2015届高三(理)一轮同步训练:第6单元《数列与算法》(含答案)
2015届高考数学(文)一轮复习单元检测第6单元《数列与算法》(新人教B版)
第六单元 数列与算法第30讲 数列的概念与通项公式1.若数列{a n }满足关系a n +1=1+1a n ,且a 8=3421,则a 3=( )A.32B.53C.85D.1382.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .643.已知数列{a n }的前n 项和S n =3n-1,则其通项公式a n =( )A .3·2n -1B .2·3n -1C .2nD .3n4.已知数列{a n }的通项公式是a n =(-1)n(n +1),则a 1+a 2+a 3+…+a 10=( ) A .-55 B .-5 C .5 D .555.已知数列{a n }中,a 1=20,a n +1=a n +2n -1,n ∈N *,则该数列{a n }的通项公式为________.6.设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N *)均在函数y =3x -2的图象上,则数列{a n }的通项公式a n = .7.在数列{a n }中,a n =4n -52,a 1+a 2+…+a n =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab =______.8.数列{a n }的前n 项和为S n ,a 1=1,a n +1=13S n (n =1,2,3,…),求a n .9.已知数列{a n }的前n 项和S n =n 2+2n ,(n ∈N *). (1)求通项a n ;(2)若b n =2n ·(a n -12)(n ∈N *),求数列{b n }的最小项.1.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( ) A .18 B .20 C .22 D .242.设数列{a n }是等差数列,且a 2=-8,a 15=5,S n 是数列{a n }的前n 项和,则有( ) A .S 9<S 10 B .S 9=S 10 C .S 11<S 10 D .S 11=S 103.若等差数列{a n }满足a n a n +1=n 2+3n +2,则公差为( ) A .1 B .2C .1或-1D .2或-24.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差为d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .55.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列{a n }的通项公式为________.6.已知等差数列{a n },若a 1=3,前三项和为21,则a 4+a 5+a 6=______.7.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时n =________.8.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:{b n }是等差数列;(2)求数列{a n }中的最大项与最小项,并说明理由.9.已知等差数列{a n }的前n 项和为S n ,如果a 4=-12,a 8=-4. (1)求数列{a n }的通项公式;(2)求S n 的最小值及其相应的n 的值;(3)从数列{a n }中依次取出a 1,a 2,a 4,a 8,…,a 2n -1,…构成一个新的数列{b n },求{b n }的前n 项和.1.已知数列{a n }是正项等比数列,若a 2=2,2a 3+a 4=16,则数列{a n }的通项公式为( )A .2n -2B .22-nC .2n -1D .2n2.等比数列{a n }的公比q =12,a 8=1,则S 8=( )A .254B .255C .256D .2573.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13 B.13C .-12 D.124.已知等比数列{a n }的公比q =2,其前4项和S 4=60,则a 2等于( ) A .8 B .6 C .-8 D .-65.已知数列{a n }为等比数列,且a 5=4,a 9=64,则a 7= .6.等比数列{a n }的公比q >0,已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.7.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.8.设数列{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4=32(1a 3+1a 4).(1)求数列{a n }的通项公式;(2)b n =a 2n +log 2a n ,求数列{b n }的前n 项和S n .9.已知数列{a n }满足:a 1=2,a n +1=2a n +2.(1)求证:数列{a n +2}是等比数列(要求指出首项与公比); (2)求数列{a n }的前n 项和S n .第33讲 等差、等比数列的性质及综合应用1.在等差数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20-a 10等于( ) A.52 B.25 C.52或-52 D.25或-252.已知公比为2的等比数列{a n }中,a 2+a 4+a 6=3,则a 5+a 7+a 9=( ) A .12 B .18 C .24 D .63.设S n 表示等比数列{a n }(n ∈N *)的前n 项和,已知S 10S 5=3,则S 15S 5=( ) A .3 B .5C .7D .94.已知{a n }是等比数列,a 2=4,a 5=32,则a 1a 2+a 2a 3+…+a n a n +1=( )A .8(2n-1) B.83(4n -1)C.163(2n -1)D.23(4n-1) 5.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________.6.已知1,a 1,a 2,9成等差数列,1,b 1,b 2,b 3,9成等比数列,且a 1,a 2,b 1,b 2,b 3都是实数,则(a 2-a 1)b 2=______.7.已知数列{a n }中,a 3=2,a 7=1,若{1a n +1}为等差数列,则a 11=________.8.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,S 5=4a 3+6,且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项公式;(2)求数列{1S n}的前n 项和.9.设各项均不为0的数列{a n }的前n 项之乘积是b n ,且λa n +b n =1(λ∈R ,λ>0). (1)探求a n 、b n 、b n -1之间的关系式;(2)设λ=1,求证:数列{1b n}是等差数列;(3)设λ=2,求证:b 1+b 2+…+b n <23.第34讲 数列求和1.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n 2-22.数列{a n }的前n 项和为S n ,若a n =1n n +2,则S 10等于( )A.175264B.7255C.1012D.11123.已知数列{a n }是首项为2,公差为1的等差数列,数列{b n }是首项为1,公比为2的等比数列,则数列{ab n }前10项的和M 10等于( )A .511B .512C .1023D .10334.数列{(3n -1)·4n -1}的前n 项和S n =( )A .(n -23)·4n +23B .(n -23)·4n +1+23C .(n -23)·4n -1+23D .(n -23)·4n+435.已知等差数列{a n }中,a 5=1,a 3=a 2+2,则S 11= .6.若数列{a n }的前n 项和S n =n 2+2n +5,则a 5+a 6+a 7=______.7.已知数列{a n }对于任意p ,q ∈N *,有a p a q =a p +q ,若a 1=12,则S 9=________.8.数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.9.已知f (x )=-4+1x 2,点P n (a n ,-1a n +1)在曲线y =f (x )(n ∈N *)上且a 1=1,a n >0.(1)求证:数列{1a 2n }为等差数列,并求数列{a n }的通项公式;(2)设数列{a 2n ·a 2n +1}的前n 项和为S n ,若对于任意的n ∈N *,存在正整数t ,使得S n <t 2-t-12恒成立,求最小正整数t 的值.第35讲 数列模型及综合应用1.某工厂2012年年底制订生产计划,要使工厂的总产值到2022年年底在原有基础上翻两番,则年平均增长率为( )A .5110-1B .4110-1C .3110-1D .4111-12.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( )A .12B .10C .1+log 35D .2+log 353.已知函数f (x )=3x 2+bx +1是偶函数,g (x )=5x +c 是奇函数.若a 1=1,f (a n +a n +1)-g (a n +1a n +a 2n )=1,则正数数列{a n }的通项公式为( )A .(23)n -1B .(32)n -1C .(23)nD .(32)n4.已知f (x )=sin 2x ,若等差数列{a n }的第5项的值为f ′(π6),则a 1a 2+a 2a 9+a 9a 8+a 8a 1=( )A .2B .4C .8D .165.五位同学围成一圈依次循环报数,规定,第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2014次被报出的数为______.6.王老师从2011年1月1日开始每年的1月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款及利息均自动转为新的一年定期,到2018年1月1日将所有存款及利息全部取回,他可以取回______元.7.根据市场调查结果,预测某种家用商品从年初的n 个月内累积的需求量S n (万件)近似地满足S n =n90(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是________.8.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a 元的前提下,可卖出b 件;若做广告宣传,广告费为n 千元比广告费为n -1千元时多卖出b2n (n ∈N *)件.(1)试写出销售量S n 与n 的函数关系式;(2)当a =10,b =4000时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?9.已知正数数列{a n }中,a 1=2.若关于x 的方程x 2-a n +1x +2a n +14=0(n ∈N *)对任意自然数n 都有相等的实根.(1)求a 2,a 3的值;(2)求证:11+a 1+11+a 2+11+a 3+…+11+a n <23(n ∈N *).第36讲 算法与程序框图1.以下结论正确的是( )A .任何一个算法都必须有的基本结构是条件结构B .任何一个算法都必须有的基本结构是顺序结构C .在算法的逻辑结构中,要求进行逻辑判断的是循环结构D .在算法的逻辑结构中,要求根据结果进行不同处理的是顺序结构 2.下面的问题中必须用选择结构才能实现的个数是( ) ①已知三角形的三边长,求三角形的面积; ②求方程ax +b =0(a ,b 为常数)的根; ③求三个实数a ,b ,c 中的最大者; ④求1+2+3+…+100的值. A .4 B .3 C .2 D .13.执行如图的程序框图,若输出的n =5,则输入整数p 的最小值是( ) A .6 B .7 C .8 D .15(第3题) (第4题)4.已知流程图如图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填( )A .2B .3C .5D .75.执行如图所示的程框图,若输入x =4,则输出y 的值为________.(第5题) (第6题)6.下图给出了一个算法流程图.若给出实数a ,b ,c 为a =4,b =x 2,c =2x 2-3x +2,输出的结果为b ,则实数x 的取值范围是__________.7.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x 1,…,x 4(单位:吨),根据下图所示的程序框图,若x 1、x 2、x 3、x 4分别为1、1.5、1.5、2,则输出的结果s 为________.8.试写出一个求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 x x 2-2x +x 的函数值的算法,并画出框图.9.某电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元;如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(假定通话时间均为整数,不足1分钟按1分钟计).试设计一个计算通话费用的算法.要求画出流程图.第37讲基本算法语句和算法案例1.下列关于“赋值语句”叙述正确的是( )A.3.6=x是赋值语句B.利用赋值语句可以进行代数式的化简C.赋值语句中的等号与数学中的等号意义相同D.赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值2.当a=3时,下面的程序段输出的结果是( )IF a<10 THENy=2]A.9 B.3C.10 D.63.读下面的甲、乙两程序:甲乙i=1S=0WHILE i<=1000 S=S+ii=i+1WENDPRINT SENDi=1000S=0DOS=S+ii=i-1LOOP UNTIL i<1 PRINT SEND对甲、乙两程序和输出的结果判断正确的是( )A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同 4.用秦九韶算法计算多项式f(x)=3x4+3x3+2x2+6x+1当x=0.5时的值,需要做乘法的次数是( )A.9 B.14C.4 D.55.程序如下:t=1i=2WHILE i<=4t=t×ii=i+1WENDPRINT t以上程序输出的结果是________.6.若k进制数123(k)与十进制数38(10)相等,则k=.7.程序如下,若输入10,20,30,则输出结果为__________.INPUT“a,b,c=”;a,b,ca=bb=cc=aPRINT a,b,c8.用秦九韶算法求多项式f(x)=0.00833x5+0.04167x4+0.16667x3+0.5x2+x+1,当x=-0.2时的值.9.用分期付款的方式购买价格为1150元的冰箱,如果购买时先付150元,以后每月付50元,加上欠款利息.若一个月后付第一个月的分期付款,月利率为1%,那么购冰箱的钱全部付清后,实际付了多少元?请画出程序框图,并写出程序.第六单元 数列与算法第30讲 数列的概念与通项公式1.A 由a 8=3421=1+1a 7,得a 7=2113=1+1a 6.类似有a 6=138=1+1a 5,a 5=85=1+1a 4,a 4=53=1+1a 3,从而a 3=32,故选A.2.A a 8=S 8-S 7=64-49=15.3.B 当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2·3n -1,又a 1=S 1=31-1=2满足2·3n -1,故选B.4.C 由a n =(-1)n(n +1),得a 1+a 2+a 3+…+a 10=-2+3-4+5-6+7-8+9-10+11=5.5.a n =n 2-2n +21 因为a n +1-a n =2n -1,所以a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,n ≥2,以上各式相加可得a n -a 1=1+3+5+…+(2n -3)⇒a n =20+n -n -2=n 2-2n +21(n ≥2).又a 1=20适合上式,故a n =n 2-2n +21.6.6n -5 因为S n n=3n -2,所以S n =3n 2-2n .当n =1时,a 1=S 1=1;当n ≥2(n ∈N *)时,a n =S n -S n -1=6n -5. 所以a n =6n -5.7.-1 因为a n =4n -52,a n =S n -S n -1=an 2+bn -[a (n -1)2+b (n -1)]=2an -a +b ,所以a =2,b =-12,则ab =-1.8.解析:因为a n +1=13S n ,所以a n =13S n -1(n ≥2),所以a n +1-a n =13(S n -S n -1)=13a n (n ≥2),所以a n +1=43a n (n ≥2).又a 1=1,a 2=13S 1=13a 1=13,所以{a n }是从第2项起,公比为43的等比数列,所以a n =⎩⎪⎨⎪⎧1 n =1343n -2 n ≥2,n ∈N *.9.解析:(1)当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1.又n =1时,a 1=2×1+1=3成立,所以a n =2n +1(n ∈N *).(2)b n =2n ·(a n -12)=2n·(2n -11),由⎩⎪⎨⎪⎧ b n ≤b n +1b n ≤b n -1⇒⎩⎪⎨⎪⎧2n n -n +1n -2n ·n -n -1n -⇒⎩⎪⎨⎪⎧n ≥3.5n ≤4.5,所以3.5≤n ≤4.5,所以n =4,所以最小项为b 4=-48.第31讲 等差数列的概念及基本运算 1.B 由S 11=S 10⇒a 11=S 11-S 10=0, 所以a 1=a 11-10d =0-10×(-2)=20. 2.B 由题意得,设等差数列的公差为d ,则d =a 15-a 215-2=1,所以数列{a n }的通项公式为a n =a 2+(n -2)d =n -10, 则a 10=0,所以S 9=S 10,故选B.3.C a n a n +1=n 2+3n +2=(n +1)(n +2),则a n =n +1或a n =-n -1,公差为1或-1,故选C.4.D 由题意S k +2-S k =a k +1+a k +2=a 1+(k +1)d +a 1+kd =24⇒k =5.5.a n =-1n 由a n +1·a n =a n +1-a n ,得1a n -1a n +1=1,即1a n +1-1a n=-1,又1a 1=-1,则数列{1a n}是以-1为首项和公差的等差数列, 于是1a n =-1+(n -1)×(-1)=-n ,所以a n =-1n.6.57 由条件知3×3+3d =21,d =4,所以a 4+a 5+a 6=3a 1+12d =3×3+4×12=57.7.5或6 由题意知a 21=a 211=(a 1+10d )2=a 21+20a 1d +100d 2, 即a 1=-5d ,所以S n =na 1+n n -2d =n n -2d ,故当n =5或6时,S n 最大.8.解析:(1)证明:b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a na n -1-1a n -1 =1,所以{b n }是公差为1的等差数列. (2)由(1)知,b n =b 1+(n -1)×1=135-1+(n -1)=n -72,所以1a n -1=n -72,所以a n =2n -52n -7,又a n =1+1n -72,由函数y =1+1x -72的图象可知,n =4时,a n 最大;n =3时,a n 最小, 所以最大项为a 4,最小项为a 3.9.解析:(1)设公差为d ,由题意,⎩⎪⎨⎪⎧a 4=-12a 8=-4⇔⎩⎪⎨⎪⎧a 1+3d =-12a 1+7d =-4,解得⎩⎪⎨⎪⎧a 1=-18d =2.所以a n =2n -20.(2)由数列{a n }的通项公式可知,当n ≤9时,a n <0;当n =10时,a n =0;当n ≥11时,a n >0. 所以当n =9或n =10时,S n 取得最小值为S 9=S 10=-90. (3)记数列{b n }的前n 项和为T n ,由题意可知 b n =a 2n -1=2×2n -1-20=2n -20. 所以T n =b 1+b 2+b 3+…+b n=(21-20)+(22-20)+(23-20)+…+(2n-20)=(21+22+23+ (2))-20n=2-2n +11-2-20n=2n +1-20n -2.第32讲 等比数列的概念及基本运算1.C 设等比数列的首项及公比分别为a 1,q , 则⎩⎪⎨⎪⎧ a 1q =22a 1q 2+a 1q 3=16,由此可解得⎩⎪⎨⎪⎧a 1=1q =2, 故数列的通项公式为a n =2n -1,故选C.2.B 由a 8=1,q =12,得a 1=27.所以S 8=a 1-q 81-q =27[1-128]1-12=28-1=255.3.A 因为等比数列前n 项和可写为形如S n =kq n-k ,所以-a 2=16,解得a =-13,故选A.4.A S 4=60,q =2⇒a 1-241-2=60⇒a 1=4,故a 2=8,故选A.5.16 因为a 5,a 7,a 9成等比数列,所以a 27=a 5·a 9=256.又a 5,a 7,a 9符号相同,所以a 7=16.6.152 由a n +2+a n +1=6a n ,得q n +1+q n =6q n -1, 即q 2+q -6=0,q >0,解得q =2.又a 2=1,所以a 1=12,S 4=12-241-2=152.7.15 对于S 4=a 1-q 41-q ,a 4=a 1q 3,所以S 4a 4=1-q 4q 3-q=15.8.解析:(1)由题意得a 1a 2=2,a 3a 4=32,即a 21q =2,a 21q 5=32,解得a 1=1,q =2.所以a n =2n -1.(2)因为b n =4n -1+(n -1),所以 S n =b 1+b 2+…+b n=(1+0)+(41+1)+(42+2)+…+[4n -1+(n -1)]=(1+41+42+…+4n -1)+[0+1+2+…+(n -1)]=4n-13+n -n 2.9.解析:(1)由a n +1=2a n +2,得a n +1+2=2a n +4,即a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ∈N *). 又由a 1=2,得a 1+2=4,所以数列{a n +2}是以4为首项,以2为公比的等比数列.(2)由(1)知a n +2=4·2n -1=2n +1,所以a n =2n +1-2.所以S n =22+23+…+2n +1-2n =22-2n 1-2-2n =2n +2-2n -4.第33讲 等差、等比数列的性质及综合应用 1.C 由等差数列性质,a 4+a 14=a 7+a 11=5,又a 7·a 11=6,所以⎩⎪⎨⎪⎧ a 7=2a 11=3或⎩⎪⎨⎪⎧a 7=3a 11=2, 此时d =a 11-a 711-7=14或-14.所以a 20-a 10=10d =52或-52.2.C 由题意a 5+a 7+a 9=a 2·q 3+a 4·q 3+a 6·q 3=q 3(a 2+a 4+a 6)=23×3=24.3.C 由等比数列的前n 项和性质得S 10=S 5+S 5·q 5(q 为公比).又S 10S 5=1+q 5=3,则q 5=2. 又S 15=S 5+(S 10-S 5)+(S 15-S 10)=S 5(1+q 5+q 10)=7S 5,所以S 15S 5=7.4.B 由题意得等比数列{a n }的首项a 1=2,公比q =2,则数列{a n a n +1}构成首项为8,公比为4的等比数列,所以S n =-4n1-4=83(4n-1),故选B.5.240 由等比数列性质知a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,由已知条件知公比为2,所以a 7+a 8=(a 1+a 2)·q 3=30×23=240.6.8 由1,a 1,a 2,9成等差数列,可得a 2-a 1=83,由1,b 1,b 2,b 3,9成等比数列,可得b 2>0,且b 2=3,所以(a 2-a 1)b 2=8. 7.12 由等差数列的性质知1a 3+1,1a 7+1,1a 11+1成等差数列, 则2a 7+1=1a 3+1+1a 11+1, 即21+1=12+1+1a 11+1,解得a 11=12. 8.解析:(1)因为S 5=4a 3+6,所以5a 1+5×42d =4(a 1+2d )+6.①因为a 1,a 3,a 9成等比数列,所以a 1(a 1+8d )=(a 1+2d )2.②由①②及d ≠0可得a 1=2,d =2,所以a n =2n .(2)由a n =2n 可知S n =2+2n ×n 2=n 2+n .所以1S n =1n n +1=1n -1n +1.所以1S 1+1S 2+…+1S n -1+1S n=11-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1=nn +1.所以数列{1S n }的前n 项和为nn +1.9.解析:(1)由数列{a n }的前n 项之乘积是b n ,得a 1=b 1,a n =b nb n -1. (2)令n =1,得λa 1+b 1=1,又a 1=b 1,所以b 1=1λ+1,因为λ=1,所以b 1=12.当n ≥2时,将a n =b n b n -1代入a n +b n =1中,得b nb n -1+b n =1, 则1b n =1b n -1+1,数列{1b n}是以1b 1=2为首项,以1为公差的等差数列.(3)因为2a 1+b 1=1,a 1=b 1,所以3b 1=1,b 1=13.当λ=2时,将a n =b n b n -1代入2a n +b n =1中,得2b nb n -1+b n =1,则1b n =2b n -1+1,所以1b n +1=2(1b n -1+1).所以{1b n+1}是以1b 1+1=4为首项,以2为公比的等比数列.所以1b n+1=4·2n -1,解得b n =12n +1-1.因为12n +1-1<12n +1-2=12·12n -1,所以b n <12b n -1(n ∈N *,n ≥2),所以b 1+b 2+…+b n≤b 1+12b 1+122b 1+…+12n -1b 1=b 1·1-12n1-12<b 11-12=23,即λ=2时,b 1+b 2+…+b n <23.第34讲 数列求和1.C S n =(2+22+ (2))+[1+3+5+…+(2n -1)]=-2n1-2+n+2n -2=2n +1-2+n 2.2.A S 10=11×3+12×4+13×5+…+19×11+110×12=12[(1-13)+(12-14)+(13-15)+…+(19-111)+(110-112)] =12(1+12-111-112)=175264. 故选A.3.D a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1, 依题意得M n =a 1+a 2+a 4+…+a 2n -1=(1+1)+(2+1)+…+(2n -1+1)=2n-1+n ,M 10=210+10-1=1033,故选D.4.A S n =2×1+5×4+8×42+…+(3n -1)·4n -1,①4S n =4×2+5×42+…+(3n -1)·4n,② ②-①得:3S n =-2-3(4+42+…+4n -1)+(3n -1)·4n=2+(3n -2)4n,所以S n =(n -23)·4n+23,故选A.5.33 由a 3=a 2+2,得d =2,所以a 6=3,故S 11=a 1+a 112=11a 6=33.6.39 a 5+a 6+a 7=S 7-S 4=39. 7.511512 由题意得a n +1=a n a 1,a n +1a n =a 1=12, a n =a 1(12)n -1=(12)n ,因此S 9=1-(12)9=511512.8.解析:(1)由S n +1-S n =(13)n +1得,a n +1=(13)n +1(n ∈N *),又a 1=13,故a n =(13)n (n ∈N *).从而S n =13×[1-13n ]1-13=12[1-(13)n ](n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得13+3×(49+1327)=2×(13+49)t ,解得t =2.9.解析:(1)因为-1a n +1=-4+1a 2n ,所以1a 2n +1-1a 2n=4,所以{1a 2n}是以1为首项,4为公差的等差数列.所以1a 2n=4n -3,因为a n >0,所以a n =14n -3. (2)b n =a 2n ·a 2n +1=1n -n +=14(14n -3-14n +1). 所以S n =b 1+b 2+…+b n=14[(1-15)+(15-19)+…+(14n -3-14n +1)]=14(1-14n +1)<14. 对于任意的n ∈N *使得S n <t 2-t -12恒成立,所以只要14≤t 2-t -12,所以t ≥32或t ≤-12,所以存在最小的正整数t =2符合题意. 第35讲 数列模型及综合应用1.B 设2012年底总产值为a ,年平均增长率为x ,则a (1+x )10=4a ⇒x =4110-1.(切记翻两番为原来的4倍,而不是2倍)2.B log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=log 3(310)=10.3.A f (x )是偶函数⇒b =0,所以f (x )=3x 2+1, g (x )是奇函数⇒c =0,所以g (x )=5x ,又f (a n +a n +1)-g (a n +1a n +a 2n )=1,即3(a n +a n +1)2+1-5(a n +1a n +a 2n )=1, (a n +a n +1)[3(a n +a n +1)-5a n ]=0. 由于{a n }为正数数列,即a n >0,故3(a n +a n +1)=5a n ,a n +1a n =23,又a 1=1,所以{a n }是等比数列,且a n =(23)n -1(n ∈N *).4.B 因为f ′(x )=2cos 2x ,所以a 5=f ′(π6)=2cos π3=1,所以a 1a 2+a 2a 9+a 9a 8+a 8a 1=(a 1+a 9)(a 8+a 2)=2a 5·2a 5=4,故选B.5.8 设五位同学依次报出的数字构成的数列为{a n },则a 1=2,a 2=3,a 3=6,a 4=8,a 5=8,a 6=4,a 7=2,a 8=8,……易知此{a n }(n ≥3)是周期为6的数列,所以a 2014=a 6×335+4=a 4=8.6.a +r 8-a +r r复利问题,本题为等比数列模型.a (1+r )7+a (1+r )6+…+a (1+r )=a +r-+r7]-r=a+r8-a +rr.7.7月、8月 当n =1时,a 1=S 1=16.当n ≥2时,a n =S n -S n -1=-n 230+n 2-310,即a n =-n 230+n 2-310.当n =7或n =8时,a n >1.5.8.解析:(1)设S 0表示广告费为0元时的销售量. 由题意知S n -S n -1=b2n ,S n -1-S n -2=b2n -1,……S 2-S 1=b 22,S 1-S 0=b2,将上述各式相加得,S n =b +b 2+b 22+…+b 2n =b [1-12n +1]1-12=b ·(2-12n ).(2)当a =10,b =4000时,设获利为T n 元.由题意知T n =10S n -1000n =40000·(2-12n )-1000n .欲使T n 最大,则⎩⎪⎨⎪⎧T n ≥T n -1T n ≥T n +1,代入解得⎩⎪⎨⎪⎧n ≤5n ≥5.所以n =5,此时S 5=7875.即厂家应生产7875件这种产品,做5千元的广告,才能获利最大. 9.解析:(1)由题意得Δ=a n +1-2a n -1=0, 即a n +1=2a n +1,进而可得a 2=5,a 3=11.(2)证明:由于a n +1=2a n +1,所以a n +1+1=2(a n +1).因为a 1+1=3≠0,所以数列{a n +1}是以a 1+1=3为首项,公比为2的等比数列,则数列{1a n +1}是以13为首项,公比为12的等比数列. 于是11+a 1+11+a 2+11+a 3+…+11+a n=13(1+12+122+…+12n -1) =13·1-12n1-12=23[1-(12)n ] <23, 所以11+a 1+11+a 2+11+a 3+…+11+a n <23(n ∈N *).第36讲 算法与程序框图1.B 由顺序结构、条件结构和循环结构的含义可知应选B. 2.C 只有②③符合条件,故选C.3.C 执行如图的程序框图,n =1,S =1;n =2,S =3;n =3,S =7;n =4,S =15;n =5输出,则p =8为最小值,故选C.4.B 当a =1时,进入循环,此时b =21=2;当a =2时,再进入循环,此时b =22=4;当a =3时,再进入循环,此时b =24=16,所以当a =4时,应跳出循环,得循环满足的条件为a ≤3, 故选B.5.-54 第1次循环后,y =1,x =1;第2次循环后,y =-12,x =-12;第3次循环后,y =-54.6.{x |x =2或-2≤x ≤1} 流程图的算法功能是求实数a ,b ,c 的最小值,则b ≤a ,b ≤c ,即⎩⎪⎨⎪⎧x 2≤4x 2≤2x 2-3x +2,解得x =2或-2≤x ≤1.7.32第一(i =1)步:s 1=s 1+x i =0+1=1; 第二(i =2)步:s 1=s 1+x i =1+1.5=2.5; 第三(i =3)步:s 1=s 1+x i =2.5+1.5=4;第四(i =4)步:s 1=s 1+x i =4+2=6,s =14×6=32;第五(i =5)步:i =5>4,输出s =32.8.解析:第一步:输入实数a ;第二步:若a ≥4,则执行第三步,否则执行第四步; 第三步:输出2a -1;第四步:输出a 2-2a +3.9.解析:该题涉及分段函数,故设y (单位:元)表示通话费,t (单位:分钟)表示通话时间,则依题意有y =⎩⎪⎨⎪⎧0.2 t 0.2+t -t >3,t ∈N *0.2+t -3]+t >3,但t ∉N *.流程图如图所示:第37讲 基本算法语句和算法案例 1.D 2.D 3.B4.C v 1=3x +3,v 2=v 1x +2,v 3=v 2x +6,v 4=v 3x +1,共需4次乘法,故选C.5.24 第1次运行后,t =2,i =3;第2次运行后,t =6,i =4;第3次运行后,t =24,i =5.6.5 由k 进制数123可判断k ≥4, 若k =4,38(10)=212(4)不成立.若k =5,38(10)=123(5)成立,所以k =5.7.20,30,20 给a ,b ,c 赋初值分别为10,20,30,执行a =b 后a 的值为20,执行b =c 后b 的值为30,执行c =a 后c 的值为20.8.解析:根据秦九韶算法,把多项式改写成如下形式:f (x )=((((0.00833x +0.04167)x +0.16667)x +0.5)x +1)x +1. 按照从内到外的顺序依次计算一次多项式,当x =-0.2时的值: v 0=0.00833,v 1=0.00833×(-0.2)+0.04167=0.04, v 2=0.04×(-0.2)+0.16667=0.15867, v 3=0.15867×(-0.2)+0.5=0.46827, v 4=0.46827×(-0.2)+1=0.90635, v 5=0.90635×(-0.2)+1=0.81873,所以当x =-0.2时,多项式的值为0.81873.9.解析:购冰箱的钱全部付清后,实际付了1255元.程序框图如下:程序如下:m=60a=150S=0S=S+ai=1WHILE i<=20S=S+mm=m-0.5i=i+1 WENDPRINT SEND。
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-5 Word版含解析
基础达标检测一、选择题1.已知数列{a n}是首项为a1=4的等比数列,且4a1,a5,-2a3成等差数列,则其公比q等于()A.1B.-1C.1或-1 D. 2[答案] C[解析]依题意有2a5=4a1-2a3,即2a1q4=4a1-2a1q2,整理得q4+q2-2=0,解得q2=1(q2=-2舍去),所以q=1或-1,故选C.2.等差数列{a n}的前n项和为S n,S9=-18,S13=-52,等比数列{b n}中,b5=a5,b7=a7,则b15的值为()A.64 B.-64C.128 D.-128[答案] B[解析]因为S9=92(a1+a9)=9a5=-18,S13=132(a1+a13)=13a7=-52,所以a5=-2,a7=-4,又b5=a5,b7=a7,所以q2=2,所以b15=b7·q8=-4×16=-64.3.一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等数列的公差等于()A .0 B.π12 C.π6 D.π4[答案] A[解析] 因A ,B ,C 成等差数列,a ,b ,c 成等比数列, 则B =π3,b 2=ac ,∴cos B =a 2+c 2-b 22ac =12,可推得a =c =b . ∴A =B =C ,即公差为0.4.等差数列{a n }中,a 1=a 3+a 7-2a 4=4,则a n a n +1+12n 2+3n 的值为整数时n 的个数为( )A .4B .3C .2D .1[答案] C[解析] a 3+a 7-2a 4=2d =4, ∴d =2.∴a n =2n +2.∴a n a n +1+12n 2+3n =(2n +2)(2n +4)+12n 2+3n=4+20n (n +3).当n =1,2时,符合题意.5.某种细胞开始时有2个,1h 后分裂成4个并死去1个,2h 后分裂成6个并死去1个,3h 后分裂成10个并死去1个,…,按照此规律,6h 后细胞存活数是( )A .33B .64C.65 D.127[答案] B[解析]每一小时后细胞变为前一小时细胞数的2倍减1,4小时后为17个,5小时后为33个,6小时后为65个.6.小正方形按照如图的规律排列:每个图中的小正方形的个数就构成一个数列{a n},有以下结论:①a5=15;②数列{a n}是一个等差数列;③数列{a n}是一个等比数列;④数列的递推公式为:a n+1=a n+n+1(n∈N+).其中正确的命题序号为()A.①②B.①③C.①④D.①[答案] C[解析]当n=1时,a1=1;当n=2时,a2=3;当n=3时,a3=6;当n=4时,a4=10,…,观察图中规律,有a n+1=a n+n+1,a5=15.故①④正确.二、填空题7.已知m、n、m+n成等差数列,m、n、mn成等比数列,则椭圆x2m+y2n=1的离心率为________.[答案] 22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] ∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2 =2-2n 1-2+2=2n -2+2=2n , ∴S n =2-2n +11-2=2n +1-2.9.(2013·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n (n ∈N +)等于________.[答案] 6[解析] 本题考查等比数列通项公式,前n 项和公式等.记第一天植树a 1=2,则第n 天为a n =2n,这n 天总共植树S n =2(1-2n)1-2=2(2n-1),令S n ≥100得n ≥6,所以最少要6天.三、解答题10.(2013·安徽高考)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N +函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′(π2)=0.(1)求数列{a n }的通项公式;(2)若b n =2(a n +12a n),求数列{b n }的前n 项和S n .[解析] (1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1·sin x -a n +2cos x对任意n ∈N +.f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1. (2)由b n =2(a n +12a n )=2(n +1+12n +1)=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12[1-(12)n ]1-12=n 2+3n +1-12n .能力强化训练一、选择题1.已知函数f (x )=x 2+bx 的图像在点A (1,f (1))处的切线的斜率为3,数列{1f (n )}的前n 项和为S n ,则S 2 014的值为( )A.2 0132 015B.2 0122 013C.2 0132 014D.2 0142 015[答案] D[解析] ∵f ′(x )=2x +b ,∴f ′(1)=2+b =3,∴b =1,∴f (x )=x 2+x ,∴1f (n )=1n (n +1)=1n -1n +1, ∴S 2 014=(1-12)+(12-13)+…+(12 013-12 014)+(12 014-12 015)=1-12 015=2 0142 015.2.已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64an的最小值为( )A .7B .8 C.152 D.172[答案] D[解析] 由题意知⎩⎪⎨⎪⎧ a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n .∴S n +64a n=n 2+n +642n=n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n ,∴n =8,故选D.二、填空题3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.[答案] 10[解析] 由等差数列的性质可知2a m =a m +1+a m -1, 又∵a m -1+a m +1-a 2m =0,∴a 2m =2a m ,∴a m =2(a m =0不合题意,舍去),又S 2m -1=2m -12(a 1+a 2m -1)=2m -12×2a m =(2m -1)·a m =38,∴2m -1=19. ∴m =10.4.(2014·济南模拟)若数列{a n }满足1a n +1-1a n=d (n ∈N +,d 为常数),则称数列{a n }为“调和数列”.已知数列{1x n}为“调和数列”,且x 1+x 2+…+x 20=200,则x 3x 18的最大值是________.[答案] 100[解析] 因为数列{1x n}为“调和数列”,所以x n +1-x n =d (n ∈N +,d 为常数),即数列{x n }为等差数列,由x 1+x 2+…+x 20=200得20(x 1+x 20)2=20(x 3+x 18)2=200, 即x 3+x 18=20,易知x 3,x 18都为正数时,x 3x 18取得最大值,所以x 3x 18≤(x 3+x 182)2=100,即x 3x 18的最大值为100.三、解答题5.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式;(2)若b n =a n ·3n ,求数列{a n }的前n 项和T n . [解析] (1)∵点(a n ,a n +1)在直线y =x +2上, ∴a n +1=a n +2,即a n +1-a n =2.∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1. (2)∵b n =a n ·3n ,∴b n =(2n +1)·3n .∴T n =3×3+5×32+7×33+…+(2n -1)·3n -1+(2n +1)·3n ,① ∴3T n =3×32+5×33+…+(2n -1)·3n +(2n +1)·3n +1.②①-②得-2T n =3×3+2(32+33+…+3n )-(2n +1)·3n +1=9+2×9(1-3n -1)1-3-(2n +1)·3n +1=-2n ·3n +1∴T n =n ·3n +1.6.在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列; (3)若c n =a n ·b n ,求证:c n +1<c n .[解析] (1)由已知点A n (a n ,a n +1)在y 2-x 2=1上知, a n +1-a n =1,又∵a 1=2.∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上, ∴T n =-12b n +1,①∴T n -1=-12b n -1+1(n ≥2),② ①②两式相减得 b n =-12b n +12b n -1(n ≥2), ∴32b n =12b n -1,∴b n =13b n -1. 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列. (3)证明:由(2)可知b n =23·(13)n -1=23n . ∴c n =a n ·b n =(n +1)·23n ,∴c n +1-c n =(n +2)·23n +1-(n +1)· 23n=23n +1[(n +2)-3(n +1)]=23n +1(-2n -1)<0, ∴c n +1<c n .------------------------------------------------------------------------怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。
2015年山东省高考(理)一轮专题复习特训:数列【含答案】
山东省2015年高考数学一轮专题复习特训数列一、选择题 1 1.(山东省单县第五中学2014届高三第二次阶段性检测试题(数理))已知数列{ an }的前n 项和为Sn,且Sn=2(an —1),则a2等于 ( ) A .4 B .2 C .1 D .-2 【答案】A22.(山东省莱芜四中2014届高三第二次月考数学理试题)已知n n a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A = ( )A .9331)(B .9231)(C .9431)(D .11231)( 【答案】A 33.(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS =( ) A .1 B .-1 C .2 D.12【答案】A44.(山东省淄博一中2014届高三上学期10月阶段检测理科数学)数列中,前项和为,且 ,则= ( ) A .2600 B .2601 C .2602D .2603【答案】A55.(山东省莱芜四中2014届高三第二次月考数学理试题)设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则=++987a a a ( )}{n a n n S n n n a a a a )1(1,2,1221-++===+100SA .81B .81-C .857D .855【答案】A66 .(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)已知{an}是由正数组成的等比数列,Sn 表示数列{an}的前n 项的和,若a1=3,a2a4=144,则S5的值为 ( )A .692B .69C .93D .189【答案】C 77.(山东省聊城市堂邑中学2014届高三上学期9月假期自主学习反馈检测数学(理)试题)若数列的通项为,则其前项和为( )A .B .C .D .【答案】D 根据题意,由于数列的通项为可以变形为n 112()2a n n =-+,那么可知数列的前n 项和为n 12n 111111+++2[()()+()]13242S a a a n n ==-+-+-+可知结论为,故选D88.(山东师大附中2014届高三第一次模拟考试数学试题)等差数列中,则 ( ) A . B . C . D .【答案】B 二、填空题 19.(山东师大附中2014届高三第一次模拟考试数学试题)已知递增的等差数列满足,则_________ . 【答案】{}n a 564a a +=310122log (2222)a aa a ⋅⋅⋅⋅=…10204022log 5+{}n a 21321,4a a a ==-n a =21n -三、解答题1、(2014山东理)19.(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T . 答案:19.解:(I ),64,2,,2141211d a S d a S a S d +=+===解得12,11-=∴=n a a n (II ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n )121121()121321()7151()5131()311(++---+-+-+++-+=n n n n T n n 为偶数时,当1221211+=+-=∴n nn T n )121121()121321()7151()5131()311(++-+-+---+++-+=n n n n T n n 为奇数时,当12221211++=++=∴n n n T n⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,1222、(2013山东理)20.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n b 前n 项和为n T ,且12n n n a T λ++=(λ为常数).令2n nc b =4122421,,S S S S S S =∴成等比*()n N ∈.求数列{}n c 的前n 项和n R 。
2015年三年高考数学(理)真题精编——专题06 数列(选择填空解答)
一、选择题1. 【2014高考北京理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C. 考点:等比数列的性质,充分条件与必要条件的判定,容易题.2. 【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a --> 【答案】C考点定位:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.3. 【2013课标全国Ⅱ,理3】等比数列{a n}的前n 项和为S n.已知S 3=a 2+10a 1,a 5=9,则a 1=().A .13 B .13- C .19 D .19- 【答案】:C【解析】:设数列{a n }的公比为q ,若q =1,则由a 5=9,得a 1=9,此时S 3=27,而a 2+10a 1=99,不满足题意,因此q ≠1.∵q ≠1时,S 3=31(1)1a q q --=a 1·q +10a 1,∴311q q--=q +10,整理得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19. 8. 【2013课标全国Ⅰ,理7】设等差数列{a n}的前n 项和为S n,若Sm -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .6 【答案】:C【解析】:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=.∴m =5.故选C. 11. 【2013课标全国Ⅰ,理12】设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】:B 【解析】13. 【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a d a d a 35)7)(2()3(11121-=⇒++=+, ∴d d a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B. 【考点定位】1.等差数列的通项公式及其前n 项和;2.等比数列的概念15. 【2014高考重庆理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D考点:1、等比数列的概念与通项公式;2、等比中项.16. 【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A 、-1B 、0C 、1D 、6 【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B .【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.20. 【2013上海,理17】在数列{a n }中,a n =2n -1.若一个7行12列的矩阵的第i 行第j 列的元素c ij =a i ·a j+a i +a j (i =1,2,…,7;j =1,2,…,12),则该矩阵元素能取到的不同数值的个数为( ) A .18B .28C .48D .63【答案】A【解析】a i ,j =a i ·a j +a i +a j =2i +j -1,而i +j =2,3,…,19,故不同数值个数为18,选A.22. 【2014福建,理3】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 【解析】试题分析:假设公差为d ,依题意可得1323212,22d d ⨯+⨯⨯=∴=.所以62(61)212a =+-⨯=.故选C. 考点:等差数列的性质.23. (2013福建,理9)已知等比数列{a n }的公比为q ,记b n =a m (n-1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N*),则以下结论一定正确的是( ).A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m 【答案】C25. 【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D【考点定位】等差中项和等比中项.二、填空题3. 【2013高考北京理第10题】若等比数列{a n}满足a 2+a 4=20,a 3+a 5=40,则公比q =__________;前n 项和S n =__________.【答案】2 2n +1-2【解析】试题分析:由题意知352440220a a q a a +===+.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2.∴S n =21212n (-)-=2n +1-2.考点:等比数列的通项公式,前n 项和.4. 【2014高考北京理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.【答案】8考点:等差数列的性质,前n 项和的最值,容易题.5. 【2013高考广东卷.理.12】在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=__________.【答案】20【解析】因为数列{a n }的等差数列,所以由等差数列的性质得a 3+a 8=a 5+a 6=a 4+a 7=10. 所以3a 5+a 7=a 5+2a 5+a 7=a 5+a 4+a 6+a 7=2×10=20.故填20. 【考点定位】本题考查数列中的等差数列,属于基础题7. 【2014高考广东卷.理.13】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .【答案】50.【解析】由题意知51011912101122a a a a a a e +==,所以51011a a e =, 因此()()()()()101055012201202191011101110a a a a a a a a a a a ee ⋅⋅⋅=⋅⋅⋅⋅===对,因此()1250122020ln ln ln ln ln 50a a a a a a e⋅⋅⋅+=++== .【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题.9. 【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .【答案】10.【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,所以285210a a a +==,故应填入10.【考点定位】等差数列的性质.11. 【 2013湖南15】设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________。
2015年高考数学理一轮复习精品资料 专题6.4 数列求和含解析
2015年高考数学理一轮复习精品资料【新课标版】预测卷第六章 数列 第四节 数列求和一、选择题1. 已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( ) A .100101 B .99101 C .99100 D .1011002. 【改编题】设数列}{n a 中,若)N (21*++∈+=n a a a n n n ,则称数列}{n a 为“凸数列”.已知数列}{n b 为“凸数列”,且11=b ,22-=b ,则数列}{n b 的前2014项和为( ) A .5B .5-C .0D .2-3. 数列1111111111,,,,,,,,,,223334444的前100项的和等于( )A.91314B.111314C.11414D.314144. 数列 ,,,,1617815413211的前n 项和n S 为( ). A.12211--+n n B.n n 2122-+ C.n n 2112-+ D. 12212--+n n5. 【2013届贵州天柱民中、锦屏中学、黎平一中、黄平民中四校联考】若数列{}n a 的通项为2(2)n a n n =+,则其前n 项和n S 为( ) A .112n -+ B .31121n n --+ C .31122n n --+ D .311212n n --++6. 数列}{n a 满足 ,11=a 且对任意的*,N n m ∈都有 ,mn a a a n m n m ++=+则=+⋅⋅⋅+++20133211111a a a a ( )A.20142013 B.20144026 C.20132012 D.201340247. 【2014年广东省广州市普通高中毕业班综合测试一】在数列{}n a 中,已知11a =,()111sin2n n a a π++-=,记n S 为数列{}n a 的前n 项和,则2014S =( )A.1006B.1007C.1008D.10098. 【2014年陕西省宝鸡市高三数学质量检测(一)】已知一次函数b kx x f +=)(的图像经过点)2,1(P 和)4,2(--Q ,令N n n f n f a n *),1()(∈+=,记数列1n a ⎧⎫⎨⎬⎩⎭的前项和为s n ,当256=s n 时,n 的值等于( )A . 24 B. 25 C. 23 D. 26 【答案】A【解析】因为一次函数b kx x f +=)(的图像经过点)2,1(P 和)4,2(--Q ,可得242k b k b =+⎧⎨-=-+⎩,解得2k b =⎧⎨=⎩,所以()2f x x =,()()()(1)22141n a f n f n n n n n =+=⨯+=+,()111114141n a n n n n ⎛⎫==- ⎪++⎝⎭,11111111161142231414125n n S n n n n ⎛⎫⎛⎫=-+-++-=-== ⎪ ⎪+++⎝⎭⎝⎭,得24n =. 9. 【江西师大附中高三年级数学期中考试试卷】已知函数ax x x f -=2)(的图像在点))1(,1(f A 处的切线l 与直线023=++y x 垂直,若数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2013S 的值为 ( ) A.20112010B.20122011 C.20132012D.2014201310. 已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'()f x g x f x g x <, 25)1()1()1()1(=--+g f g f ,若有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭(n N *∈)的前n 项和等于3231,则n 等于A .4B .5C . 6D . 7二、填空题12. 【改编题】已知数列{}n a 满足211222n n a -=++++,则{}n a 的前n 项和n S = .13. 【改编题】以()m ,0间的整数()N m m ∈>,1为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以()2,0m间的整数()N m m ∈>,1为分子,以2m为分母组成不属于集合1A 的分数集合2A ,其所有元素和为2a ;……,依次类推以()n m ,0间的整数()N m m ∈>,1为分子,以n m 为分母组成不属于121,,,n A A A -⋅⋅⋅的分数集合n A ,其所有元素和为n a ;则12n a a a ⋅⋅⋅+++=________.三、解答题14.【原创题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求证:3n T >.15. 【河北石家庄2014届高三调研试题】已知公差不为0的等差数列{}n a 的前n 项和为n S ,346S a =+,且1413,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设21n an b =+,求数列{}n b 的前n 项和.16. 【山东省威海市2014届高三3月模拟考试】已知正项数列{}n a ,其前n 项和n S 满足2843,n n n S a a =++且2a 是1a 和7a 的等比中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 符号[]x 表示不超过实数x 的最大整数,记23[log ()]4n n a b +=,求1232n b b b b +++.。
2015届高考数学一轮总复习6-4数列的综合问题与数列的应用课后强化作业(新人教A版)
【走向高考】2015届高考数学一轮总复习 6-4数列的综合问题与数列的应用课后强化作业 新人教A 版基础巩固强化一、选择题1.(文)若a 、b 、c 成等比数列,则函数f (x )=ax 2+bx +c 的图象与x 轴交点的个数是( ) A .0 B .1 C .2 D .不确定 [答案] A[解析] 由题意知,b 2=ac >0,∴Δ=b 2-4ac =-3ac <0,∴f (x )的图象与x 轴无交点. (理)已知数列{a n },{b n }满足a 1=1,且a n 、a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 [答案] D[解析] 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64,故选D.2.(文)小正方形按照下图中的规律排列:每小图中的小正方形的个数就构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n =a n -1+n (n ∈N *),其中正确的为( )A .①②④B .①③④C .①②D .①④[答案] D[解析] 观察图形可知a n =1+2+3+…+n =n (n +1)2.∴选D.(理)某同学在电脑中打出如下若干个圈:●○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中的●的个数是( )A .60B .61C .62D .63 [答案] C[解析] 第一次出现●在第1个位置;第二次出现●在第(1+2)个位置;第三次出现●在第(1+2+3)个位置;…;第n 次出现●在第(1+2+3+…+n )个位置.∵1+2+3+…+n =n (n +1)2,当n =62时,n (n +1)2=62×(62+1)2=1953,2014-1953=61<63,∴在前2014个圈中的●的个数是62.3.(2012·沈阳市二模)设等差数列{a n }的前n 项和为S n ,若a 2、a 4是方程x 2-x -2=0的两个实数根,则S 5的值为( )A.52 B .5 C .-52 D .-5 [答案] A[解析] ∵a 2、a 4是方程x 2-x -2=0的两实根, ∴a 2+a 4=1,∴S 5=5×(a 1+a 5)2=5(a 2+a 4)2=52.4.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则( ) A .a 6=b 6 B .a 6>b 6 C .a 6<b 6 D .以上都有可能[答案] B[解析] a 6=a 1+a 112,b 6=b 1b 11=a 1a 11,由q ≠1得,a 1≠a 11. 故a 6=a 1+a 112>a 1a 11=b 6.(理)(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在 [答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →=( )A .2015B .-2015C .0D .1[答案] A[解析] 由S 29=S 4000得到S n 关于n =29+40002=2014.5对称,故S n 的最大(或最小)值为S 2014=S 2015,故a 2015=0,OP →·OQ →=2015+a n ·a 2015=2015+a n ×0=2015,故选A.6.(2013·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2013=( )A.2012-1B.2013-1C.2014-1D.2014+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12 .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2013=a 1+a 2+a 3+…+a 2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1.二、填空题7.(文)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧ 2+d =q ,2(2+3d )=q 2.解得⎩⎪⎨⎪⎧q =2,d =0,(舍去)或⎩⎪⎨⎪⎧q =4,d =2.所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4. (理)在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x )d x ,则公比q 为________.[答案] 3[解析] ∵a 4=⎠⎛14(1+2x )d x =(x +x 2)|41=(4+42)-(1+12)=18,∴q 3=a 4a 1=27, ∴q =3.8.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12(12+1)2ar =78ar 元. 9.(文)已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22. (理)已知双曲线a n -1y 2-a n x 2=a n -1a n (n ≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上, 又渐近线方程为y =2x , ∴a na n -1=2, 又a 1=4,∴a n =4×2n -1=2n +1. 三、解答题10.(文)(2013·浙江萧山五校联考)已知二次函数y =f (x )的图象经过坐标原点,其导函数f ′(x )=2x +2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,T n 是数列{b n }的前n 项和,求T n . [解析] (1)设f (x )=ax 2+bx ,f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x , ∴S n =n 2+2n ,∴当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1, 又a 1=S 1=3,适合上式,∴a n =2n +1. (2)b n =(2n +1)·2n ,∴T n =3·21+5·22+7·23+…+(2n +1)·2n , ∴2T n =3·22+5·23+7·24+…+(2n +1)·2n +1,相减得-T n =3·21+2·(22+23+…+2n )-(2n +1)·2n +1=6+2·4·(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,∴T n =(2n -1)·2n +1+2.(理)已知函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n ∈N *),求数列{b n }的前n项和T n .[解析] (1)由题意可设f (x )=ax 2+bx +c , 则f ′(x )=2ax +b =6x -2,∴a =3,b =-2, ∵f (x )过原点,∴c =0,∴f (x )=3x 2-2x .依题意得S n =3n 2-2n .n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, n =1时,a 1=S 1=1适合上式. ∴a n =6n -5(n ∈N *). (2)∵a n =b 12+b 222+b 323+…+b n2n ,∴a n -1=b 12+b 222+b 323+…+b n -12n -1(n ≥2).相减得b n2n =6,∴b n =6·2n (n ≥2).b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 (n =1),6·2n (n ≥2).∴T n =2+6(22+23+…+2n )=3·2n +2-22.能力拓展提升一、选择题11.椭圆x 24+y 23=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11000的等差数列,则n 的最大值为( )A .2001B .2000C .1999D .1998[答案] B[分析] 公差确定后,首项和末项之差越大,等差数列的项数就越多(即n 越大),故P 1与P n 取长轴两端点时n 取最大值,可依据公差大于11000列不等式解.[解析] ∵|P n F |max =a +c =3,|P n F |min =a -c =1, d =a n -a 1n -1=3-1n -1>11000,n ∈N ,∴n max =2000,故选B.12.(文)数列{a n }是公差d ≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13 [答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2,a 1+6d =a 1q 4.得d =a 14(q 4-q 2). ∴a 1+a 12(q 4-q 2)=a 1q 2,∵q ≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63,∴b 11=a 63.(理)(2013·河北教学质量监测)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n-λ)(1a n+1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<3[答案] C[解析] 由已知可得1a n +1=2a n +1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n +1=2n ,b n +1=2n (n -λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n (n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.13.(文)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23C.34D.45 [答案] C[解析] 循环过程为i =1<4→i =2,m =1,S =11×2; i =2<4→i =3,m =2,S =11×2+12×3;i =3<4→i =4,m =3,S =11×2+12×3+13×4;i =4<4不成立,输出S 的值. 故S =11×2+12×3+13×4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14 =1-14=34.(理)已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2nB .a n =2n -1C .a n =2n +1D .a n =2n -3[答案] B[解析] 由a i +1=a i +2知数列{a n }是公差为2的等差数列,由M =1a i ai +1及S =S +M 知,S =1a 1a 2+1a 2a 3+…+1a i a i +1, 由条件i ≤k 不满足时输出S 及输入k =5,输出S =511知,1a 1a 2+1a 2a 3+…1a 5a 6=12[(1a 1-1a 2)+(1a 2-1a 3)+…(1a 5-1a 6)]=12(1a 1-1a 6)=12(1a 1-1a 1+10)=5a 1(a 1+10)=511, ∵a 1>0,∴a 1=1,∴a n =2n -1. 二、填空题14.(2013·广东佛山一模)我们可以利用数列{a n }的递推公式,求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.[答案] 28 640[解析] a 24+a 25=a 12+25=a 6+25=a 3+25=3+25=28. 5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640.15.已知数列{a n }的通项公式为a n =2n (n ∈N *),把数列{a n }的各项排列成如图所示的三角形数阵:2 22 23 24 25 26 27 28 29 210……记M (s ,t )表示该数阵中第s 行的第t 个数,则M (11,2)对应的数是________(用2n 的形式表示,n ∈N ).[答案] 257[解析] 由数阵的排列规律知,第m 行的最后一个数是数列{a n }的第1+2+3+…+m =m (m +1)2项,且该行有m 项,由此可知第11行的第2个数是数列{a n }的第10×112+2=57项,对应的数是257.三、解答题16.(文)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝⎛⎭⎫1,S 11,P 2⎝⎛⎭⎫2,S 22,…,P n ⎝⎛⎭⎫n ,S nn (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd =3,即公比q =3.(2)证明:∵S n =na 1+n (n -1)2d ,∴S nn =a 1+n -12d =1+n -12d . ∴点P n ⎝⎛⎭⎫n ,S n n 在直线y =1+x -12d 上. ∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).即dx -2y +2-d =0.(理)在等差数列{a n }中, 设S n 为它的前n 项和,若S 15>0,S 16<0,且点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,(1)求a 1的取值范围;(2)指出S 1a 1,S 2a 2,…,S 15a 15中哪个值最大,并说明理由.[解析] (1)由已知可得a 5-a 35-3=-2,则公差d =-2,∴⎩⎨⎧S 15=15a 1+15×142×d =15(a 1-14)>0,S16=16a 1+16×152×d =16(a 1-15)<0.∴14<a 1<15. (2)最大的值是S 8a 8,∵S 15=15a 8>0,S 16=8(a 8+a 9)<0, ∴a 8>0,a 9<0,即S 8最大.又当1≤i ≤8时,S i a i >0;当9≤i ≤15时,S ia i <0,∵数列{a n }递减,∴S 1a 1≤S 2a 2≤…≤S 8a 8,S 8a 8≥S 9a 9≥…≥S 15a 15⇒S 8a 8最大. 考纲要求能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.补充说明1.等比数列综合问题的解题思路在解答等差、等比数列综合问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,往往能取得与“巧用性质”相同的解题效果,既要掌握“通法”,又要注重“特法”.2.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,将数列拆为基本数列,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.3.含有字母的数列求和,常伴随着分类讨论.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.备选习题1.设正项等比数列{a n }的前n 项之积为T n ,且T 10=32,则1a 5+1a 6的最小值为( )A .2 2 B. 2 C .2 3 D. 3 [答案] B[解析] 由条件知,T 10=a 1a 2…a 10=(a 5a 6)5=32,∵a n >0,∴a 5a 6=2,∴1a 5+1a 6=12·a 5a 6·(1a 5+1a 6)=12(a 5+a 6)≥12×2a 5a 6=2,等号在a 5=a 6=2时成立. 2.设等差数列{a n }的前n 项和为S n ,则a 6+a 7>0是S 9≥S 3的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.3.已知数列{a n }、{b n }满足a 1=12,a n +b n =1,b n +1=b n 1-a 2n ,则b 2014=( )A.20132014B.20142013C.20142015D.20152014 [答案] C[解析] ∵a n +b n =1,a 1=12,∴b 1=12,∵b n +1=b n 1-a 2n ,∴b 2=b 11-a 21=23, ∴a 2=13,b 3=b 21-a 22=34,a 3=14,b 4=b 31-a 23=45,a 4=15,…,观察可见a n=1n +1,b n =n n +1,∴b 2014=20142015,故选C.4.(2013·武汉调研)在如图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的3,5,8,13,22,39,…,为数列{b n },则(1)(2)数列{b n }的通项公式为________. [答案] (1)129 (2)b n =2n -1+n +1,n ∈N *5.已知f (x )=a 1x +a 2x 2+…+a n x n (n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝⎛⎭⎫12与3的大小,并证明你的结论.[解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2. ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12+3⎝⎛⎭⎫122+5⎝⎛⎭⎫123+…+(2n -1)· ⎝⎛⎭⎫12n ,两边同乘以12得,12f ⎝⎛⎭⎫12=⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+(2n -3)⎝⎛⎭⎫12n +(2n -1)⎝⎛⎭⎫12n +1, 两式相减得,12f ⎝⎛⎭⎫12=12+2⎝⎛⎭⎫122+2⎝⎛⎭⎫123+…+2⎝⎛⎭⎫12n -(2n -1)⎝⎛⎭⎫12n +1=12+12⎝⎛⎭⎫1-12n -11-12-(2n -1)12n +1. ∴f ⎝⎛⎭⎫12=3-2n +32n<3.。
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-3 Word版含解析
基础达标检测一、选择题1.(文)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=2,则a 1=( )A .2 B. 2 C.22 D.12[答案] B[解析] ∵a 3·a 9=(a 6)2=2a 25, ∴(a 6a 5)2=2,又{a n }的公比为正数,∴q =a 6a 5= 2.∴a 1=a 2q = 2.(理)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )A .5 2B .7C .6D .4 2[答案] A[解析] ∵{a n }为正项等比数列,∴a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,且a 4a 5a 6>0, ∴a 4a 5a 6=(a 1a 2a 3)·(a 7a 8a 9)=52,故选A.2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( )A .64B .81C .128D .243[答案] A[解析] 设数列{a n }的公比为q ,则q =a 2+a 3a 1+a 2=2,∴由a 1+a 1q =3得a 1=1,∴a 7=1×27-1=64.3.(文)(2013·新课标Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n[答案] D[解析] 本题考查等比数列前n 项和S n 与通项a n 之间的关系,由题意得,a n =(23)n -1,S n =1-(23)n 1-23=1-23(23)n -113=3-2a n ,选D. (理)(2013·新课标Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1, a 3=9a 1=a 1q 2,∴q 2=9,又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.4.(文)一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项[答案] B[解析] 设前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1,所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4.所以两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,a n1qn (n -1)2=64,即(a 21qn -1)n=642,即2n =642.所以n =12.(理)设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N +),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20=( )A .1 025B .1 024C .10 250D .10 240[答案] C[解析] ∵log 2x n +1=1+log 2x n (n ∈N +), ∴log 2x n +1=log 2(2x n ), ∴x n +1=2x n ,x n +1x n=2(n ∈N +),又x n >0(n ∈N +),所以数列{x n }是公比为2的等比数列,由x 1+x 2+…+x 10=10得到x 1=10210-1,所以S 20=x 1(1-220)1-2=10×(210+1)=10 250.5.(文)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7[答案] D[解析] 本题考查了等比数列的性质及分类讨论思想.a 4+a 7=2,a 5a 6=a 4a 7=-8⇒a 4=4,a 7=-2或a 4=-2,a 7=4, a 4=4,a 7=-2⇔a 1=-8,a 10=1⇔a 1+a 10=-7, a 4=-2,a 7=4⇒a 10=-8,a 1=1⇔a 1+a 10=-7.(理)(2014·山西四校联考)已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n -13D.22n -23[答案] C[解析] 依题意,当n ≥2时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=2-1=1,a n =2n -1也适合a 1. 因此,a n =2n -1,a n +1a n=2,数列{a n }是等比数列.数列{a n }的奇数项的前n 项和为1×(1-22n )1-22=22n -13. 6.(2014·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32 C .1 D .-32[答案] B[解析] 因为a 3a 4a 5=3π=a 34,所以a 4=3π3 ,log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 二、填空题7.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5=________.[答案] 11[解析] 本题考查了等比数列通项公式,求和公式等,设{a n }公比为q ,则a n +2+a n +1 -2a n =a 1q n +1+a 1q n -2a 1q n -1=0,所以q 2+q -2=0,即q =-2,q =1(舍去),∴S 5=1-(-2)51-(-2)=11.8.在等比数列{a n }中,已知对任意正整数n ,a 1+a 2+a 3+…+a n=2n -1,则a 21+a 22+…+a 2n 等于________.[答案] 13(4n -1)[解析] 由a 1+a 2+a 3+…+a n =2n -1, ∴a 1=1,a 2=2,q =2 又∵{a n }是等比数列∴{a 2n }也是等比数列,首项为1,公比为4 ∴a 21+a 22+…+a 2n =1-4n 1-4=13(4n -1). 9.(2013·辽宁高考)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.[答案] 63[解析] 本题考查等比数列的基本运算问题.因为方程x 2-5x +4=0的两根为1,4.由a 1,a 3是方程的两根且数列是递增数列知,a 1=1,a 3=4,所以公比q =2,S 6=1-261-2=63.三、解答题10.(文)S n 是无穷等比数列{a n }的前n 项和,且公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项.(1)求S 2和S 3;(2)求此数列{a n }的前n 项和公式.[解析](1)根据已知条件⎩⎪⎨⎪⎧12S 2+13S 3=2,(2S 2)(3S 3)=36.整理得⎩⎨⎧3S 2+2S 3=12,(3S 2)(2S 3)=36.解得3S 2=2S 3=6,即⎩⎨⎧S 2=2,S 3=3.(2)∵q ≠1,则⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=3.可解得q =-12,a 1=4.∴S n =4[1-(-12)n ]1+12=83-83(-12)n. (理)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)若数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列. [解析] (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2. 由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3. (2)数列{b n }的前n 项和S n =54(1-2n)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2, 因此{S n +54}是以52为首项,公比为2的等比数列.能力强化训练一、选择题1.(文)在正项等比数列{a n }中,若a 2·a 4·a 6·a 8·a 10=32,则log 2a 7-12log 2a 8=( )A.18B.16C.14D.12[答案]D[解析] ∵a 2·a 4·a 6·a 8·a 10=32,∴a 6=2, ∴log 2a 7-12log 2a 8=log 2a 7a 8=log 2a 6a 8a 8=log 2a 6=log 22=12.(理)在各项均为正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( ) A.5-12 B.5+12 C.1-52 D.5-12或5+12[答案] B[解析] 设{a n }的公比为q ,则q >0. ∵a 2,12a 3,a 1成等差数列, ∴a 3=a 1+a 2,∴a 1q 2=a 1+a 1q , ∵a 1≠0,∴1+q =q 2, 又∵q >0,∴q =5+12, ∴a 4+a 5a 3+a 4=q =5+12. 2.(2014·武汉模拟)等比数列{a n }的公比为q ,则“a 1>0,且q >1”是“对于任意正整数n ,都有a n +1>a n ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 [答案] A[解析] 易知,当a 1>0且q >1时,a n >0, 所以a n +1a n=q >1,表明a n +1>a n ;若对任意自然数n ,都有a n +1>a n 成立, 当a n >0时,同除a n 得q >1, 但当a n <0时,同除a n 得0<q <1. 也可举反例,如a n =-12n . 二、填空题3.若数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,则a n 等于________.[答案] 2n -1[解析] a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2a 3-a 2=22…a n-a n -1=2n -1相加:a n -a 1=2+22+…+2n -1=2n -2, ∴a n =2n -2+a 1=2n -1.4.(文)已知等比数列{a n}为递增数列,若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=________.[答案]2[解析]本题考查了等比数列的通项公式.∵{a n}是递增的等比数列,且a1>0,∴q>1,又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q,∵a n≠0,∴2q2-5q+2=0,∴q=2或q=12(舍去),∴公比q为2.(理)已知等比数列{a n}为递增数列,且a25=a10,2(a n+a n+2)=5a n+1,则数列{a n}的通项公式a n=________.[答案]2n[解析]本题考查等比数列通项公式的求法.由题意,a25=a10,则(a1q4)2=a1q9,∴a1=q.又∵2(a n+a n+2)=5a n+1,∴2q2-5q-2=0,∵q>1,∴q=2,a1=2,∴a n=a1·q n-1=2n.三、解答题5.(2013·四川高考)在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比及前n 项和.[解析] 根据题意确定数列的首项及公比.再利用等比数列的前n 项和公式求解.设该数列的公比为q ,由已知可得由a 2-a 1得a 1q -a 1=2,即a 1(q -1)=2.由6a 1=2a 2+a 3得4a 1q =3a 1+a 1q 2,即q 2-4q +3=0解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以数列的前n 项和S n =3n -12.6.(文)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n 2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.[解析] (1)因为a n =13×⎝ ⎛⎭⎪⎫13n -1=13n , S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.(理)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和. [解析] (1)设数列{a n }的公比为q . 由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13,由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13,故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1), 1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2nn +1.所以数列{1b n }的前n 项和为-2n n +1.。
【精编】理科优化设计一轮高考模拟试卷-第六章数列 (2)
∈N*),其前 n 项和为 Sn,若数列{ ������������}也为等差数列,则���������������+������2���10的最大值是( )
A.310
B.212
C.180
D.121
解析:因为等差数列{an}满足 a1=1,an>0(n∈N*),设公差为 d,则 an=1+(n-1)d,其前 n 项和为 Sn=
1 21 2
������������ + 10 ������11
=(2n-1)2,所以 ���������2��� = 2������ - 1 = 2 + 4������ - 2 .由于 2 + 4������ - 2 为单调递减数列,所以 ���������2��� ≤ ������21
=112=121,故选 D.
10(������1 + ������10) 10(2������1 + 9������)
S10=
2
=
2 =0,故选 C.
答案:C
6.3 等比数列及其前 n 项和
专题 等比数列的概念与
1
运算
■(2015 江西南昌一模,等比数列的概念与运算,解答题,理 17)已知等差数列{an}的前 n 项和为 Sn,a1=1,S3=6,正项数列{bn}满足 b1·b2·b3·…·bn=2������������.
∴an=λSn-1+1(n≥2), ∴an+1-an=λan,即 an+1=(λ+1)an(n≥2),λ+1≠0, 又 a1=1,a2=λS1+1=λ+1, ∴数列{an}是首项为 1,公比为 λ+1 的等比数列, ∴a3=(λ+1)2,
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-4 Word版含解析
基础达标检测一、选择题1.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为( )A .700B .710C .720D .730[答案] C[解析] 因为{a n },{b n }都是等差数列,由等差数列的性质可知,{a n +b n }的前20项的和为S 20=20(a 1+a 20)2+20(b 1+b 20)2=10(a 1+b 1+a 20+b 20)=10×(5+7+60)=720.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15 [答案] A[解析] 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.3.(2014·三门峡模拟)已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .11B .99C .120D .121[答案] C [解析] ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10, 得n =120.4.(2013·全国大纲)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310) C .3(1-3-10) D .3(1+3-10)[答案] C[解析] 本题考查等比数列的定义,前n 项和的求法. 3a n +1+a n =0 ∴a n +1a n=-13=qa 2=a 1·q =-13a 1=-43,∴a 1=4 ∴S 10=4[1-(-13)10]1+13=3(1-3-10).5.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[答案] C[解析] 考查等比数列的性质、通项、等差数列求和及对数的运算法则.∵{a n }为等比数列,且a 5·a 2n -5=22n ,∴a 2n =22n ,∵a n >0,∴a n =2n ,∴a 2n -1=22n -1. ∴log 2a 1+log 2a 3+…+log 2a 2n -1 =1+3+5+…+(2n -1)=n 2.6.数列1×12,2×14,3×18,4×116,…的前n 项和为( ) A .2-12n -n2n +1B .2-12n -1-n2nC.12(n 2+n +2)-12nD.12n (n +1)+1-12n -1[答案] B[解析] S =1×12+2×14+3×18+4×116+…+n ×12n =1×121+2×122+3×123+…+n ×12n ,①则12S =1×122+2×123+3×124+…+(n -1)×12n +n ×12n +1,②①-②得12S =12+122+123+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n2n +1=1-12n -n 2n +1.∴S =2-12n -1-n2n .二、填空题7.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________.[答案] 54[解析] 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, S 9=(a 1+a 9)×92=9a 5=54. 8.(文)(2013·北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________,前n 项和S n =________.[答案] 2 2n +1-2[解析] 本题考查了等比数列性质,前n 项和公式等.由题意a 3+a 5=q (a 2+a 4),∴q =2,又由a 2+a 4=a 1q +a 1q 3知a 1=2,∴S n =2(1-2n )1-2=2n +1-2.(理)(2013·重庆高考)已知{a n }是等差数列,a 1=1,公差d ≠0,S n为其前n 项和,若a 1、a 2、a 5成等比数列,则S 8=________.[答案] 64[解析] 设等差数列{a n }的公差为d ,∵a 22=a 1a 5,∴(1+d )2=1×(1+4d ),即d 2=2d ,∵d ≠0,∴d =2, ∴S 8=8×1+8×72×2=64.9.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N +),则S 100=________.[答案] 2 600[解析] 由已知,得a 1=1, a 2=2, a 3-a 1=0, …a 99-a 97=0, a 100-a 98=2,累加得a 100+a 99=98+3,同理得a 98+a 97=96+3,…,a 2+a 1=0+3, 则a 100+a 99+a 98+a 97+…+a 2+a 1 =50×(98+0)2+50×3=2 600. 三、解答题10.(文)(2013·江西高考)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .[解析] (1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n . (2)a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12(1n -1n +1).T n =12(1-12+12-13+…+1n -1-1n +1n -1n +1)=12(1-1n +1)=n2(n +1).(理)(2013·浙江高考)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.[解析] (1)由题意得a 1·5a 3=(2a 2+2)2,a 1=10, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n ∈N +或a n =4n +6,n ∈N +. (2)设数列{a n }的前n 项和为S n .因为d <0, 由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110, n ≥12.能力强化训练一、选择题1.数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( )A.212 B .6 C .10 D .11[答案] B[解析] 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项,偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6.2.(文)已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N +),设其前n项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值32D .有最小值32[答案] B[解析] S n =a 1+a 2+a 3+…+a n =log 223+log 234+log 245+…+log 2n +1n +2=log 2⎝ ⎛⎭⎪⎫23×34×45×…×n +1n +2=log 22n +2<-5,∴2n +2<132,∴64<n +2, ∴n >62,∴n min =63.(理)已知a n =log (n +1)(n +2)(n ∈N +),若称使乘积a 1·a 2·a 3·…·a n 为整数的数n 为劣数,则在区间(1,2 015)内所有的劣数的和为( )A .2 026B .2 046C .1 024D .1 022[答案] A[解析] ∵a 1.a 2.a 2.....a n =lg3lg2.lg4lg3.....lg (n +2)lg (n +1)=lg (n +2)lg2=log 2(n +2)=k ,则n =2k -2(k ∈Z ).令1<2k -2<2015,得k =2,3,4, (10)∴所有劣数的和为4(1-29)1-2-18=211-22=2 026.二、填空题3.设f (x )=12x +2,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.[答案] 5 2[解析] ∵f (-n )+f (n +1)=12-n +2+12n +1+2=2n 1+2n ·2+12n +1+2=2n ·2+12n +1+2=22, ∴f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)=5 2.4.(文)数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n a n +1,则数列{b n }的前10项和S 10=________.[答案] 1011[解析] 由题意可知a n +1=a n (1-a n +1), 整理可得1a n +1-1a n =1,则1a n =1+(n -1)=n ,所以a n =1n ,b n =a n a n +1=1n (n +1)=1n -1n +1,故S 10=b 1+b 2+…+b 10=1-111=1011.(理)有限数列A ={a 1,a 2,…,a n },S n 为其前n 项的和,定义S 1+S 2+…+S nn 为A 的“凯森和”;如果有99项的数列{a 1,a 2,…,a 99}的“凯森和”为1 000,则有100项的数列{1,a 1,a 2,…,a 99}的“凯森和”为________.[答案] 991[解析] ∵{a 1,a 2,…,a 99}的“凯森和”为 S 1+S 2+…+S 9999=1 000, ∴S 1+S 2+…S 99=1 000×99,数列{1,a 1,a 2,…,a 99}的“凯森和”为: 1+(S 1+1)+(S 2+1)+…+(S 99+1)100 =100+S 1+S 2+…+S 99100=991. 三、解答题5.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .[解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n 项和的求法,同时也考查了学生的基本运算能力.(1)因为{a n }为首项a 1=19,公差d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21, S n =19n +n (n -1)2(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1-2n +21T n =b 1+b 2+…+b n =(1+3+…+3n -1)+S n =-n 2+20n +3n -12.6.(文)已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n . [解析] (1)由S n =kc n -k ,得 a n =S n -S n -1=kc n -kc n -1(n ≥2),由a 2=4,a 6=8a 3,得⎩⎨⎧kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎨⎧c =2k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2),于是a n=2n .(2)T n =∑i =1nia i =∑i =1ni ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n 2T n =22+2·23+…+n ·2n +1∴T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.(理)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n的前n 项和T n . [解析] (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即S =S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4.从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72, 所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1 .所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1.。
打印2015届高考数学一轮总复习阶段性测试题6数列_新人教A版
阶段性测试题六(数 列)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃省金昌市二中期中)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0则有( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51(理)(2014·浙江台州中学期中)公差不为0的等差数列{a n }的前21项的和等于前8项的和.若a 8+a k =0,则k =( )A .20B .21C .22D .232.(2014·浙江杜桥中学期中)已知等比数列{a n }中,a 3=16,a 4=8,则a 8=( ) A .128 B .64 C.14 D.123.(2014·湖南长沙实验中学、沙城一中联考)已知{a n }是等比数列,对任意n ∈N *,a n >0恒成立,且a 1a 3+2a 2a 5+a 4a 6=36,则a 2+a 5等于( )A .36B .±6C .-6D .64.(2014·抚顺市六校联合体期中)设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( )A .54B .45C .36D .275.(2014·哈六中期中)已知正项等比数列{a n }的前n 项和为S n ,若S 13=2563,1a 1+1a 2+1a 3+…+1a 13=83,则log 2(a 6a 8)的值为( ) A .4 B .5 C .16 D .326.(2014·山东省德州市期中)已知{a n }是首项为1的等差数列,S n 是{a n }的前n项和,且S 5=a 13,则数列{1a n a n +1}的前五项和为( )A.1011B.511C.45D.257.(2014·北京海淀期中)已知数列{a n }的通项公式a n =2n (3n -13),则数列的前n 项和S n 的最小值是( )A .S 3B .S 4C .S 5D .S 68.设等差数列{a n }的公差为d ,前n 项和为S n ,a 2=1,前6项的方差为353,则a 3S 3的值为( ) A .-9 B .3 C .±9 D .99.(2014·浙江台州中学期中)已知数列{a n }是1为首项、2为公差的等差数列,{b n }是1为首项、2为公比的等比数列.设c n =ab n ,T n =c 1+c 2+…+c n (n ∈N *),则当T n >2013时,n 的最小值是( )A .7B .9C .10D .1110.(文)(2014·宝鸡市质检)已知一次函数f (x )=kx +b 的图象经过点P (1,2)和Q (-2,-4),令a n =f (n )f (n +1),n ∈N *,记数列{1a n }的前n 项和为S n ,当S n =625时,n 的值等于( ) A .24 B .25 C .23 D .26(理)(2014·成都七中模拟)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +9n的最小值为( )A.83B.114C.145D.17611.(文)(2014·山西曲沃中学期中)已知函数f (x )=⎩⎪⎨⎪⎧(4-a 2)x +4(x ≤6),a x -5(x >6).(a >0,a ≠1),数列{a n }满足a n =f (n )(n ∈N *)且{a n }是单调递增数列,则实数a 的取值范围是( )A .[7,8)B .(1,8)C .(4,8)D .(4,7)(理)(2014·湖南长沙实验中学、沙城一中联考)已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .6412.(2014·海南省文昌市检测)已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f (n )}的前n 项和为S n ,则S 2011的值为( )A.20102011B.20092010C.20112012D.20122013第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(2014·北京海淀期中)已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.14.(2014·北京市海淀区期末)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=-2,a 2=b 2=4,则满足a n =b n 的n 的所有取值构成的集合是________.15.(文)(2014·三亚市一中月考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=________. (理)(2014·浙江省五校联考)在等比数列{a n }中,若a 5+a 6+a 7+a 8=158,a 6a 7=-98,则1a 5+1a 6+1a 7+1a 8=________. 16.(文)(2014·浙北名校联盟联考)已知等差数列{a n }的前n 项的和为S n ,且a 1>0,S 7=S 10,则使S n 取到最大值的n 为________.(理)(2014·鄂南高中、孝感高中联考)已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(文)(2014·三亚市一中月考)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,求数列{b n }的通项公式及前n 项和S n .(理)(2014·北京东城区联考)在公差不为0的等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n (n ∈N *),求数列{b n }的前n 项和.18.(本小题满分12分)(文)(2014·北京朝阳区期中)已知等差数列{a n }的前n 项和为S n ,n ∈N *,且a 3+a 6=4,S 5=-5.(1)求a n ;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式.(理)(2014·安徽程集中学期中)S n表示等差数列{a n}的前n项的和,且S4=S9,a1=-12.(1)求数列的通项a n及S n;(2)求和T n=|a1|+|a2|+…+|a n|.19.(本小题满分12分)(文)(2014·山东省德州市期中)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列(b n>0),且a1=b1=2,a3+b3=16,S4+b3=34.(1)求数列{a n}与{b n}的通项公式;(2)记T n为数列{a n b n}的前n项和,求T n.(理)(2014·辽宁师大附中期中)已知等比数列{a n}中,公比q∈(0,1),a2+a4=54,a1a5=14,设b n=12na n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和S n.20.(本小题满分12分)(2014·浙北名校联盟联考)已知数列{a n}的前n项和为S n,S n=2a n-2.(1)求数列{a n}的通项公式;(2)设b n=a n·log2a n+1,求数列{b n}的前n项和T n.21.(本小题满分12分)(文)(2014·华安、连城、永安、漳平、泉港一中、龙海二中六校联考)现在市面上有普通型汽车(以汽油为燃料)和电动型汽车两种.某品牌普通型汽车车价为12万元,第一年汽油的消费为6000元,随着汽油价格的不断上升,汽油的消费每年以20%的速度增长.其他费用(保险及维修费用等)第一年为5000元,以后每年递增2000元.而电动汽车由于节能环保,越来越受到社会认可.某品牌电动车在某市上市,车价为25万元,购买时一次性享受国家补贴价6万元和该市市政府补贴价4万元.电动汽车动力不靠燃油,而靠电池.电动车使用的普通锂电池平均使用寿命大约两年(也即两年需更换电池一次),电池价格为1万元,电动汽车的其他费用每年约为5000元.(1)求使用n 年,普通型汽车的总耗资费S n (万元)的表达式(总耗资费=车价+汽油费+其他费用);(2)比较两种汽车各使用10年的总耗资费用.(参考数据:(1.24≈2.1 1.25≈2.5 1.29≈5.2 1.210≈6.2)(理)(2014·湖南省五市十校联考)学校餐厅每天有500名学生就餐,每星期一有A ,B 两种套餐可选,每个学生任选一种,其中A 是本校的传统套餐,B 是从外校引人的套餐.调查资料表明,若在这星期一选A 套餐的学生,下星期一会有15的学生改选B 套餐;而选B 套餐的学生,下周星期一会有r (0<r <45)的学生改选A 套餐,用a n ,b n 分别表示在第n 个星期选A 套餐的人数和选B 套餐的人数.(1)用a n -1表示a n ;(2)若r =310,且选A 套餐的学生人数保持不变,求a 1;(3)根据调查,存在一个常数k ,使得数列{a n -k }为等比数列,且k ∈[250,300],求r 的取值范围.22.(本小题满分14分)(文)(2014·长安一中质检)已知{a n }为等比数列,a 1=2,a 3=18,{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式及前n 项和S n ;(2)设P n =b 1+b 4+b 7+…+b 3n -2,Q n =b 10+b 12+b 14+…+b 2n +8,其中n ∈N +,试比较P n 与Q n 的大小,并加以证明.(理)(2014·北京朝阳区期中)如果项数均为n(n≥2,n∈N*)的两个数列{a n},{b n}满足a k-b k=k(k=1,2,…,n),且集合{a1,a2,…,a n,b1,b2,…,b n}={1,2,3,…,2n},则称数列{a n},{b n}是一对“n项相关数列”.(1)设{a n},{b n}是一对“4项相关数列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并写出一对“4项相关数列”{a n},{b n};(2)是否存在“15项相关数列”{a n},{b n}?若存在,试写出一对{a n},{b n};若不存在,请说明理由;(3)对于确定的n,若存在“n项相关数列”,试证明符合条件的“n项相关数列”有偶数对.阶段性测试题六(数 列)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃省金昌市二中期中)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0则有( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51[答案] C[解析] 由条件知,a 51=0,∴a 3+a 99=2a 51=0,a 1+a 101=2a 51=0,a 2+a 100=2a 51=0,故选C.(理)(2014·浙江台州中学期中)公差不为0的等差数列{a n }的前21项的和等于前8项的和.若a 8+a k =0,则k =( )A .20B .21C .22D .23[答案] C [解析] 由条件知S 21=S 8,∴a 9+a 10+…+a 21=0, ∴a 15=0,∵a 8+a k =2a 15=0,∴k =22.2.(2014·浙江杜桥中学期中)已知等比数列{a n }中,a 3=16,a 4=8,则a 8=( ) A .128 B .64 C.14 D.12[答案] D [解析] ∵a 4=a 3q ,∴q =12,∴a 8=a 4q 4=8×(12)4=12.3.(2014·湖南长沙实验中学、沙城一中联考)已知{a n }是等比数列,对任意n∈N *,a n >0恒成立,且a 1a 3+2a 2a 5+a 4a 6=36,则a 2+a 5等于( )A .36B .±6C .-6D .6[答案] D [解析] ∵{a n }是等比数列,∴a 1a 3=a 22,a 4a 6=a 25, ∴a 22+2a 2a 5+a 25=36,∴(a 2+a 5)2=36,∵a n >0,∴a 2+a 5=6.4.(2014·抚顺市六校联合体期中)设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( )A .54B .45C .36D .27[答案] A [解析] ∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6, ∴S 9=9a 5=54.5.(2014·哈六中期中)已知正项等比数列{a n }的前n 项和为S n ,若S 13=2563,1a 1+1a 2+1a 3+…+1a 13=83,则log 2(a 6a 8)的值为( ) A .4 B .5 C .16 D .32[答案] B [解析] ∵1a 1+1a 2+1a 3+…+1a 13=1a 1·(1+1q +1q 2+…+1q 12)=1a 1·1-(1q )131-1q=1a 1·q 13-1q 12(q -1)=1a 21q12·a 1(1-q 13)1-q =1a 27·S 13, ∴1a 27×2563=83,∴a 27=32,∴log 2(a 6a 8)=log 2a 27=5. 6.(2014·山东省德州市期中)已知{a n }是首项为1的等差数列,S n 是{a n }的前n 项和,且S 5=a 13,则数列{1a n a n +1}的前五项和为( )A.1011B.511C.45D.25[答案] B[解析] ∵a 1=1,S 5=a 13=5a 3,∴5(1+2d )=1+12d , ∴d =2.∴a n =1+2(n -1)=2n -1, ∴1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), 故所求和为12(1-13)+12(13-15)+12(15-17)+12(17-19)+12(19-111)=12(1-111)=511.7.(2014·北京海淀期中)已知数列{a n }的通项公式a n =2n (3n -13),则数列的前n 项和S n 的最小值是( )A .S 3B .S 4C .S 5D .S 6[答案] B[解析] 观察a n =2n (3n -13)可知,随n 的增大,a n =2n (3n -13)由负数增大为正数,其中,a 1,a 2,a 3,a 4为负数,a 5开始以后各项均为正数,所以,数列的前n 项和S n 的最小值是S 4,选B.8.设等差数列{a n }的公差为d ,前n 项和为S n ,a 2=1,前6项的方差为353,则a 3S 3的值为( )A .-9B .3C .±9D .9 [答案] D[解析] ∵数列{a n }的前6项为1-d,1,1+d,1+2d,1+3d,1+4d ,∴x -=1+32d ,由条件知,S 2=16[(1-d -x -)2+(1-x -)2+(1+d -x -)2+(1+2d -x -)2+(1+3d-x -)2+(1+4d -x -)2]=3512d 2=353,∴d 2=4,∴d =±2, ∵a 2=1,∴当d =2时,a 1=-1,a 3=3,S 3=3,∴a 3S 3=9, 当d =-2时,a 1=3,a 3=-1,S 3=3,∴a 3S 3=9,故选D.9.(2014·浙江台州中学期中)已知数列{a n }是1为首项、2为公差的等差数列,{b n }是1为首项、2为公比的等比数列.设c n =ab n ,T n =c 1+c 2+…+c n (n ∈N *),则当T n >2013时,n 的最小值是( )A .7B .9C .10D .11[答案] C[解析] a n =2n -1,b n =2n -1,c n =ab n =2b n -1=2n -1,T n =c 1+c 2+…+c n=2(2n -1)2-1-n =2n +1-n -2,当n =9时,T 9=210-11=1013,当n =10时,T 10=211-12=2036>2013,∴使T n >2013的最小n 值为10.10.(文)(2014·宝鸡市质检)已知一次函数f (x )=kx +b 的图象经过点P (1,2)和Q (-2,-4),令a n =f (n )f (n +1),n ∈N *,记数列{1a n }的前n 项和为S n ,当S n =625时,n 的值等于( ) A .24 B .25 C .23 D .26 [答案] A[解析] ∵一次函数f (x )=kx +b 的图象经过点P (1,2)和Q (-2,-4),∴⎩⎪⎨⎪⎧ 2=k +b ,-4=-2k +b .解得⎩⎪⎨⎪⎧k =2,b =0.所以f (x )=2x ,a n =f (n )f (n +1)=2n ×2(n +1)=4n (n +1),1a n =14n (n +1)=14(1n -1n +1),S n =14(1-12+12-13+…+1n -1n +1)=14(1-1n +1)=n 4(n +1)=625,得n =24.(理)(2014·成都七中模拟)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +9n的最小值为( )A.83B.114C.145D.176[答案] A [解析] 由a 7=a 6+2a 5得:q 2=q +2,∴q =-1(舍)或q =2. 由a m a n =4a 1得,a 1q m -1a 1q n -1=16a 21,∴m +n =6.所以1m +9n =16(1m +9n )(m +n )=16(1+9+n m +9m n )≥16(10+6)=83.等号成立时,⎩⎪⎨⎪⎧n m =9m n ,m +n =6,∴m =32,n =92,故选A.11.(文)(2014·山西曲沃中学期中)已知函数f (x )=⎩⎪⎨⎪⎧(4-a 2)x +4(x ≤6),a x -5(x >6).(a >0,a ≠1),数列{a n }满足a n =f (n )(n ∈N *)且{a n }是单调递增数列,则实数a 的取值范围是( )A .[7,8)B .(1,8)C .(4,8)D .(4,7)[答案] A[解析] ∵a n =f (n ),且{a n }是单调递增数列,∴⎩⎪⎨⎪⎧4-a2>0,a >1,(4-a 2)×6+4≤a6-5,∴7≤a <8.(理)(2014·湖南长沙实验中学、沙城一中联考)已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64[答案] D[解析] 由条件知,a n +a n +1=b n ,a n a n +1=2n ,a 1=1,a 2=a 3=2,a 4=a 5=22;a 6=a 7=23;a 8=a 9=24,…,∴b 10=a 10+a 11=25+25=64.12.(2014·海南省文昌市检测)已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f (n )}的前n 项和为S n ,则S 2011的值为( )A.20102011B.20092010C.20112012D.20122013 [答案] C[解析] f ′(x )=2x +b ,由条件知f ′(1)=2+b =3,∴b =1,∴f (x )=x 2+x ,∴1f (n )=1n 2+n =1n -1n +1,∴S n =1f (1)+1f (2)+…+1f (n )=(1-12)+(12-13)+…+(1n -1n +1)=nn +1,∴S 2011=20112012. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(2014·北京海淀期中)已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.[答案] 2[解析] 因为数列{a n }为等比数列,且a 1+a 3=5,a 2+a 4=10,所以,由等比数列的通项公式可得,a 2+a 4=(a 1+a 3)q ,即10=5q ,∴q =2.14.(2014·北京市海淀区期末)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=-2,a 2=b 2=4,则满足a n =b n 的n 的所有取值构成的集合是________.[答案] {1,2,4}[解析] 设等差数列{a n }公差为d ,设等比数列{b n }公比为q ,所以d =a 2-a 1=6,q =b 2b 1=-2,所以a n =-2+6(n -1)=6n -8,b n =-2(-2)n -1=(-2)n ,因为等差数列{a n }首项为负,从第二项起均为正数,等比数列{b n }奇数项为负、偶数项为正,所以除首项外当a n =b n 时n 为偶数,n =4时,a 4=16,b 4=(-2)4=16,n =6时,a 6=28<b 6=(-2)6=64,因为n 为偶数时,数列{a n }、数列{b n }均递增,所以当n ≥2k (k =3,4,5,…)时,a n <b n .综上可得满足a n =b n 的n 的所有取值为1,2,4.15.(文)(2014·三亚市一中月考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=________. [答案] 152[解析] S 4a 2=a 1(1+q +q 2+q 3)a 1q =152.(理)(2014·浙江省五校联考)在等比数列{a n }中,若a 5+a 6+a 7+a 8=158,a 6a 7=-98,则1a 5+1a 6+1a 7+1a 8=________. [答案] -53[解析] 由等比数列的性质知a 5a 8=a 6a 7,∴1a 5+1a 6+1a 7+1a 8=a 5+a 8a 5a 8+a 6+a 7a 6a 7=a 5+a 6+a 7+a 8a 6a 7=158-98=-53. 16.(文)(2014·浙北名校联盟联考)已知等差数列{a n }的前n 项的和为S n ,且a 1>0,S 7=S 10,则使S n 取到最大值的n 为________.[答案] 8或9 [解析] ∵S 7=S 10,∴a 8+a 9+a 10=0,∴a 9=0, 又a 1>0,∴当n =8或9时,S n 取到最大值.(理)(2014·鄂南高中、孝感高中联考)已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.[答案] 33 [解析] ∵点(n ,a n )在直线y -3=k (x -6)上,∴a n =3+k (n -6).∴a n +a 12-n =[3+k (n -6)]+[3+k (6-n )]=6,n =1,2,3,…,6, ∴S 11=a 1+a 2+…+a 11=5(a 1+a 11)+a 6=5×6+3=33.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(文)(2014)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,求数列{b n }的通项公式及前n 项和S n .[解析] (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2. ∴a n =2×2n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n .(理)(2014·北京东城区联考)在公差不为0的等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n (n ∈N *),求数列{b n }的前n 项和. [解析] (1)设数列{a n }的公差为d ,又a 4=10, 可得a 3=10-d ,a 6=10+2d ,a 10=10+6d . 由a 3,a 6,a 10成等比数列得a 3a 10=a 26, 即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1. 由d ≠0,可得d =1. a 1=a 4-3d =10-3×1=7, 所以a n =a 1+(n -1)d =n +6.(2)由b n =2a n (n ∈N *),a n =n +6,可得b n =2n +6.所以b 1=21+6=128.因为b n +1b n =2n +72n +6=2,所以数列{b n }是首项为128,公比为2的等比数列. 所以{b n }的前n 项和为S n =128(1-2n )1-2=2n +7-128.18.(本小题满分12分)(文)(2014·北京朝阳区期中)已知等差数列{a n }的前n 项和为S n ,n ∈N *,且a 3+a 6=4,S 5=-5.(1)求a n ;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. [解析] (1)设等差数列{a n }的公差为d ,则 ⎩⎪⎨⎪⎧a 1+2d +a 1+5d =4,5a 1+5(5-1)2d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2. 则a n =2n -7,n ∈N . (2)当n ≥4时,a n =2n -7>0, 当n ≤3时,a n =2n -7<0.则T 5=-(a 1+a 2+a 3)+a 4+a 5=13,S n =n 2-6n , 当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =S n -2S 3=n 2-6n +18.即T n =⎩⎪⎨⎪⎧6n -n 2, n ≤3,n 2-6n +18, n ≥4,n ∈N *.(理)(2014·安徽程集中学期中)S n 表示等差数列{a n }的前n 项的和,且S 4=S 9,a 1=-12. (1)求数列的通项a n 及S n ;(2)求和T n =|a 1|+|a 2|+…+|a n |.[解析] (1)∵S 4=S 9,a 1=-12,∴4×(-12)+6d =9×(-12)+36d ,∴d =2, ∴a n =-12+2(n -1)=2n -14, S n =-12n +n (n -1)=n 2-13n . (2)令a n =2n -14≤0,得n ≤7,当n ≤7时,T n =-(a 1+a 2+…+a n )=-S n =13n -n 2, 当n ≥8时a n >0,T n =-(a 1+a 2+…+a 7)+(a 8+…+a n )=S n -2S 7=n 2-13n +84.19.(本小题满分12分)(文)(2014·山东省德州市期中)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式; (2)记T n 为数列{a n b n }的前n 项和,求T n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由已知可得⎩⎪⎨⎪⎧ 2+2d +2q 2=16,8+6d +2q 2=34,⇒⎩⎪⎨⎪⎧d =3,q =2.因此a n =a 1+(n -1)d =2+3(n -1)=3n -1,b n =b 1q n -1=2n .(2)T n =2×2+5×22+…+(3n -1)×2n , 2T n =2×22+5×23+…+(3n -1)×2n +1,两式相减得-T n =4+3×22+…+3×2n -(3n -1)×2n +1 =4+12(1-2n -1)1-2-(3n -1)×2n +1=-8-(3n -4)2n +1,故T n =(3n -4)2n +1+8.(理)(2014·辽宁师大附中期中)已知等比数列{a n }中,公比q ∈(0,1),a 2+a 4=54,a 1a 5=14,设b n =12na n (n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解析] (1)由题意知:a 2·a 4=a 1·a 5=14,联立方程得:⎩⎨⎧a 2+a 4=54a 2·a 4=14.∵q ∈(0,1),∴a 2>a 4,∴解方程组得a 2=1,a 4=14,∴q =12,a 1=2,∴a n =2×(12)n -1=(12)n -2.(2)由(1)知:a n =(12)n -2,所以b n =n (12)n -1.∴S n =1×(12)0+2×(12)1+3×(12)2+…+(n -1)·(12)n -2+n (12)n -1,①12S n =1×(12)1+2×(12)2+…+(n -2)(12)n -2+(n -1)·(12)n -1+n (12)n ,② ∴①-②得:12S n =(12)0+(12)1+(12)2+…+(12)n -2+(12)n -1-n (12)n=1×[1-(12)n ]1-12-n (12)n =2-(12)n -1-n ·(12)n ,∴S n =4-(12)n -2-n (12)n -1=4-(n +2)(12)n -1.20.(本小题满分12分)(2014·浙北名校联盟联考)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设b n =a n ·log 2a n +1,求数列{b n }的前n 项和T n . [解析] (1)当n =1时,a 1=2,当n ≥2时,a n =S n -S n -1=2a n -2-(2a n -1-2)=2a n -2a n -1, 即a na n -1=2,∴数列{a n }为以2为公比的等比数列, ∴a n =2n.(2)b n =2n ·log 22n +1=(n +1)·2n ,∴T n =2×2+3×22+…+n ·2n -1+(n +1)·2n ,∴2T n =2×22+3×23+…+n ·2n +(n +1)·2n +1,两式相减得,-T n =4+22+23+…+2n -(n +1)2n +1=-n ·2n +1, ∴T n =n ·2n +1.21.(本小题满分12分)(文)(2014·华安、连城、永安、漳平、泉港一中、龙海二中六校联考)现在市面上有普通型汽车(以汽油为燃料)和电动型汽车两种.某品牌普通型汽车车价为12万元,第一年汽油的消费为6000元,随着汽油价格的不断上升,汽油的消费每年以20%的速度增长.其他费用(保险及维修费用等)第一年为5000元,以后每年递增2000元.而电动汽车由于节能环保,越来越受到社会认可.某品牌电动车在某市上市,车价为25万元,购买时一次性享受国家补贴价6万元和该市市政府补贴价4万元.电动汽车动力不靠燃油,而靠电池.电动车使用的普通锂电池平均使用寿命大约两年(也即两年需更换电池一次),电池价格为1万元,电动汽车的其他费用每年约为5000元.(1)求使用n 年,普通型汽车的总耗资费S n (万元)的表达式(总耗资费=车价+汽油费+其他费用);(2)比较两种汽车各使用10年的总耗资费用.(参考数据:(1.24≈2.1 1.25≈2.5 1.29≈5.2 1.210≈6.2)[解析] (1)依题意,普通型每年的汽油费用为一个首项为0.6万元,公比为1.2的等比数列,∴使用n 年,汽油费用共计0.6(1+1.2+1.22+…+1.2n -1)=0.6(1-1.2n )1-1.2=3(1.2n -1),其他费用为一个首项为0.5万元,公差为0.2万元的等差数列,故使用n 年其他费用共计0.5+(0.5+0.2)+…+[0.5+0.2(n -1)]=0.5n +n (n -1)2×0.2=0.1n 2+0.4n ,∴S n =12+3×1.2n -3+0.1n 2+0.4n =3×1.2n +0.1n 2+0.4n +9(万元).(2)由(1)知S n =3×1.2n +0.1n 2+0.4n +9,∴S 10=3×1.210+0.1×102+0.4×10+9≈3×6.2+10+13=41.6(万元), 又设T 10为电动型汽车使用10年的总耗资费用, 则T 10=25-6-4+102×1+0.5×10=25(万元),41.6-25=16.6(万元),∴使用10年,普通汽车比电动型汽车多花费16.6万元.答:(1)使用n 年,普通型汽车的总耗资费用S n =3×1.2n +0.1n 2+0.4n +9,(2)使用10年,普通型汽车比电动型汽车多花费16.6万元.(理)(2014·湖南省五市十校联考)学校餐厅每天有500名学生就餐,每星期一有A ,B 两种套餐可选,每个学生任选一种,其中A 是本校的传统套餐,B 是从外校引人的套餐.调查资料表明,若在这星期一选A 套餐的学生,下星期一会有15的学生改选B 套餐;而选B 套餐的学生,下周星期一会有r (0<r <45)的学生改选A 套餐,用a n ,b n 分别表示在第n 个星期选A 套餐的人数和选B 套餐的人数.(1)用a n -1表示a n ;(2)若r =310,且选A 套餐的学生人数保持不变,求a 1;(3)根据调查,存在一个常数k ,使得数列{a n -k }为等比数列,且k ∈[250,300],求r 的取值范围.[解析] (1)由已知得⎩⎪⎨⎪⎧a n =45a n -1+rb n -1,a n -1+b n -1=500,∴a n =45a n -1+r (500-a n -1),得a n =(45-r )a n -1+500r .(2)∵r =310,∴a n =12a n -1+150=a n -1,∴a n -1=300,∴a 1=300. (3)∵{a n -k }是等比数列, ∴a n -k =(45-r )(a n -1-k ),得a n =(45-r )a n -1+(15+r )k ,∴(15+r )k =500r ,得k =2500r 5r +1, ∵k ∈[250,300],∴250≤2500r 5r +1≤300,∴15≤r ≤310. 22.(本小题满分14分)(文)(2014·长安一中质检)已知{a n }为等比数列,a 1=2,a 3=18,{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式及前n 项和S n ;(2)设P n =b 1+b 4+b 7+…+b 3n -2,Q n =b 10+b 12+b 14+…+b 2n +8,其中n ∈N +,试比较P n 与Q n 的大小,并加以证明.[解析] (1)设{a n }的公比为q ,由a 3=a 1q 2得,q 2=a 3a 1=9,∴q =±3.当q =-3时,a 1+a 2+a 3=2-6+18=14<20,这与a 1+a 2+a 3>20矛盾. 当q =3时,a 1+a 2+a 3=2+6+18=26>20,符合题意. 设{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得,4b 1+4×32d =26,又b 1=2,∴d =3,∴b n =3n -1. ∴S n =n (b 1+b n )2=32n 2+12n .(2)∵b 1、b 4、b 7,…,b 3n -2组成公差为3d 的等差数列, ∴P n =nb 1+n (n -1)2·3d =92n 2-52n .∵b 10,b 12,b 14,b 2n +8组成公差为2d 的等差数列,∴Q n =nb 10+n (n -1)2·2d =3n 2+26n ,∴P n -Q n =32n (n -19),故当n ≥20时,P n >Q n ;当n =19时,P n =Q n ;当n ≤18时,P n <Q n . (理)(2014·北京朝阳区期中)如果项数均为n (n ≥2,n ∈N *)的两个数列{a n },{b n }满足a k -b k =k (k =1,2,…,n ),且集合{a 1,a 2,…,a n ,b 1,b 2,…,b n }={1,2,3,…,2n },则称数列{a n },{b n }是一对“n 项相关数列”.(1)设{a n },{b n }是一对“4项相关数列”,求a 1+a 2+a 3+a 4和b 1+b 2+b 3+b 4的值,并写出一对“4项相关数列”{a n },{b n };(2)是否存在“15项相关数列”{a n },{b n }?若存在,试写出一对{a n },{b n };若不存在,请说明理由;(3)对于确定的n ,若存在“n 项相关数列”,试证明符合条件的“n 项相关数列”有偶数对.[解析] (1)依题意,a 1-b 1=1,a 2-b 2=2,a 3-b 3=3,a 4-b 4=4,相加得, a 1+a 2+a 3+a 4-(b 1+b 2+b 3+b 4)=10, 又a 1+a 2+a 3+a 4+b 1+b 2+b 3+b 4=36, 则a 1+a 2+a 3+a 4=23,b 1+b 2+b 3+b 4=13.“4项相关数列”{a n }:8,4,6,5;{b n }:7,2,3,1(不唯一). (2)不存在.假设存在“15项相关数列”{a n },{b n },则a 1-b 1=1,a 2-b 2=2,…,a 15-b 15=15,各式相加得, (a 1+a 2+…+a 15)-(b 1+b 2+…+b 15)=120,又由已知a 1+a 2+…+a 15+b 1+b 2+…+b 15=1+2+…+30=465,两式相加得,2(a 1+a 2+…+a 15)=585,显然不可能,所以假设不成立, 从而不存在“15项相关数列”{a n },{b n }.(3)对于确定的n ,任取一对“n 项相关数列”{a n },{b n }, 令c k =2n +1-b k ,d k =2n +1-a k (k =1,2,…,n ), 先证{c n },{d n }也必为“n 项相关数列”.因为c k -d k =(2n +1-b k )-(2n +1-a k )=a k -b k =k (k =1,2,…,n ), 又因为{a 1,a 2,…,a n ,b 1,b 2,…,b n }={1,2,3,4,…,2n },很显然有: {(2n +1)-a 1,(2n +1)-a 2,…,(2n +1)-a n ,(2n +1)-b 1,(2n +1)-b 2,…,(2n +1)-b n |={1,2,3,…,2n },所以{c n },{d n }也必为“n 项相关数列”. 再证数列{c n }与{a n }是不同的数列.假设{c n }与{a n }相同,则{c n }的第二项c 2=2n +1-b 2=a 2, 又a 2-b 2=2,则2b 2=2n -1,即b 2=2n -12,显然矛盾.从而,符合条件的“n 项相关数列”有偶数对.。
2015年高考数学数列(理)
数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B .2.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a --> 【答案】C【解析】先分析四个答案支,A 举一反例1232,1,4a a a ==-=-,120a a +>而230+<a a ,A 错误,B 举同样反例1232,1,4a a a ==-=-,130a a +<,而120+>a a ,B 错误,下面针对C 进行研究,{}n a 是等差数列,若120a a <<,则10,a >设公差为d,则0d >,数列各项均为正,由于22215111()(2)a a a a d a a d -=+-+22221111220a a d d a a d d =++--=>,则2113a a a >1a ⇒>C.4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS>> B.140,0a d dS<< C.140,0a d dS>< D.140,0a d dS<>【答案】B.5.【2015高考安徽,理14】已知数列{}na是递增的等比数列,14239,8a a a a+==,则数列{}na的前n项和等于 .【答案】21n-【解析】由题意,14231498a aa a a a+=⎧⎨⋅=⋅=⎩,解得141,8a a==或者148,1a a==,而数列{}na是递增的等比数列,所以141,8a a==,即3418aqa==,所以2q=,因而数列{}na的前n项和1(1)1221112n nnna qSq--===---.6.【2015高考新课标2,理16】设nS是数列{}n a的前n项和,且11a=-,11n n na S S++=,则nS=________.【答案】1n-【解析】由已知得111n n n n na S S S S+++=-=⋅,两边同时除以1n nS S+⋅,得1111n nS S+=--,故数列1nS⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)nSn n=---=-,所以1nSn=-.7.【2015高考广东,理10】在等差数列{}n a中,若2576543=++++aaaaa,则82aa+= . 【答案】10.【解析】因为{}n a是等差数列,所以37462852a a a a a a a+=+=+=,345675525a a a a a a++++==即55a=,所以285210a a a+==,故应填入10.8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为.【答案】5【解析】设数列的首项为1a,则12015210102020a+=⨯=,所以15a=,故该数列的首项为5,所以答案应填:5.9.【2015江苏高考,11】数列}{na满足11=a,且11+=-+naann(*Nn∈),则数列}1{na的前10项和为【答案】201110.【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a是各项为正数且公差为d(0)d≠的等差数列(1)证明:31242,2,2,2aa a a依次成等比数列;(2)是否存在1,a d,使得2341234,,,a a a a依次成等比数列,并说明理由;(3)是否存在1,a d及正整数,n k,使得knknknn aaaa342321,,,+++依次成等比数列,并说明理由.【解析】(1)证明:因为112222nn nnaa a da++-==(1n=,2,3)是同一个常数,所以12a,22a,32a,42a依次构成等比数列.(2)令1a d a+=,则1a,2a,3a,4a分别为a d-,a,a d+,2a d+(a d>,2a d>-,0d≠).假设存在1a,d,使得1a,22a,33a,44a依次构成等比数列,则()()34a a d a d=-+,且()()6422a d a a d+=+.令dta=,则()()3111t t=-+,且()()64112t t+=+(112t-<<,0t≠),化简得32220t t+-=(*),且21t t=+.将21t t=+代入(*)式,()()21212313410t t t t t t t t+++-=+=++=+=,则14t=-.显然14t=-不是上面方程得解,矛盾,所以假设不成立,因此不存在1a,d,使得1a,22a,33a,44a依次构成等比数列.(3)假设存在1a,d及正整数n,k,使得1na,2n ka+,23n ka+,34n ka+依次构成等比数列,则()()()221112n k n kna a d a d+++=+,且()()()()32211132n k n k n ka d a d a d+++++=+.分别在两个等式的两边同除以()21n ka+及()221n ka+,并令1dta=(13t>-,0t≠),则()()()22121n k n kt t+++=+,且()()()()32211312n k n k n kt t t+++++=+.将上述两个等式两边取对数,得()()()()2ln122ln1n k t n k t++=++,且()()()()()()ln13ln1322ln12n k t n k t n k t+++++=++.化简得()()()()2ln12ln12ln1ln12k t t n t t+-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦,且()()()()3ln13ln13ln1ln13k t t n t t+-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦.令()()21t tϕϕ'=,则()()()()21211213tt t tϕ'=>+++.由()()()()1200000gϕϕϕ====,()2tϕ'>,知()2tϕ,()1tϕ,()tϕ,()g t在1,03⎛⎫-⎪⎝⎭和()0,+∞上均单调.故()g t只有唯一零点0t=,即方程(**)只有唯一解0t=,故假设不成立.所以不存在1a,d及正整数n,k,使得1na,2n ka+,23n ka+,34n ka+依次构成等比数列.11.【2015高考浙江,理20】已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ). 【答案】(1)详见解析;(2)详见解析.试题解析:(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得, 211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 12.【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+. (I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯.所以1113T b ==当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-L所以()()01231132313n n T n --=+⨯+⨯++-L 两式相减,得()()012122333133n nn T n ---=+++--⋅ ()11121313313n n n ----=+--⋅- 1363623nn +=-⨯ 所以13631243n nn T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 13. 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=L ,证明14n T n≥.【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥. 【解析】(Ⅰ)解:2221'(1)'(22)n n y xn x ++=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +.从而切线方程为2(22)(1)y n x -=+-.令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++. (Ⅱ)证:由题设和(Ⅰ)中的计算结果知22222213211321()()()242n n n T x x x n--==L L . 当1n =时,114T =. 当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n x n n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯=L . 综上可得对任意的*n N ∈,均有14n T n≥.14.【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列{}n b 的前n 项和. 【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.(II) 由(I)得22121log 2n n n n a nb a --==,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯L , 1231111112322222n n S n =⨯+⨯+⨯++⨯L 两式相减得23111111112212122222222212n n n n n n n n n n S --=+++++-=-=---L , 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈.15.【2015高考重庆,理22】在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++ 【答案】(1)132n n a -=⋅;(2)证明见解析.【解析】:(1)由于0,2λμ==-,因此把已知等式具体化得212n n n a a a +=,显然由于13a =,则0n a ≠(否则会得出10a =),从而12n n a a +=,所以{}n a 是等比数列,由其通项公式可得结论;(2)本小题是数列与不等式的综合性问题,数列的递推关系是211010,n n n n a a a a k +++-=可变形为2101n n n a a a k +⎛⎫+= ⎪⎝⎭()N n +∈,由于00k >,因此11n n a a k <+,于是可得1n n a a +<,即有12130n n a a a a +=>>>>>>L L ,又2222001000011111111n n n n n n n a a k k a a k k k a a a k k +-+===-+?+++,于是有 ()()00011211k k k a a a a a a ++=+-++-L010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭L 000011112313131k k k k ⎛⎫>+⋅+++ ⎪+++⎝⎭L 01231k =++,这里应用了累加求和的思想方法,由这个结论可知2(*)n a n N >∈,因此01k a +=010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++ ⎪⎪+++⎝⎭L 000011112212121k k k k ⎛⎫<+⋅+++ ⎪+++⎝⎭L 01221k =++,这样结论得证,本题不等式的证明应用了放缩法.(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠.从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?.求和得()()00011211k k k a a a a a a ++=+-++-L01000010200000011111111111112231313131k a k k k k a k a k a k k k k k ⎛⎫=-⋅+⋅+++ ⎪⎪+++⎝⎭⎛⎫>+⋅+++=+ ⎪++++⎝⎭L L另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得00110000102011111111k k a a k k k k a k a k a +⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭L00000111112221212121k k k k k ⎛⎫<+⋅+++=+ ⎪++++⎝⎭L 综上:010*******21k a k k ++<<+++16.【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值. 【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =. 所以2311[1()]1111122112222212n n n nT -=++++==--L . 由1|1|1000n T -<,得11|11|21000n --<,即21000n>. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 17.【2015高考湖北,理18】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n -+-. 2345113579212222222n nn T -=++++++L . ②①-②可得221111212323222222n n n nn n T --+=++++-=-L ,故n T 12362n n -+=-. 18.【2015高考陕西,理21】(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.(I )证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (II )设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x与()n g x 的大小,并加以证明.【答案】(I )证明见解析;(II )当1x =时, ()()n n f x g x =,当1x ≠时,()()n n f x g x <,证明见解析.【解析】(I )先利用零点定理可证()F n x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点,再利用函数的单调性可证()F n x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点,进而利用n x 是()F n x 的零点可证11122n n nx x +=+;(II )先设()()()n n h x f x g x =-,再对x 的取值范围进行讨论来判断()h x 与0的大小,进而可得()n f x 和()n g x 的大小.试题解析:(I )2()()212n n n F x f x x x x =-=++++-L ,则(1)10,n F n =->1211111112()1220,12222212n n n n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++++-=-=-< ⎪ ⎪⎝⎭⎝⎭-L 所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx -'=+++>L ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()nF x在1,12⎛⎫⎪⎝⎭内有且仅有一个零点nx.因为nx是()nF x的零点,所以()=0n nF x,即11201nnnxx+--=-,故111=+22nn nx x+. (II)解法一:由题设,()()11().2nnn xg x++=所以()(1)0h x h<=,即()()n nf xg x<.综上所述,当1x=时, ()()n nf xg x=;当1x≠时()()n nf xg x<解法二由题设,()()211()1,(),0.2nnn nn xf x x x xg x x++=++++=>L当1x=时, ()()n nf xg x=当1x≠时, 用数学归纳法可以证明()()n nf xg x<.当2n=时, 2221()()(1)0,2f xg x x-=--<所以22()()f xg x<成立.假设(2)n k k=≥时,不等式成立,即()()k kf xg x<.那么,当+1n k=时,()()111k+1k11()()()2kk k kkk xf x f x xg x x x+++++=+<+=+()12112k kx k x k+++++=.又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(0)k k k h x kxk x x +=-++>,则()()11()(1)11(1)k k k k h x k k x k k x k k x x --'=+-+=+-所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,1,2,, 1.k n =+L 则111a b ==,11n n n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =. 当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ->,11n k -+≥. 若01x <<,11n k x -+<,()0k m x '<,当1x >,11n k x -+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时,()()n n f x g x =;当1x ≠时()()n n f x g x <.19.【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=错误!未找到引用源。
高三一轮复习数列测试题及答案(K12教育文档)
高三一轮复习数列测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三一轮复习数列测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三一轮复习数列测试题及答案(word版可编辑修改)的全部内容。
数列一.选择题:1.等差数列{b n }中,b 1=1, b 1+b 2+b 3+……+b 10=145, 则数列{b n }的通项公式b n 是( )。
(A )3n -2 (B )4-3n (C )16n -15 (D )37310-n 2.在公比为q 且各项均为正数的等比数列{a n }中,若a n -3 ·a n +1=a k 2(n , k 均为自然数),则a k 为( )。
(A )a 1q n -1 (B )a 1q n -2 (C )a 1q n -3 (D )以上答案都不正确3.在等差数列{a n }中,a 3+a 7-a 10=8, a 11-a 4=4, 记S n =a 1+a 2+a 3+……+a n ,则S 13等于( )。
(A )168 (B )156 (C )78 (D )1524.数列{a n }的前n 项和是S n ,如果S n =3+2a n (n ∈N ),则这个数列一定是( ). (A )等比数列 (B )等差数列(C )除去第一项后是等比数列 (D )除去第一项后是等差数列5.等差数列{a n }的前n 项和是S n ,a 3+a 8>0, S 9<0, 则S 1, S 2, S 3, ……,S n 中最小的是( )。
【步步高】2015届高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100 答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎨⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A.2n +n 2-1B.2n +1+n 2-1 C.2n +1+n 2-2D.2n +n 2-2 答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解.解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )]n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{}对应项之积组成的数列{a n },即a n =b n ×的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用X 围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2, b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·某某)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8S n 是n 的二次函数 n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值) k =4,S n =-12n 2+4n利用a n 、S n 的关系 a n =92-n9-2a n 2n =n2n -1根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规X 解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防X1.直接应用公式求和时,要注意公式的应用X 围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1B.4n n +1C.3n n +1D.5nn +1 答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1), ∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于 ( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A.31B.120C.130D.185答案 C解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n . 7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{}满足=a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{}的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *), 又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *), 所以=(3n -2)×(14)n (n ∈N *). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *). 10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4. (2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1), 所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升(时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n 的三边长分别为a n 、b n 、,△A n B n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=+a n 2,+1=b n +a n 2,则( ) A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2= 3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·某某)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116(2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1, ∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2, 当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列,∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆:x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2. (1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎪⎨⎪⎧ n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
2015届高考数学一轮总复习 6-4数列的综合问题与数列的应用
2015届高考数学一轮总复习 6-4数列的综合问题与数列的应用基础巩固强化一、选择题1.(文)若a 、b 、c 成等比数列,则函数f (x )=ax 2+bx +c 的图象与x 轴交点的个数是( ) A .0 B .1 C .2 D .不确定 [答案] A[解析] 由题意知,b 2=ac >0,∴Δ=b 2-4ac =-3ac <0,∴f (x )的图象与x 轴无交点. (理)已知数列{a n },{b n }满足a 1=1,且a n 、a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 [答案] D[解析] 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64,故选D.2.(文)小正方形按照下图中的规律排列:每小图中的小正方形的个数就构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n=a n -1+n (n ∈N *),其中正确的为( )A .①②④B .①③④C .①②D .①④[答案] D[解析] 观察图形可知a n =1+2+3+…+n =n (n +1)2.∴选D.(理)某同学在电脑中打出如下若干个圈:●○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中的●的个数是( ) A .60 B .61 C .62 D .63 [答案] C[解析] 第一次出现●在第1个位置;第二次出现●在第(1+2)个位置;第三次出现●在第(1+2+3)个位置;…;第n 次出现●在第(1+2+3+…+n )个位置.∵1+2+3+…+n =n (n +1)2,当n =62时,n (n +1)2=62×(62+1)2=1953,2014-1953=61<63,∴在前2014个圈中的●的个数是62.3.(2012·沈阳市二模)设等差数列{a n }的前n 项和为S n ,若a 2、a 4是方程x 2-x -2=0的两个实数根,则S 5的值为( )A.52 B .5 C .-52 D .-5 [答案] A[解析] ∵a 2、a 4是方程x 2-x -2=0的两实根, ∴a 2+a 4=1,∴S 5=5×(a 1+a 5)2=5(a 2+a 4)2=52.4.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则( ) A .a 6=b 6 B .a 6>b 6 C .a 6<b 6 D .以上都有可能[答案] B[解析] a 6=a 1+a 112,b 6=b 1b 11=a 1a 11,由q ≠1得,a 1≠a 11. 故a 6=a 1+a 112>a 1a 11=b 6.(理)(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在 [答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →=( )A .2015B .-2015C .0D .1[答案] A[解析] 由S 29=S 4000得到S n 关于n =29+40002=2014.5对称,故S n 的最大(或最小)值为S 2014=S 2015,故a 2015=0,OP →·OQ →=2015+a n ·a 2015=2015+a n ×0=2015,故选A.6.(2013·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2013=( )A.2012-1B.2013-1C.2014-1D.2014+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12 .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2013=a 1+a 2+a 3+…+a 2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1. 二、填空题7.(文)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧ 2+d =q ,2(2+3d )=q 2.解得⎩⎪⎨⎪⎧ q =2,d =0,(舍去)或⎩⎪⎨⎪⎧q =4,d =2.所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4.(理)在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x )d x ,则公比q 为________.[答案] 3[解析] ∵a 4=⎠⎛14(1+2x )d x =(x +x 2)|41=(4+42)-(1+12)=18,∴q 3=a 4a 1=27, ∴q =3.8.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12(12+1)2ar =78ar 元.9.(文)已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4,∴e =n -m n=22. (理)已知双曲线a n -1y 2-a n x 2=a n -1a n (n ≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上, 又渐近线方程为y =2x , ∴a na n -1=2, 又a 1=4,∴a n =4×2n -1=2n +1. 三、解答题10.(文)(2013·浙江萧山五校联考)已知二次函数y =f (x )的图象经过坐标原点,其导函数f ′(x )=2x +2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,T n 是数列{b n }的前n 项和,求T n . [解析] (1)设f (x )=ax 2+bx ,f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x , ∴S n =n 2+2n ,∴当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1, 又a 1=S 1=3,适合上式,∴a n =2n +1. (2)b n =(2n +1)·2n ,∴T n =3·21+5·22+7·23+…+(2n +1)·2n , ∴2T n =3·22+5·23+7·24+…+(2n +1)·2n +1,相减得-T n =3·21+2·(22+23+…+2n )-(2n +1)·2n +1=6+2·4·(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,∴T n =(2n -1)·2n +1+2.(理)已知函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)由题意可设f (x )=ax 2+bx +c , 则f ′(x )=2ax +b =6x -2,∴a =3,b =-2,∵f (x )过原点,∴c =0,∴f (x )=3x 2-2x .依题意得S n =3n 2-2n .n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, n =1时,a 1=S 1=1适合上式. ∴a n =6n -5(n ∈N *). (2)∵a n =b 12+b 222+b 323+…+b n2n ,∴a n -1=b 12+b 222+b 323+…+b n -12n 1(n ≥2).相减得b n2n =6,∴b n =6·2n (n ≥2).b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 (n =1),6·2n (n ≥2).∴T n =2+6(22+23+…+2n )=3·2n +2-22.能力拓展提升一、选择题11.椭圆x 24+y 23=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11000的等差数列,则n 的最大值为( )A .2001B .2000C .1999D .1998[答案] B[分析] 公差确定后,首项和末项之差越大,等差数列的项数就越多(即n 越大),故P 1与P n 取长轴两端点时n 取最大值,可依据公差大于11000列不等式解. [解析] ∵|P n F |max =a +c =3,|P n F |min =a -c =1, d =a n -a 1n -1=3-1n -1>11000,n ∈N ,∴n max =2000,故选B.12.(文)数列{a n }是公差d ≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13 [答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2,a 1+6d =a 1q 4.得d =a 14(q 4-q 2).∴a 1+a 12(q 4-q 2)=a 1q 2,∵q ≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63,∴b 11=a 63.(理)(2013·河北教学质量监测)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -λ)(1a n +1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<3[答案] C[解析] 由已知可得1a n +1=2a n +1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n +1=2n ,b n +1=2n (n -λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n (n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.13.(文)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23C.34D.45 [答案] C[解析] 循环过程为i =1<4→i =2,m =1,S =11×2; i =2<4→i =3,m =2,S =11×2+12×3;i =3<4→i =4,m =3,S =11×2+12×3+13×4;i =4<4不成立,输出S 的值.故S =11×2+12×3+13×4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14 =1-14=34.(理)已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2nB .a n =2n -1C .a n =2n +1D .a n =2n -3[答案] B[解析] 由a i +1=a i +2知数列{a n }是公差为2的等差数列,由M =1a i ai +1及S =S +M 知,S =1a 1a 2+1a 2a 3+…+1a i a i +1, 由条件i ≤k 不满足时输出S 及输入k =5,输出S =511知,1a 1a 2+1a 2a 3+…1a 5a 6=12[(1a 1-1a 2)+(1a 2-1a 3)+…(1a 5-1a 6)]=12(1a 1-1a 6)=12(1a 1-1a 1+10)=5a 1(a 1+10)=511, ∵a 1>0,∴a 1=1,∴a n =2n -1. 二、填空题14.(2013·广东佛山一模)我们可以利用数列{a n }的递推公式,求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.[答案] 28 640[解析] a 24+a 25=a 12+25=a 6+25=a 3+25=3+25=28. 5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640.15.已知数列{a n }的通项公式为a n =2n (n ∈N *),把数列{a n }的各项排列成如图所示的三角形数阵:2 22 23 24 25 26 27 28 29 210……记M (s ,t )表示该数阵中第s 行的第t 个数,则M (11,2)对应的数是________(用2n 的形式表示,n ∈N ).[答案] 257[解析] 由数阵的排列规律知,第m 行的最后一个数是数列{a n }的第1+2+3+…+m =m (m +1)2项,且该行有m 项,由此可知第11行的第2个数是数列{a n }的第10×112+2=57项,对应的数是257.三、解答题16.(文)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝⎛⎭⎫1,S 11,P 2⎝⎛⎭⎫2,S 22,…,P n ⎝⎛⎭⎫n ,S nn (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd =3,即公比q =3.(2)证明:∵S n =na 1+n (n -1)2d ,∴S nn =a 1+n -12d =1+n -12d . ∴点P n ⎝⎛⎭⎫n ,S n n 在直线y =1+x -12d 上. ∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).即dx -2y +2-d =0.(理)在等差数列{a n }中, 设S n 为它的前n 项和,若S 15>0,S 16<0,且点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,(1)求a 1的取值范围;(2)指出S 1a 1,S 2a 2,…,S 15a 15中哪个值最大,并说明理由.[解析] (1)由已知可得a 5-a 35-3=-2,则公差d =-2,∴⎩⎨⎧S 15=15a 1+15×142×d =15(a 1-14)>0,S16=16a 1+16×152×d =16(a 1-15)<0.∴14<a 1<15. (2)最大的值是S 8a 8,∵S 15=15a 8>0,S 16=8(a 8+a 9)<0, ∴a 8>0,a 9<0,即S 8最大.又当1≤i ≤8时,S i a i >0;当9≤i ≤15时,S ia i <0,∵数列{a n }递减,∴S 1a 1≤S 2a 2≤…≤S 8a 8,S 8a 8≥S 9a 9≥…≥S 15a 15⇒S 8a 8最大.考纲要求能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. 补充说明1.等比数列综合问题的解题思路在解答等差、等比数列综合问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,往往能取得与“巧用性质”相同的解题效果,既要掌握“通法”,又要注重“特法”.2.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,将数列拆为基本数列,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.3.含有字母的数列求和,常伴随着分类讨论.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.备选习题1.设正项等比数列{a n }的前n 项之积为T n ,且T 10=32,则1a 5+1a 6的最小值为( )A .2 2 B. 2 C .2 3 D. 3 [答案] B[解析] 由条件知,T 10=a 1a 2…a 10=(a 5a 6)5=32,∵a n >0,∴a 5a 6=2,∴1a 5+1a 6=12·a 5a 6·(1a 5+1a 6)=12(a 5+a 6)≥12×2a 5a 6=2,等号在a 5=a 6=2时成立. 2.设等差数列{a n }的前n 项和为S n ,则a 6+a 7>0是S 9≥S 3的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.3.已知数列{a n }、{b n }满足a 1=12,a n +b n =1,b n +1=b n 1-a 2n ,则b 2014=( )A.20132014B.20142013C.20142015D.20152014 [答案] C[解析] ∵a n +b n =1,a 1=12,∴b 1=12,∵b n +1=b n 1-a 2n ,∴b 2=b 11-a 21=23, ∴a 2=13,b 3=b 21-a 22=34,a 3=14,b 4=b 31-a 23=45,a 4=15,…,观察可见a n=1n +1,b n =n n +1,∴b 2014=20142015,故选C.4.(2013·武汉调研)在如图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的3,5,8,13,22,39,…,为数列{b n },则(1)(2)数列{b n }的通项公式为________. [答案] (1)129 (2)b n =2n -1+n +1,n ∈N *5.已知f (x )=a 1x +a 2x 2+…+a n x n (n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝⎛⎭⎫12与3的大小,并证明你的结论.[解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2.11 ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12+3⎝⎛⎭⎫122+5⎝⎛⎭⎫123+…+(2n -1)· ⎝⎛⎭⎫12n , 两边同乘以12得,12f ⎝⎛⎭⎫12=⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+(2n -3)⎝⎛⎭⎫12n +(2n -1)⎝⎛⎭⎫12n +1, 两式相减得,12f ⎝⎛⎭⎫12=12+2⎝⎛⎭⎫122+2⎝⎛⎭⎫123+…+2⎝⎛⎭⎫12n -(2n -1)⎝⎛⎭⎫12n +1=12+12⎝⎛⎭⎫1-12n -11-12-(2n -1)12n +1. ∴f ⎝⎛⎭⎫12=3-2n +32n<3.。
2015年高考数学试题分类汇编专题六数列
专题六 数列1.(15北京理科)设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a > D .若10a <,则()()21230a a a a --> 【答案】C考点:1.等差数列通项公式;2.作差比较法 2.(15北京理科)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】①试题分析:(Ⅰ)由16a =,可知23412,24,12,a a a ===则{6,12,24}M =;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.第二步集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,用数学归纳法证明对任意n k ≥,n a 是3的倍数;第三步由于M 中的元素都不超过36,M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,由定义可知,1n a +和2n a 除以9的余数一样,分n a 中有3的倍数和n a 中没有3的倍数两种情况,研究集合M 中的元素个数,最后得出结论集合M 的元素个数的最大值为8. 试题解析:(Ⅰ)由已知121823618n n n n n a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数. (Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,考点:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析. 3.(15北京文科)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等. 【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.试题解析:(Ⅰ)设等差数列{}n a 的公差为d. 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=⨯=. 由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.4.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += 【答案】10. 【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,285210a a a +==,故应填入10.【考点定位】本题考查等差数列的性质及简单运算,属于容易题. 5.(15年广东理科)数列{}n a 满足1212242-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S满足n S n ln 22+<【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)见解析.(3)依题由1211112n n n a a a b a n n -+++⎛⎫=++++ ⎪⎝⎭知11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,【考点定位】本题考查递推数列求项值、通项公式、等比数列前n 项和、不等式放缩等知识,属于中高档题.6.(15年广东文科)若三个正数a ,b ,c 成等比数列,其中526a =+526c =-,则b = . 【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以(2565261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.7.(15年广东文科) 设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;()3求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.8.(15年安徽理科)设*n N ∈,n x 是曲线231n y x+=+在点(12),处的切线与x 轴交点的横坐标,(1)求数列{}n x 的通项公式;(2)记2221221n n T x x x -=,证明14n T n≥.9.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 。
2015-2016高三一轮复习《数列》单元测试参考答案
2015-2016高三一轮复习《数列》单元测试参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C BDADBCADDCB二.填空题13.43n a n =- 14.6766 15,n a n 313-= 16.nS n =n 2a 1+n 2n -12d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49. ∴nS n 的最小值为-49. 17解:(裂项相消法)(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。
有条件可知a>0,故13q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =13n 。
(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-12112()(1)1n b n n n n =-=--++12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+18解:(累加法,错位相减法)(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+。
而 所以数列{}的通项公式为。
(Ⅱ)由知 ①从而②①-②得。
即19.(累乘法)解:(1)由2243S a =得1223()4a a a +=,解得2133a a ==由3353S a =得12333()5a a a a ++=,解得3123()62a a a =+=(2)由题设知11a =当2n ≥时,有112133n n n n n n n a S S a a --++=-=-,整理得111n n n a a n -+=-于是:1213213411,,,...,.121n n n a a a a a a a n -+====-以上各式相乘,整理得(1)2n n n a +=显然,当1n =时也满足上式,所以(1)2n n n a +=20.解析 (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,21233(222)2n n --=++++2(1)12n +-=12,a =n a 212n n a -=212n n n b na n -==⋅35211222322n n S n -=⋅+⋅+⋅++⋅23572121222322n n S n +⋅=⋅+⋅+⋅++⋅2352121(12)22222n n n S n -+-⋅=++++-⋅211[(31)22]9n n S n +=-+当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).21解;方法一:由已知得1112+=+=λλa a ,121)11(1)(2213++=+++=++=λλλλλa a a因为3,2,321+a a a 为等差数列{b n }的前三项, 所以34312++=a a a 即:3121)1(42++++=+λλλ解得1=λ11+=∴+n n S a2≥n ,11+=-n n S a 以上两式相减得:nn n a a a 21=-+,即21=+n n a a检验:2,21,11221==+==a a a a λ 所以,{a n }是以1为首项,2为公比的等比数列,12-=n n a 又因为32,11211=-===a a d a b所以{b n }是以1为首项,3为公差的等差数列,23-=n b n方法二:11+=+n n S a λ ,)2(11≥+=-n S a n n λ 两式相减得n n n a a a λ=-+1,即)1(11-≠+=+λλnn a a 又因为λ+==1,121a a ,λ+=∴112a a所以,{a n }是以1为首项,λ+1为公比的等比数列23)1(λ+=∴a因为3,2,321+a a a 为等差数列{b n }的前三项,3)1(1)1(42+++=+λλ解得1=λ所以,12-=n n a ,23-=n b n(2)(略)52)53(+-=n n n S22.(Ⅰ)由题设,,两式相减,由于,所以 …………6分(Ⅱ)由题设=1,,可得,由(Ⅰ)知 假设{}为等差数列,则成等差数列,∴,解得; 证明时,{}为等差数列:由知数列奇数项构成的数列是首项为1,公差为4的等差数列 令则,∴ 数列偶数项构成的数列是首项为3,公差为4的等差数列 令则,∴ ∴(), 因此,存在存在,使得{}为等差数列.11n n n a a S λ+=-1211n n n a a S λ+++=-()121n n n n a a a a λ+++-=0n a ≠2n n a a λ+-=1a 1211a a S λ=-211a λ=-31a λ=+n a 123,,a a a 1322a a a +=4λ=4λ=n a 24n n a a +-={}21m a -2143m a m -=-21,n m =-12n m +=21n a n =-(21)n m =-{}2m a 241m a m =-2,n m =2nm =21n a n =-(2)n m =21n a n =-*n N ∈12n n a a +-=4λ=n a。
2015年高考数学(理)核按钮:第六章《数列》(含解析)
第六章数列§6.1数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表,图象,通项公式).2.了解数列是自变量为正整数的一类特殊函数.高考以考查通项公式及其性质为主,题型主要为:用归纳猜想法求通项;利用a n与S n的关系求通项;由递推数列的关系式求通项;判断数列的单调性等.1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成,其中a n是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{a n}.(2)通项公式:如果数列{a n}的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有,,,.2.数列的分类为,.(2)按项的增减规律分为,,和.递增数列⇔a n+1a n;递减数列⇔a n+1a n;常数列⇔a n+1a n.递增数列与递减数列统称为.3.数列前n项和S n与a n的关系已知S n,则a n=⎩⎨⎧≥=).2(),1(nn4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n=____________;(2)2,4,6,8,…的一个通项公式为a n=____________;(3)3,5,7,9,…的一个通项公式为a n=____________;(4)2,4,8,16,…的一个通项公式为a n=____________;(5)-1,1,-1,1,…的一个通项公式为a n=____________;(6)1,0,1,0,…的一个通项公式为a n=____________;(7)a,b,a,b,…的一个通项公式为a n=____________;(8)9,99,999,…的一个通项公式为a n=.注:据此,很易获得数列1,11,111, (2)22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n-1).【自查自纠】1.(1)项首项a1,a2,a3,…,a n,…(2)第n项n(3)函数值(4)a n a n-1(5)通项公式(解析法)列表法图象法递推公式2.(1)有穷数列无穷数列(2)递增数列递减数列摆动数列常数列><=单调数列4.(1)n (2)2n (3)2n +1 (4)2n (5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n -1数列-1,43,-95,167,…的一个通项公式是( )A .a n =(-1)n n (n +1)2n -1B .a n =(-1)nn 22n -1C .a n =(-1)nn 22n +1D .a n =(-1)n n3-2n2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n .故选B .下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( ) A .1B .2C .3D .4解:易知①③正确,②④不正确.故选B .若数列a n =1n +1+1n +2+…+12n ,则a 5-a 4=( )A.110B .-110C.190D.1990解:a 5-a 4=⎝⎛⎭⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C .数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).数列{a n }中,a 1=1,对于所有的n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解法一:由a 1a 2a 3=22a 3=32,得a 3=94,由a 1a 2a 3a 4a 5=42a 5=52,得a 5=2516,∴a 3+a 5=6116.解法二:当n ≥1时,a 1·a 2·a 3·…·a n =n 2. 当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2. 两式相除得a n =⎝⎛⎭⎫n n -12,n ≥2. ∴a 3=94,a 5=2516.∴a 3+a 5=6116.故填6116.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1.(2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=0,解得n =-8(舍)或n =6.故0.98是这个数列中的第6项a 6.【评析】①一个数列只知道前n 项,其通项公式是不能确定的,即使完全知道该数列,其通项公式的形式也不一定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪sin n π2甚至分段形式a n =⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,一定要掌握一些常见数列的通项公在此基础之上还要掌握一定的方法,如将各项分解成若干个数的和,差,积,商,分离分子分母等.③由于数列是特殊的函数,因此判断某数是否为数列中的项,即是知a n 判断方程a n =f (n )是否有正整数解.写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3333,…; (4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n +1;(3)a n =13(10n -1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n +1,则此数列的通项公式为a n =______________.解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -2n-1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2). 若a 1适合S n-S n -1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1=S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2+3n; (2)S n =3n +1.解:(1)当n =1时,a 1=S 1=2×12+3×1=5; 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4;当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,∴a n =⎩⎪⎨⎪⎧4(n =1),2·3n -1(n ≥2).类型三 由递推公式求通项公式写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n +1=2n ·a n (n ≥1);(2)a 1=1,a n =a n -1+1n (n -1)(n ≥2).解:(1)解法一:∵a n +1=2n ·a n ,∴a n +1a n =2n,∴a 2a 1=2,a 3a 2=22,a 4a 3=23,…,a n a n -1=2n -1. 将上述n -1个式子累乘,得a n a 1=21+2+3+…+(n -1),即a n =2n (n -1)2(n ∈N *).解法二:a n +1=2n ·a n =2n ·2n -1a n -1 =…=2n ·2n -1·…·22·21a 1=21+2+…+n -1+na 1=2n (n +1)2.∴a n =2n (n -1)2.1有a n -a n -1=1n -1-1n(n ≥2).于是有a 2-a 1=11-12,a 3-a 2=12-13,…,a n -a n -1=1n -1-1n. 将上述n -1个式子累加,得a n =2-1n.当n =1时,a 1=1也满足,故a n =2-1n (n ∈N *).【评析】已知a 1和数列递推关系求通项时,可先计算出前若干项,通过分析这些项与序号的关系,归纳猜想出数列的通项公式,但这种不完全归纳得到的结论往往需要进行验证;但对于“a na n -1=f (n )”型递推关系常用“累乘法”求通项;对于“a n -a n -1=f (n )”型递推关系常用累加法求通项;以上两种情形皆可用迭代法求通项.还须注意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n =3n -1+a n -1;(2)a 1=4,a n +1=n +2n a n.解:(1)由a 1=1,a n -a n -1=3n -1(n ≥2),得 a 1=1,a 2-a 1=31,a 3-a 2=32,…, a n -1-a n -2=3n -2,a n -a n -1=3n -1,以上等式两边分别相加得 a n =1+3+32+…+3n -1=3n -12,n =1时,a 1=1也适合,∴a n =3n -12.也可直接利用递推公式,逐项代替等式右边出现的a n -1,直至a 1:由a n =3n -1+a n -1=3n -1+3n -2+a n -2=…=3n -1+3n -2+…+32+31+a 1=3n -12.当n =1时,a 1=1也适合,∴a n =3n -12.(2)由递推关系a 1=4,a n +1=n +2n a n ,有a n +1a n=n +2n ,于是有a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=nn -2,a n a n -1=n +1n -1,将这(n -1)个式子累乘,得a na 1=n (n +1)2,即当n ≥2时,a n =n (n +1)2a 1=2n (n +1),当n =1时,a 1=4也满足.所以a n =2n (n +1).类型四 数列通项的性质在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n(n ∈N *). (1)求证:数列{a n }先递增,后递减; (2)求数列{a n }的最大项.解:因a n =(n +1)⎝⎛⎭⎫1011n是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.(1)证明:令a na n -1≥1(n ≥2),即(n +1)⎝⎛⎭⎫1011nn ·⎝⎛⎭⎫1011n -1≥1, 整理得n +1n ≥1110,解得n ≤10.令a na n +1≥1,即(n +1)⎝⎛⎭⎫1011n(n +2)⎝⎛⎭⎫1011n +1≥1, 整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.(2)解:由(1)知a 9=a 10=1010119最大.【评析】要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大,最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足()na f 2=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性.解:(1)∵2log 2log )(22n a n n a a f -=2=a n -1a n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1,∵x ∈(0,1),∴na 2∈(0,1),a n <0.(2)a n +1-a n =(n +1)-(n +1)2+1-(n -n 2+1)=1-[(n +1)2+1-n 2+1] =1-2n +1(n +1)2+1+n 2+1>1-2n +1(n +1)+n=0,∴a n +1>a n ,则数列{a n }是递增数列.也可由a n =-1n +n 2+1直接判断.1.已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:(1)如果符号正负相间,则符号可用(-1)n 或(-1)n+1来调节.(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子,分母的关系来解决.(3)对于比较复杂的通项公式,要借助于等差数列,等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律),比较(比较已知的数列),归纳,转化(转化为等差,等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),务必注意a n =S n -S n -1是在n ≥2的条件下,还需注意验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项这类问题要求不高,主要掌握由a 1和递推关系先求出前几项,再归纳,猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得: a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得:a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ). 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A .1+⎝⎛⎭⎫110nB .-1+⎝⎛⎭⎫110nC .1-⎝⎛⎭⎫110nD .1-⎝⎛⎭⎫110n +1解:原数列前几项可改写为1-110,1-1102,1-1103,…,故通项a n =1-⎝⎛⎭⎫110n .故选C .2.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 4等于( )A.5512B.133C .4D .5解:令n =3,4,即可求得a 4=133.故选B .3.(2012·青岛二模)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解:若a n +1>|a n |(n =1,2,…),则由|a n |≥a n ,知a n +1>a n ,即{a n }为递增数列,充分性成立.当{a n }为递增数列时,若该数列为-2,0,1,…,则a 2>|a 1|不成立,即a n +1>|a n |(n =1,2,…)不一定成立,亦即必要性不成立.故选B .4.已知数列{a n }的前n 项和S n =n (n -40),则下列判断中正确的是( )A .a 19>0,a 21<0B .a 20>0,a 21<0C .a 19<0,a 21>0D .a 19<0,a 20>0解:当n =1时,a 1=S 1=-39;当n ≥2时,a n =S n -S n -1=n (n -40)-(n -1)(n -41)=2n -41.将n =1代入满足上式.所以a 19=2×19-41=-3<0,a 20=2×20-41=-1<0,a 21=2×21-41=1>0.故选C .5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n 的值为( )A .2+lg nB .2+(n -1)lg nC .2+n lg nD .1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=lgn n -1+lg n -1n -2+…+lg 21+2=lg ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2=lg n +2.解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n .故选A .6.(2013·北京东城区一模)对于函数y =f (x ),部数列{x n }满足x 1=2,且对任意n ∈N ,点(x n ,x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+x 4+…+x 2012+x 2013的值为( )A .9394B .9380C .9396D .9400解:∵x 1=2,x 2=f (x 1)=f (2)=4,x 3=f (x 2)=f (4)=8,同理,x 4=2,x 5=4,x 6=8,因此,x 3k+1=2,x3k +2=4,x 3k +3=8,k ∈N .∴x 1+x 2+x 3+…+x 2012+x 2013=(x 1+x 2+x 3)+…+(x 2011+x 2012+x 2013) =(2+4+8)×671=9394.故选A .7.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.解:a 8=S 8-S 7=82-72=15.故填15.8.根据下面的图形及相应的点数,在空格和括号中分别填上适当的图形和点数,并写出点数构成的数列的一个通项公式a n =________.解:五个方向上点的个数每次多一个,因此第四由此得a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,故a n =5n -4,n ∈N *.故填5n -4,n ∈N *.9.根据数列{a n } 的前几项,分别写出下列数列的一个通项公式.(1)7,77,777,7777,…;(2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,….解:(1)将各项改写如下79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n -1).(2)将各项绝对值改写如下41,52,63,74,85,…综合考查分子,分母, 以及各项符号可知a n =(-1)n-1n +3n. (3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数), 或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n .(4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n=⎩⎨⎧n +12(n 为奇数),2n 2(n 为偶数).10.数列{a n }中,a n =n -n 2+2,求数列{a n }的最大项和最小项.解:a n +1a n =n +1-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1, 又a =n -n +2<0,∴a <a +,数列{a }是∴数列{a n }的最小项为a 1=1-3,没有最大项. 亦可将a n =n -n 2+2分子有理化,得a n =-2n +n 2+2,从而得出同样的判断.11.已知数列{a n }的前n 项和为S n ,并且满足a 1=2,na n +1=S n +n (n +1).(1)求数列{a n }的通项公式;(2)令T n =S n2n ,当n ≥3时,求证:T n >T n +1.解:(1)∵na n +1=S n +n (n +1)(n ∈N *), 当n =1时,a 2=S 1+2=a 1+2=4; 当n ≥2时,(n -1)a n =S n -1+(n -1)n . ∴na n +1-(n -1)a n =S n -S n -1+2n . ∴n (a n +1-a n )=2n .∴a n +1=a n +2(n ≥2). 又∵a 2-a 1=2,a 1=2,∴a n +1=a n +2=a n -1+2×2=…=a 1+2n=2(n +1). 从而有a n =2n .(2)证明:由(1)可求得S n =n (2+2n )2=n 2+n .∴T n =n 2+n 2n .∴T n -T n +1=n 2+n 2n -(n +1)2+(n +1)2n +1 =2n 2+2n -n 2-2n -1-n -12n +1 =n 2-n -22n +1=(n +1)(n -2)2n +1. ∴当n ≥3时,有T n -T n +1>0,即T n >T n +1.已知数列{a n }的通项a n =n -98n -99(n ∈N *),求{a n }的最大项及最小项.解:设a n =f (n )=n -98n-99,则a n =1+99-98n -99.如图(方便起见,画成连续曲线进行研究).当1≤n ≤9时,a n <1,且此时{a n }递减, 即a 1>a 2>…>a 9;当n ≥10时,a n >1,并且此时{a n }仍递减, 即有a 10>a 11>…>a n >….综上有(a n )max =a 10=10-9810-99,(a n )min =a 9=9-989-99.§6.2等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式,前n项和公式及等差中项公式,并能应用这些知识解决相应的问题.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.等差数列作为最基本的数列模型之一,一直是高考重点考查对象,多数为中低档题,也有难题.其中选择,填空题“小而巧”,主要以通项公式,前n项和公式为载体,结合等差数列性质考查分类讨论,转化与化归,函数与方程等数学思想,注重通性通法的考查;解答题“大而全”,注重题目的综合性与新颖性,突出对逻辑思维能力的考查.1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的都等于同一个,那么这个数列就叫做等差数列,这个常数叫做等差数列的,通常用字母d表示,即=d(n∈N+,且n≥2)或=d(n∈N+).2.等差中项由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的____________.3.等差数列的通项公式若{a n}是等差数列,则其通项公式a n=.①{a n}成等差数列⇔a n=pn+q,其中p=,q=,点(n,a n)是直线上一群孤立的点.②单调性:d>0时,{a n}为数列;d<0时,{a n}为数列;d=0时,{a n}为.4.等差数列的前n项和公式(1)等差数列前n项和公式S n==.其推导方法是.(2){a n}成等差数列,求S n的最值:若a1>0,d<0,且满足⎩⎨⎧+1nna,a时,S n最大;若a1<0,d>0,且满足⎩⎨⎧+1nna,a时,S n最小;或利用二次函数求最值;或利用导数求最值.5.等差数列的判定方法(1)定义法:a n+1-a n=d(常数)(n∈N*)⇔{a n}是等差数列;(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)通项公式法:a n=kn+b(k,b是常数)(n∈N*)⇔{a n}是等差数列;(4)前n项和公式法:S n=An2+Bn(A,B是常数)(n∈N*)⇔{a n}是等差数列.6.等差数列的性质(1)a m-a n=d,即d=a m-a nm-n.(2)在等差数列中,若p+q=m+n,则有a p+a q =a m+;若2m=p+q,则有a m=a p +a q(p,q,m,n∈N*).(3)若{a n},{b n}均为等差数列,且公差分别为d1,d2,则数列{pa n},{a n+q},{a n±b n}也为数列,且公差分别为,,.(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n,a n+m,a n+2m,…为等差数列,公差为md.(5)等差数列的前n项和为S n,则S n,S2n-S n,S3n -S2n,…为等差数列,公差为n2d.(6)若等差数列的项数为2n,则有S偶-S奇=nd,S奇S偶=a na n+1.(7){a n}为等差数列,S n为前n项和,则S2n-1=(2n -1)a n;{b n}为等差数列,S′n为前n项和,则S′2n-1=(2n-1)b n,a nb n=S2n-1S′2n-1.(8)等差数列{a n}前m项与后m项的和等于m(a1+a n).1.差 常数 公差 a n -a n -1 a n +1-a n 2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d ) ②单调递增 单调递减 常数列4.(1)n (a 1+a n )2 na 1+n (n -1)d 2 倒序相加法(2)≥0 ≤0 ≤0 ≥06.(1)(m -n ) (2)a n 2 (3)等差 pd 1 d 1 d 1±d 2(2012·福建)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4解:∵a 1+a 5=2a 3=10,∴a 3=5.又a 4=7, ∴d =a 4-a 3=2.故选B .已知等差数列{a n }中,a 2=7,a 4=15,则其前10项的和为( )A .100B .210C .380D .400解:在等差数列{a n }中,∵a 2=7,a 4=15,∴d =a 4-a 22=4,a 1=a 2-d =3,∴S 10=10×3+10×92×4=210.故选B .等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 3=( )A .-1B .-13C.13D .1解:由S 3,S 6-S 3,S 9-S 6成等差数列得:2(2-S 3)=S 3+(5-2).解得S 3=13.故选C .在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解:因为a 3+a 7=a 4+a 6=a 2+a 8=37,所以a 2+a 4+a 6+a 8=74,故填74.已知递增的等差数列{}a n 满足a 1=1,a 3=a 22-4,则a n =________.解:∵{}a n 是等差数列,a 1=1,a 3=a 22-4,∴1+2d =()1+d 2-4得d 2=4,又{}a n 是递增数列,∴d >0.∴d =2,a n =2n -1.故填2n -1.类型一 等差数列的判定与证明设数列{a n }的前n 项和为S n ,若对于所有的正整数n ,都有S n =n (a 1+a n )2,证明{a n }是等差数列.证明:当n ≥2时,由题设知a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2=12[a 1+na n -(n -1)a n -1], 同理a n +1=12[a 1+(n +1)a n +1-na n ].从而a n +1-a n =12[(n +1)a n +1-2na n +(n -1)a n -1].整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , ∵n ≥2,∴a n +1+a n -1=2a n . 所以{a n }是等差数列.【评析】判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断数列是否为等差数列.已知数列{a n }的通项公式为a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,∴只有2p =0,即p =0时,数列{a n }是等差数列.(2)∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q 又(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,∴数列{a n +1-a n }是等差数列.类型二 等差数列基本量的计算(1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且d >0,求a 1.解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. ∴a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a m n -m ,得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3.∴S n =-5n +n (n -1)2·3=32n 2-132n .(3)设数列的前三项分别为a -d ,a ,a +d ,依题意有:⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12,(a -d )·a ·(a +d )=48, 即⎩⎪⎨⎪⎧a =4,a (a 2-d 2)=48, 解得⎩⎪⎨⎪⎧a =4,d =±2.∵d >0,∴d =2,a -d =2.∴a 1=2.【评析】在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式,前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.(1)(2013·四川)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项,公差及前n 项和.解:设该数列公差为d ,前n 项和为S n .由已知可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ). 的首项为4,公差为0,或首项为1,公差为3.所以数列{a n }的前n 项和S n =4n 或S n =3n 2-n2.(2)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n ,求a n 及S n .解:设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n .类型三 等差数列的性质(1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)(2012·江西)设数列{}a n ,{}b n 都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;(4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________. 解:(1)S 11=11(a 1+a 11)2=11a 6=1100.故填1100.(2)因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)∵a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3, ∴4(a 1+a n )=160,即a 1+a n =40.∴S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n ⇒A (n 2-m 2)+B (n -m )=m -n . ∵n ≠m ,∴A (n +m )+B =-1.2S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m =(m -n )(a n +1+a m )2=n -m ,∴a 1+a m +n =a n +1+a m =-2.∴S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:∵{a n }是等差数列, ∴⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差. ∴S m +n m +n -S m m=nD ,S n n -S mm =(n -m )D .∴m n -n m n -m =S m +n m +n -nm n ,解得S m +n =-(m +n ).故填-(m +n ).【评析】(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列的和的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q =m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义,通项公式及前n 项和公式等基础知识的推广与变形,解题时灵活应用这些性质常常可化繁为简,起到事半功倍的效果.(1)(2013·贵州六校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A .8B .12C .16D .24解:在等差数列中,S 3=3a 2=6⇒a 2=2. ∴3d =a 5-a 2=6⇒d =2. 所以a 9=a 5+4d =16.故选C .(2)含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n解:∵S 奇=a 1+a 3+a 5+…+a 2n +1=(n +1)(a 1+a 2n +1)2,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2, a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n .故选B .类型四 等差数列的最值问题在等差数列{a n }中,已知a 1=20,前n项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,而d <0,故当n ≤12时,a n >0,n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为 S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130. 解法二:同解法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+312524.∵n ∈N +,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.【评析】求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值.(2013·全国新课标Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________.解:设S n =an 2+bn (a ,b ∈R ).则⎩⎪⎨⎪⎧100a +10b =0,225a +15b =25,解得a =13,b =-103,∴S n =13n (n -10),nS n =13(n 3-10n 2).考查函数f (x )=x 3-10x 2(x ≥1),f ′(x )=3x 2-20x ,∴f (x )的极小值点为203,当n =6时,nS n =-48,n =7时,nS n =-49,∴nS n 的最小值为-49. 故填-49.1.等差数列中,已知五个元素a 1,a n ,n ,d ,S n中的任意三个,便可求出其余两个.2.求等差数列{a n }前n 项的绝对值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.灵活运用等差数列的性质,如等差中项的性质,可简化运算.5.等差数列的前n 项和满足:⎩⎨⎧⎭⎬⎫S n n也是等差数列.1.等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=( )A .15B .30C .31D .64解:a 7+a 9=a 4+a 12,∴a 12=16-1=15.故选A .2.(2013·昆明模拟)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于( )A .-65B .-35C .65D .35解:由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.故选D .3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A .-23B .-13C .13D .23解:a 10=a 1+9d =10,S 10=10(a 1+10)2=70,解得d =23.故选D .4.(2013·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4解:由2a 2n =a 2n +1+a 2n -1(n ≥2)可知数列{a 2n }是等差数列,且以a 21=1为首项,以a 22-a 21=4-1=3为公差,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,即a 6=4.故选D . 5.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( ) A.94B.32C.53D .4解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A . 6.(2013·全国新课标Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解法一:a m =S m -S m -1=2,a m +1=S m +1-S m =3,公差d =a m +1-a m =3-2=1.又S m +1=(m +1)a 1+(m +1)m2=3,①,a m +1=a 1+m =3.将a 1=3-m 代入①得m 2-5m =0,解得m =5或0(舍去).解法二:设S n =an 2+bn ,通过题意建立并解方程组获解.故选C .7.(2012·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.解:∵S 2=a 3,∴a 1+a 2=a 3,又{a n }为等差数列.∴a 1+a 1+d =a 1+2d .∴d =a 1=12.∴a 2=a 1+d =1.S n =na 1+n (n -1)2d =14n (n +1).故填1;14n (n +1).8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解:a 1+a 2+a 3+a 4=3,a 9+a 8+a 7=4,所以4a 1+6d =3,3a 1+21d =4.解得a 1=1322,d =766.所以a 5=6766.故填6766.9.(2013·大纲)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }公差为d ,由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1. 10.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值; (2)求a 2+a 4+a 6+a 8+…+a 20的值. 解:(1)∵等差数列{a n }中,a 1=25,a 4=16,∴ 公差d =a 4-a 14-1=-3.∴a n =-3n +28.令a n =-3n +28>0,则n ≤9.∴当n ≤9时,a n >0;当n >9时,a n <0. ∴当n =9时,S n 取得最大值. (2)∵数列{a n }是等差数列, ∴a 2+a 4+a 6+a 8+…+a 20=10(a 2+a 20)2=10a 11=10×(-5)=-50.11.(2012·湖北)已知等差数列{}a n 前3项的和为-3,前三项的积为8.(1)求等差数列{}a n 的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{}||a n 的前n 项和.解:(1)设等差数列{}a n 的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎨⎧3a 1+3d =-3,a 1()a 1+d ()a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3, 所以由等差数列通项公式可得a n =2-3()n -1=-3n +5,或a n =-4+3()n -1=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故||a n =||3n -7=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{}||a n 的前n 项和为S n .当n =1时,S 1=||a 1=4;当n =2时,S 2=||a 1+||a 2=5;当n ≥3时,S n =S 2+||a 3+||a 4+…+||a n =5+()3×3-7+()3×4-7+…+()3n -7 =5+()n -2[]2+()3n -72=32n 2-112n +10,当n =2时,满足上式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2.已知公差大于零的等差数列{a n }的前n项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)若数列{b n }满足b n =S nn +c ,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由;(3)在(2)的条件下求数列{|101-b n |}的前n 项和T n .解:(1)由等差数列的性质得,a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,又公差大于零,即a 4>a 3,所以a 3=9,a 4=13.易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n ,所以b n =S nn +c =2n 2-n n +c.解法一:所以b 1=11+c ,b 2=62+c ,b 3=153+c (c ≠0).令2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-n n -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.解法二:由b n -b n -1为常数求c . (3)设c n =101-b n =101-2n , ①当1≤n ≤50时,T n =100n -n 2,②当n≥51时,T n=c1+c2+c3+…+c50-c51-…-c n=2(c1+c2+c3+…+c50)-(c1+c2+…+c n) =5000+n2-100n,综上有T n=⎩⎪⎨⎪⎧100n-n2,1≤n≤50,n2-100n+5000,n≥51.§6.3 等比数列1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.本节主要考查等比数列的定义,等比中项,通项公式,前n 项和公式,等比数列的性质及证明是历年高考的常考内容.高考考查的题型既有基本题,也有与等差数列,函数,方程,解析几何等有关的综合题.1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的 等于同一个 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,通常用字母q 表示(q ≠0).2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的 ,且G 2= 或G = .3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n = 或a n = .当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1q n-1可变形为a n =Aq n ,其中A= ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,= ,q ≠1.求和公式的推导方法是: ,为解题的方便,有时可将求和公式变形为S n =Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法(1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.(4)前n 项和公式法:S n =a 1q -1q n -a 1q -1=Bq n -B ⎝⎛⎭⎫B =a 1q -1是常数,且q ≠0,q ≠1⇔{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则a p ·a q =a m ·a n ;若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *).(2)若{a n },{b n }均为等比数列,且公比为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍为等比数列且公比为 , , , .(3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m …仍为等比数列,公比为 .(4)等比数列前n 项和为S n (≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1q n -1中,a n 是n 的函数,这个函数由正比例函数a n=a 1q·u 和指数函数u =q n (n ∈N *)复合而成. ①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列;②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列;③当 时,它是一个常数列;④当 时,无法判断数列的单调性,它是一个摆动数列.【自查自纠】 1.比 常数 公比 2.等比中项 ab ±ab 3.(1)a 1qn -1a m qn -mn -m a n a m ±n -m a na m(2)a 1qy =⎝⎛⎭⎫a 1q q x 4.na 1 a 1(1-q n )1-q a 1-a n q 1-q乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n (5)①q >1 0<q <1 ②0<q <1 q >1 ③q =1 ④q <0(2012·安徽)公比为2的等比数列{}a n 的各项都是正数,且a 3a 11=16,则a 5=( )A .1B .2C .4D .8解:由等比数列的性质知a 3a 11=a 27=16,又a n >0,所以解得a 7=4,由a 7=a 5·22=4a 5,得a 5=1.故选A .(2013·大纲)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解:由3a n +1+a n =0,得a n +1=-13a n ,所以{a n }为等比数列,公比为-13.由a 2=-43得a 1=4,由等比数列前n 项和公式得S 10=3(1-3-10).故选C .已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n )D.323(1-2-n ) 解:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C .(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解:由题意⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 解得⎩⎪⎨⎪⎧q =2,a 1=2.故S n =2(1-2n )1-2=2n +1-2.故填2;2n +1-2.(2012·江西)等比数列{a n }的前n 项和为S n ,公比不为1,若a 1=1,且对任意的n ∈N *都有a n +2+a n +1-2a n =0,则S 5=________.解:设数列{a n }的公比为q ,因为a n +2+a n +1-2a n=a n q 2+a n q -2a n =0,显然a n ≠0,所以q 2+q -2=0,解得q =-2或q =1(已知q ≠1,故舍去).所以S 5=1×[1-(-2)5]1-(-2)=11.故填11.类型一 等比数列的判定与证明已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n ∈N *.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论.解:(1)证明:假设存在一个实数λ,使{a n }是等比数列 ,则有a 22=a 1·a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4⇔ 49λ2-4λ+9=49λ2-4λ⇔ 9=0,矛盾.所以数列{a n }不是等比数列.(2)因为b n =(-1)n (a n -3n +21), b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎣⎡⎦⎤23a n +n -4-3(n +1)+21 =(-1)n +1⎝⎛⎭⎫23a n -2n +14=23(-1)n +1(a n -3n +21)=-23b n . 又b 1=-(λ+18),所以当λ=-18,b 1=0,易得b n =0(n ∈N *),此时数列{b n }不是等比数列;当λ≠-18,b 1≠0,由上可知b n ≠0, ∴b n +1b n =-23(n ∈N *),此时数列{b n }是等比数列. 【评析】(1)证明数列{a n }不是等比数列,只需举一个反例;(2)证明数列{b n }是等比数列,常用方法:①定义法;②等比中项法.(2013·陕西) 设{}a n 是公比为q 的等比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六单元 数列与算法第30讲 数列的概念与通项公式1.(2013·延庆县第一次模拟)S n 是数列{a n }的前n 项和,a n =⎩⎪⎨⎪⎧2n (n 是偶数)2n (n 是奇数),则S 5等于( )A .30B .32C .36D .382.(2013·新课标提分专家预测)若数列{a n }满足关系a n +1=1+1a n ,且a 8=3421,则a 3=( )A.32B.53C.85D.1383.已知数列{a n }的前n 项和S n =3n -1,则其通项公式a n =( )A .3·2n -1B .2·3n -1 C .2n D .3n4.已知数列{a n }的通项公式是a n =(-1)n (n +1),则a 1+a 2+a 3+…+a 10=( ) A .-55 B .-5 C .5 D .555.若数列{a n }满足a 1=4,a n +1=a 2n +12a n +a n 2(n ∈N *),则其{a n }的前10项和为( )A .40B .80C .120D .1606.若{a n }是递增数列,对于任意自然数n ,a n =n 2+λn 恒成立,则实数λ的取值范围是________.7.(2013·山东青岛市期末)对于正项数列{a n },定义H n =na 1+2a 2+3a 3+…+na n为{a n }的“光阴”值,现知某数列的“光阴”值为H n =2n +2,则数列{a n }的通项公式为a n =________.8.若对于正整数k ,g (k )表示k 的最大奇数因数,例如g (3)=3,g (10)=5.设S n =g (1)+g (2)+g (3)+g (4)+…+g (2n ).(1)求g (6),g (20)的值; (2)求S 1,S 2,S 3的值.9.设数列{a n }的前n 项和为S n ,S n =a 1(3n -1)2(n ∈N *),且a 4=54,求:(1)a 1的值; (2)通项a n .第31讲 等差数列的概念及基本运算1.设{a n }是等差数列,且a 2+a 3+a 4=15,则这个数列的前5项和S 5=( ) A .10 B .15 C .20 D .252.(2013·太原市第二次模拟)已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( )A .10B .16C .20D .243.若等差数列{a n }满足a n a n +1=n 2+3n +2,则公差为( ) A .1 B .2C .1或-1D .2或-2 4.(2013·山东省莱芜市上期末)等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )A .7B .6C .5D .85.等差数列{a n }的前n 项和为S n ,若a 1+a 9+a 11=30,那么S 13的值是________.6.已知等差数列{a n },若a 1=3,前三项和为21,则a 4+a 5+a 6=________.7.在等差数列{a n }中,a 1=-2014,其前n 项和为S n ,若S 1212-S 1010=2,则S 2014=________.8.在等差数列{a n }中,a 5+a 7=4,a 6+a 8=-2. (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n 的最大值.9.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.第32讲 等比数列的概念及基本运算1.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=( )A .31B .15C .16D .32 2.(2013·黄冈市上期期末考试)已知等比数列{a n }的公比q =2,其前4项和S 4=60,则a 2等于( )A .8B .6C .-8D .-63.如果数列a 1,a 2a 1,a 3a 2,…,a na n -1,…是首项为1,公比为-2的等比数列,则a 5等于( )A .32B .64C .-32D .-644.已知数列{a n }是正项等比数列,若a 2=2,2a 3+a 4=16,则数列{a n }的通项公式为( )A .2n -2B .22-nC .2n -1 D .2n5.设等比数列{a n }的前n 项和为S n ,若a 2013=3S 2012+2014,a 2012=3S 2011+2014,则公比q =( )A .4B .1或4C .2D .1或26.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13 B.13C .-12 D.127.(2013·山东日照一次诊断)已知数列{a n }为等比数列,且a 5=4,a 9=64,则a 7=________.8.已知数列{b n }(n ∈N *)是递增的等比数列,且b 1+b 3=5,b 1b 3=4. (1)求数列{b n }的通项公式;(2)若a n =log 2b n +3,求证:{a n }是等差数列.9.已知数列{a n }满足:a 1=2,a n +1=2a n +2.(1)求证:数列{a n +2}是等比数列(要求指出首项与公比); (2)求数列{a n }的前n 项和S n .第33讲 等差、等比数列的综合应用1.设等差数列{a n }的前n 项和为S n ,a 2、a 4是方程x 2-x -2=0的两个根,S 5=( ) A.52B .5C .-52 D .-52.(2013·石家庄市质检)已知各项均为正数的等比数列{a n },a 1·a 9=16,则a 2·a 5·a 8的值( )A .16B .32C .48D .643.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A .9 B .16 C .36 D .454.(2013·长春市调研测试)等差数列{a n }的公差为3,若a 2,a 4,a 8成等比数列,则a 4=( )A .8B .10C .12D .16 5.(2013·湖南省长沙市第二次模拟)在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________.6.已知1,a 1,a 2,9成等差数列,1,b 1,b 2,b 3,9成等比数列,且a 1,a 2,b 1,b 2,b 3都是实数,则(a 2-a 1)b 2=______.7.已知数列{a n }中,a 3=2,a 7=1,若{1a n +1}为等差数列,则a 11=________.8.已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T nK n,求证:c n +1>c n (n ∈N *).9.等差数列{a n }是递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a 25. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =n 2+n +1a n ·a n +1,求数列{b n }的前99项的和.第34讲 数列求和1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-112.数列{a n }的前n 项和为S n ,若a n =1n (n +2),则S 10等于( )A.175264B.7255C.1012D.11123.已知数列{a n }是首项为2,公差为1的等差数列,数列{b n }是首项为1,公比为2的等比数列,则数列{ab n }前10项的和等于( )A .511B .512C .1023D .10334.数列{(3n -1)·4n -1}的前n 项和S n =( )A .(n -23)·4n +23B .(n -23)·4n +1+23C .(n -23)·4n -1+23D .(n -23)·4n +435.已知等差数列{a n }中,a 5=1,a 3=a 2+2,则S 11= .6.(2013·山东诸城月考)已知数列{a n }对于任意p ,q ∈N *,有a p a q =a p +q ,若a 1=12,则S 9=________.7.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m -1,…,a m =a 1,即a i =a m +1-i (i =1,2,…,m ),则称其为“对称”数列.例如:1,2,5,2,1,与数列8,4,2,4,8都是“对称”数列.已知在2011项的“对称”数列{c n }中,c 1006,c 1007,…,c 2011是以1为首项,2为公差的等差数列,则数列{c n }的所有项的和为__________.8.已知数列{a n }为等差数列,且a 1=1,{b n }为等比数列,数列{a n +b n }的前三项依次为3,7,13,求(1)数列{a n }、{b n }的通项公式; (2)数列{a n +b n }的前n 项和S n .9.(2013·山东济宁模拟)已知等差数列{a n },a 3=3,a 2+a 7=12. (1)求数列{a n }的通项公式;(2)设b n =n 2a n ,求数列{b n }的前n 项和.第35讲 数列模型及应用1.(2013·浙江省富阳市质检){a n }是等比数列,其中a 3,a 7是关于x 的方程x 2-2x sin α-3sin α=0的两根,且(a 3+a 7)2=2a 3a 7+6,则锐角α的值为( )A.π6B.π4C.π3D.5π122.在△ABC 中,∠B =π3,三边长a ,b ,c 成等差数列,且a ,6,c 成等比数列,则b 的值是( )A. 2B. 3C. 5D. 63.已知各项均不为零的数列{a n },定义向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *.下列命题中真命题是( )A .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等差数列B .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等比数列C .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等差数列D .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等比数列4.已知f (x )=sin 2x ,若等差数列{a n }的第5项的值为f ′(π6),则a 1a 2+a 2a 9+a 9a 8+a 8a 1=( )A .2B .4C .8D .165.五位同学围成一圈依次循环报数,规定,第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2014次被报出的数为______.6.(2013·江苏泰兴市上期中模拟)王老师从2013年1月1日开始每年的1月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款及利息均自动转为新的一年定期,到2020年1月1日将所有存款及利息全部取回,他可以取回________元.7.(2013·杭州第一次模拟)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为______.8.对正整数n ,设抛物线y 2=2(2n +1)x ,过P (2n,0)任作直线l 交抛物线于A n ,B n 两点,设a n =OA →n ·OB →n .(1)求数列⎩⎨⎧⎭⎬⎫OA →n ·OB →n 2(n +1)的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫OA →n ·OB →n 2(n +1)的前n 项和.9.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为n-1千元时多卖出b2n(n∈N*)件.(1)试写出销售量S n与n的函数关系式;(2)当a=10,b=4000时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?第36讲 算法、程序框图与算法案例1.计算机执行下面的程序段后,输出的结果是( ) X =2013Y =1X =X +Y Y =X -YPRINT X ,YA .2014,2012B .2012,2014C .2014,2014D .2014,20132.执行如图的程序框图,若输出的n =5,则输入整数p 的最小值是( ) A .6 B .7 C .8 D .15(第2题图) (第3题图)3.(2013·石家庄市模拟)已知流程图如图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填( )A .2B .3C .5D .74.把五进制数123(5)化为二进制数为 (2).5.执行如图所示的程序框图,若输入x =4,则输出y 的值为________.(第5题图) (第6题图)6.上图给出了一个算法流程图.若给出实数a ,b ,c 为a =4,b =x 2,c =2x 2-3x +2,输出的结果为b ,则实数x 的取值范围是________________________.7.到银行办理个人异地汇款(不超过100万元)时,银行收取一定的手续费.规定汇款不超过100元时收取1元手续费;超过100元但不超过5000元时按汇款额的1%收取;超过5000元,一律收取50元手续费,设计算法求汇款额为x 元时,银行收取手续费y 元,只画出流程图.8.用分期付款的方式购买价格为1150元的冰箱,如果购买时先付150元,以后每月付50元,加上欠款利息.若一个月后付第一个月的分期付款,月利率为1%,那么购冰箱的钱全部付清后,实际付了多少元?请画出程序框图,并写出程序.第六单元 数列与算法第30讲 数列的概念与通项公式1.D S 5=2+22+6+24+10=38,故选D.2.A 由a 8=3421=1+1a 7,得a 7=2113=1+1a 6,类似有a 6=138=1+1a 5,a 5=85=1+1a 4,a 4=53=1+1a 3,从而a 3=32,故选A.3.B 当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2·3n -1,又a 1=S 1=31-1=2满足a n =2·3n -1,故选B.4.C 由a n =(-1)n (n +1),得a 1+a 2+a 3+…+a 10=-2+3-4+5-6+7-8+9-10+11=5,故选C.5.A 由a n +1=a 2n +12a n +a n2,得a 2n +1-2a n +1a n +a 2n =0,所以a n +1=a n ,即{a n }为常数列,所以S 10=10a 1=40,故选A. 6.(-3,+∞) 因为{a n }为递增数列, 所以n 2+λn >(n -1)2+λ(n -1)(n ≥2),即2n -1>-λ(n ≥2)⇒λ>1-2n (n ≥2),要使n ∈N *恒成立,则λ>-3. 7.2n +12n 由H n =n a 1+2a 2+3a 3+…+na n,可得 a 1+2a 2+3a 3+…+na n =n H n =n (n +2)2,①a 1+2a 2+3a 3+…+(n -1)a n -1=(n -1)(n +1)2,②由①-②,得na n =n (n +2)2-(n -1)(n +1)2=2n +12,所以a n =2n +12n.8.解析:(1)g (6)=3,g (20)=5. (2)S 1=g (1)+g (2)=1+1=2;S 2=g (1)+g (2)+g (3)+g (4)=1+1+3+1=6;S 3=g (1)+g (2)+g (3)+g (4)+g (5)+g (6)+g (7)+g (8)=1+1+3+1+5+3+7+1=22.9.解析:(1)因为S 4=a 1(34-1)2,S 3=a 1(33-1)2,所以a 4=S 4-S 3=27a 1=54,即a 1=2.(2)因为S n =2(3n -1)2,所以S n -1=2(3n -1-1)2(n ≥2),所以a n =3n -3n -1=2·3n -1(n ≥2).显然a 1=2满足a n =2·3n -1,所以数列{a n }的通项a n =2·3n -1(n ∈N *). 第31讲 等差数列的概念及基本运算1.D 由a 2+a 3+a 4=15知3a 3=15,所以a 3=5,所以S 5=5a 3=25,故选D.2.C 设公差为d ,则S 3=3×2+3d =12,则d =2,所以S 4=4×2+6×2=20,故选C.3.C a n a n +1=n 2+3n +2=(n +1)(n +2),则a n =n +1或a n =-n -1,公差为1或-1,故选C.4.A a n =a 1+(n -1)d =0,所以d =6n -1.又d ∈N *,所以n (n ≥3)的最大值为7,故选A. 5.130 设公差为d ,则a 1+(a 1+8d )+(a 1+10d )=30,整理得a 1+6d =10,所以S 13=13a 1+13×122d =13(a 1+6d )=130.6.57 由条件知3×3+3d =21,d =4,所以a 4+a 5+a 6=3a 1+12d =3×3+4×12=57. 7.-2014 设公差为d ,则S n =na 1+n (n -1)d 2,S n n =a 1+(n -1)d2,由S 1212-S 1010=(12-1)d 2-(10-1)d 2=d ,所以d =2, 所以S 2014=2014×(-2014)+2014(2014-1)2×2=-2014.8.解析:(1)设等差数列的公差为d ,则 由a 5+a 7=4,a 6+a 8=-2, 得⎩⎪⎨⎪⎧ (a 1+4d )+(a 1+6d )=4(a 1+5d )+(a 1+7d )=-2,解得⎩⎪⎨⎪⎧a 1=17d =-3, 所以所求数列{a n }的通项公式a n =20-3n .(2)由⎩⎪⎨⎪⎧20-3n ≥020-3(n +1)≤0,解得173≤n ≤203,因为n ∈N *,所以n =6,故前n 项和S n 的最大值为S 6=6×17+6×52×(-3)=57.9.解析:(1)由题意知S 6=-15S 5=-3,所以a 6=S 6-S 5=-8.所以⎩⎪⎨⎪⎧5a 1+10d =5a 1+5d =-8,解得a 1=7,所以S 6=-3,a 1=7. (2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2. 第32讲 等比数列的概念及基本运算1.B S 4a 4=a 1(1-q 4)1-q a 1q 3=[1-(12)4]·24=24-1=15,故选B. 2.A S 4=60,q =2⇒a 1(1-24)1-2=60⇒a 1=4,故a 2=8,故选A.3.A a 5=a 1×a 2a 1×a 3a 2×a 4a 3×a 5a 4=a 51q 1+2+3+4=(-2)10=32. 4.C 设等比数列的首项及公比分别为a 1,q , 则⎩⎪⎨⎪⎧ a 1q =22a 1q 2+a 1q 3=16,由此可解得⎩⎪⎨⎪⎧a 1=1q =2, 故数列的通项公式为a n =2n -1,故选C.5.A 由a 2013=3S 2012+2014与a 2012=3S 2011+2014相减得,a 2013-a 2012=3a 2012,即q =4,故选A.6.A 因为等比数列前n 项和可写为形如S n =kq n -k ,所以-a 2=16,解得a =-13,故选A.7.16 因为a 5,a 7,a 9成等比数列,所以a 27=a 5·a 9=256.又a 5,a 7,a 9符号相同,所以a 7=16.8.解析:(1)由b 1b 3=4,b 1+b 3=5知,b 1、b 3是方程x 2-5x +4=0的两根. 又b n +1>b n ,所以b 1=1,b 3=4, 所以b 22=b 1b 3=4,得b 2=2,所以q =2,故b n =b 1·q n -1=2n -1.(2)证明:由(1)知,a n =log 2b n +3=log 22n -1+3=n +2. 因为a n +1-a n =n +1+2-(n +2)=1,所以数列{a n }是首项为3,公差为1的等差数列. 9.解析:(1)由a n +1=2a n +2,得a n +1+2=2a n +4,即a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ∈N *).又由a 1=2,得a 1+2=4,所以数列{a n +2}是以4为首项,以2为公比的等比数列.(2)由(1)知a n +2=4·2n -1=2n +1,所以a n =2n +1-2.所以S n =22+23+…+2n +1-2n =22(1-2n )1-2-2n =2n +2-2n -4.第33讲 等差、等比数列的综合应用1.A a 2、a 4是方程x 2-x -2=0的两个根,a 2+a 4=1,S 5=(a 1+a 5)×52=52,故选A.2.D 等比数列{a n },a 1·a 9=a 2·a 8=a 25=16,各项均为正数,所以a 5=4,所以a 2·a 3·a 8=a 35=43=64,即a 2·a 5·a 8的值为64,故选D. 3.D 由等差数列的性质可知a 7+a 8+a 9=2(S 6-S 3)-S 3=2×27-9=45,故选D. 4.C 令首项为a ,根据条件有(a +9)2=(a +3)(a +21)⇒a =3, a 4=3+3×3=12,故选C.5.240 由等比数列性质知a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,由已知条件知公比为2,所以a 7+a 8=(a 1+a 2)·q 3=30×23=240.6.8 由1,a 1,a 2,9成等差数列,可得a 2-a 1=83,由1,b 1,b 2,b 3,9成等比数列,可得b 2>0,且b 2=3,所以(a 2-a 1)b 2=8. 7.12 由等差数列的性质知1a 3+1,1a 7+1,1a 11+1成等差数列, 则2a 7+1=1a 3+1+1a 11+1, 即21+1=12+1+1a 11+1,解得a 11=12.8.解析:(1)设公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14(a 1+2d )2=a 1(a 1+6d ), 解得d =1或d =0(舍去),a 1=2,所以a n =n +1,S n =n (n +3)2,b n =2n ,T n =2n +1-2.(2)因为K n =2·21+3·22+…+(n +1)·2n ,①故2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,② ①-②,得-K n =2·21+22+23+…+2n -(n +1)·2n +1,所以K n =n ·2n +1,则c n =S n T n K n =(n +3)(2n-1)2n +1, c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1=2n +1+n +22n +2>0, 所以c n +1>c n (n ∈N *).9.解析:(1)设数列{a n }的公差为d (d >0). 因为a 1,a 3,a 9成等比数列,所以a 23=a 1a 9,所以(a 1+2d )2=a 1(a 1+8d ),所以d 2=a 1d . 因为d >0,所以a 1=d .①因为S 5=a 25,所以5a 1+5×42·d =(a 1+4d )2.② 由①②解得a 1=d =35.所以a n =35+(n -1)×35=35n (n ∈N *).(2)b n =n 2+n +135n ·35(n +1)=259·n 2+n +1n (n +1) =259(1+1n -1n +1). 所以b 1+b 2+b 3+…+b 99 =259(1+1-12+1+12-13+1+13-14+…+1+199-1100) =259(99+1-1100) =275+2.75=277.75. 第34讲 数列求和1.D 通过8a 2+a 5=0,设公比为q ,将该式转化为8a 2+a 2q 3=0,解得q =-2,代入所求式可知答案选D.2.A S 10=11×3+12×4+13×5+…+19×11+110×12=12[(1-13)+(12-14)+(13-15)+…+(19-111)+(110-112)] =12(1+12-111-112) =175264. 故选A.3.D a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1, 依题意得M n =a 1+a 2+a 4+…+a 2n -1=(1+1)+(2+1)+…+(2n -1+1) =2n -1+n ,M 10=210+10-1=1033,故选D.4.A S n =2×1+5×4+8×42+…+(3n -1)·4n -1,① 4S n =4×2+5×42+…+(3n -1)·4n ,② ②-①得:3S n =-2-3(4+42+…+4n -1)+(3n -1)·4n =2+(3n -2)4n ,所以S n =(n -23)·4n +23,故选A.5.33 d =2,a 6=3,S 11=11(a 1+a 11)2=11a 6=33. 6.511512 由题意得a n +1=a n a 1,a n +1a n =a 1=12, a n =a 1(12)n -1=(12)n ,因此S 9=1-(12)9=511512.7.2×10062-1 由题意得S 2011-S 1005=1006c 1006+1006×10052×2=1006+1006×1005 =10062.由对称数列得知,S 1005=(S 2011-S 1005)-c 1006=10062-1, 所以S 2011=2×10062-1.8.解析:(1)设公差为d ,公比为q . 因为⎭⎪⎬⎪⎫a 1=1a 1+b 1=3a 2+b 2=7a 3+b 3=13⇒b 1=2,d =2,q =2,所以a n =2n -1,b n =2n .(2)S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =1+2n -12n +2(1-2n )1-2=n 2+2n +1-2.9.解析:(1)由已知a 2+a 7=12可得a 4+a 5=12, 又因为a 3=3,所以a 3+a 4+a 5=15,所以a 4=5, 所以d =a 4-a 3=2, 所以a n =2n -3.(2)由(1)可知b n =n 22n -3,设数列{}b n 的前n 项和为T n ,所以T n =1·2-1+2·21+3·23+…+n ·22n -3,①4T n =1·21+2·23+…+(n -1)22n -3+n ·22n -1,② ①-②,可得-3T n =2-1+21+23+…+22n -3-n ·22n -1 =2-1(1-4n )1-4-n ·22n -1,所以T n =1-22n 18+n ·22n -13.第35讲 数列模型及应用1.C 由条件知(2sin α)2=2(-3sin α)+6,即2sin 2α+3sin α-3=0,解得sin α=32,所以α=π3,故选C.2.D 由条件知a +c =2b ,ac =6,则由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ,代入化简得b 2=6,即b =6,故选D.3.A 当c n ∥b n 时,(n +1)a n -na n +1=0,则a n n =a n +1n +1,所以数列{a nn}为常数列,设此常数为k ,则a nn=k ,即a n =kn ,易知数列{a n }是等差数列,故选A.4.B 因为f ′(x )=2cos 2x ,所以a 5=f ′(π6)=2cos π3=1,所以a 1a 2+a 2a 9+a 9a 8+a 8a 1=(a 1+a 9)(a 8+a 2)=2a 5·2a 5=4,故选B.5.8 设五位同学依次报出的数字构成的数列为{a n },则a 1=2,a 2=3,a 3=6,a 4=8,a 5=8,a 6=4,a 7=2,a 8=8,……易知此{a n }是周期为6的数列,所以a 2014=a 6×335+4=a 4=8.6.a (1+r )8-a (1+r )r复利问题,本题为等比数列模型.a (1+r )7+a (1+r )6+…+a (1+r )=a (1+r )[1-(1+r )7]-r=a (1+r )8-a (1+r )r .7.-2 切线的斜率k =y ′|x =1=(n +1)x n |x =1=n +1, 则切线方程为y -1=(n +1)(x -1),令y =0,则x n =n n +1,所以a n =lg nn +1=lg n -lg(n +1),于是a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…(lg 99-lg 100)=-lg 100=-2. 8.解析:(1)设直线方程为x =ty +2n ,代入抛物线方程得 y 2-2(2n +1)ty -4n (2n +1)=0, 设A n (x n 1,y n 1),B (x n 2,y n 2), 则OA →n ·OB →n =x n 1x n 2+y n 1y n 2=(t 2+1)y n 1y n 2+2nt (y n 1+y n 2)+4n 2, 用韦达定理代入得 OA n →·OB n →=-4n (2n +1)(t 2+1)+4n (2n +1)t 2+4n 2 =-4n 2-4n , 故OA →n ·OB →n 2(n +1)=-2n . (2)数列⎩⎨⎧⎭⎬⎫OA →n ·OB →n 2(n +1)的前n 项和 S n =-2n +n (n -1)2×(-2)=-n (n +1).9.解析:(1)设S 0表示广告费为0元时的销售量.由题意知S n -S n -1=b 2n ,S n -1-S n -2=b 2n -1,…,S 2-S 1=b 22,S 1-S 0=b2,将上述各式相加得,S n =b +b 2+b 22+…+b 2n =b [1-(12)n +1]1-12=b ·(2-12n ).(2)当a =10,b =4000时,设获利为T n 元.由题意知T n =10S n -1000n =40000·(2-12n )-1000n .欲使T n 最大, 则⎩⎪⎨⎪⎧ T n ≥T n -1T n ≥T n +1,代入解得⎩⎪⎨⎪⎧n ≤5n ≥5. 所以n =5,此时S 5=7875.即厂家应生产7875件这种产品,做5千元的广告,才能获利最大.第36讲 算法、程序框图与算法案例1.D X =1+2013=2014;Y =2014-1=2013,故选D.2.C 执行如图的程序框图n =1,S =1;n =2,S =3;n =3,S =7;n =4,S =15;n =5输出,则p =8,故选C.3.B 当a =1时,进入循环,此时b =21=2; 当a =2时,再进入循环,此时b =22=4; 当a =3时,再进入循环,此时b =24=16,所以当a =4时,应跳出循环,得循环满足的条件为a ≤3,故选B. 4.100110 123(5)=1×52+2×51+3×50=25+10+3=38.所以123(5)=100110(2).5.-54第1次循环后,y =1,x =1;第2次循环后,y =-12,x =-12;第3次循环时,y =-54,|x -y |=34<1,跳出循环.6.{x |x =2或-2≤x ≤1}解析:流程图的算法功能是求实数a ,b ,c 的最小者,则b ≤a ,b ≤c ,即⎩⎪⎨⎪⎧x 2≤4x 2≤2x 2-3x +2, 解得x =2或-2≤x ≤1.7.解析:要计算手续费,首先要建立汇款额与手续费之间的函数关系式,依题意知y =⎩⎪⎨⎪⎧1 (0<x ≤100)x ×0.01 (100<x ≤5000)50 (5000<x ≤1000000).流程图如图所示:8.解析:购买时付款150元,余款20次付清,每次的付款数组成一个数列{a n }, a 1=50+(1150-150)×1%=60,a 2=50+(1150-150-50)×1%=59.5, ……a n =50+[1150-150-50(n -1)]×1%=60-12(n -1)(n =1,2,…,20).所以a 20=50.5,S 总=150+60+59.5+…+50.5=1255.购冰箱的钱全部付清后,实际付了1255元.程序框图如下:程序如下:m=60a=150S=0S=S+ai=1WHILE i<=20S=S+mm=m-0.5i=i+1 WENDPRINT SEND。