。
抗拉强度是评价材料抗拉性能的重要指标。
测试时,将试样加在拉伸试验机上,施加逐渐增加的拉力,直到试样发生断裂。
根据试验过程中的拉力和变形量,可以计算出材料的抗拉强度。
2. 屈服强度测试。
屈服强度是材料在拉伸过程中发生塑性变形的临界点。
测试方法与抗拉强度测试类似,但需要额外考虑材料的流变行为,通过对应力-应变曲线的分析,确定材料的屈服强度。
3. 延伸率测试。
延伸率是评价材料延展性能的指标,通常通过拉伸试验来进行测试。
在试验中,可以观察试样的变形情况,计算出材料的延伸率,从而评估其延展性能。
4. 硬度测试。
硬度是材料抵抗外力的能力,通常用来评价材料的耐磨性和耐压性。
常见的硬度测试方法包括布氏硬度、洛氏硬度、维氏硬度等,通过在材料表面施加一定载荷,测量材料的硬度值。
三、标准。
金属力学性能测试的标准主要包括国际标准和行业标准两类。
国际标准由国际标准化组织(ISO)制定,通常适用于全球范围内的材料测试。
而行业标准则是由各个行业协会或组织制定,针对特定材料或产品的测试要求。
在进行金属力学性能测试时,应当严格遵守相关的测试标准,以确保测试结果的准确性和可比性。
同时,随着科学技术的发展,测试标准也会不断更新和完善,因此在进行测试时,应当关注最新的标准要求,以保证测试结果的有效性。
总结。
金属力学性能测试是评价材料质量和性能的重要手段,通过测试可以全面了解材料的力学性能,为工程设计和产品制造提供依据。
材料力学性能综合实验-测试原理
实验一 材料力学性能综合实验第一部分 材料力学性能及测试原理材料的使用性能包括物理、化学、力学等性能。
对于用于工程中作为构件和零件的结构材料,人们最关心的是它的力学性能。
力学性能也称为机械性能。
任何材料受力后都要产生变形,变形到一定程度即发生断裂。
这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。
同时, 环境如温度、介质和加载速率对于材料的力学行为有很大的影响。
因此材料的力学行为是外加载荷与环境因素共同作用的结果。
材料力学性能是材料抵抗外加载荷引起的变形和断裂的能力。
材料的力学性能通过材料的强度、刚度、硬度、塑性、韧性等方面来反映。
定量描述这些性能的是力学性能指标。
力学性能指标包括屈服强度、抗拉强度、延伸率、截面收缩率、冲击韧性、疲劳极限、断裂韧性等。
这些力学性能指标是通过一系列试验测定的。
实验包括静载荷试验、循环载荷试验、冲击载荷试验以及裂纹扩展试验。
其中静载荷拉伸试验是测定大部分材料常用力学性能指标的通用办法。
力学指标的测定要依据统一的规定和方法进行,这就是国家标准。
比如国家标准GB228-87是金属材料拉伸试验标准。
依据这个标准,可以测定金属的屈服强度、抗拉强度、延伸率、截面收缩率等力学性能指标。
其它材料如高分子材料、陶瓷材料及复合材料力学性能也应采用各自的国家标准进行测定。
拉伸试验的条件是常温、静荷、轴向加载,即拉伸实验是在室温下以均匀缓慢的速度对被测试样施加轴向载荷的试验。
试验一般在材料试验机上进行。
拉伸试样应依据国家标准制作。
进行单拉试验时,外力必须通过试样轴线以确保材料处于单向拉应力状态。
试验机的夹具、万向联轴节和按标准加工的试样以及准确地对试样的夹持保证了试样测量部分各点受力相等且为单向受拉状态。
试样所受到的载荷通过载荷传感器检测出来,试样由于受外力作用产生的变形可以借助横梁位移反映出来,也可以通过在试样上安装引伸计准确的检测出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学性能试验第二章力学性能试验取样基本知识(P18)第一节试样类型及取样原则(P18)一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位置及试验制备》二、取样原则:1、取样对力学性能试验结果的影响;三要素:取样部位:1)加工过程中变形量各处不均匀2)材料内部各种缺陷分布和金属组织不均匀取样方向:材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。
例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。
取样数量:1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量;2)试验结果的分散性及经济因素2、样品的代表性;一般性规定:GB/T 2975-1998专门的规定:产品材料标准和协议:①材料的平均性能;②取样方便;一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致;三、力学性能试验的试样类型:1、从原材料上直接取样:2、从产品(结构或零部件)的一定部位上取样;3、把实物作为样品。
四、样坯切取方法:无论用什麽方法都应遵循以下原则:(1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验;(2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向;(3)取样的方向应按材料标准规定或双方协议执行;(4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。
如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。
这一余量的规定为:一般应不小于钢材的厚度或直径,但最小不得少于20mm,对厚度或直径大于60mm的钢材,切割余量可根据供需双方协议适当减少。
如果过冷了怎么办?比如,采用冷剪法切取样坯时,冷剪边缘会产生塑性变形,厚度或直径越大,塑性变形的范围也越大,所以切割样坯也应留有足够的剪割余量:表2-1 冷剪样坯所留加工余量五、试料状态,按材料标准规定,取样分为:1、交货状态取样:从产品成型和热处理完成之后取样,但虽然在热处理之前取样,但试料应在与交货产品相同的条件下进行热处理。
此时如需要矫直试料,应在冷状态下进行。
2、标准状态取样:按产品标准或订货单规定的生产阶段取样。
如必须对试料矫直,可在热处理之前进行热加工或冷加工,热加工的温度应低于最终热处理温度。
第二节金属材料试样轴线一、问题的提起:1、各向异性2、材料的在加工过程中的晶粒流向3、标准GB/T20832-2007《金属材料试样轴线相对于产品结构的标识》X——主要变形方向;Y——最小变形方向;Z——为X—Y平面的垂直方向。
二、无缺口试样的标识三、缺口(或预裂纹)试样的标识注意:铸件没有晶粒流动方向,应在零件图上明确标出试样的位置和取向,在试验结果中不做试样的取向标识。
第三节钢材的取样位置要求:W—材料的宽度;r —材料的半径t —材料的厚度(对型钢为腿部的厚度,对钢管、环、筒为壁的厚度);T—横向试样或切向试样(试样的纵向轴线与主加工方向垂直);R—材料的半径(对多边形条钢为内切圆半径);d —材料的直径(对多边形条钢为内切圆直径);L—纵向试样(试样的纵向轴线与主加工方向平行)或对角线长度或试料的长度;1)应在钢产品表面切取弯曲样坯,弯曲试样应至少保留一个表面,当机加工和试验能力允许时,应制备全截面或全厚度弯曲试样。
2)在型钢、条钢、钢板及钢管上切取冲击样坯时,应在一侧保留一个表面,冲击试样缺口轴线应垂直于该表面层,如图1所示;3)当要求取一个以上试样时,可在规定的相邻位置取样。
一、型钢对于型钢(L型钢、槽钢、T型钢、工字钢、乙字钢等),应在腿长1/3处切取拉伸、弯曲和冲击样坯,但对于腿部有斜度的型钢(如工字钢、槽钢),应在腰部1/4处取样(经协商也可在腿部取样),如图2;图2在型钢腿部宽度方向切取样坯的位置型钢中切取拉伸样坯,应尽可能取腿部全厚度样坯,如试验机能力不够时,则在其样坯中心线厚度1/4或距底部12.5mm处取样,取两者数字较大者。
见图3;(a)t≤50mm (b)t≤50mm(c)t>50mm图3在型钢腿部厚度方向切取拉伸样坯的位置;图4 在型钢腿部厚度方向切取冲击样坯的位置二、条钢条钢包括圆钢、六角钢和矩形截面钢。
条钢取拉伸样坯时,如试验机能力允许时,应尽可能取全截面做拉伸试验,如试验机能力不够时,圆钢按图5和图6取样;六角钢按图7和图8取样;三、钢板四、钢管第四节焊接接头的取样力学性能用试样样坯一般都是从专门焊接的试板或管接头中切取,也可从结构件上切取。
一般有三种形式的取样:对冲击试样:1、缺口在焊缝的中心线上;2、缺口在熔合线上;3、缺口在开在热影响区第三章金属材料的拉伸试验(P32)GB/T228金属材料拉伸试验分为四个部分:————第1部分:室温试验方法;————第2部分:高温试验方法;————第3部分:低温试验方法;————第4部分:液氦试验方法。
第1部分的修改采用国际标准ISO6982-1:2009《金属材料拉伸试验第1部分:室温试验方法》(英文版)本标准对国际标准以下方面进行了修改和补充:(一)、在规范性引用文件中,本部分直接引用与国际标准相对应的我国国家标准;(二)、增加了规范性引用文件GB/T8170《数值修约规则与极限数值的表示和判定》,GB/T10623《金属材料力学性能试验术语》和GB/T22066《静力单轴试验机用计算机数据采集系统的评定》;(三)、将第7章中原始横截面积三次测量的最小值改为平均值;(四)、在第12章中增加了对于上、下屈服强度位置判定的基本原则;(五)、增加了第22章“试验结果数值的修约”;(六)、增加了规范性附录J逐步逼近方法测定规定塑性延伸强度(Rp);(七)、增加了资料性附录K卸力方法测定规定残余延伸强度(Rr0.2)举例;(八)、对于附录B、附录C、附录D和附录E中比例试样和非比例试样的细节描述进行了相应修改;(九)、修改了测量不确定度的评定方法,形成附录L拉伸试验测量结果不确定度的评定。
一、概述:金属力学性能试验方法是检测和评定冶金产品质量的重要手段。
1、拉伸试验的三个基本变形阶段:弹性变形、塑性变形和断裂。
2、拉伸试验的条件:单轴(应力状态恒定)、温度恒定、静载(应变速率在0.0001~0.01 S1-)3、拉伸试验还和其他力学性能指标有关:4、拉伸试验的依据:GB/T228.1-2010《金属材料拉伸试验第1部分:室温试验方法》5、试验温度:在室温10℃— 35℃范围内进行,对温度要求严格的试验,试验温度应为23℃±5℃。
第一节拉伸过程中的物理现象及有关术语一、物理意义:1、弹性变形阶段:1)弹性变形(oa);特点:伸长与载荷的变化遵从虎克定律,正比例线性关系。
2)滞弹性变形(ab);特点:正比例关系已破坏,是非线性阶段,即滞弹性变形,此时试样的变形仍然是弹性。
2、塑性变形阶段:1)屈服前微塑性变形(bc);特点:试样开始出现连续均匀的微小塑性变形,卸除力后,试样变形不完全消失,不容易与滞弹性变形区分。
2)屈服阶段(cde);特点:试样在受拉伸外力的作用产生了较大的塑性变形。
cd急剧下降, de载荷在微小范围内波动c点是上屈服,FeH,e点是下屈服,FeL,这就是金属材料从弹性变形过度到塑性变形的一个明显标志。
3)均匀塑性变形阶段(ef);特点:随着变形量的增加材料不断被强化,这种现象称为应变硬化。
ef不断上升。
4)局部塑性变形阶段(fg);特点:某个截面上产生了局部塑性变形,截面积快速减小,产生缩颈;3、断裂阶段:1)断裂;特点:外力继续增加就断裂;f点就是局部缩颈开始点,其所对应的力Fm 为试样在拉伸过程中所能承受的最大外力。
二、术语:(一)与标距有关的术语:1、平行长度:试样平行缩减部分的长度。
2、试样标距:原始标距;引伸计标距;断后标距;(二)与应力有关的术语1、屈服强度;本标准不采用,用上、下屈服强度①上屈服强度:试样发生屈服而力首次下降前的最大应力。
R eH =So eH F , N/mm 2(MPa ) ②下屈服强度:在屈服期间,不计初始瞬时效应时的最小应力。
R eL =So eLF , N/mm 2(MPa ) 2、规定延伸强度:1)规定塑性延伸强度Rp :Rp0.2=So F 0.2p N/mm 2(MPa ) 2)规定总延伸强度Rt ;3)规定残余延伸强度Rr3、抗拉强度:试样受外力(屈服阶段之前不计)拉断过程中所承受的最大名义应力。
Rm=S0FmN/mm 2(MPa );(三)与伸长或延伸有关的术语:1、伸长率:(只与试样原始标距L0有关)1)断后伸长率A :A=Lo LoLu ×100%; %2)断裂总伸长率At :3)最大力的下非比例伸长率Ag ;4)最大力下的总伸长率Agt ;2、延伸率:(与引伸计标距Le 有关)1)非比例延伸率;2)残余延伸率;3)总延伸率;4)屈服点延伸率Ae ;(四)其他术语;1、断面收缩率Z Z=So SuSo ×100%; %,2、弹性模量E3、泊松比u4、应变硬化指数n5、塑性应变比r第二节金属拉伸试样一、拉伸试样分类:(一)按产品形状分类(二)按Lo与So的关系分类:Lo1、k=So2、短比例试样k=5.65; A 但要保证原始标距不小于15mm,否则用长比例试样3、长比例试样k=11.3 A311、4、定标距试样:截面较小的薄带试样及异性截面试样,非比例试样,L50无可比性,要可比按GB/T17600.1-1998《钢的伸长率换算第1部分:碳素钢和低合金钢》和GB/T17600.2-1998《钢的伸长率换算第2部分:奥氏体钢》换算二、试样形状和尺寸(一)圆截面试样:在Lo大于15mm的前提下,优先采用Lo=5d的短比例试样;(二)矩形横截面试样:1、优先采用短比例试样,2、厚板材可通过机加工减薄,其宽厚比b/a不大于8:13、厚度≥25mm,加工成圆形试样4、工程上对于厚板材料b/a一般取1~4较为合适5、若短比例试样L o<15mm,则用k=11.3长比例试样6、薄带试样可采用标距为50mm或80mm的定标距试样(非比例试样)(三)其他类型试样1、管材采用纵向弧形试样或带塞头的全截面试样①塞头顶到标距的距离要大于D/4,塞头要加工成塞头形状或塞头两端的直径相差1mm的形状②不配塞头时,可将两端夹持部分压扁进行试验;2、优先采用短比例试样3、铸件一般采用圆形截面试样,线材采用标距为100mm或200mm的定标距试样(非比例试样)。