坐标反算正算计算公式

合集下载

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线丈量内业计算之吉白夕凡创作导线计算的目的是要计算出导线点的坐标,计算导线丈量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离,计算点的坐标?2、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】、、、,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操纵方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知、、、,试计算坐标方位角、水平距离。

键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[],键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。

高斯投影坐标计算

高斯投影坐标计算

B
d B dq
2

dX dq dq

c
(
cos B dV V dB
2
dB dq

sin B dB V dq
2
)
2
d B dq
2
cos B c ( tan B V
2 2
3
V
sin B cos B
)
N sin B cos B
同理得
d X dq
3

N cos B ( 1
3
3


2

0
l

L

L
0

高斯投影坐标正算的函数式:
x y
l 是以弧度为单位的经度差。
F B , l F B , l
1 2

一 高斯投影坐标正算公式计算

如图,椭球面上一点投影 到平面后为d点,椭球面上 该点的平行圈(B或q为一 常数)与中央子午线的交 点为e点,若将上式中的展 开点z0设为e处,则很据高 斯投影条件,中央子午线 的长度比m=1,且纵坐标x 等于从赤道起到该平行圈 间的子午线弧长X。此时 可以写出下列方程:
4 2
二、高斯投影坐标反算公式

最后得到坐标反算的公式为:
B B
f
2M
f
t
f
y N
f
2

t 24 M
2 f
f
f
f
N
4 f
3 f
5 3 t
6
2 f

2 f
9 f t
2
2 f
y
4

t

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式坐标反算和正算是地理测量学中常见的问题,用于计算地球表面上两点之间的距离、方位角和坐标。

坐标反算是根据已知的两个地点的经纬度和距离,来计算出另一个点的经纬度坐标。

坐标正算则是根据已知的一个地点的经纬度和另一个地点的方位角和距离,来计算出第二个地点的经纬度坐标。

下面简单介绍一下坐标反算和正算的计算公式。

坐标反算坐标反算通常用于计算两点间的距离和方位角。

1.距离计算两点间的距离可以通过公式:D = 2 * R * asin(sqrt(sin((lat2-lat1)/2)^2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)^2))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度,R为地球平均半径。

2.方位角计算两点间的方位角可以通过公式:brng = atan2(sin(lon2-lon1) * cos(lat2), cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) *cos(lon2-lon1))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度。

坐标正算坐标正算通常用于根据已知一个点的经纬度和另一个点的方位角和距离,计算出第二个点的经纬度。

1.纬度计算第二个点的纬度可以通过公式:lat2 = asin(sin(lat1) * cos(d/R) + cos(lat1) * sin(d/R) * cos(brng))其中,lat1为第一个点的纬度,d为距离,R为地球平均半径,brng 为方位角。

2.经度计算第二个点的经度可以通过公式:lon2 = lon1 + atan2(sin(brng) * sin(d/R) * cos(lat1), cos(d/R) - sin(lat1) * sin(lat2))其中,lon1为第一个点的经度,d为距离,R为地球平均半径,brng 为方位角。

坐标正算反算公式讲解

坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。

13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

坐标计算公式

坐标计算公式

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'",两点水平距离=,计算点的坐标35o17'"=35o17'"=2、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=、=、=、=,计算坐标方位角计算坐标方位角、水平距离。

=62°09'"+180°=242°09'"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=、=、=、=,试计算坐标方位角、水平距离。

键入按等号键[=]等于纵坐标增量,按储存键[],键入按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。

【例题6-4】坐标正算,已知坐标方位角=294°42'51",=,试计算纵坐标增量横坐标增量。

键入,转换为以度为单位按[DEG],按[]键输入,键入,按[]键输入,按第二功能键[2ndF],按[]屏显,按[]屏显。

坐标正反算定义及公式

坐标正反算定义及公式

第六章T第二节T导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6所示,点的坐标可由下式计算:巾=M +仏心式中:上、上山为两导线点坐标之差,称为坐标增量,即:为如=y 厂V A = 盘血【例题6-1】已知点A 坐标,I =1000、」\ =1000;!、方位角:上=35° 17/ 36.5", 两点水平距离 f =200.416 ,计算 点的坐标?\- […二* IIH+ : II - / 350177 36.5"=1163.580n:二匚I 2'jj.L j :,:35o17z 36.5"=1115.7932、坐标反算已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角% = J 山此(6-3)(6-4)式中反正切函数的值域是-90°〜+90°,而坐标方位角为 0°〜360°,因此坐标方位角的值,可根据、 的正负号所在象限,将反 正切角值换算为坐标方位角。

【例题 6-2 】 =3712232.528、 =523620.436 、 =3712227.860、应=523611.598 ,计算坐标方位角计算坐标方位角 二工、水平距离% - J 竝 + 今:=27.8150 - 32.528)2 + f 611.598 - 620.436 )2= 799.900468 =9.995^=arclan 今塑y.-y.611.598 - 620.436 - 8.838a Jfl arctan —_—= arctan ------------- > arclan ----亦-心27,860 - 32.528 - 4.668=62° 09/ 29.4"+180 ° =242° 09/29.4"注意:一直线有两个方向,存在两个方位角,式中:二】」、的计算是过A点坐标纵轴至直线」的坐标方位角,若所求坐标方位角为,二,则应是A点坐标减点坐标。

导线计算公式

导线计算公式

1、导线内业计算基本原理(1)坐标的正算x B=x A+Δx AB Δx AB=S AB cosαABy B=y A+Δy AB Δy AB=S AB sinαAB(2)坐标的反算tanαAB=Δy AB/Δx AB=(y B- y A)/(x A-x B)S AB =(3)坐标方位角的传递根据坐标方位角之间的几何关系,可以得到如下计算公式:当水平角为左角时,α前=α后+β左-180O当算出的角度为负值时,加360O转换为正角。

当水平角为右角时,α前=α后-β右+180O当算出的角度为负值时,加360O转换为正角。

6.2普通导线测量随着测绘科学技术的不断发展,电磁波测距和电子计算机技术的广泛应用,以导线测量的方法来建立平面控制网得到迅速推广。

导线的布设形式有下述几种:1.闭合导线闭合导线是从一个已知点出发,最后仍回到这个已知点。

如图6-2所示,由已知控制点1出发,经过2、3、4、5、6点最后仍闭合到1点,形成一个闭合多边形。

2.附合导线敷设在两个已知点之间的导线,称为附合导线。

如图6-5所示,由已知点B 和已知方向αAB 出发,经过导线点1、2、3、4点最后附合到已经点C 和已知方向αCD 。

图6-5 附合导线 图6-6 支导线3.支导线支导线也称自由导线,它是由一个已知点出发,既不回到原出发点又不附合到另外已知点上。

如果测量发生粗差,这种导线无法检核。

因此,布设时一般不得超过二条边(图6-6)。

6.2.1导线测量外业工作导线测量的外业工作包括:踏勘选点、角度测量、边长测量以及导线连接测量。

其工作内容如下:1.踏勘选点踏勘选点之前,应先到有关部门收集原有地形图、高一级控制点的坐标和高程,以及这些已知点的位置详图。

然后按坐标把已知点展绘在原有的地形图上,在图上规划导线的布设方案。

最后带上所规划的导线网图,到实地选定各点点位并建立标志。

现场选点应注意如下事项:(1)相邻导线点间应互相通视,以便测角和测边(如果采用钢尺量距,地势应较为平坦)。

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

《建筑工程测量》坐标正、反算

《建筑工程测量》坐标正、反算

《建筑工程测量》坐标正、反算导线测量的最终目的是要获得各导线点的平面直角坐标,因此外业工作结束后就要进行内业计算,以求得导线点的坐标。

一、坐标计算的基本公式1.根据已知点的坐标及已知边长和坐标方位角计算未知点的坐标,即坐标的正算。

如图6-1所示,设A 为已知点,B 为未知点,当A 点的坐标(X A , Y A )和边长D AB 、坐标方位角αAB 均为已知时,则可求得B 点的坐标X B 、Y B 。

由图可知:⎭⎬⎫∆+=∆+=AB A B AB A B Y Y Y X X X (6-1) 其中,坐标增量的计算公式为:⎭⎬⎫⋅=∆⋅=∆AB AB AB AB AB AB sin cos ααD Y D X (6-2) 式中∆X AB ,∆Y AB 的正负号应根据cos αAB 、sin αAB 的正负号决定,所以式(6-1)又可写成:⎭⎬⎫⋅+=⋅+=AB AB A B AB AB A B sin cos ααD Y Y D X X (6-3)图6-1 导线坐标计算示意图2.由两个已知点的坐标反算其坐标方位角和边长,即坐标的反算如图6-5所示,若设A 、B 为两已知点,其坐标分别为X A 、Y A 和X B 、Y B 则可得:AB AB AB tan X Y ∆∆=α (6-4)ABAB AB AB AB cos sin ααX Y D ∆=∆= (6-5) 或 D AB =2AB 2AB )()(Y X ∆+∆ (6-6) 上式中,∆X AB = X B = X A ,∆Y AB = Y B - Y A 。

由式(6-4)可求得αAB 。

αAB 求得后,又可由(6-5)式算出两个D AB ,并作相互校核。

如果仅尾数略有差异,就取中数作为最后的结果。

需要指出的是:按(6-4)式计算出来的坐标方位角是有正负号的,因此,还应按坐标增量 ∆X 和 ∆Y 的正负号最后确定AB 边的坐标方位角。

即:若按(6-4)式计算的坐标方位角为:XY ∆∆='arctanα (6-7) 则AB 边的坐标方位角αAB 参见图6-11应为: 在第Ⅰ象限,即当 ∆X >0,∆Y >0时,αα'=AB ,AB α在0︒ ~ 90︒在第Ⅱ象限,即当 ∆X <0,∆Y >0时,αα'-︒=180AB ,αAB 在90︒ ~ 180︒在第Ⅲ象限,即当 ∆X <0,∆Y <0时,αα'+︒=180AB ,αAB 在180︒ ~ 270︒ (6-8)在第Ⅳ象限,即当 ∆ X > 0,∆Y < 0时,αα'-︒=360AB ,αAB 在270︒ ~ 360︒也就是当 ∆X > 0时,应给 α' 加360︒ ;当 ∆X < 0时,应给 α' 加180︒ 才是所求AB 边的坐标方位角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B = X A + AX ABY B = X A + AY AB(1-18 )二式中,AX AB与AY AB分别称为A〜B的纵、横坐标增量,其计算公式为:AXAB = X B—X A = D AB COS O ABAYAB = Y B—Y A = D AB sin O AB(1-19)注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角OCAB ,为坐标反算。

其计算公式为:(1-20 )注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导si n( A+B) = si nAcosB+cosAs inB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为a,BOD为B,旋转AOB使0B与0D重合,形成新A'OD。

A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin3 )A2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 )[1](1-21 )两角和公式sin( A+B) = sin AcosB+cosAs inB sin (A-B) = sin AcosB- COSAsinB cos(A+B) = cosAcosB-s inAsinB cos(A-B) = cosAcosB+si nAsi nB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB)ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB)cot(A+B) = (cotAcotB- 1 )/(COtB + COtA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Si n2A=2Si nA?CosACos2A=CosA A2-Si nA^2=1-2Si nAA2=2CosAA2-1tan 2A=2ta nA/ (1-tanAA2 )是sinA的平方sin2 (A))(注:Si nAA2[]三倍角公式sin3 a =4sin a-sin( n /3+ a )sin( n/)cos3 a =4cos a-cos( n /3+ a )cos( n /3a )tan3a = tan a • tan( n /3+a) • tan( n /3-a)[]三倍角公式推导sin 3a=sin( 2a+a)=sin 2acosa+cos2as ina=2s in a(1-s in& sup2;a)+(1-2s in& sup2;a)s ina=3s in a-4s in&sup3;acos3a=cos(2a+a)=cos2acosa-s in 2as ina=(2cos&sup2;a-1)cosa-2(1-s in& sup2;a)cosa=4cos&sup3;a-3cosasin 3a=3s in a-4s in& sup3;a=4si na(3/4-si n& sup2;a)=4sina[( V3/2)&sup2; -sin&sup2;a]=4sina(sin&sup2;60 °-sin&sup2;a)=4sina(sin60 °+sina)(sin60 °-sina)°)/2]}=4sina*2sin[(60+a)/2]cos[(60 °-a)/2]*2sin[(60 °-a)/2]cos[(60 °-a)/2]=4sinasin(60 °+a)sin(60 °-a) cos3a=4cos&sup3;a-3cosa =4cosa(cos&sup2;a-3/4) =4cosa[cos&sup2;a-(V 3/2) &sup2;]=4cosa(cos&sup2;a-cos&sup2;30 °)=4cosa(cosa+cos30° )(cosa-cos30 °) =4cosa*2cos[(a+30 ° )/2]cos[(a-30 °)/2]*{-2sin[(a+30°)/2]sin[(a-30=-4cosasin(a+30 ° )sin(a-30 °) =-4cosasin[90 °-(60 °-a)]sin[-90 °+(60°+a)]=-4cosacos(60 ° -a)[-cos(60 °+a)] =4cosacos(60° -a)cos(60 °+a) 上述两式相比可得tan3a=tanatan(60 ° -a)tan(60 °+a) []半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. []和差化积sin 0 +sin $ = 2sin[( 0 + )/2]cos[( - © )/2]sin 0-sin © = 2cos[( 0 + © )/2]sin[( - © )/2] cos 0+cos © = 2cos[( 0+©)/2]cos[( -0©)/2] cos 0-cos © = -2sin[( 0+©)/2]sin[( -©0)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) []积化和差sin a sin 3 = -1/2*[cos( a + 3-)cos( a - 3 )] cos a cos 3 = 1/2*[cos( a +3)+cos( a -3)] sin a cos 3 = 1/2*[sin( a +3)+sin( -a3)] cos a sin 3 = 1/2*[sin(a +3-s )in( a -3)][]诱导公式sin(- a ) = -sin acos(- a ) =cos aSin( n /2- a ) = -COS a cos( n /2 - a ) = sin a Sin( n /2+ a )= COS a cos( n /2+ a ) = -sin asin( n- a ) = sin a COs( n - a ) = -COs a sin( n + a ) = -sin a cos( n + a ) = -cos a tanA=sinA/COsA tan ( n /2 + a) =—cot a tan ( n /2 — a) = cot a tan ( n — a) =—tan a tan ( n+ a) = tan a[][](sin a )A2+(cos a )A2=11+(tan a )A2=(sec a )人21+(cot a)A2=(csc a)A2证明下面两式,只需将一式,左右同除(sin a )A2第二个除(COS a )A2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=^ -Ctan(A+B)=tan( n -C)(tanA+tanB)/(1- tanAtanB)=(tan n -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n n (n € Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) []双曲函数sin h(a) = [e A a-e A(-a)]/2COSh(a) = [eAa+eA(-a)]/2tg h(a) = Sin h(a)/COS h(a)公式一:设a为任意角,终边相同的角的同一二角函数的值相等:sin ( 2k n + a)=sin aCOS ( 2k n+ a) = COS atan ( k n + a)=tan acot ( k n+ a)=COt a公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin ( n+ a)= :-sin aCOS ( n+ a):=-COS atan ( n+ a)= tan aCOt ( n+ a)= COt a公式二:任意角a与- a的三角函数值之间的关系:sin (- a) = -sin aCOS ( -a) = COS atan (- a) = -tan aCOt (-a)= -COt a公式四:利用公式—和公式二可以得到n- a与a的三角函数值之间的关系sin ( n- a)= Sin aCOS ( n- a)= -COS atan ( n- a)= -tan aCOt ( n- a)= -COt a公式五:利用公式-和公式二可以得到 2 n - a与a的三角函数值之间的关系:Sin ( 2 n- a)= -Sin aCOS ( 2 n- a)= COS atan ( 2 n- a)= -tan aCOt ( 2 n- a)= -COt a公式六:n /2 土及3 n /2 ±a与a的二角函数值之间的关系:Sin ( n /2+ a) = COS aCOS ( n /2+ a) = -sin atan (n /2+ a = -COt a cot (n /2+ a = -ta n a sin((n /2- a)= COs a cos (n /2- a)= sin a tan (n /2- a)= COt a cot (n /2- a)= tan a sin((3 n /2+ a )=-COs a cos (3 n /2+ a)=sin a tan (3 n /2+ a )=-COt a cot (3 n /2+ a )=-tan a sin((3 n /2- a):=-COS a cos (3n /2- a)= -sin a tan (3n /2- a)= COt a cot (3n /2- a):= tan a (以上k € Z)这个物理常用公式我费了半天的劲才输进来A • sin( 31+ 0 )+B - sin( w t+ $ = v{(A A2+B A2 +2ABc os( 0- $ )} ? sin { +B A2; +2ABcos( 0 - $ )} }~表示根号,包括{ .... }中的内容,希望对大家有用w t + arcsin[ (A?sin 0 +B?sin $ ) / V{人人2。

相关文档
最新文档