天津市河北区2020年中考数学二模试卷(含解析)
【附5套中考模拟试卷】天津市河北区2019-2020学年中考第二次质量检测数学试题含解析
天津市河北区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥B .M N ≤C .M N >D .M N <2.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =3.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为( )A .2B .23C .3D .224.下列各式中的变形,错误的是(( ) A .B .C .D .5.如图图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .6.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB=50°,则∠ABC 的大小是( )A .55°B .60°C .65°D .70°7.将1236按如图方式排列,若规定(m 、n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A.6B.6 C.2D.3 8.下列各数中负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.﹣(﹣2)39.反比例函数是y=2x的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为()A.0 B.2 C.4m D.-4m11.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C (﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)12.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30°B.60°C.90°D.45°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于12AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.14.分解因式:2m2-8=_______________.15.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).16.观察下列一组数13,25,37,49,511,…探究规律,第n个数是_____.17.函数y=的自变量x的取值范围是_____.18.若-2a m b4与5a2b n+7是同类项,则m+n= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加▲ 件,每件商品盈利▲ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?20.(6分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.21.(6分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求该反比例函数的解析式;(1)求三角形CDE 的面积.22.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.23.(8分)如图,已知⊙O 中,AB 为弦,直线PO 交⊙O 于点M 、N ,PO ⊥AB 于C ,过点B 作直径BD ,连接AD 、BM 、AP . (1)求证:PM ∥AD ;(2)若∠BAP=2∠M ,求证:PA 是⊙O 的切线; (3)若AD=6,tan ∠M=12,求⊙O 的直径.24.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB ,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB 落在坡上的影子BD 的长为8米,落在墙上的影子CD 的长为6米,求旗杆AB 的高(结果保留根号).25.(10分)如图,ABC ∆内接于O e ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠; (2)若6BC =,3sin 5BAC ∠=,求AC 和CD 的长. 26.(12分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.27.(12分)如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C . (1)求证:∠ACD=∠B ;(2)如图2,∠BDC 的平分线分别交AC ,BC 于点E ,F ,求∠CEF 的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C 【解析】∵223824M x N x x =+=+,,∴222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∴M N >. 故选C. 2.D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】 x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键. 3.B 【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC 所以∠EOC=2∠D=60°,所以△ECO 为等边三角形.又因为弦EF ∥AB 所以OC 垂直EF 故∠OEF=30°所以EF=3OE=23. 4.D 【解析】 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案. 【详解】 A 、,故A 正确;B 、分子、分母同时乘以﹣1,分式的值不发生变化,故B 正确;C 、分子、分母同时乘以3,分式的值不发生变化,故C 正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.5.A【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。
2020年河北省中考数学模拟试卷(二)(含答案解析)
2020年河北省中考数学模拟试卷(二)一、选择题(本大题共16小题,共80.0分)1.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.某红外线波长为0.00 000 094m,用科学记数法把0.00 000 094m可以写成()A. 9.4×10−7mB. 9.4×107mC. 9.4×10−8mD. 9.4×108m3.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A. 45°B. 55°C. 125°D. 135°4.计算20142−4024×2014+20122等于()A. 2B. 4C. 6D. 85.如图,已知AB//CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是()A. 19°B. 38°C. 72°D. 76°6.借助计算器比较12与21,23与32,34与43,45与54,56与65,67与76,……的大小关系,根据你发现的规律,判断P=n n+1与Q=(n+1)n(n为大于2的整数)的值的大小关系是()A. P>QB. P=QC. P<QD. 与n的取值有关7.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A. 180x −180x−2=3 B. 180x−180x+2=3C. 180x+2−180x=3 D. 180x−2−180x=38.图(一)、图(二)分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A. a>b,c>dB. a>b,c<dC. a<b,c>dD. a<b,c<d9.化简a2−1a +a+1a的结果是()A. a+a2B. a−1C. a+1D. 110.下列计算正确的是()A. (ab2)2=ab4B. (3xy)3=9x3y3C. (−2a2)2=−4a4D. (−3a2bc2)2=9a4b2c411.如图,为固定电线杆AC,在离地面高度为6m的A处引拉线AB,使拉线AB与地面上的BC的夹角为48°,则拉线AB的长度约为()(结果精确到0.1m,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)A. 6.7mB. 7.2mC. 8.1mD. 9.0m12.如图,分别以△ABC的顶点A,B为圆心,以大于12AB的长为半径,画弧,过两弧交点的直线交AC于点D,连接DB,若BC=6,AC=10,则△DBC的周长等于()A. 12B. 14C. 16D. 2413.如图,⊙O与正方形ABCD的两边AB,AD相切,且DE与⊙O相切于点E.若⊙O的半径为5,且AB=11,则DE的长度为()A. 5B. 6C. √30D. 11214.二次函数y=−x2+2kx+1(k<0)的图象可能是()A. B.C. D.15.若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为()A. 18cmB. 20cmC. 24cmD. 25cm16.如图所示,下列一组图案,每一个图案均由边长为1的小正方形按照一定的规律堆叠而成,照此规律,第10个图案中共有()个小正方形.A. 121B. 100C. 81D. 64二、填空题(本大题共3小题,共20.0分)17.比较大小:√11 3.18.分解因式:2b2−8b+8=______ .19.如图是某机械零件的平面图形,尺寸如图所示,则A,B两点之间的距离是________.三、解答题(本大题共7小题,共66.0分)=0有两个相等的实数根,求k的值.20.已知关于x的方程(k−2)x2−(k−2)x+1421.贾宪三角(如图1)最初于11世纪被发现,原图载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.与我们现在的学习练习最紧密的要算施蒂费尔的二项式乘方后展开式的系数规律(如图2).在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式(a+b)2=a2+2ab+b2展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式(a+b)3=a3+3a2b+3ab2+b3展开式的系数,第五行的五个数恰好对应着两数和的四次方公式(a+b)4=a4+4a3b+6a2b2+ 4ab3+b4展开式的系数,等等.由此可见,贾宪三角可以看作是对我们现在学习的两数和的平方公式的指数推广而得到的.同学们,贾宪三角告诉了我们二项式乘方展开式的系数规律,你发现其中的字母及字母指数的排列规律了吗?如果发现了,请你试着写出(a+b)5、(a+b)6与(a+b)7的展开式.(a+b)5=______(a+b)6=______(a+b)7=______22.如图,已知直线l1:y1=2x+1与坐标轴分别交于A,C两点,直线l2:y2=−x−2与坐标轴分别交于B,D两点,两条直线的交点为P点.(1)求△APB的面积;(2)利用图象求当x取何值时,y1<y2.23.一次函数y=kx+b的图像经过点A(2,−3),B(0,−1),求这个一次函数的解析式.24.某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?25.若抛物线的顶点坐标是A(1,6),并且抛物线与x轴一个交点坐标为(5,0).(1)求该抛物线的关系式;(2)已知点P(m,n)在抛物线上,当−2≤m<3时,求n的取值范围.26.如图1,在Rt△ABC中,∠ACB=Rt∠,sin∠B=3,AB=10,点D以每秒5个单位长度的速度5从点B处沿沿射线BC方向运动,点F以相同的速度从点A出发沿边AB向点B运动,当F运动至点B时,点D、F同时停止运动,设点D运动时间为t秒.(1)用含t的代数式分别表示线段BD和BF的长度.则BD=_____,BF=_____.(2)设△BDF的面积为S,求S关于t的函数表达式及S的最大值.(3)如图2,以DF为对角线作正方形DEFG.①在运动过程中,是否存在正方形DEFG的一边恰好落在Rt△ABC的一边上,若存在,求出所有符合条件的t值;若不存在,请说明理由.②设DF的中点为P,当点F从点A运动至点B时,请直接写出点P走过的路程.【答案与解析】1.答案:D解析:解:A.是轴对称图形,不是中心对称图形,故A错误;B.不是轴对称图形,是中心对称图形,故B错误;C.是轴对称图形,不是中心对称图形,故C错误;D.既是轴对称图形,又是中心对称图形,故D正确.故选D.根据轴对称图形与中心对称图形的概念对各选项分析判断,利用排除法求解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:A解析:解:0.00 000 094m=9.4×10−7,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3.答案:B解析:解:由图形所示,∠AOB的度数为55°,故选B.由图形可直接得出.本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.4.答案:B解析:解:20142−4024×2014+20122=(2014−2012)2=4.故选:B.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.5.答案:D解析:本题考查了平行线的性质和角平分线定义,根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD= 38°,结合角平分线的定义求出∠EAB,即可求出∠AEC.解:∵CD//AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:D.6.答案:A解析:[分析]先通过计算器比较数据大小.从中归纳可以得出n n+1与(n+1)n的大小关系即可解答.[详解]解:∵12=1,21=2,∴12<21;∵23=8,32=9∴23<32;∵34=81,43=64∴34>43;∵45=1024,54=625∴45>54;∵56=15625,65=7776∴56>65...∴n n+1>(n+1)n(n为大于2的整数);故选A.[点评]本题主要考查了学生的归纳总结的数学能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接进行解题.7.答案:B解析:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.解:设小组原有x人,可得:180x −180x+2=3.故选B.8.答案:A解析:解:由图(三)、图(四)可知a=8,b=6⇒a>b,甲班共有5+15+20+15=55(人),乙班共有25+5+15+10=55(人),则甲、乙两班的中位数均为第28人,得c=8,d=7⇒c>d.故选A.根据众数是一组数据中出现次数最多的数据,确定众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;依此即可求解.此题考查了众数与中位数的知识.解题的关键是熟记众数与中位数的定义.9.答案:C解析:本题考查的是分式的加减法,在解答此类题目时要注意约分的灵活运用.根据分式的加法进行计算即可.解:原式=a2−1+a+1a =a(a+1)a=a+1.故选:C.10.答案:D解析:本题考查幂的乘方与积的乘方.根据幂的乘方与积的乘方的法则逐项计算,即可解答.解:A.(ab2)2=a2b4;则A错误;B.(3xy)3=27x3y3;则B错误;C.(−2a2)2=4a4;则C错误;D.(−3a2bc2)2=9a4b2c4;则D正确.故选D.11.答案:C解析:解:在直角△ABC中,sin∠ABC=ACAB,∴AB=AC÷sin∠ABC=6÷sin48°=60.74≈8.1(米).故选:C.在直角△ABC中,利用正弦函数即可求解.此题主要考查了解直角三角形的条件,把实际问题转化为数学问题是解题的关键.12.答案:C解析:解:由作图得DA=DB,所以△DBC的周长=BC+DC+BD=BC+DC+AD=BC+AC=6+10=16.故选:C.根据基本作图得到点D在AB的垂直平分线上,则DA=DB,然后利用等线段代换得到△DBC的周长=BC+AC.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).13.答案:B解析:本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,关键是求出AM长和得出DE=DM.得出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.解:连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∵圆O的半径为5,∴AM=OM=5,∵AD和DE与圆O相切,∴DM=DE,∴DE=DM=AD−AM=11−5=6,故选B.14.答案:A=k<0,得到对称轴在y轴的解析:解:二次函数y=−x2+2kx+1(k<0)的对称轴是x=−b2a左侧.当x=0时,y=1,图象与y轴的交点在x轴的上方,故A正确;故选:A.根据对称轴公式,可得对称轴在y轴的左侧,根据函数图象与y轴的交点,可得答案.本题考查了二次函数图象,利用函数图象的对称轴及图象与y轴的交点是解题关键.15.答案:D解析:本题考查了勾股定理的运用,设直角三角形的斜边是xcm,则另一条直角边是(x−1)cm.根据勾股定理列方程求解即可.解:设直角三角形的斜边是xcm,则另一条直角边是(x−1)cm.根据勾股定理,得(x−1)2+72=x2,解得:x=25.则斜边的长是25cm.故选:D.16.答案:B解析:解:设第n个图案中共有a n个小正方形(n为正整数),观察图形,可知:a1=1=12,a2=1+3=22,a3=1+3+5=32,a4=1+3+5+7=42,…,∴a n=n2(n为正整数),∴a10=102=100.故选:B.设第n个图案中共有a n个小正方形(n为正整数),观察图形,根据图形中小正方形个数的变化可找出变化规律“a n=n2(n为正整数)”,再代入n=10即可求出结论.本题考查了规律型:图形的变化类,根据图形中小正方形个数的变化找出变化规律“a n=n2(n为正整数)”是解题的关键.解析:此题主要考查了实数的大小比较,比较两个实数的大小可以采用作差法,取近似值法,平方法等,首先把3和√11分别平方,由于两数均为正数,所以该数平方越大,数越大.解:∵3²=9,(√11)²=11,∵11>9,∴√11>3.故答案为>.18.答案:2(b−2)2解析:解:原式=2(b2−4b+4)=2(b−2)2.故答案为:2(b−2)2.先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2=(a−b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.答案:39解析:本题主要考查两点间的距离公式.解题关键是认真看图,构造直角三角形求解A,B两点间距离.解:从图形中可得:AB=√(60−24)2+(40−25)2=√362+152=39故答案为:39.=0有两个相等的实数根,20.答案:解:∵关于x的方程(k−2)x2−(k−2)x+14∴[−(k−2)]2−4(k−2)×14=0,整理得,k2−5k+6=0,即(k−2)(k−3)=0,解得:k=2或k=3.∵k−2≠0,∴k≠2,∴k=3.解析:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根据根的判别式令△=0,建立关于k的方程,解方程即可.21.答案:a5+5a4b+10a3b2+10a2b3+5ab4+b5;a6+6a5b+15a4b2+20a3b3+15a2b4+ 6ab5+b6;a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7解析:解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7.跟答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5;a6+6a5b+15a4b2+20a3b3+15a2b4+ 6ab5+b6;a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7.观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.本题考查了整式的混合运算,学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.22.答案:解:(1)解方程组{y=2x+1,y=−x−2,得{x=−1y=−1.∴P点坐标为(−1,−1).又∵A(0,1),B(0,−2),∴S▵ABP=12×AB×1=12×3×1=32.(2)由题图可知,当x <−1时,直线l 1上的点都在直线l 2的下方,∴当x <−1时,y 1<y 2.解析:本题考查了一次函数与二元一次方程组,属于基础题,关键是掌握根据图象进行解题.(1)先求出A ,B ,P 的坐标,根据面积公式即可求解;(2)求出交点P 的坐标,正确根据图象即可得出答案.23.答案:解:∵一次函数y =kx +b 的图象经过点(2,−3)和(0,−1),∴{2k +b =−3b =−1, 解得{k =−1b =−1, ∴一次函数的解析式为y =−x −1.解析:本题考查的是待定系数法求一次函数解析式.将点(2,−3)和(0,−1)代入y =kx +b 可得出方程组,解出即可得出k 和b 的值,即得出了函数解析式.24.答案:解:(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元. 得{5x +6y =9503x +2y =450解得{x =100y =75. 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(2m +4)套.根据题意得:{2m +4≤4030m +20(2m +4)≥1200解得16≤m ≤18∵m 为正整数,∴m =16、17、18,∴2m +4=36、38、40答:有三种进货方案(1)A种品牌得化妆品购进16套,B种品牌得化妆品购进36套.(2)A种品牌得化妆品购进17套,B种品牌得化妆品购进38套.(3)A种品牌得化妆品购进18套,B种品牌得化妆品购进40套.解析:略25.答案:解:(1)设抛物线解析式y=a(x−1)2+6,把(5,0)代入,得a(5−1)2+6=0,.解得a=−38(x−1)2+6;故该抛物线解析式为:y=−38<0,开口向下,对称轴为x=1,(2)∵a=−38P(m,n)在抛物线上,−2≤m<3,∵−2≤m<1时,n随m的增大而增大,当m=−2时,有最小值n=21;81≤m≤3时,n随m的增大而减小,当m=1时,有最大值n=6;当m=3时,有最小值n=9.2≤n≤6.∴218解析:(1)设抛物线解析式为顶点式y=a(x−1)2+6,把点(5,0)代入,即利用待定系数法求出抛物线的解析式;(2)根据二次函数的性质可求n的取值范围.本题考查了用待定系数法求函数解析式的方法,同时还考查了二次函数的性质,难度不大,属于中档题.26.答案:解:(1)5t,10−5t;(2)如图1中,作FM⊥BC于M,∵FM//AC,∴FMAC =BFBA,∴FM6=10−5t10,∴FM=35(10−5t)=6−3t,∴S=12⋅BD⋅FM=12⋅5t⋅(6−3t)=−152t2+15t;当t=1时,S max=7.5.(3)①如图2中,当DE在BC边上时,作FM⊥AC于M,易知FM=EC=4t,AM=3t,CM=EF=DE=6−3t,∵BD+DE+EC=8,∴5t+6−3t+4t=8,∴t=13s,如图3中,当FG在AB边上时,易知DG=FG=3t,BG=4t,∵BG+FG+AF=10,∴4t+3t+5t=10,∴t=56s,如图4中,当DG在BC边上时,易知FG=DG=6−3t,BG=8−4t,∵BD=BG+DG=5t,∴8−4t+6−3t=5t,∴t=7 6 s.如图5中,当EF在边AB上时,易知BE=4t,DE=EF=3t,∵BE−EF=BF,∴4t−3t=10−5t,∴t=5 3 s.综上所述,t=53s或76s或56s或13s时,正方形DEFG的一边恰好落在Rt△ABC的一边上;②如图6中,当点F与B重合时,点D在点K处,易知点P的运动轨迹是△ABK的中位线MN,在Rt△ACK中,AK=√AC2+CK2=√62+22=2√10.MN=12AK=√10,S P=√10.解析:本题主要考查的是正方形的性质、列代数式、平行线分线段成比例定理、三角形的面积、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题(1)由题意BD=5t,BF=10−5t;(2)如图1中,作FM⊥BC于M,由FM//AC,利用平行线分线段成比例和三角形的面积公式进行求解即可;(3)①分三种情形在图2~图5中,分别列方程求解即可;②如图6中,当点F与B重合时,点D在点K处,易知点P的运动轨迹是△ABK的中位线MN,求出AK即可解决问题.解:(1)在Rt△ABC中,∵AB=10,tanB=3,5∴AC=6,BC=8,由题意BD=5t,BF=10−5t,故答案为5t,10−5t;(2)见答案;(3)①见答案;②见答案.。
2020届天津市中考数学第二次模拟试卷(有答案)(word版)(已纠错)
天津市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.72.sin60°的值等于()A.B.C.D.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算﹣的结果为()A.1 B.x C.D.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y312.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于.14.计算(+)(﹣)的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF 的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135租用的乙种货车最多运送机器的数量/台150表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元2800租用乙种货车的费用/元280(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.2.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:sin60°=.故选:C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106,故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.7.计算﹣的结果为()A.1 B.x C.D.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:﹣==1.故选A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3【考点】解一元二次方程-因式分解法.【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【考点】实数大小比较;实数与数轴.【分析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【考点】二次函数的最值.【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x 的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方运算法则进行计算即可.【解答】解:(2a)3=8a3.故答案为:8a3.14.计算(+)(﹣)的结果等于2.【考点】二次根式的混合运算.【分析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.【考点】概率公式.【分析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是=,故答案为:.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【考点】正方形的性质.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF 的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【考点】作图—应用与设计作图;勾股定理.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【解答】解:(Ⅰ)AE==;故答案为:;(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ 即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质.【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.【考点】解直角三角形的应用.【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.【解答】解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.【考点】一次函数的应用.【分析】(Ⅰ)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整;(Ⅱ)由(Ⅰ)中的数据和公司有330台机器需要一次性运送到某地,可以解答本题.【解答】解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【考点】几何变换综合题.【分析】(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt △BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【解答】解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.【考点】二次函数综合题.【分析】(1)令x=0,求出抛物线与y轴的交点,抛物线解析式化为顶点式,求出点P坐标;(2)①设出Q′(0,m),表示出Q′H,根据FQ′=OQ′,用勾股定理建立方程求出m,即可.②根据AF=AN,用勾股定理,(x﹣1)2+(y﹣)2=(x2﹣2x+)+y2﹣y=y2,求出AF=y,再求出直线Q′F的解析式,即可.【解答】解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)。
天津市河北区2019-2020学年中考数学二月模拟试卷含解析
天津市河北区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC2.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25°B.30°C.35°D.40°3.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A .3B .4C .2D .15.如图,将Rt ABC △绕直角顶点C 顺时针旋转90o ,得到A B C ''V ,连接'A A ,若120︒∠=,则B Ð的度数是( )A .70︒B .65︒C .60︒D .55︒6.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°721的相反数是( )A 21B 21C .21-D .128.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x =9.二元一次方程组43624x y x y +=⎧⎨+=⎩的解为( ) A .32x y =-⎧⎨=⎩ B .21x y =-⎧⎨=⎩ C .32x y =⎧⎨=-⎩ D .21x y =⎧⎨=-⎩10.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.如果令1,,0,i i j a j i j 第号同学同意第号同学当选第号同学不同意第号同学当选⎧=⎨⎩ 其中i =1,2,…,1;j =1,2,…,1.则a 1,1a 1,2+a 2,1a 2,2+a 3,1a 3,2+…+a 1,1a 1,2表示的实际意义是( ) A .同意第1号或者第2号同学当选的人数B .同时同意第1号和第2号同学当选的人数C .不同意第1号或者第2号同学当选的人数D .不同意第1号和第2号同学当选的人数11.式子2x 1x 1+-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠1 12.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知直线m ∥n ,∠1=100°,则∠2的度数为_____.14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.15.9的算术平方根是 .16.分解因式:m 3–m=_____.17.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt △BCD 沿射线BD 方向平移,在平移的过程中,当点B 的移动距离为 时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC 1D 1为菱形.18.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.20.(6分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A 95<x≤100 4B 90<x≤95mC 85<x≤90nD 80<x≤8524E 75<x≤808F 70<x≤75 4请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.21.(6分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?22.(8分)如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF 的长.23.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数m y x = 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0x xk b m +-p 的解集(请直接写出答案).24.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD )靠墙摆放,高AD =80cm ,宽AB =48cm ,小强身高166cm ,下半身FG =100cm ,洗漱时下半身与地面成80°(∠FGK =80°),身体前倾成125°(∠EFG =125°),脚与洗漱台距离GC =15cm (点D ,C ,G ,K 在同一直线上).(cos80°≈0.17,sin80°≈0.982≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?25.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.26.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.27.(12分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:此次共调查了名学生;扇形统计图中D所在扇形的圆心角为;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴选项ABD都一定成立.故选C.2.B【解析】【分析】如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【详解】如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=12∠AOE=30°.故选:B.【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.D【解析】【分析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,∴D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4.A【解析】【分析】利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∴ab >0,所以③错误;∵x=-1时,y <0,∴a-b+c <0,而a >0, ∴a (a-b+c )<0,所以④正确.故选A .【点睛】本题考查了抛物线与x 轴的交点:对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.也考查了二次函数的性质.5.B【解析】【分析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a ∥b ,∴∠2+∠BAD=180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.7.D【解析】【分析】根据相反数的定义求解即可.【详解】21的相反数是21,故选D .【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.8.D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .9.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x y x y +=⋯⋯⎧⎨+=⋯⋯⎩①②①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是32x y =⎧⎨=-⎩. 故选C.【点睛】 本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.10.B【解析】【分析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.【详解】第1,2,3,……,1名同学是否同意第1号同学当选依次由a 1,1,a 2,1,a 3,1,…,a 1,1来确定, 是否同意第2号同学当选依次由a 1,2,a 2,2,a 3,2,…,a 1,2来确定,∴a 1,1a 1,2+a 2,1a 2,2+a 3,1a 3,2+…+a 1,1a 1,2表示的实际意义是同时同意第1号和第2号同学当选的人数, 故选B .【点睛】本题考查了推理应用题,题目比较新颖,是基础题.11.A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x 1x 1+-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 12.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A .考点:正多边形和圆.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.80°.【解析】【分析】如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.14.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.15.1.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239,∴9算术平方根为1.故答案为1.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.16.m (m+1)(m-1)【解析】【分析】根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以先提公因式,再利用平方差完成因式分解 【详解】解:()()()32111m m m m m m m -=-=+- 故答案为:m (m+1)(m-1).【点睛】本题考查因式分解,掌握因式分解的技巧是解题关键.17.3,3. 【解析】试题分析:当点B 的移动距离为33时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为3时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.试题解析:如图:当四边形ABC 1D 是矩形时,∠B 1BC 1=90°﹣30°=60°,∵B 1C 1=1,∴BB 1=113tan 6033B C ==︒, 当点B 3ABC 1D 1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=11tan303B C==︒,当点BABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.18.4.02×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(3)证明见解析(3)3或﹣3【解析】【分析】(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k为整数,∴(3k﹣3)3>2,即△>2.∴方程有两个不相等的实数根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x 3=3,2111k x k k+==+. ∵方程的两个实数根都是整数,且k 为整数,∴k=3或﹣3.【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.20.(1)80,12,28;(2)36°;(3)140人;(4)16 【解析】【分析】(1)用D 组的频数除以它所占的百分比得到样本容量;用样本容量乘以B 组所占的百分比得到m 的值,然后用样本容量分别减去其它各组的频数即可得到n 的值;(2)用E 组所占的百分比乘以360°得到α的值;(3)利用样本估计整体,用700乘以A 、B 两组的频率和可估计体育测试成绩在A 、B 两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.【详解】(1)24÷30%=80, 所以样本容量为80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案为80,12,28;(2)E 等级对应扇形的圆心角α的度数=880×360°=36°; (3)700×12+480=140, 所以估计体育测试成绩在A 、B 两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=21=126. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.21.(1)小球飞行时间是1s 时,小球最高为10m ;(1) 1≤t≤3.【解析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.22.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.23.(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B(2,﹣4)在y=mx上,∴m=﹣1.∴反比例函数的解析式为y=﹣8x.∵点A(﹣4,n)在y=﹣8x上,∴n=2.∴A (﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 24. (1) 小强的头部点E 与地面DK 的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .求出MF 、FN 的值即可解决问题; (2)求出OH 、PH 的值即可判断;试题解析:解:(1)过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=332≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E 点与地面DK 相距约为144.5cm .(2)过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB=48,O 为AB 中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH ﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm .25.(1)证明见解析(2)当∠ABC=60°时,四边形ABEF 为矩形【分析】(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.26.(1) 见解析;(2)15,35 4【解析】【分析】(1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据“一组邻边相等的平行四边形为菱形” 即可得证.(2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.【详解】解:(1)证明:连接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO∵OD=OA,∵BC是圆O的切线,OD是半径,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四边形AODE是平行四边形,∵OD=OA∴四边形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圆O的切线,OD是半径,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【点睛】本题主要考查圆中的计算问题、菱形以及相似三角形的判定与性质27.(1)120;(2)54°;(3)详见解析(4)1.【解析】【分析】(1)根据B 的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可.【详解】(1)(25+23)÷40%=120(名),即此次共调查了120名学生,故答案为120;(2)360°×10+8120=54°, 即扇形统计图中D 所在扇形的圆心角为54°,故答案为54°;(3)如图所示:;(4)800×30120=1(人), 答:估计对食品安全知识“非常了解”的学生的人数是1人.【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.。
天津市河北区2019-2020学年中考第二次模拟数学试题含解析
天津市河北区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c2.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A.2.6m2B.5.6m2C.8.25m2D.10.4m23.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE5.下列命题中假命题是()A.正六边形的外角和等于B.位似图形必定相似C.样本方差越大,数据波动越小D.方程无实数根6.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.677.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元8.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣310.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网]11.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= )①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯② 2525⋅=③④若12390∠∠∠++=o ,则它们互余 A .4B .14C .3-D .1312.不等式组1351x x -<⎧⎨-≤⎩的解集是( )A .x >﹣1B .x≤2C .﹣1<x <2D .﹣1<x≤2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点A (2,2)在双曲线上,将线段OA 沿x 轴正方向平移,若平移后的线段O'A'与双曲线的交点D 恰为O'A'的中点,则平移距离OO'长为____.14.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n 个“上”字需用_____枚棋子. 15.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 . 17.若a m =5,a n =6,则a m+n =________.18.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.20.(6分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y1>y1时x的取值范围.21.(6分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.22.(8分)已知函数y=3x(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC=2S△AOB,求点C 的坐标.23.(8分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()y m与甲队工作时间x(天)之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.24.(10分)解方程组:222232() x yx y x y ⎧-=⎨-=+⎩.25.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.26.(12分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.27.(12分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A 型商品的件数是用1000元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价少20元,已知A 型商品的售价为160元,B 型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x 件,该客商售完这200件商品的总利润为y 元 (1)求A 、B 型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a 元(50<a <70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可. 【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|, ∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c , 故答案为a+c . 故选A . 2.D 【解析】 【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可. 【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近, ∴小石子落在不规则区域的概率为0.65, ∵正方形的边长为4m , ∴面积为16 m 2设不规则部分的面积为s m 2 则16s=0.65 解得:s=10.4 故答案为:D . 【点睛】利用频率估计概率. 3.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D .考点:由三视图判断几何体.视频4.C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.5.C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.考点:命题与定理.6.B【解析】【分析】【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF=故选B.【点睛】本题考查相似三角形的判定及性质. 7.D 【解析】 【分析】设y 与x 之间的函数关系式为y =kπx 2,由待定系数法就可以求出解析式,再求出x =6时y 的值即可得. 【详解】解:根据题意设y =kπx 2, ∵当x =3时,y =18, ∴18=kπ•9, 则k =2π, ∴y =kπx 2=2π•π•x 2=2x 2, 当x =6时,y =2×36=72, 故选:D . 【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键. 8.B 【解析】 【分析】 【详解】解:各月每斤利润:3月:7.5-4.5=3元, 4月:6-2.5=3.5元, 5月:4.5-2=2.5元, 6月:3-1.5=1.5元, 所以,4月利润最大, 故选B . 9.A 【解析】 【分析】方程变形后,配方得到结果,即可做出判断. 【详解】方程2410x x +=﹣, 变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣), 故选A . 【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式. 10.D 【解析】 试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b , 乙所用铁丝的长度为:2a+2b , 丙所用铁丝的长度为:2a+2b , 故三种方案所用铁丝一样长. 故选D .考点:生活中的平移现象 11.D 【解析】 【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可. 【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确;=④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=,故选D . 【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值. 12.D 【解析】由﹣x <1得,∴x >﹣1,由3x ﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.【详解】∵点A(2,2)在双曲线上,∴k=4,∵平移后的线段O'A'与双曲线的交点D 恰为O'A'的中点,∴D点纵坐标为:1,∴DE=1,O′E=1,∴D点横坐标为:x=41=4,∴OO′=1,故答案为1.【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.14.4n+2【解析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+215.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a =1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.16.21 【解析】试题分析:这四个数中,奇数为1和3,则P (抽出的数字是奇数)=2÷4=12. 考点:概率的计算.17.1.【解析】【分析】根据同底数幂乘法性质a m ·a n =a m+n ,即可解题. 【详解】解:a m+n = a m ·a n =5×6=1. 【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.18.0.7【解析】【分析】用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.20.(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积21.(1)见解析;(2)2π.【解析】【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴»AD的长度=12032180ππ⨯⨯=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.22.(1)a=1;(2)C(0,﹣4)或(0,0).【解析】【分析】(1)把A(3,n)代入y=3x(x>0)求得n 的值,即可得A点坐标,再把A点坐标代入一次函数y=ax﹣2 可得a 的值;(2)先求出一次函数y=ax﹣2(a≠0)的图象与y 轴交点B 的坐标,再分两种情况(①当C点在y轴的正半轴上或原点时;②当C点在y轴的负半轴上时)求点C的坐标即可.【详解】(1)∵函数y=3x(x>0)的图象过(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y 轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC=2S△AOB,∴12×(m+2)×3=2×12×3,解得:m=0,②当C点在y 轴的负半轴上时,设(0,h),∵S△ABC=2S△AOB,∴12×(﹣2﹣h)×3=2×12×3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【点睛】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.23.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.24.111, 1x y =⎧⎨=-⎩;223232xy⎧=-⎪⎪⎨⎪=⎪⎩;331252xy⎧=-⎪⎪⎨⎪=-⎪⎩.【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.25. (1)证明见解析(2)四边形AFBE 是菱形【解析】试题分析:(1)由平行四边形的性质得出AD ∥BC ,得出∠AEG=∠BFG ,由AAS 证明△AGE ≌△BGF 即可;(2)由全等三角形的性质得出AE=BF ,由AD ∥BC ,证出四边形AFBE 是平行四边形,再根据EF ⊥AB ,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠BFG ,∵EF 垂直平分AB ,∴AG=BG ,在△AGEH 和△BGF 中,∵∠AEG=∠BFG ,∠AGE=∠BGF ,AG=BG ,∴△AGE ≌△BGF (AAS );(2)解:四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE=BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形,又∵EF ⊥AB ,∴四边形AFBE 是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.26.(1)3y x=-;(2)P 在第二象限,Q 在第三象限. 【解析】 试题分析:(1)求出点B 坐标即可解决问题;(2)结论:P 在第二象限,Q 在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B (﹣2,32),把B (﹣2,32)代入k y x=中,得到k=﹣3,∴反比例函数的解析式为3y x=-. (2)结论:P 在第二象限,Q 在第三象限.理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P 、Q 在不同的象限,∴P 在第二象限,Q 在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(1)80,100;(2)100件,22000元;(3)答案见解析.【解析】【分析】(1)先设A 型商品的进价为a 元/件,求得B 型商品的进价为(a+20)元/件,由题意得等式16001000220a a =⨯+ ,解得a =80,再检验a 是否符合条件,得到答案.(2)先设购机A 型商品x 件,则由题意可得到等式80x+100(200﹣x )≤18000,解得,x≥100;再设获得的利润为w 元,由题意可得w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,当x=100时代入w =﹣60x+28000,从而得答案.(3)设获得的利润为w 元,由题意可得w (a ﹣60)x+28000,分类讨论:当50<a <60时,当a =60时,当60<a <70时,各个阶段的利润,得出最大值.【详解】解:(1)设A 型商品的进价为a 元/件,则B 型商品的进价为(a+20)元/件,16001000220a a =⨯+ , 解得,a =80,经检验,a =80是原分式方程的解,∴a+20=100,答:A 、B 型商品的进价分别为80元/件、100元/件;(2)设购机A 型商品x 件,80x+100(200﹣x )≤18000,解得,x≥100,设获得的利润为w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴当x=100时,w取得最大值,此时w=22000,答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.。
2020年天津市河北区实验学校中考模拟数学试题二
11.如图,点 , , , 都在 上, , 平分 ,则 ()
A. B. C. D.
12.若抛物线 与 轴只有一个公共点,且过点 , ,则 的值为()
A.9B.6C.3D.0
13.已知直线 经过点 ,则 的值为__________.
14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸取一个小球,则两次摸取的小球标号的和等于5的概率是__________.
24.已知正方形 在平面直角坐标系中,点 , 分别在 轴, 轴的正半轴上,等腰直角三角形 的直角顶点 在原点, , 分别在 , 上,且 , .将 绕点 逆时针旋转,得 点 , 旋转后的对应点为 , .
(Ⅰ)①如图①,求 的长;②如图②,连接 , ,求证 ;
(Ⅱ)将 绕点 逆时针旋转一周,当 时,求点 的坐标(直接写出结果即可).
A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=200
9.如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有( )
A.4对B.3对C.2对D.1对
10.如图, 是中心为原点 ,顶点 , 在 轴上,半径为4的正六边形,则顶点 的坐标为()
k=2×6=12,
∴ .
故选D.
【点睛】
本题主要考查的是利用待定系数法确定反比例函数解析式的方法,熟练掌握待定系数法是解答本题的关键.
3.B
【解析】
【分析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
天津市河北区2019-2020学年中考二诊数学试题含解析
天津市河北区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④2.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <04.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =5.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( ) A .a r //b r B .a r -2b r =0 C .b r =12a r D .2a b =r r6.(﹣1)0+|﹣1|=( )A .2B .1C .0D .﹣17.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③14<t <22时,y=110﹣1t ;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤8.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°9.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.210.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC11.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(p a)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C .D .12.已知x=2是关于x 的一元二次方程x 2﹣x ﹣2a=0的一个解,则a 的值为( )A .0B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则依题意所列的方程是_____________.14.抛物线y=(x ﹣3)2+1的顶点坐标是____.15.已知正方形ABCD 的边长为8,E 为平面内任意一点,连接DE ,将线段DE 绕点D 顺时针旋转90°得到DG ,当点B ,D ,G 在一条直线上时,若DG=22,则CE 的长为_____.16.如图,在△ABC 中,AD 、BE 分别是BC 、AC 两边中线,则EDC ABCS S V V =_____.17.一个正多边形的一个外角为30°,则它的内角和为_____.18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 20.(6分)△ABC 在平面直角坐标系中的位置如图所示.画出△ABC 关于y 轴对称的△A 1B 1C 1;将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.21.(6分)如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数k y x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积22.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.用含m 或n 的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.23.(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.24.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.25.(10分)已知:如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线 AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点 C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标.26.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题: (1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.27.(12分)如图1,已知直线l :y=﹣x+2与y 轴交于点A ,抛物线y=(x ﹣1)2+m 也经过点A ,其顶点为B ,将该抛物线沿直线l 平移使顶点B 落在直线l 的点D 处,点D 的横坐标n (n >1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.2.B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.3.A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a >1.∵对称轴在y 轴的左边,∴b 2a-<1.∴b >1. ∵图象与y 轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b ﹣2=1.∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣3,∵b >1,∴b=2﹣a >1.∴a <2.∵a >1,∴1<a <2.∴1<2a <3.∴﹣3<2a ﹣3<1,即﹣3<P <1.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.4.C【解析】【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误, ∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.5.B【解析】试题解析:向量最后的差应该还是向量.20.a b v v v -= 故错误.故选B.6.A【解析】【分析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.7.D【解析】【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822610t -=或810622t=-, 解得t=13214(舍去)或t=14.1 故⑤正确故选:D .【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.8.B【解析】【分析】在等腰三角形△ABE 中,求出∠A 的度数即可解决问题.【详解】解:在正五边形ABCDE 中,∠A=15×(5-2)×180=108°又知△ABE 是等腰三角形,∴AB=AE ,∴∠ABE=12(180°-108°)=36°.故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.9.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.10.C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.11.C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=kv(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.12.C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.14.(3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.15.或.【解析】【分析】本题有两种情况,一种是点G在线段BD的延长线上,一种是点G在线段BD上,解题过程一样,利用正方形和三角形的有关性质,求出MD、MG的值,再由勾股定理求出AG的值,根据SAS证明AGD CEDV V≌,可得CE AG,即可得到CE的长.【详解】解:当点G 在线段BD 的延长线上时,如图3所示.过点G 作GM AD ⊥于M ,BD Q 是正方形ABCD 的对角线,45ADB GDM ∴∠=∠=︒,22GM AD DG ⊥=Q ,,2MD MG ∴==,在Rt AMG V 中,由勾股定理,得:22226AG AM MG =+=在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌226CE AG ∴==当点G 在线段BD 上时,如图4所示.过G 作GM AD ⊥于M .BD Q 是正方形ABCD 的对角线,45ADG ∴∠=︒22GM AD DG ⊥=Q ,,2MD MG ∴==,6AM AD MD ∴==﹣在Rt AMG V 中,由勾股定理,得:22210AG AM MG =+=在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌ 210CE AG ∴==, 故答案为210或226.【点睛】本题主要考查了勾股定理和三角形全等的证明.16.14【解析】【分析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】∵AE=EC ,BD=CD ,∴DE ∥AB ,DE=12AB , ∴△EDC ∽△ABC ,∴EDC ABC S S V V =21()4ED AB =, 故答案是:14. 【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理. 17.1800°【解析】试题分析:这个正多边形的边数为=12, 所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.18.1【解析】【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =,PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=,ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,,224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<. (3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽,EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.20.(1)见解析;(2)见解析,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l :x =1,见解析.【解析】【分析】(1)根据轴对称图形的性质,找出A 、B 、C 的对称点A 1、B 1、C 1,画出图形即可;(2)根据平移的性质,△ABC 向右平移6个单位,A 、B 、C 三点的横坐标加6,纵坐标不变; (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l :x=1.【详解】(1)由图知,A (0,4),B (﹣2,2),C (﹣1,1),∴点A 、B 、C 关于y 轴对称的对称点为A 1(0,4)、B 1(2,2)、C 1(1,1),连接A 1B 1,A 1C 1,B 1C 1,得△A 1B 1C 1;(2)∵△ABC 向右平移6个单位,∴A 、B 、C 三点的横坐标加6,纵坐标不变,作出△A 2B 2C 2,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l :x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1)18y x=,N(3,6);(2)y =-x +2,S △OMN =3. 【解析】【分析】(1)求出点M 坐标,利用待定系数法即可求得反比例函数的解析式,把N 点的纵坐标代入解析式即可求得横坐标;(2)根据M 点的坐标与反比例函数的解析式,求得N 点的坐标,利用待定系数法求得直线MN 的解析式,根据△OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN 即可得到答案.【详解】解:(1)∵点M 是AB 边的中点,∴M(6,3). ∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩ , 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.22.(1)矩形的周长为4m;(2)矩形的面积为1.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.23.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A 厂家合格率=630÷(2000×35%)=90%, B 厂家合格率=370÷(2000×20%)=92.5%, C 厂家合格率=95%,D 厂家合格率470÷500=94%,合格率排在前两名的是C 、D 两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C 、D 的有2种,则P (选中C 、D )=212=16. 考点:1.条形统计图;2.扇形统计图;3. 树状图法.24.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x ,则第二季度的投资额为10(1+x )万元,第三季度的投资额为10(1+x )2万元,由第三季度投资额为10(1+x )2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x ,由题意,得:10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x )2=14.4建立方程是关键.25.(1)抛物线的解析式为243y x x =-+;(2)12; (1)满足条件的点有F 1(52,0),F 2(52-,0),F 15,0),F 4(50).【解析】分析:(1)根据对称轴方程求得b=﹣4a ,将点A 的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;(2)抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴12262122BCD BCDE S S BD CN ==⨯⨯⋅=⨯=V 平行四边形. (1)联结CE .分类讨论:(i )当CE 为矩形的一边时,过点C 作CF 1⊥CE ,交x 轴于点F 1,设点F 1(a ,0).在Rt △OCF 1中,利用勾股定理求得a 的值;(ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点F 1、F 4,利用圆的性质解答.详解:(1)∵顶点C 在直线x=2上,∴22b x a=-=,∴b=﹣4a . 将A (1,0)代入y=ax 2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴抛物线的解析式为y=x 2﹣4x+1.(2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵y=x 2﹣4x+1═(x ﹣2)2﹣1,∴C (2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.∵抛物线y=x 2﹣4x+1与y 轴交于点B ,∴B (0,1),∴BD=2.∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,∴12262122BCD BCDE S S BD CN ==⨯⨯⋅=⨯=V 平行四边形. (1)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点,即 OE OC == (i )当CE 为矩形的一边时,过点C 作CF 1⊥CE ,交x 轴于点F 1,设点F 1(a ,0).在Rt △OCF 1中,22211OF OC CF =+,即 a 2=(a ﹣2)2+5,解得: 52a =,∴点1502F (,). 同理,得点2502F -(,); (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点F 1、F 4,可得: 34OF OF OC ===,得点3F )、4F ().综上所述:满足条件的点有123550022F F F -(,),(,),)),4F ().点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.26.(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】【分析】(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图, ∵12215518721824318.6.25x ⨯+⨯+⨯+⨯+⨯== ∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数. 27.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;2+1.【解析】【分析】1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。
2023年天津市河北区中考数学二模试卷【答案版】
2023年天津市河北区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的有一项是符合题目要求的。
1.计算(﹣5)+(﹣7)的结果等于( ) A .12B .﹣12C .2D .﹣22.tan30°的值为( ) A .12B .√33C .√3D .√323.将68000000用科学记数法表示应为( ) A .0.68×107B .6.8×106C .0.68×106D .6.8×1074.志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是( )A .B .C .D .5.如图是一个由4个相同的正方体组成的立体图形,它的俯视图是( )A .B .C .D .6.估计√15的值在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.计算m m−1−1m−1的结果是( )A .1m−1B .mm−1C .1D .m ﹣18.若点A(﹣3,y1),B(﹣2,y2),C(4,y3)都在反比例函数y=−1的图象上,则y1,y2,y3的大小x关系是()A.y3<y1<y2B.y1<y3<y2C.y2<y1<y3D.y1<y2<y39.已知一元二次方程x2﹣3x+1=0有两个实数根x1,x2,则x1+x2﹣x1x2的值为()A.6B.2C.4D.310.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,且∠COA=45°,OA=4,则点B的坐标为()A.(4+2√2,2√2)B.(2√2,2√2)C.(2+2√2,2)D.(√2,2)11.如图,已知△ABC为等腰直角三角形,∠CBA=90°,将△ABC绕点A顺时针旋转60°得到△ADE,点B,C的对应点分别为点D,E,下列结论中错误的是()A.BC=AD B.AC=CEC.∠CAE﹣∠BAC=10°D.△ABD是等边三角形12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣3,1),(0,﹣2),其对称轴在y轴右侧,当x=4时,y>0.有下列结论:①abc>0;②方程ax2+bx+c=﹣1有两个不相等的实数根;③a>314;其中,正确结论的个数是()A.0个B.1个C.2个D.3个二.填空题:本大题共6小题,每小题3分,共18分.13.计算2x﹣3x+2x的结果等于.14.计算(2√3−2)2的结果等于.15.在一个不透明的袋子里装着1个黑球、3个绿球、4个红球,它们除颜色不同外其余都相同,现从袋中任意摸出一个球是红球的概率为 .16.将函数y =2x ﹣1的图象向右平移2个单位后,所得图象的函数表达式为 .17.如图,在矩形ABCD 中,AB =2,BC =2√3,连接AC ,点E 在AC 上,∠DEF =90°,EC 平分∠DEF ,AE = .18.如图,在每个小正方形的边长为1的网格中,点M ,Q 在格点上,点N 为小正方形边的中点,连接MN .(Ⅰ)MN 的长为 .(Ⅱ)点P 为线段MN 上一点,当∠MPQ =45° 时,请用无刻度的直尺在网格中画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题:本大题共7小题,共66分,解答应写出文字说明。
天津市河北区2019-2020学年中考数学第二次调研试卷含解析
天津市河北区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .a 3+a 3=a 6B .a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 72.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内3.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2 B .20162 C .20152( D .20161()24.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°5.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A .①②正确,③错误B .①③正确,②错误C .②③正确,①错误D .①②③都正确 6.下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形7.若2m ﹣n =6,则代数式m-12n+1的值为( ) A .1 B .2 C .3 D .48.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE9.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212-D .()201112+12 10.(2017•鄂州)如图四边形ABCD 中,AD ∥BC ,∠BCD=90°,AB=BC+AD ,∠DAC=45°,E 为CD 上一点,且∠BAE=45°.若CD=4,则△ABE 的面积为( )A.B.C.D.11.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于()A.40°B.70°C.60°D.50°12.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.15.已知一个斜坡的坡度1:3i =,那么该斜坡的坡角的度数是______.16.函数y =21x -中,自变量x 的取值范围是 17.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.18.反比例函数k y x=的图象经过点()1,6和(),3m -,则m = ______ . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)如图1,若BC =3,AB =5,则ctanB =_____;(2)ctan60°=_____;(3)如图2,已知:△ABC 中,∠B 是锐角,ctan C =2,AB =10,BC =20,试求∠B 的余弦cosB 的值.20.(6分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?21.(6分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).22.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.23.(8分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解. 24.(10分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?25.(10分)已知:如图,△MNQ 中,MQ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .26.(12分)(12sin45°+(2﹣π)0﹣(13)﹣1;(2)先化简,再求值2a a ab-•(a 2﹣b 2),其中a ,b =﹣. 27.(12分)解分式方程:21133x x x-+=--.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A 、a 3+a 3=2a 3,故A 错误;B 、a 6÷a 2=a 4,故B 正确;C 、a 3•a 5=a 8,故C 错误;D 、(a 3)4=a 12,故D 错误.故选:B .【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.2.C【解析】【分析】利用图中信息一一判断即可.【详解】解: A 、正确.不符合题意.B 、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m 3的持续时间达到了11min ,正确,不符合题意;C 、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D 、正确.不符合题意,故选C.本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型. 3.A【解析】【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=(12)n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,∴S n=(12)n﹣2.当n=2018时,S2018=(12)2018﹣2=(12)3.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=(12)n﹣2”.4.B【解析】【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故选B此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等5.D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.6.C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.D【解析】【分析】先对m-12n+1变形得到12(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.【详解】m12n+1=12(2m﹣n)+1当2m﹣n=6时,原式=12×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.8.A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.A【解析】【分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.10.D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB 于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.11.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.行四边形ABCD【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=5,则PQ=5535-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S △DPQ =12DP•QH=12×12×35=320. 故③错误;④过点Q 作QN ⊥AD 于N ,如图3.易得DP ∥NQ ∥AB ,根据平行线分线段成比例可得32DN PQ AN BQ ==, 则有312DN DN =-, 解得:DN=35. 由DQ=1,得cos ∠ADQ=35DN DQ =. 故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用. 14.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴()()2234x x +,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 15.30°【解析】【分析】坡度=坡角的正切值,据此直接解答.【详解】解:∵31:3tan α==, ∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.16.x≥0且x≠1【解析】试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案. 试题解析:根据题意可得x-1≠0;解得x≠1;故答案为x≠1.考点: 函数自变量的取值范围;分式有意义的条件.17. 【解析】【分析】用女生人数除以总人数即可.【详解】 由题意得,恰好是女生的准考证的概率是. 故答案为:.【点睛】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.18.-1【解析】【分析】先把点(1,6)代入反比例函数y=k x ,求出k 的值,进而可得出反比例函数的解析式,再把点(m ,-3)代入即可得出m 的值.【详解】解:∵反比例函数y=k x 的图象经过点(1,6), ∴6=1k ,解得k=6, ∴反比例函数的解析式为y=6x . ∵点(m ,-3)在此函数图象上上,∴-3=6m,解得m=-1. 故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2);(3).【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如图2,在Rt△ACH中,ctanC==2,设AH=x,则CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考点:解直角三角形.20.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.21.5.6千米【解析】【分析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.22.(1)列表见解析;(2)这个游戏规则对双方不公平.【解析】【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率31 93 =;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数)49=,P(和为偶数)59=,而4599≠,所以这个游戏规则对双方是不公平的.【点睛】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.23.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,224.购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1),解得x=1.答:购买了桂花树苗1棵.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.25.(1)作图见解析;(2)证明书见解析.【解析】【分析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.(2)如图,延长DA至E,使得AE=CB,连结CE.∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考点:1.尺规作图;2.全等三角形的判定和性质.26.(1)2-2 (2)-2【解析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到(2)先把2a ab原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3 =2﹣+1﹣3 =﹣2; (2)•(a 2﹣b 2) =•(a+b )(a ﹣b ) =a+b ,当a=,b=﹣2时,原式=+(﹣2)=﹣.27.2x =.【解析】试题分析:方程最简公分母为(3)x -,方程两边同乘(3)x -将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘(3)x -,得:213x x --=-,整理解得:2x =,经检验:2x =是原方程的解.考点:解分式方程.。
2020年天津市中考数学二模试卷及解析
2020年天津市中考二模试卷数学试卷一、选择题(本大题共12小题,共36分) 1. 计算(−6)+2 的结果等于( )A. −8B. −4C. 4D. 8 2. tan60°的值为( )A. √33B. √23C. √3D. √23. 下面图形中,是中心对称图形的是( )A. B. C. D.4. 2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中4380000000科学记数法表示为( )A. 438×107B. 4.38×108C. 4.38×109D. 4.38×10105. 如图,是由七个相同的小正方体组成的立体图形,其俯视图是( )A. B. C. D.6. √15介于两个相邻整数之间,这两个整数是( )A. 2~3B. 3~4C. 4~5D. 5~67. 化简21−a −1a−1的结果是( )A. 31−aB. 3a−1C. 11−aD. 1a−18. 二元一次方程组{2x −y =−2x +y =5的解为( )A. {x =−1y =6B. {x =73y =83C. {x =3y =2D. {x =1y =49. 如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A′和D′处,若∠1=50°,则∠2的度数是( )A. 65°B. 60°C. 50°D. 40°10. 已知点A(x 1,y 1),(x 2,y 2)是反比例函数y =2x 图象上的点,若x 1>0>x 2,则一定成立的是( )A. y 1>y 2>0B. y 1>0>y 2C. 0>y 1>y 2D. y 2>0>y 111. 如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( ) A. 6 B. 8 C. 12 D. 1012. 已知:抛物线y =ax 2+bx +c(a <0)经过点(−1,0),且满足4a +2b +c >0,以下结论:①a +b >0;②a +c >0;③−a +b +c >0;④b 2−2ac >5a 2,其中正确的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(本大题共6小题,共18分) 13. 化简:(−a 2)⋅a 5=______.14. 计算:(√5+√6)(√5−√6)=______.15. 箱子里有7个白球、3个红球,它们仅颜色不同,从中随机摸出一球是白球的概率是______.16. 若直线y =−2x +3b +2经过第一、二、四象限,则b 的取值范围是______. 17. 如图,△ABC 是等边三角形.P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q.若BF =2,则PE 的长为______. 18. 如图,在由边长都为1的小正方形组成的网格中,点A ,B ,C 均为格点,点P ,Q分别为线段AB ,BC 上的动点,且满足AP =BQ (I)线段AB 的长度等于______; (Ⅱ)当线段AQ +CP 取得最小值时,请借助无刻度直尺在给定的网格中画出线段AQ 和CP ,并简要说明你是怎么画出点Q ,P 的(不要求证明)______.三、解答题(本大题共7小题,共66分)19. 解不等式组{3x <x +8 ①4(x +1)≤7x +10 ②请结合意填空,完成本题的解答 (Ⅰ)解不等式①,得______; (Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为______.20.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次一共调查的学生人数是______人(2)所调查学生读书本数的众数是______本,中位数是______本.(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?21.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP//AC,求∠OCD的度数.22.综合实践课上,某兴趣小组同学用航拍无人机进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得学校1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°,此时航拍无人机的高度为50米.已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,B为CD的中点,求2号楼的高度.23.某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)一次印制数量51020 (x)甲印刷厂收费(元)155______ ______ …______ 乙印刷厂收费(元)12.5______ ______ …______24.如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A 按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=√3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与t之间的函数关系式;②当t≤0时,要使S=√3,请直接写出所有符合条件的点P的坐标.425.如图,抛物线y=ax2+bx+5过点A(1,0),B(5,0),与y轴相交于点C.2(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:(−6)+2=−4.故选:B.绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.依此即可求解.考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】C【解析】解:tan60°=√3.故选:C.将特殊角的三角函数值代入求解.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.【答案】B【解析】解:A、不是中心对称图形,本选项错误;B、是中心对称图形,本选项正确;C、不是中心对称图形,本选项错误;D、不是中心对称图形,本选项错误.故选:B.结合中心对称图形的概念进行求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:将4380000000用科学记数法表示为:4.38×109.故选C.5.【答案】D【解析】解:这个立体图形的俯视图是:,故选:D.根据组合体的形状即可求出答案.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.解题的关键是根据组合体的形状进行判断.6.【答案】B【解析】解:∵3<√15<4, ∴这两个整数是:3~4. 故选:B .直接利用估算无理数的方法得出√15的取值范围即可.此题主要考查了估算无理数的大小,正确得出√15的取值范围是解题关键. 7.【答案】A【解析】解:原式=−2a−1−1a−1=−3a−1=31−a ,故选:A .原式变形后,利用同分母分式的减法法则计算即可得到结果. 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 8.【答案】D【解析】解:{2x −y =−2①x +y =5②,①+②,得:3x =3, 解得:x =1,将x =1代入②,得:1+y =5, 解得:y =4, 所以方程组的解为{x =1y =4,故选:D .利用加减消元法求解可得.本题主要考查解二元一次方程组,解题关键是掌握方程组解法中的加减消元法和代入消元法.9.【答案】A【解析】解:由折叠的性质得,∠AEF =∠A′EF , ∵∠1=50′, ∴∠AEF =∠A′EF =180°−∠12=65°,∵四边形ABCD 是矩形, ∴AB//CD ,∴∠2=∠AEF =65°, 故选:A .由折叠的性质得到∠AEF =∠A′EF ,根据平行线的性质即可得到结论.本题考查了翻折变换−折叠问题,矩形的性质,平行线的性质,熟练掌握折叠的性质是解题的关键. 10.【答案】B【解析】解:∵k =2>0, ∴函数为减函数, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 2<0<y 1;故选:B.(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限反比例函数y=2x内,y随x的增大而减小判定则可.本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.11.【答案】D【解析】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM=√62+82=10,∴DN+MN的最小值是10.故选:D.要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.12.【答案】D【解析】解:(1)因为抛物线y=ax2+bx+c(a<0)经过点(−1,0),所以原式可化为a−b+c=0----①,又因为4a+2b+c>0----②,所以②−①得:3a+3b>0,即a+b>0;(2)②+①×2得,6a+3c>0,即2a+c>0,∴a+c>−a,∵a<0,∴−a>0,故a+c>0;(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a−b+c=0,∴−a+b−c=0,两边同时加2c得−a+b−c+2c=2c,整理得−a+b+c=2c>0,即−a+b+c>0;(4)∵过(−1,0),代入得a−b+c=0,∴b2−2ac−5a2=(a+c)2−2ac−5a2=c2−4a2=(c+2a)(c−2a)又∵4a+2b+c>04a+2(a+c)+c>0即2a+c>0①∵a<0,∴c>0则c−2a>0②由①②知(c+2a)(c−2a)>0,所以b2−2ac−5a2>0,即b2−2ac>5a2综上可知正确的个数有4个.故选:D.(1)因为抛物线y=ax2+bx+c(a<0)经过点(−1,0),把点(−1,0)代入解析式,结合4a+2b+c>0,即可整理出a+b>0;(2)②+①×2得,6a+3c>0,结合a<0,故可求出a+c>0;(3)画草图可知c>0,结合a−b+c=0,可整理得−a+b+c=2c>0,从而求得−a+ b+c>0;(4)把(−1,0)代入解析式得a−b+c=0,可得出2a+c>0,再由a<0,可知c>0则c−2a>0,故可得出(c+2a)(c−2a)>0,即b2−2ac−5a2>0,进而可得出结论.此题是一道结论开放性题目,考查了二次函数的性质、一元二次方程根的个数和图象的位置之间的关系,同时结合了不等式的运算,是一道难题.13.【答案】−a7【解析】解:原式=−a2⋅a5=−a7.故答案为:−a7.根据同底数幂的乘除法进行计算即可.本题考查了整式的运算,掌握平同底数幂的运算法则是解题的关键.14.【答案】−1【解析】解:(√5+√6)(√5−√6)=(√5)2−(√6)2=5−6=−1.故答案为:−1.利用平方差公式求解即可得:原式=(√5)2−(√6)2,继而求得答案.此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.15.【答案】710【解析】解:∵箱子里有7个白球、3个红球,∴从中随机摸出一球是白球的概率是77+3=710.故答案为710.用白球的个数除以球的总个数即可.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】b>−23【解析】解:∵直线y=−2x+3b+2经过第一、二、四象限,∴3b+2>0,∴b>−2.3.故答案为:b>−23由一次函数图象经过的象限结合一次函数图象与系数的关系,即可得出关于b的一元一次不等式,解之即可得出结论.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.17.【答案】√3【解析】解:∵△ABC是等边三角形.P是∠ABC的平分线BD上一点,∴∠FBQ=∠EBP=30°,∴在直角△BFQ中,BQ=BF⋅cos∠FBQ=2×√3=√3,2又∵QF是BP的垂直平分线,∴BP=2BQ=2√3.∵直角△BPE中,∠EBP=30°,BP=√3.∴PE=12故答案是:√3.在直角△BFQ中,利用三角函数即可求得BQ的长,则BP的长即可求得,然后在直角△BPE中,利用30度所对的直角边等于斜边的一半即可求得PE的长.本题考查了等边三角形的性质以及直角三角形的性质和三角函数,正确求得BQ的长是关键.18.【答案】5 如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK交AB于P,点P,Q即为所求.【解析】解:(I)线段AB的长度=√32+42=5.故答案为5.(Ⅱ)如图1中,作BH⊥AB,使得BH=AC=3,易证△CAP≌△HBQ,推出HQ=PC,∴PC+AQ=AQ+HQ,∵AQ+QH≤AH,∴当A,Q,H共线时,AQ+QH的值最小.如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK 交AB于P,点P,Q即为所求.故答案为如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK交AB于P,点P,Q即为所求.(I)利用勾股定理计算即可.(Ⅱ)如图1中,作BH⊥AB,使得BH=AC=3,易证△CAP≌△HBQ,推出HQ=PC,推出PC+AQ=AQ+HQ,由AQ+QH≤AH,可知当A,Q,H共线时,AQ+QH的值最小.由此即可解决问题.本题考查复杂作图,勾股定理,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.19.【答案】(Ⅰ)x<4(Ⅱ)x≥−2(Ⅲ)(Ⅳ)−2≤x<4解:{3x<x+8 ①4(x+1)≤7x+10 ②(I)解不等式①,得x<4;(Ⅱ)解不等式②,得x≥−2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为−2≤x<4,故答案为:x<4,x≥−2,−2≤x<4.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.20.【答案】解:(1)20;(2)4;4 ;(3)每个人读书本数的平均数是:x−=120×(1+2×1+3×3+4×6+5×4+6×2+7×2+8)=4.5.∴总数是:800×4.5=3600.答:估计该校学生这学期读书总数约3600本.【解析】【分析】本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.(1)将条形图中的数据相加即可;(2)根据众数和中位数的概念解答即可;(3)先求出平均数,再解答即可.【解答】解:(1)1+1+3+4+6+2+2+1=20,故答案为:20;(2)众数是4,中位数是4;故答案为:4;4;(3)见答案.21.【答案】解:(1)如图1,连接OD,∵AB是⊙O的直径,弦CD与AB相交,∠BAC=40°,∴∠ACB=90°.∴∠ABC=∠ACB−∠BAC=90°−40°=50°.∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)如图2,连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP//AC,又∠BAC=40°,∴∠P=∠BAC=40°.∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=130°.∴∠ACD=65°.∵OC=OA,∠BAC=40°,∴∠OCA=∠BAC=40°.∴∠OCD=∠ACD−∠OCA=65°−40°=25°.【解析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【答案】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°−60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB−GB=50−20=30米,=10√3米,∴EG=AG⋅tan30°=30×√33在Rt△AHP中,AH=HF⋅tan45°=10√3米,∴FD=HB=AB−AH=50−10√3(米).答:2号楼的高度为(50−10√3)米.【解析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF 是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.此题考查了解直角三角形的应用−仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.23.【答案】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;【解析】(1)甲的印刷费150+x,乙的印刷费2.5x,分别代入即可;(2)对甲来说,印刷大于800份时花费大于950元;对乙来说,印刷大于800份时花费大于2000元;本题考查代数式求值;能够根据题意列出代数式,并根据实际情况进行最优求解是关键.24.【答案】解:(Ⅰ)∵A(0,4),∴OA=4,∵P(t,0),∴OP=t,∵△ABD是由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP,∵t=√3,∴OP =√3, ∴DP =AP =√AO 2+OP 2=√19; (Ⅱ)①当t >0时,如图1,BD =OP =t , 过点B ,D 分别作x 轴的垂线,垂足于F ,H ,过点B 作x 轴的平行线, 分别交y 轴于点P ,交DH 于点G ,∵△OAB 为等边三角形,BE ⊥y 轴,∴∠ABP =30°,AP =OP =2,∵∠ABD =90°,∴∠DBG =60°,∴DG =BD ⋅sin60°=√32t , ∵GH =OP =2,∴DH =2+√32t , ∴S =12t(2+√32t)=√34t 2+t(t >0);②当t ≤0时,分两种情况:∵点D 在x 轴上时,如图2在Rt △ABD 中,BD =OP =4√33,i 、当−4√33<t ≤0时,如图3, BD =OP =t ,BG =−√32t , ∴DH =GF =BF −BG =2−(−√32t)=2+√32t , ∴−12t(2+√32t)=√34, ∴t =−√33或t =−√3, ∴P(−√33,0)或(−√3,0), ii 、当t ≤−4√33时,如图4, BD =OP =−t ,DG =−√32t , ∴DH =−√32t −2, ∴12(−t)(−2−√32t)=√34, ∴t =−√21−2√33或t =√21−2√33(舍), ∴P(−√21−2√33,0).【解析】(Ⅰ)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;(Ⅱ)①先求出GH=OP=2,进而求出DG,再得出DH,即可得出结论;②分两种情况,利用三角形的面积建立方程求解即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式,正确作出辅助线是解本题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx+52过点A(1,0),B(5,0),∴0=a+b+5 20=25a+5b+5 2∴a=12,b=−3∴解析式y=12x2−3x+52(2)当y=0,则0=12x2−3x+52∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,−2),AB=4∵抛物线与y轴相交于点C.∴C(0,5 2 )如图1①如AB为菱形的边,则EF//AB,EF=AB=4,且E的横坐标为3 ∴F的横坐标为7或−1∵AE=AB=4,AM=2,EM⊥AB∴EM=2√3∴F(7,2√3),或(−1,2√3)∴当x=7,y=12×49−7×3+52=6∴点F到二次函数图象的垂直距离6−2√3②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2√3∴F(3,−2√3)∴点F到二次函数图象的垂直距离−2+2√3(3)当F(3,−2√3)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2√3∴AP=6在Rt△ANP中,AN=√36+12=4√3∴AQ+BQ+FQ的和最短值为4√3.【解析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.本题考查了二次函数的综合题,待定系数法,菱形的性质,勾股定理等有关知识,关键是构造三角形转化BQ,和BQ的长.。
2020年天津市河北区 九年级二模(数学)试卷(含答案)
1 b c 0
得 c 3
,…… 2 分
b 2
∴
c
3
,
∴抛物线的解析式为 y=x2﹣2x﹣3,…… 3 分 ∴y=(x﹣1)2﹣4, ∴顶点 D(1,﹣4).…… 4 分 (2)∵y=x2﹣2x﹣3,
解:(1)如图①所示:过点 C 作 CG⊥AB 于 G 点. ∵B(12,0) ,得 OB=12,……1 分 在 Rt△OBC 中,由 OB=12,∠OBC=30°,得 OC=6.…… 2 分 ∴∠COB=60° 在 Rt△OCG 中,OG=OC•cos60°=3.…… 3 分
∴CG=OC•sin60°= 3 3 .
∴ 这组数据的中位数为 1.2. …… 6 分
(Ⅲ)∵在统计的健步走的步数样本数据中,步数为 1.1 万约占 20%,
∴估计 365 天中,步数为 1.1 万约占 20%,
365×20%=73.
答:若小明坚持健步走一年(记为 365 天),步数为 1.1 万步的天数约为
73 天. …… 8 分
(21)本小题 10 分
B′D=x,DG= 1 x,B′G= 3 x ,B′E=x﹣6,
2
2
EH= 3 (x 6) . 3
1
重叠部分的面积为 y=S△B′DG﹣S△B′EH= DG•B′G
2 ﹣ 1 B′E•EH,
2
即 y= 1 × 1 x× 3 x - 1 (x 6) 3 (x 6)
22 2 2
3
九年级数学答案 第 4页 共 6 页
(Ⅲ)如果在 A 公司购买,所需的费用为:
y1 =1.95×50=97.5 万元;…… 8 分
如果在 B 公司购买,所需的费用为:
y2 =2×30+1.9×(50﹣30)=98 万元;…… 9 分
天津市河北区2020届初中数学毕业生学业考试模拟试卷试题二【附答案】
(A)(B)(C)(D)
)
))
均在格点上.点E 边上的动点,连接DP和
(Ⅰ)本次记录的总天数为_____________,图①中m的值为(Ⅱ)求小名近期健步走步数的平均数、众数和中位数;
在平面直角坐标系中,两个形状、大小完全相同的三角板OBC ,DEF ,按如图所示的位置摆放,O 为原点,点B (12,0) ,点B 与点D 重合,边OB 与边DE 都在x 轴上.其中,∠C =∠DEF =90°,∠OBC =∠F =30°.(1)如图①,求点C 坐标;
(2)现固定三角板DEF ,将三角板OBC 沿x 轴正方向平移,得到△O′B′C′ ,当点O′ 落点D 上时停止运动.设三角板平移的距离为x ,两个三角板重叠部分的面积为y .求y 关于x 的函数解析式,并写出自变量x 的取值范围;
(3)在(2)条件下,设边BC 的中点为点M ,边DF 的中点为点N .直接写出在三角板平移过程中,当点M 与点N 之间的距离最小时,点M 的坐标(直接写出结果即可).
(25)本小题10分
已知抛物线y =c bx x ++2
的图像与x 轴的一个交点为A (-1,0),另一个交点为B ,与y 轴交于点C (0,﹣3),顶点为D .(1)求二次函数的解析式和点D 的坐标;
(6)。
【附5套中考模拟试卷】天津市河北区2019-2020学年中考数学二模试卷含解析
天津市河北区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算结果是无理数的是( ) A .32×2B.32⨯C .722÷D .22135-2.若关于x 的不等式组255332xx x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-„ B .116a 2-<<-C .1162a -<-„ D .1162a --剟3.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒4.如图,函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC ⊥AB ,且AC=AB ,则点C 的坐标为( )A .(2,1)B .(1,2)C .(1,3)D .(3,1)5.下列运算正确的是( ) A .x 2•x 3=x 6 B .x 2+x 2=2x 4 C .(﹣2x )2=4x 2D .( a+b )2=a 2+b 26.如图,l 1、l 2、l 3两两相交于A 、B 、C 三点,它们与y 轴正半轴分别交于点D 、E 、F ,若A 、B 、C 三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( ) ①13EA EC =,②S △ABC =1,③OF=5,④点B 的坐标为(2,2.5)A.1个B.2个C.3个D.4个7.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.148.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=9.下列函数中,y关于x的二次函数是( )A.y=ax2+bx+c B.y=x(x﹣1)C.y=21xD.y=(x﹣1)2﹣x210.化简(﹣a2)•a5所得的结果是( )A.a7B.﹣a7C.a10D.﹣a1011.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±112.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图①,在矩形ABCD 中,对角线AC 与BD 交于点O ,动点P 从点A 出发,沿AB 匀速运动,到达点B 时停止,设点P 所走的路程为x ,线段OP 的长为y ,若y 与x 之间的函数图象如图②所示,则矩形ABCD 的周长为_____.14.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.15.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为16.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin2A=_____. 17.如图,某景区的两个景点A 、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时、测得景点A 的俯角为45°,景点B 的俯角为30°,此时C 到地面的距离CD 为100米,则两景点A 、B 间的距离为__米(结果保留根号).18.不等式组1x x m >-⎧⎨<⎩有2个整数解,则m 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图1,反比例函数ky x=(x >0)的图象经过点A (231),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D .(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.20.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?21.(6分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数……第9个数……第n个数A组﹣6 ﹣5 ﹣2 ……58 ……n2﹣2n﹣5B组 1 4 7 10 ……25 ……(1)A组第4个数是;用含n的代数式表示B组第n个数是,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.22.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?23.(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).24.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y 与自变量x 之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.(10分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.26.(12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出). 根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表). 统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.27.(12分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B6,故B是无理数;C366,故C不是无理数;-+=⨯12,故D不是无理数D(135)(135)818故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型. 2.A 【解析】 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-… 故选:A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键. 3.B 【解析】 【分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【详解】 解,连结OB ,∵PA 、PB 是O e 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB , ∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB , ∴62∠=∠=︒BOC P ,∵»»BCBC =, ∴1312∠=∠=︒D BOC , ∵//BD AC , ∴31∠=∠=︒C D , 故选:B . 【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答. 4.D 【解析】 【分析】过点C 作CD ⊥x 轴与D ,如图,先利用一次函数图像上点的坐标特征确定B (0,2),A (1,0),再证明△ABO ≌△CAD ,得到AD =OB =2,CD =AO =1,则C 点坐标可求. 【详解】如图,过点C 作CD ⊥x 轴与D.∵函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2);当y =0时,x =1,则A (1,0).∵AC ⊥AB ,AC =AB ,∴∠BAO +∠CAD =90°,∴∠ABO =∠CAD.在△ABO 和△CAD 中,,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
2020年天津市中考数学模拟试卷2解析版
2020年天津市中考数学模拟试卷2一、选择题:本大题12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把选项填入下表1.(3分)计算﹣2+(﹣6)的结果是()A.12B.C.﹣8D.﹣42.(3分)cos30°的值是()A.B.C.D.3.(3分)根据统计数据,截止2018年底,中国高速铁路营业里程已达29000km,成为世界上高铁里程最长的国家.将29000用科学记数法表示为()A.0.29×105B.2.9×104C.29×103D.290×102 4.(3分)下列图标,可以看作是中心对称图形的是()A.B.C.D.5.(3分)如图是由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(3分)方程组的解是()A.B.C.D.8.(3分)计算的结果是()A.B.C.D.9.(3分)如图,在△ABC中,∠BAC=65°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC,则∠BAC′的大小是()A.15°B.25°C.35°D.45°10.(3分)如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④11.(3分)如图,在菱形ABCD中,∠ABC=60°,E为BC边的中点,M为对角线BD上的一个动点.则下列线段的长等于AM+BM最小值的是()A.AD B.AE C.BD D.BE12.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(0,2),且关于直线x=﹣1对称,(x1,0)是抛物线与x轴的一个交点.有下列结论:①方程ax2+bx+c=2的一个根是x=﹣2;②若1<x1<2,则<a<;③若m=4时,方程ax2+bx+c=m有两个相等的实数根,则a=﹣2;④若≤x≤0时2≤y≤3;则a=1其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算a3÷a2的结果等于.14.(3分)当x=﹣1时,多项式x2+2x+6的值等于.15.(3分)一个不透明的盒中装有9个小球,其中有2个红球,3个黄球,4个蓝球,这些小球除颜色外无其它差别,从盒中随机摸出一个小球为红球的概率是.16.(3分)一次函数y=﹣x+b,当b<0时,这个一次函数的图象不经过的象限是.17.(3分)如图,在等边△ABC中,D是BC延长线上一点,CD=BC,E,F分别是BC,AD的中点,若AB=2,则线段EF的长是.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C,D都在格点上.(Ⅰ)AC的长是.(Ⅱ)将四边形ABCD折叠,使点C与点A重合折痕EF交BC于点E,交AD于点F,点D的对应点为Q,得五边形ABEFQ.请用无刻度的直尺在网格中画出折叠后的五边形,并简要说明点E,F,Q的位置是如何找到的.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)3月12日是我国义务植树节.某校组织学生开展义务植树活动,在活动结束后随机调查了40名学生每人植树的棵数,根据调查获取的样本数据,制作了不完整的扇形统计图和条形统计图.请根据相关信息,解答下列问题:(Ⅰ)扇形统计图中m的值是,补全条形统计图;(Ⅱ)求抽取的这部分学生植树棵数的平均数;(Ⅲ)若本次活动共有320名学生参加,估计植树棵数超过8棵的约有多少人.21.(10分)已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.22.(10分)一轮船以15海里/时的速度向正北方向航行,在A处测得灯塔在北偏东42°方向,航行2小时到达B处,测得灯塔C在南偏东60°方向,求B处与灯塔C的距离BC 的长度(结果保留1位小数)参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73.23.(10分)学校计划购买某种树苗绿化校园,甲、乙两林场这种树苗的售价都是每棵20元,又各有不同的优惠方案,甲林场:若一次购买20棵以上售价是每棵18元;乙林场:若一次购买10棵以上,超过10棵部分打8.5折.设学校一次购买这种树苗x棵(x是正整数).(Ⅰ)根据题意填写下表:学校一次购买树苗(棵)10152040在甲林场实际花费(元)200300在乙林场实际花费(元)200370710(Ⅱ)学校在甲林场一次购买树苗,实际花费记为y1(元),在乙林场一次购买树苗,实际花费记为y2(元),请分别写出y1,y2与x的函数关系式;(Ⅲ)当x>20时,学校在哪个林场一次购买树苗,实际花费较少?为什么?24.(10分)在平面直角坐标系中,O为坐标原点点A(3,4)点B(6,0).(Ⅰ)如图①,求AB的长;(Ⅱ)如图②,把图①中的△OAB绕点B顺时针旋转,使点O的对应点M恰好落在OA 延长线上,N是点A旋转后的对应点.①求证:BN∥OM;②求点N的坐标;(Ⅲ)点C是OB的中点,点D为线段OA上的动点在△OAB绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围(直接写出结果)25.(10分)抛物线y=﹣x2+bx+c(b,c为常数)与x轴交于点(x1,0)和(x2,0),与y 轴交于点A,点E为抛物线顶点(Ⅰ)当x1=﹣1,x2=3时,求点A,点E的坐标.(Ⅱ)若顶点E在直线y=x上,当点A位置最高时,求抛物线的解析式;(Ⅲ)若x1=﹣1,b>0,当P(1,0)满足P A+PE值最小时,求b的值.参考答案与试题解析一、选择题:本大题12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把选项填入下表1.(3分)计算﹣2+(﹣6)的结果是()A.12B.C.﹣8D.﹣4【分析】两数相加,同号(即都为正数或都为负数)相加取相同的符号,把绝对值相加,据此求出计算﹣2+(﹣6)的结果是多少即可.【解答】解:﹣2+(﹣6)=﹣(2+6)=﹣8所以计算﹣2+(﹣6)的结果是﹣8.故选:C.2.(3分)cos30°的值是()A.B.C.D.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:cos30°=×=.故选:C.3.(3分)根据统计数据,截止2018年底,中国高速铁路营业里程已达29000km,成为世界上高铁里程最长的国家.将29000用科学记数法表示为()A.0.29×105B.2.9×104C.29×103D.290×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将29000用科学记数法表示为:2.9×104.故选:B.4.(3分)下列图标,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.5.(3分)如图是由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.6.(3分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】根据16<23<25,可得,易得结果.【解答】解:∵16<23<25,∴,∴5+1<6,故选:D.7.(3分)方程组的解是()A.B.C.D.【分析】根据y的系数互为相反数,利用加减消元法求解即可.【解答】解:,①+②得,3x=6,解得x=2,把x=2代入①得,2﹣y=1,解得y=1,所以方程组的解是,故选:D.8.(3分)计算的结果是()A.B.C.D.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式===,故选:B.9.(3分)如图,在△ABC中,∠BAC=65°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC,则∠BAC′的大小是()A.15°B.25°C.35°D.45°【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠ABB′=65°,于是得到结论.【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AB′B=∠ABB′,∵BB'∥AC,∴∠ABB′=∠CAB=65°,∴∠AB′B=∠ABB′=65°,∴∠BAB′=180°﹣2×65°=50°,∴∠B′AB=50°,∴∠BAC′=15°,故选:A.10.(3分)如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④【分析】利用反比例函数的图象及正比例函数的图象分别判断后即可确定正确的选项.【解答】解:当k>0时,反比例函数的图象位于一、三象限,正比例函数的图象位于一三象限,②正确;当k<0时,反比例函数的图象位于二、四象限,正比例函数的图象位于二四象限,④正确;故选:C.11.(3分)如图,在菱形ABCD中,∠ABC=60°,E为BC边的中点,M为对角线BD上的一个动点.则下列线段的长等于AM+BM最小值的是()A.AD B.AE C.BD D.BE【分析】由菱形的性质可得∠DBC=∠ABC=30°,可得MF=BM,可得AM+BM =AM+MF,由垂线段最短,可求解.【解答】解:如图,过点M作MF⊥BC于F,∵四边形ABCD是菱形∴∠DBC=∠ABC=30°,且MF⊥BC∴MF=BM∴AM+BM=AM+MF,∴当点A,点M,点F三点共线且垂直BC时,AM+MF有最小值,∴AM+BM最小值为AE故选:B.12.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(0,2),且关于直线x=﹣1对称,(x1,0)是抛物线与x轴的一个交点.有下列结论:①方程ax2+bx+c=2的一个根是x=﹣2;②若1<x1<2,则<a<;③若m=4时,方程ax2+bx+c=m有两个相等的实数根,则a=﹣2;④若≤x≤0时2≤y≤3;则a=1其中正确结论的个数是()A.1B.2C.3D.4【分析】由已知可得,c=2,b=2a,①当x=﹣2时,y=2;②y=ax2+2ax+2的根为x =﹣1﹣或x=﹣1+,由已知可得1<﹣1﹣<2;③ax2+2ax+2=4时,△=4a2+8a=0;④若≤x≤0时2≤y≤3;在≤x≤0时y有最大值2﹣a,当x=0时有最最小值2;则有3=2﹣a.【解答】解:由已知可得,c=2,b=2a,∴y=ax2+2ax+2=a(x2+2x)+2=a(x+1)2﹣a+2,①当x=﹣2时,y=2,∴方程ax2+bx+c=2的一个根是x=﹣2;①正确;②y=ax2+2ax+2的根为x=﹣1﹣或x=﹣1+,∵1<x1<2,∴1<﹣1﹣<2,∴﹣2a<<﹣3a,∴<a<;②正确;③ax2+2ax+2=4时,△=4a2+8a=0,∴a=0或a=﹣2,∴a=﹣2;③正确;④若≤x≤0时2≤y≤3;在≤x≤0时,当x=﹣1时,y有最大值2﹣a,当x=0时,有最最小值2;∴3=2﹣a,∴a=﹣1,④错误;故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算a3÷a2的结果等于a.【分析】利用同底数幂的性质直接运算即可.【解答】解:a3÷a2=a3﹣2=a,故答案为:a.14.(3分)当x=﹣1时,多项式x2+2x+6的值等于15.【分析】将x=﹣1代入多项式x2+2x+6,然后化简即可.【解答】解:解法一:当x=﹣1时,x2+2x+6=(﹣1)2+2(﹣1)+6=10﹣2+1+2﹣2+6=15,故答案为15;解法二:x2+2x+6=(x+1)2+5=(﹣1+1)2+5=10+5=15,故答案为15.15.(3分)一个不透明的盒中装有9个小球,其中有2个红球,3个黄球,4个蓝球,这些小球除颜色外无其它差别,从盒中随机摸出一个小球为红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有9个小球,其中有2个红球,3个黄球,4个蓝球,∴摸出的小球是红球的概率为;故答案为:.16.(3分)一次函数y=﹣x+b,当b<0时,这个一次函数的图象不经过的象限是第一象限.【分析】根据一次函数的图象与系数的关系判断出一次函数y=﹣x+b,当b<0时的图象经过的象限,进而求解即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,b<0,∴此函数的图象经过第二、三、四象限,∴此函数的图象不经过第一象限.故答案为第一象限.17.(3分)如图,在等边△ABC中,D是BC延长线上一点,CD=BC,E,F分别是BC,AD的中点,若AB=2,则线段EF的长是.【分析】连接AE,利用勾股定理求出AD,再利用直角三角形斜边中线的性质解决问题即可.【解答】解:连接AE.∵△ABC是等边三角形,BE=EC=CD=1,∴AE⊥BC,∠B=60°,∴AE=AB•sin60°=,∴DE=2,∴AD===,∵∠AED=90°,AF=DF,∴EF=AD=,故答案为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C,D都在格点上.(Ⅰ)AC的长是2.(Ⅱ)将四边形ABCD折叠,使点C与点A重合折痕EF交BC于点E,交AD于点F,点D的对应点为Q,得五边形ABEFQ.请用无刻度的直尺在网格中画出折叠后的五边形,并简要说明点E,F,Q的位置是如何找到的.【分析】(Ⅰ)利用勾股定理即可解决问题.(Ⅱ)如图所示,取格点O,H,M,N,连接HO并延长交AD,BC于点F,E,连接BN,DM相较于点Q,则点E,F,Q即为所求.【解答】解:(Ⅰ)AC==2.故答案为2.(Ⅱ)如图所示,取格点O,H,M,N,连接HO并延长交AD,BC于点F,E,连接BN,DM相较于点Q,则点E,F,Q即为所求.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣2≤x≤1.【分析】根据解一元一次不等式组的步骤解答即可.【解答】解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣2≤x≤1,故答案为:x≤1;x≥﹣2;﹣2≤x≤1.20.(8分)3月12日是我国义务植树节.某校组织学生开展义务植树活动,在活动结束后随机调查了40名学生每人植树的棵数,根据调查获取的样本数据,制作了不完整的扇形统计图和条形统计图.请根据相关信息,解答下列问题:(Ⅰ)扇形统计图中m的值是10,补全条形统计图;(Ⅱ)求抽取的这部分学生植树棵数的平均数;(Ⅲ)若本次活动共有320名学生参加,估计植树棵数超过8棵的约有多少人.【分析】(Ⅰ)植树8棵人数:40﹣6﹣12﹣8﹣4=10(人)即扇形统计图中m的值为10,据此补全条形统计图;(Ⅱ)抽取的这部分学生植树棵数的平均数:=7.8(棵);(III)估计植树棵数超过8棵的人数=96(人),【解答】解:(Ⅰ)植树8棵人数:40﹣6﹣12﹣8﹣4=10(人),即扇形统计图中m的值为10,补全统计图如下:故答案为10;(Ⅱ)抽取的这部分学生植树棵数的平均数:=7.8(棵),答:抽取的这部分学生植树棵数的平均数为7.8;(III)估计植树棵数超过8棵的人数=96(人),答:植树棵数超过8棵的约有96人.21.(10分)已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.【分析】(Ⅰ)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(Ⅱ)连接OC,由切线的性质得到OC⊥EC,求得∠OCE=90°,根据圆周角定理得到∠COE=2∠BAC=50°,根据平行线的性质得到∠AOD=∠COE=40°,于是得到∠ACD=AOD=20°【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.22.(10分)一轮船以15海里/时的速度向正北方向航行,在A处测得灯塔在北偏东42°方向,航行2小时到达B处,测得灯塔C在南偏东60°方向,求B处与灯塔C的距离BC 的长度(结果保留1位小数)参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73.【分析】过C作CH⊥AB于H,解直角三角形即可得到结论.【解答】解:根据题意得,∠BAC=42°,∠ABC=60°,AB=15×2=30,过C作CH⊥AB于H,设BH=x,在Rt△BCH中,∠CBH=60°,cos∠CBH=,tan,即cos60°==,tan60°==,∴BC=2x,CH=x,在Rt△ACH中,∠CAH=42°,tan∠CAH=,即tan42°==0.90,解得:x≈10.27,∴BC=2x≈20.5,答:B处与灯塔C的距离BC的长度20.5海里.23.(10分)学校计划购买某种树苗绿化校园,甲、乙两林场这种树苗的售价都是每棵20元,又各有不同的优惠方案,甲林场:若一次购买20棵以上售价是每棵18元;乙林场:若一次购买10棵以上,超过10棵部分打8.5折.设学校一次购买这种树苗x棵(x是正整数).(Ⅰ)根据题意填写下表:学校一次购买树苗(棵)10152040在甲林场实际花费(元)200300在乙林场实际花费(元)200370710(Ⅱ)学校在甲林场一次购买树苗,实际花费记为y1(元),在乙林场一次购买树苗,实际花费记为y2(元),请分别写出y1,y2与x的函数关系式;(Ⅲ)当x>20时,学校在哪个林场一次购买树苗,实际花费较少?为什么?【分析】(1)根据甲、乙提供的优惠方案,可以根据自变量x,即购买树苗的颗数的范围,具体计算出所用费用,注意分段函数;(2)根据自变量的取值范围,分段确定甲厂花费y1(元),乙厂花费y2(元),与x的函数关系式;(3)根据自变量的取值范围,分类讨论费用少时,自变量的取值范围,从而做出判断.【解答】解:(1)根据题意填表如下:(2)由题意得:,(3)当x>20时,y1=18x(x>20)y2=17x+30 (x>10)当y1>y2时,即:18x>17x+30,解得:x>30;当y1=y2时,即:18x=17x+30,解得:x=30;当y1<y2时,即:18x<17x+30,解得:x<30;因此,当20<x<30时;y1<y2,即:甲农场实际花费少;当x=30时,y1=y2,即:甲、乙农场花费相同;当x>30时;y1>y2,即:乙农场实际花费少;24.(10分)在平面直角坐标系中,O为坐标原点点A(3,4)点B(6,0).(Ⅰ)如图①,求AB的长;(Ⅱ)如图②,把图①中的△OAB绕点B顺时针旋转,使点O的对应点M恰好落在OA 延长线上,N是点A旋转后的对应点.①求证:BN∥OM;②求点N的坐标;(Ⅲ)点C是OB的中点,点D为线段OA上的动点在△OAB绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围(直接写出结果)【分析】(Ⅰ)如图①中,作AH⊥OB于H.求出AH,BH,利用勾股定理即可解决问题.(Ⅱ)①想办法证明∠BMO=∠MBN即可.②连接AN,作NE⊥OB于E.证明四边形OANB是菱形,解直角三角形即可解决问题.(Ⅲ)分别求解PC的最小值,最大值即可解决问题.【解答】(Ⅰ)解:如图①中,作AH⊥OB于H.∵A(3,4),B(6,0),∴OH=3,AC=4,OB=6,∴BH=6﹣3=3,在Rt△ACB中,AB===5.(Ⅱ)①证明:如图②中,由(1)可知:OA=AB,∴∠AOB=∠ABO,由旋转可知:OB=BM,∴∠AOB=∠BMO,∠MBN=∠ABO,∴∠BMO=∠MBN,∴BN∥OM.②解:连接AN,作NE⊥OB于E.∵OA∥NB,OA=OB=BN=5,∴四边形OANB是菱形,∴AN∥OB,NE=4,在Rt△BNE中,BE===3,∴OE=OB+BE=6+3=9,∴N(9,4).(Ⅲ)解:如图②﹣1中,作BP⊥MN于P.则BP==,当点P在BC的延长线上时,PC的值最小,最小值=﹣3=,当点P与点M重合,旋转到点M在CB的延长线上时,PC的值最大,最大值=3+6=9,∴≤CP≤9.25.(10分)抛物线y=﹣x2+bx+c(b,c为常数)与x轴交于点(x1,0)和(x2,0),与y 轴交于点A,点E为抛物线顶点(Ⅰ)当x1=﹣1,x2=3时,求点A,点E的坐标.(Ⅱ)若顶点E在直线y=x上,当点A位置最高时,求抛物线的解析式;(Ⅲ)若x1=﹣1,b>0,当P(1,0)满足P A+PE值最小时,求b的值.【分析】(Ⅰ)当x1=﹣1,x2=3时y=0,代入解析式即可求;(Ⅱ)由已知可得E(,),由E在直线y=x上,得到c=﹣b2+b,所以A (0,﹣b2+b),当b=1时,点A是最高点,此时y=﹣x2+x+;(Ⅲ)点M(﹣1,0)代入解析式得c=b+1,则有E(,),A(0,b+1),点E关于x轴的对称点E'(,﹣);设过点A,P的直线为y=kx+t,将点A(0,b+1),P(1,0)代入,得到y=﹣(b+1)(x﹣1),把E'代入,得﹣=﹣(b+1)(﹣1),即可求b.【解答】解:(Ⅰ)当x1=﹣1,x2=3时y=0,∴b=2,c=3,∴y=﹣x2+2x+3;∴A(0,3),E(1,4);(Ⅱ)由已知可得E(,),∵E在直线y=x上,∴=,∴c=﹣b2+b,∴A(0,﹣b2+b),∴当b=1时,点A是最高点,此时y=﹣x2+x+;(Ⅲ)∵抛物线经过点M(﹣1,0),∴﹣1﹣b+c=0,∴c=b+1,∵E(,),A(0,c),∴E(,),A(0,b+1),∴点E关于x轴的对称点E'(,﹣),设过点A,P的直线为y=kx+t,将点A(0,b+1),P(1,0)代入,∴y=﹣(b+1)(x﹣1),把E'代入,得﹣=﹣(b+1)(﹣1),∴b2﹣6b﹣8=0,解得b=3,∵b>0,∴b=3+.。
2020年天津市河北区中考数学二模试卷
2020年天津市河北区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 计算-4×(-2) 的结果等于A. 12B. -12C. 8D. -8 2. 计算3tan30°的值等于A. 3B. 33C. 23D.33. 截止北京时间2020年6月1日23点33分,全球新冠肺炎病例上升至6 203 385例,6 203 385用科学记数法表示为A. 6.2×106B. 6.2×107C. 6.203385×106D. 6.203385×107 4. 下列图标,是轴对称图形的是A .B .C .D .5. 如图是一个由5个相同的正方体组成的几何体,它的左视图是A .B .C .D .6. 估计226-的值在A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7. 化简xx x -+-2422的结果是 A. 2+x B. 4+x C. 2-x D.x -2 8. 一元二次方程0252=-x x 的解是 A. 52021-==x x , B. 52021==x x , C. 25021-==x x , D. 25021==x x ,9. 如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至 △AD'E 处,AD'与CE 交于点F ,若∠B=55°,∠DAE=20°,则∠FED' 的大小为A. 20°B. 30°C. 35°D. 45° 10. 已知反比例函数xy 4=,当2<y 时,自变量x 的取值范围是 A. 2>x B. 0<x C. 20<<x D. 0<x 或2>x 11. 如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别 在x 轴和y 轴上,井且OA=5,OC=3. 若把矩形OABC 绕着点O 逆 时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的 坐标为A.)51259(,-B. )59512(,-C. )512516(,-D. )516512(,- 12. 抛物线c bx ax y ++=2经过点(-2,0),且对称轴为直线x =1, 其部分图象如图所示. 对于此抛物线有如下四个结论: ①a b 2=; ②024>++c b a ;③若0>>m n ,则m x +=1时的函数值小于n x -=1时的函数值; ④点)02(,ac-一定在此抛物线上. 其中正确结论的个数是A. 4个B. 3个C. 2个D. 1个 二、填空题:本大题共6小题,每小题3分,共18分. 13. 计算:=⋅232a a .14. 化简=-2)15( .15. 在10个外观相同的零件中,有2个不合格零件,现从中任意抽取1个进行检测,抽到合格零件的概率是 .16. 一次函数12-=x y 经过第 象限.17. 如图,在正方形ABCD 中,AD=34,把边BC 绕点B 逆时 针旋转60°到线段BP ,连接AP 并延长交CD 于点E ,连接PC , 则三角形PCE 的面积为 .18. 如图1,在每个小正方形的边长为1的网格中,点A 、B 、C 、D 均在格点上. 点E 为直线CD 上的动点,连接BE ,作AF ⊥BE 于F. 点P 为BC 边上的动点,连接DP 和PF. (1)当点E 为CD 边的中点时,△ABF的面积为 ;(2)当 DP+PF 最短时,请在图2所示的网格中,用无刻度的直尺画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) . 三、解答题(共7小题,满分66分)19. 本小题8分 解不等式组⎩⎨⎧<--≥-②,①.354)2(34x x x x请结合题意填空,完成本题的解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年天津市河北区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin30°的值等于()A.B.C.D.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.4.如图,掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,小伟掷一次骰子,观察向上的一面的点数,下列属必然事件的是()A.出现的点数是7 B.出现的点数为奇数C.出现的点数是2 D.出现的点数大于05.下列命题中正确的是()A.若两个多边形相似,则对应边的比相等B.若两个多边形相似,则对应角的比等于对应边的比C.若两个多边形的对应角相等,则这两个多边形相似D.若两个多边形的对应边的比相等,则这两个多边形相似6.在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:57.从0、1、2、﹣3四个数中,随机抽取两个数相乘,积是负数的概率为()A.B.C.D.8.关于x的一元二次方程x2+x+n=0(m≠0)有两个相等的实数根,则的值为()A.4 B.﹣4 C.D.9.已知一个正六边形的边心距为,则它的外接圆的面积为()A.πB.3πC.4πD.12π10.若点A(x1,3)、B(x2,﹣1)、C(x3,1)在反比例函数的图象上,则x1、x2、x3的大小关系是()A.x1<x2<x3B.x3<x2<x1C.x2<x3<x1D.x2<x1<x311.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)12.已知抛物线y=ax2+bx+c(a>0)经过A(﹣1,1)、B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c>2;③0<m<;④n≤1,则所有正确结论的个数为()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题3分,共18分13.计算(a+3)(a﹣4)的结果等于.14.分解因式:x3﹣x=.15.不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣5,﹣1,0,3.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是.16.若关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,则k的取值范围是.17.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.l1,l2是一条小河平行的两岸.(Ⅰ)AB的距离等于;(Ⅱ)现要在小河上修一座垂直于两岸的桥MN(点M在l1上,点N在l2上,桥的宽度忽略),使AM+MN+NB最短,请在如图所示的网格中,用无刻度的直尺,画出MN,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程.19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的觯集为.20.(8分)为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图.请根据图中信息,解答下列问题:(Ⅰ)本次调查一共抽取了名居民;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)如果对该小区的800名居民全面开展这项有奖问答活动,得10分者设为一等奖,请你根据调查结果,帮社区工作人员估计需准备多少份一等奖奖品.21.(10分)已知,⊙O的半径为1,直线CD经过圆心O,交⊙O与C、D两点,直径AB⊥CD,点M 是直线CD上异于C、D、O的一个动点,直线AM交⊙O于点N,点P是直线CD上另一点,且PM =PN.(Ⅰ)如图1,点M在⊙O的内部,求证:PN是⊙O的切线;(Ⅱ)如图2,点M在⊙O的外部,且∠AMO=30°,求OP的长.22.(10分)2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )23.(10分)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.商场用50000元共购进A型号手机10部,B型号手机20部.(1)求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?24.(10分)如图,在平面直角坐标系xOy中有矩形OABC,A(4,0),C(0,2),将矩形OABC 绕原点O逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下,求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x轴上时,直接写出此时点A′的坐标.25.(10分)如图,抛物线y=ax2+6x+c交x轴于A、B两点,交y轴于点C.直线y=x﹣5经过点B、C.(Ⅰ)求抛物线的解析式;(Ⅱ)过点A作AM⊥BC于点M,过抛物线上一动点P(不与点B、C重合),作直线AM的平行线交直线BC于点Q,若以点A、M、P、Q为顶点的四边形是平行四边形,求点P的横坐标.2020年天津市河北区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin30°=,故选:A.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点评】此题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:B.【点评】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图是从正面看到的平面图形.4.【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【解答】解:A.出现的点数是7是不可能事件;B.出现的点数为奇数是随机事件;C.出现的点数是2是随机事件;D.出现的点数大于0是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】根据相似多边形的性质与判定解答即可.【解答】解:A、若两个多边形相似,则对应边的比相等,是真命题;B、若两个多边形相似,则对应角的比不等于对应边的比,是假命题;C、若两个多边形的对应角相等,这两个多边形不一定相似,是假命题;D、两个多边形的对应边的比相等,则这两个多边形不一定相似,是假命题;故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解相似多边形的性质与判定,难度不大.6.【分析】根据四边形ABCD是平行四边形,求证△AEF∽△BCF,然后利用其对应边成比例即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴△AEF∽△BCF,∴=,∵点E为AD的中点,∴==,故选:A.【点评】此题主要考查学生对相似三角形的判定与性质,平行四边形的性质等知识点,难度不大,属于基础题.7.【分析】列表得出所有等可能结果,从中找到积为负数的结果数,根据概率公式计算可得.【解答】解:列表如下:0 1 2 ﹣30 0 0 01 02 ﹣32 0 2 ﹣6﹣3 0 ﹣3 ﹣6由表可知,共有12种等可能结果,其中积是负数的有4种结果,所以积是负数的概率为=,故选:B.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.【分析】根据根的判别式得出△=0,求出m=4n,代入求出即可.【解答】解:∵关于x的一元二次方程x2+x+n=0(m≠0)有两个相等的实数根,∴△=()2﹣4n=0,解得:m=4n,∴=,故选:C.【点评】本题考查了根的判别式,能根据根的判别式的内容求出m=4n是解此题的关键.9.【分析】如图,六边形ABCDEF为正六边形,作OH⊥AB于H,连接OA,利用正六边形的性质得到OA为正六边形ABCDEF的外接圆的半径,OH为正六边形ABCDEF的边心距,即OH=,然后利用三角函数求出OA即可得到它的外接圆的面积.【解答】解:如图,六边形ABCDEF为正六边形,作OH⊥AB于H,连接OA,则OA为正六边形ABCDEF的外接圆的半径,OH为正六边形ABCDEF的边心距,即OH=,∵∠OAB=×120°=60°,∴sin∠OAH=,∴OA==2,∴它的外接圆的面积=π•22=4π.故选:C.【点评】本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.10.【分析】根据反比例函数的性质,结合“点A(x1,3)、B(x2,﹣1)、C(x3,1)在反比例函数的图象上”,根据各个点纵坐标的正负,即可判断横坐标的正负,当x>0时,根据反比例函数y=的增减性,即可判断两个正数横坐标的大小,综上,可得到答案.【解答】解:∵点A(x1,3)、B(x2,﹣1)、C(x3,1)在反比例函数的图象上,又∵y>0时,x>0,y<0时,x<0,即x1>0,x3>0,x2<0,当x>0时,y随x的增大而减小,∴x1<x3,综上可知:x2<x1<x3,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和反比例函数的增减性是解题的关键.11.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.【点评】本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.12.【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①正确②错误;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),可得出n≤1,结论④正确.综上即可得出结论.【解答】解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2.∵a>0,∴b<1,c<2,∴结论①正确,②错误;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①④.故选:B.【点评】本题考查了二次函数图象与系数的关系以及待定系数法求二次函数解析式,逐一分析四条结论的正误是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分13.【分析】根据多项式与多项式的乘法解答即可.【解答】解:(a+3)(a﹣4)=a2﹣4a+3a﹣12=a2﹣a﹣12,故答案为:a2﹣a﹣12.【点评】此题考查多项式与多项式的乘法,关键是根据多项式与多项式的乘法的法则计算.14.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.15.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,∴抽取的两张卡片上数字之积为负数的概率是,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的方程,求出方程的解即可得到k的范围.【解答】解:∵方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.故答案为:k>﹣.【点评】此题考查了根的判别式,根的判别式的值大于0时,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无解.17.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠CPD=180°﹣120°=60°.故答案是:60;【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.18.【分析】(Ⅰ)利用勾股定理求解可得;(Ⅱ)取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.【解答】解:(Ⅰ)AB==,故答案为:;(Ⅱ)如图,取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.故答案为:取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握勾股定理、轴对称的性质、平行线的判定与性质等知识点.三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程.19.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,解不等式①,得x<﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为x<﹣1,故答案为:x<﹣1,x≤2,x<﹣1.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.20.【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的居民数;(Ⅱ)根据统计图中的数据可以得到平均数、众数和中位数;(Ⅲ)根据统计图中的数据可以计算出需准备多少份一等奖奖品.【解答】解:(Ⅰ)4+10+15+11+10=50,即本次调查一共抽取了50名居民,故答案为:50;(Ⅱ)平均数是=8.26,众数是8,中位数是8;(Ⅲ)800×=160(份),答:需准备160份一等奖奖品.【点评】本题考查条形统计图、用样本估计总体、加权平均数、众数和中位数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(Ⅰ)根据切线的判定得出∠PNO=∠PNM+∠ONA=∠AMO+∠ONA进而求出即可;(Ⅱ)连接ON,由PM=PN,得出∠PNM=∠AMO=30°,易得∠NPO=60°,继而证得△AON是等边三角形,从而得出△OPN是直角三角形,解直角三角形即可.【解答】(Ⅰ)证明:连接ON,如图1,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN,∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,即PN与⊙O相切.(Ⅱ)解:连接ON,如图2,∵∠AMO=30°,PM=PN,∴∠PNM=∠AMO=30°,∠OAN=60°,∴∠NPO=60°,∴OA=ON,∴△AON是等边三角形,∴∠AON=60°,∴∠NOP=30°,∴∠PNO=90°,∴OP===.【点评】此题主要考查了切线的判定与性质,等边三角形的判定与性质,含30°的直角三角形的性质,作出正确的辅助线是解题的关键.22.【分析】(1)根据题意直接利用锐角三角函数关系得出LR=AR•cos∠ARL求出答案即可;(2)根据题意直接利用锐角三角函数关系得出BL=LR•tan∠BRL,再利用AL=AR sin∠ARL,求出AB的值,进而得出答案.【解答】解:(1)在Rt△ALR中,AR=6km,∠ARL=42.4°,由cos∠ARL=,得LR=AR•cos∠ARL=6×cos42.4°≈4.44(km).答:发射台与雷达站之间的距离LR为4.44km;(2)在Rt△BLR中,LR=4.44km,∠BRL=45.5°,由tan∠BRL=,得BL=LR•tan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),又∵sin∠ARL=,得AL=AR sin∠ARL=6×sin42.4°≈4.02(km),∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).答:这枚火箭从A到B的平均速度大约是0.51km/s.【点评】此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键.23.【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:.答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣100<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.【点评】此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.24.【分析】(Ⅰ)由题意得出OA=4,OC=2,由旋转的性质得:OA'=OA=4,由矩形的性质得出∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',求出∠OA'C=30°,由平行线的性质即可得出结果;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,由三角函数求出B′E=,EA′=1,A′C=2,得出CE=CA′﹣EA′=2﹣1,即可得出答案;(Ⅲ)过点A'作A'F⊥x轴于F,由勾股定理得出B'O=2,证明△B'A'O∽△A'FO,得出比例式,求出OF、A'F,即可得出点A′的坐标.【解答】解:(Ⅰ)∵A(4,0),C(0,2),∴OA=4,OC=2,由旋转的性质得:OA'=OA=4,∵四边形OABC是矩形,∴∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',∴∠OA'C=30°,∵OA∥BC,∴∠AOA'=∠OA'C=30°,即当点A′首次落在BC上时,旋转角为30°;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,如图1所示:∵BC∥AO,∴∠OA′C=∠A′OA=30°,∴∠B′A′E=60°,B′E=sin∠B′A′E×BB′=×2=,EA′=cos∠B′A′E×BB′=×2=1,A′C=cos∠OA′C×OA′=×4=2,∴CE=CA′﹣EA′=2﹣1,B′的纵坐标为:2+,∴点B′的坐标为:(2﹣1,2+);(Ⅲ)过点A'作A'F⊥x轴于F,如图2所示:∵∠B'A'O=90°,A'F⊥B'O,∴B'O==2,∠A'FO=90°,∵∠A'OF=∠B'OA',∴△B'A'O∽△A'FO,∴==,即==,解得:OF=,A'F=,∴点A的坐标为(﹣,).【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、旋转的性质、直角三角形的性质、相似三角形的判定与性质等知识;本题综合性强,熟练掌握旋转的性质,证明三角形系数是解题的关键.25.【分析】(1)求出C(0,﹣5)、点B(5,0),将点A、B的坐标代入二次函数表达式,即可求解;(2)分点P在直线BC上方、点P在直线BC上方两种情况,分别求解即可.【解答】解:(1)当x=0时,y=x﹣5=﹣5,即点C(0,﹣5),同理点B(5,0),将点A、B的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+6x﹣5;(2)令y=﹣x2+6x﹣5=0,解得:x=1或5,即点A(1,0),∵OB=OC=5,∴∠OCB=∠OBC=45°,AM=AB=2,以点A、M、P、Q为顶点的四边形是平行四边形,则PQ=AM=2,PQ⊥BC,如图,作PD⊥x轴交直线BC于D,则∠PDQ=45°,∴PD=PQ=4,设点P(x,﹣x2+6x﹣5),则点D(x,x﹣5),①当点P在直线BC上方时,PD=﹣x2+6x﹣5﹣x+5=4,解得:x=1或4(舍去4);②点P在直线BC上方时,PD=﹣x2+6x﹣5﹣x+5=﹣4,解得:x=,故点P的横坐标为1或或.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。