指数与指数幂的运算教案
高中数学指数与指数幂的运算教案
高中数学指数与指数幂的运算教案教学目标1.理解指数和幂的概念;2.掌握指数的基本运算法则;3.掌握指数幂的计算方法。
教学重难点1.掌握指数的基本运算法则;2.掌握指数幂的计算方法。
教学内容1. 指数的概念指数是数学中一个重要的概念,用于表示一个数的幂次。
指数通常写在一个数的右上角,如a n,其中a是底数,n是指数。
指数的计算可以用重复乘法的方法进行。
2. 指数的基本运算法则2.1. 指数相加、相减指数相加时,如果底数相同,则可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
指数相减时,如果底数相同,则可以将指数相减,即$\\dfrac{a^m}{a^n} = a^{m-n}$。
2.2. 指数相乘、相除指数相乘时,如果底数相同,则可以将指数相乘,即(a m)n=a mn。
指数相除时,如果底数相同,则可以将指数相除,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
2.3. 幂函数的运算幂函数是一种特殊的函数,它具有y=ax n的形式。
幂函数的运算可以用指数的基本运算法则进行,例如(x m)n=x mn和 $x^m \\times x^n = x^{m+n}$。
3. 指数幂的计算方法指数幂的计算方法包括以下几种。
3.1. 同底数幂的乘方运算当底数相同时,两个幂相乘可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
例如,$5^3 \\times 5^4 = 5^{3+4} = 5^7$。
3.2. 不同底数幂的乘方运算当底数不同时,两个幂相乘可以先将底数相乘,再将指数相加。
例如,$3^4 \\times 2^4 = (3 \\times 2)^4 = 6^4$。
3.3. 同底数幂的除法运算当底数相同时,两个幂相除可以将指数相减,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
例如,$\\dfrac{5^7}{5^3} = 5^{7-3} = 5^4$。
指数与指数幂的运算优秀教案
2.1.1 指数与指数幂的运算(2课时)第一课时 根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I )复习回顾引例:填空 *)n a a a n N ⋅∈个(; m n a += (m,n ∈Z); _____=; (II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。
最新人教版高中数学必修1第二章《指数与指数幂的运算》教案1
《指数与指数幂的运算》教案1
教学目标:
1. 理解根式的概念;运用根式的性质进行简单的化简、求值;
2. 掌握由特殊到一般的归纳方法,培养学生观察、分析、抽象等认知能力.通过与初中所学的知识进行类比,理解根式的概念,培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
3. 通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生体验数学的简洁美和统一美.
教学重点难点:
1.重点:根式的概念 .
2.难点:根式的概念的理解.
教法与学法:
1.教法选择:讲授法、类比分析法.
2.学法指导:讨论法、发现法.
教学过程:
【设置情境,激发探索】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】
教学设计说明
1.教材地位分析:学生在初中已学习了数的开平方、开立方以及二次根式的概念,学习了正整数指数幂、零指数幂、负整数指数幂的概念,以及整数指数幂的运算法则.现是在此基础上,将平方根与立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,将整数指数幂扩充到有理指数幂,进一步将指数的取值范围扩充到实数.“根式”是“指数与指数幂的运算”第一课时,主要学习根式的概念和性质.根式是后面学习所必备的.
2.学生现实分析:学生在初中已经学习了二次、三次方根的概念和性质,根式的内容是这些内容的推广,方根和根式的概念和性质难以理解.所以要结合已学内容,列举具体实例,设计大量的类比和练习题目加以理解.。
2.1.1指数与指数幂的运算教案
2.1.1指数与指数幂的运算教案篇一:2.1.1指数与指数幂的运算教案指数与指数幂的运算申请资格种类:高级中学教师资格学科:数学测试人姓名:课题名称:第二章第一节指数函数第一课时指数与指数幂的运算一、教学内容分析指数函数是基本初等函数之一,应用非常广泛。
它是在上一章节学习了函数的概念和基本性质后第一个较为系统研究的基本初等函数。
教科书通过实际问题引入分数指数幂,说明了扩张指数范围的必要性,为此先将平方根和立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍了分数指数幂及其运算性质,最后结合一个实例,通过有理数指数幂逼近无理数指数幂的方法介绍了无理数指数幂的意义,从而将指数的取值范围扩充到实数。
本节是下一节学习指数函数的基础。
二、教学对象分析授课对象为高一学生。
首先,这个年龄段的学生学习兴趣浓厚、思维活跃和求知欲强。
其次,学生在初中学习阶段已经接触到平方根与立方根、整数指数幂及其运算性质等知识点,为本节学习奠定了知识的基础。
最后,本节的学习过程中对学生观察力、逻辑能力、抽象能力有一定要求,这对该阶段的学生可能会造出一定的困难。
三、教学目标四、教学重点和难点本节的教学重点是理解有理数指数幂的意义、掌握幂的运算。
本节的教学难点是理解根式的概念、掌握根式与分数指数幂之间的转化、理解无理数指数幂的意义。
五、教学方法根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。
六、教学过程设计(一)导入新课1、引导学生回忆函数的概念,说明学习函数的必要性,引出实例。
2、以实例引入,让学生体会其中的函数模型的同时,激发学生探究分数指数幂的兴趣与欲望。
问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们想获得了生物体内碳14含量P与死亡年数t的关系。
引导学生得出关系式:t?1?5730P???2??总结关系式能解决实际问题,让学生体会数学的应用价值,同时指出为了更好地解决实际问题必须进一步深入学习函数。
高中数学指数与指数幂的运算教案
高中数学指数与指数幂的运算教案一、教学目标•理解指数幂的基本概念,掌握指数幂运算法则。
•掌握指数幂运算中的乘方运算法则、除法运算法则、幂运算法则等基本准则。
•掌握如何进行数学题目的化简与计算。
二、教学重点•理解指数幂的概念,掌握乘方运算、除法运算和幂运算的基本法则。
•熟练掌握指数幂的运算方法,能够灵活运用到数学题目计算及求解中。
三、教学内容1. 指数幂的基本概念•定义:指数是乘积的简写,指数幂就是一个数自乘的多次运算。
例如 aⁿ,其中 a 是底数,n 是指数。
•概念:底数与指数是幂的构成要素。
•特征:指数幂的幂次表示底数连续乘法的次数,指数为 0 的指数幂表示为 1。
•记忆技巧:底数 a 和指数 n 都可以从“按次数”这个概念入手去记。
2. 指数幂运算法则2.1 乘法运算法则指数相加,底数不变。
aⁿ × aⁿʸ = aⁿ⁺ʸ。
例如:2² × 2³ = 2⁵2.2 除法运算法则指数相减,底数不变。
aⁿ ÷ aⁿʸ = aⁿ⁻ʸ,其中 n 〉y。
例如:5⁴ ÷ 5² = 5²2.3 幂运算法则底数相同,指数相加。
aⁿ⁺ʸ = (aⁿ)ⁿʸ。
例如:2³⁺² = (2³)² = 8² = 643. 题目解析题目1$0.5^6 \\times 0.5^3 = 0.5^{6+3} = 0.5^9$题目2$4^3 \\div 4^2 = 4^{3-2} = 4^1 = 4$题目3$(3^4)^3 = (3^{4\\times3}) = 3^{12}$四、教学方法1.以练习为主,通过大量的例题和训练来加深学生对指数幂的认识。
2.实践与归纳相结合,提高学生思维水平与解题能力。
五、教学过程1.复习知识点和概念。
2.讲解指数幂运算法则,通过例题讲解并学生操作,带领学生掌握基本的指数幂运算方法。
初中数学教案指数与幂的运算
初中数学教案指数与幂的运算初中数学教案指数与幂的运算一、引言指数与幂是数学中的重要概念之一,广泛应用于各个领域。
掌握指数与幂的运算规则,对于学生的数学学习十分关键。
本教案旨在引导学生理解指数与幂的含义和特点,并掌握其运算规则。
二、知识概述1. 指数的定义:指数是幂运算中的一个重要概念。
它表示乘方的次数。
如a^n中,n即为指数。
2. 幂的定义:幂是指数运算的结果,表示相同因子的连乘积。
如a^n中,a为底数,n为指数,a^n表示a连乘n次。
3. 指数与幂的关系:指数n表示连乘n个相同因子,这些相同因子组成的乘积就是幂a^n。
4. 指数与幂的运算规则:a^m * a^n = a^(m+n)a^m ÷ a^n = a^(m-n)(a^m)^n = a^(m*n)(ab)^n = a^n * b^n(a/b)^n = a^n / b^n三、教学过程1. 概念解释与认知引导通过引导学生阅读概念定义,让学生理解指数与幂的含义和基本特点,并与实际生活中的例子相联系,增强学生的理解力和兴趣。
2. 运算实例演示通过具体的运算实例,让学生掌握指数与幂的运算规则。
例如,计算2^3 * 2^4的结果,引导学生按照规则进行运算,解释答案的求解过程。
3. 练习和巩固提供一些练习题,让学生进行实际操作和运算,巩固所学的知识。
例如,计算(3^2)^3的结果,简化(2^3 * 5^2)^2等。
4. 拓展与应用引导学生思考指数与幂在实际应用中的意义和应用场景。
例如,计算物体体积、面积时的运算规则,以及解决实际生活中的问题。
五、知识总结与拓展在本节课中,我们学习了指数与幂的定义,以及它们的运算规则。
指数与幂是数学中非常重要的概念,掌握它们的运算规则对于我们的数学学习和实际生活都具有重要意义。
六、课后作业1. 计算2^4 * 3^2的结果。
2. 计算(5^2)^3的结果。
3. 简化(4^2 * 6^3)^2。
七、延伸阅读如果你对指数与幂的运算还想进一步了解,可以阅读以下推荐材料:-《数学中的指数与幂》:详细介绍了指数与幂的概念和运算规则。
2.1.1《指数与指数幂的运算》第三课时参考教案
2.1.1 指数与指数幂的运算一.教学目标1.知识与技能:(1)掌握根式与分数指数幂互化;(2)能熟练地运用有理指数幂运算性质进行化简,求值.2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质.3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力.二.重点、难点:1.重点:运用有理指数幂性质进行化简,求值.2.难点:有理指数幂性质的灵活应用.三.学法与教具:1.学法:讲授法、讨论法.2.教具:投影仪四.教学设想:第三课时1.复习分数指数幂的概念与其性质2.例题讲解例1.(P52,例4)计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884 () m n-(先由学生观察以上两个式子的特征,然后分析、提问、解答)分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236[2(6)(3)]ab +-+-⨯-÷- =04ab=4a(2)原式=318884()()m n - =23m n -例2.(P 52 例5)计算下列各式(1)(22(a >0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式= 111324(25125)25-÷= 231322(55)5-÷= 2131322255---= 1655-=5 (2)原式=125222362132a a a a a --===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.课堂练习:化简:。
《指数与指数幂的运算》教案3(3课时)
第三课时:9月22日星期三教学目标
1.掌握根式与分数指数幂的互化;
2.熟练运用有理指数幂运算性质进行化简、求值;
3.培养学生的数学应用意识。
教学重点:有理指数幂运算性质运用。
教学难点:化简、求值的技巧
教学方法:启发引导式
教学过程
(I)复习回顾
2.用分数指数幂表示下列各式(a>0,x>0)
(II)讲授新课
且要注意符号。
(2)题先按积的乘方计算,后按幂的乘方计算,等熟练后可简化计算步骤。
对于计算的结果不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式表示。
如果有特殊要求,可根据要求给出结果,但:
①结果不能同时含有根式和分数指数;②不能同时含有分母和负指数;
分析:(1)题把根式化成分数指数幂的形式,再计算。
(2)题先把根式化成分数指数幂的最简形式,然后计算。
例3.求值:
(III)课堂练习
计算下列各式:
要求:学生板演练习,做完后老师讲评。
(IV)课时小结
通过本节学习,要求大家能够熟练运用有理数幂运算性质进行化简、求值,并掌握一定的解题技巧,如凑完全平方、寻求同底幂等方法。
(V)课后作业
第二教材有关题目。
指数与指数幂的运算教案
指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。
2. 掌握指数幂的运算性质和运算法则。
3. 能够运用指数幂的运算性质解决实际问题。
过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。
2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。
情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、合作的科学精神。
二、教学重点与难点:重点:1. 指数与指数幂的概念。
2. 指数幂的运算性质和运算法则。
难点:1. 理解指数幂的运算性质和运算法则。
2. 运用指数幂的运算性质解决实际问题。
三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。
2. 教学课件或板书设计。
学生准备:1. 预习指数与指数幂的相关知识。
2. 准备好笔记本,用于记录重点知识和练习。
四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。
2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。
3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。
4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。
五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。
教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。
六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。
2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。
3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。
指数与指数幂的运算教案
2.1.1 指数与指数幂的运算(2课时)第一课时 根式教学目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教学重点:根式的概念、分数指数幂的概念和运算性质教学难点:根式概念和分数指数幂概念的理解教学方法:学导式教学过程:(I )复习回顾引例:填空 *)n a a a n N ⋅∈个(; m n a += (m,n ∈Z); _____=; (II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。
指数与指数幂的运算(三) 必修一教案19
)
例 2. (P52 例 5)计算下列各式
第 1 页 共 4 页
(1) ( 3 25 (2)
a2 a. 3 a2
125) 4 25
(a >0)
例 3..已知 a 2 a 2 =3,求下列各式的值: (1) a a 1 ; (2) a 2 a 2 ;
3
;
4
3
81 9 2
;
6. 已知 x a3 b2 , 求 4 x2 2a3 x a6 的值.
7.从盛满 1 升纯酒精的容器中倒出 1 升,然后用水填
3
满,再倒出 1 升,又用水填满,这样进行 5 次,则容
3
器中剩下的纯酒精的升数为多少?
四、小结: 1. 础. 2.含有根式的式子化简,一般要先把根式转化 为分数指数幂后再计算. 五,作业 化简: (1) ( (2)
3
1a
1 a2
3 2 1 2
.
a
三、巩固练习: 1. 化简: ( x 2 y 2 ) ( x 4 y 4 ) .
1 1 1 1
2. 已知 f ( x) x ,
x1 x2 0 ,试求
f ( x1 ) f ( x2 ) 的值
3. 用根式表示 (m 4 n
9) 3 ( 3 102 ) 2 1002
2 9
5
熟练掌握有理指数幂的运算法则,化简的基
3 2 2 3 2 2
第 3 页 共 4 页
(3)
a a
a a
后记:
第 4 页 共 4 页
人教版高中数学必修 1 教案
授课时间: 备课时间: 年 年 月 月 日 日
指数与指数幂的运算(第一课时)教案
2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。
高一数学《指数与指数幂的运算》教案
学生总结,教师补充
小结:这节课你有何收获,同位之间互相总结并完善
板书设计
课题
复习引入
1
2
概念
例1
例2
练习
二.新课讲解
类比平方根、立方根的概念,归纳出n次方根的概念.
n次方根:一般地,假设 ,那么x叫做a的n次方根〔throot〕,其中n>1,且n∈N*,当n为偶数时,a的n次方根中,正数用 表示,假设是负数,用 表示, 叫做根式.n为奇数时,a的n次方根用符号 表示,其中n称为根指数,a为被开方数.
类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?
零的n次方根为零,记为
举例:16的次方根为 , 等等,而 的4次方根不存在.
小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.
根据n次方根的意义,可得:
肯定成立, 表示an的n次方根,等式 一定成立吗?假设不一定成立,那么 等于什么?
让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.
为偶数时, ;
2.掌握两个公式:
3.作业:P69习题2.1 A组第1题
复习回忆,
为本节课的学习打下根底
类比的思想归纳出根式的定义
学生互动:
一位同学说一个数,同位说出这个数的4次方根,5次方根
学生组内交流讨论,教师巡视查看讨论结果代表展示成果,并讲解
学生板演
学生独立完成1
有代表说出解题思路2,再学生完成
〔1〕培养学生观察分析,抽象的才能,浸透“转化〞的数学思想;
〔2〕通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
〔3〕让学生体验数学的简洁美和统一美.
【参考教案】《指数与指数幂的运算》(人教)
《指数与指数幂的运算》从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。
进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
【知识与能力目标】1、掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2、了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3、理解有理数指数幂和无理数指数幂的含义及其运算性质。
【过程与方法目标】具体习题,灵活运用根式运算。
由整数指数幂的运算性质理解有理数指数幂的运算性质。
【情感态度价值观目标】1、通过学习n次方根的概念及根式的运算,提高学生的运算能力和逻辑思维。
2、通过分数指数幂的学习,让学生体会严谨的求学态度。
【教学重点】根式与分数指数幂之间的互相转化。
【教学难点】根式运算与有理数指数幂的运算。
通过本节导学案的使用,引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础。
(一)创设情景,揭示课题1、以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性。
2、由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%。
那么在2010年, 我国的GDP 可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3、初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义。
人教版数学高中必修一《指数与指数幂的运算》教案
2.1指数函数(新课辅导教案)2.1.1 指数与指数幂的运算第一课时 根式一、问题提出1.据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%.那么在2010年, 我国的GDP 可望为2000年的多少倍?2.对10073.1的意义如何?怎样运算?思考1:一般地,实常数a 的平方根、立方根是什么概念?思考2:如果4x =a ,5x =a ,6x =a ,参照上面的说法,这里的x 分别叫什么名称? 定义:一般地,如果a x n=,那么x 叫a 的n 次方根,其中1>n 且N n ∈. 二、根式的概念思考1:-8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,6a 的立方根分别是什么数?怎样表示?思考2:设a 为实常数,则关于x 的方程 3x =a ,5x =a 分别有解吗?有几个解? 思考3:一般地,当n 为奇数时,实数a 的n 次方根存在吗?有几个?思考4:设a 为实常数,则关于x 的方程 4x =a ,6x =a 分别有解吗?有几个解? 思考5:一般地,当n 为偶数时,实数a 的n 次方根存在吗?有几个? 思考6:我们把式子)1,(>∈n N n a n叫做根式,其中n 叫做根指数,a 叫做被开方数.那么,a 的n次方根用根式怎么分类表示?当n 是奇数时,a 的n 次方根为n a .当n 是偶数时,若0>a ,则a 的n 次方根为n a ±;若0=a ,则a 的n 次方根为0; 若0<a ,则a 的n 次方根不存在. 三、根式的性质思考1: 445533)2(,)2(,)2(-分别等于什么?一般地nn a )(等于什么?思考2: 44445533)2(,2,2,)2(--分别等于什么?一般地n n a 等于什么?思考3: 对任意实数a ,b ,等式nn n ab b a =⋅成立吗 ?四、理论迁移例1 求下列各式的值(1)364-;(2)4)2(-;(3)33)8(-;(4)2)10(-;(5) 44)3(π-;(6)88)1(-a .例2 化简下列各式(1)49625--; (2) 3322)1()1()1(a a a -+-+-第二课时 分数指数幂和无理数指数幂一、问题提出1.整数指数幂有哪些运算性质?2.325,25有意义吗?二、分数指数幂的意义 思考1:我们规定:nm n ma a =)1,,0(>∈>n N n m a 且,那么328表示一个什么数?522143、分别表示什么根式?思考2:你认为如何规定nm a-)1,,0(>∈>n N n m a 且的含义?思考3:怎样理解零的分数指数幂的意义?思考4:532332)2(,)2(,)2(---都有意义吗?当0<a 时,)1,(*>∈n N n m a nm 、何时无意义?三、有理数指数幂的运算性质四、无理数指数幂的意义思考5:有理指数幂的运算性质适应于无理数指数幂吗? 五、理论迁移例1 求下列各式的值:(1)3227;(2) 2125-;(3)5)21(-;(4)43)8116(-.例2 化简下列各式的值(1))0,()3()6)(2(656131212132>-÷-b a b a b a b a (2))0,()(88341>-n m n m(3)4325)12525(÷- (4))0(322>⋅a aa a六、小结:1.指数幂的运算性质适应于实数指数幂.2.对根式的运算,应先化为分数指数幂,再根据运算性质进行计算,计算结果一般用分数指数幂表示.2.1.2 指数函数及其性质第一课时 指数函数的概念与图象一、问题提出1.对任意实数x ,x 3的值存在吗?x)3(-的值存在吗?x 1的值存在吗? 2. )(3R x y x∈=是函数吗?若是,这是什么类型的函数?二、指数函数的概念思考1:我们把形如xa y =的函数叫做指数函数,其中x 是自变量.为了便于研究,底数a 的取值范围应如何规定为宜? 答:1,0≠>a a三、指数函数的图象思考2:一般地,指数函数的图象可分为几类?其大致形状如何?四、理论迁移例1 判断下列函数是否为指数函数?(1) 3x y =;(2) x a y )1(2+=;(3) 12+=x y ;(4) xy -=5;(5) 23x y =;(6)14+=xy .例2 已知函数)10()(≠>=a a a x f x且的图象过点)3(π,,求)3(),1(),0(-f f f 的值.例3 求下列函数的定义域: (1) 15-=x y ; (2)412-=x y .第二课时 指数函数的性质(接上)思考3:若10<<<a b ,则函数xa y =与xb y =的图象的相对位置关系如何?例4 比较下列各题中两个值的大小 (1)5.27.1与37.1; (2) 1.08.0-与2.08.0-; (3) 3.07.1与1.39.0.例6 确定函数xx f -=2)(的单调区间和值域.例7 设nma 8.09.0⋅=,mnb 8.09.0⋅=,其中n m ,为实数,试比较a 与b 的大小.第三课时 指数函数及其性质的应用(接上)例8 求函数x x f 21)(-=的定义域和值域.例9 已知函数x x x f 22)(2-=+的值域是)12(∞+,,求)(x f 的定义域.例10 已知关于x 的方程12=--m x 有实根,求实数m 的取值范围.例11 已知函数1212)(+-=x x x f(1)确定)(x f 的奇偶性; (2)判断)(x f 的单调性; (3)求)(x f 的值域.例12 求函数xx y -=2)31(的单调区间,并指出其单调性.结论:设)(u f y =,)(x g u =,则(1)当)(u f 和)(x g 的单调性相同时,)]([x g f 为增函数;(2)当)(u f 和)(x g 的单调性相反时,)]([x g f 为减函数;综合应用例1 已知函数aaaxfxx+=)( (1>a为常数).(1)确定)(xf的单调性;(2)求)109()103()102()101(ffff++++ 的值.例 2 已知函数axfx+-=121)(,试推断是否存在常数a,使)(xf为奇函数? 若存在,求a的值;若不存在,说明理由.例3 已知函数8234)(1+⋅-=+xxxf,求满足0)(<xf的x的取值范围.例4 已知当1>x时,不等式12>-xxa,)1,0(≠>aa恒成立,求a的取值范围.2.1 指数函数(复习辅导教案)指数函数指数与指数幂的运算根式分数指数幂无理指数幂指数幂的运算法则概念图象性质知识框架知识点1、定义1:一般地,如果ax n=,那么x叫a的n次方根,其中1>n且Nn∈.定义2:我们把式子)1,(>∈nNnan叫做根式,其中n叫做根指数,a叫做被开方数.当n是奇数时,a的n次方根为n a.当n是偶数时,若0>a,则a的n次方根为n a±;若0=a,则a的n次方根为0;若0<a,则a的n次方根不存在.2、我们规定:nmn m aa=)1,,0(>∈>nNnma且.如何规定nma-)1,,0(>∈>nNnma且的含义?答: .怎样理解零的分数指数幂的意义?答: .当0<a时,)1,(*>∈nNnma nm、何时无意义?答:3、有理数指数幂的运算性质4、无理数指数幂的意义5、定义:我们把形如xay=的函数叫做指数函数,其中x是自变量.为了便于研究,底数a的取值范围应如何规定为宜?答:1,0≠>aa且6、指数函数的图象和性质7、设)(ufy=,)(xgu=,则(1)当)(uf和)(xg的单调性相同时,)]([xgf为增函数;(2)当)(uf和)(xg的单调性相反时,)]([xgf为减函数;指数函数指数与指数幂的运算根式分数指数幂无理指数幂指数幂的运算法则概念图象性质1 求下列各式的值(1)364-;(2)4)2(-;(3)33)8(-;(4)2)10(-;(5) 44)3(π-;(6)88)1(-a .2 化简下列各式(1)49625--; (2) 3322)1()1()1(a a a -+-+-3 求下列各式的值:(1)3227;(2) 2125-;(3)5)21(-;(4)43)8116(-.4 化简下列各式的值(1))0,()3()6)(2(656131212132>-÷-b a b a b a b a (2))0,()(88341>-n m n m(3)4325)12525(÷- (4))0(322>⋅a aa a5 判断下列函数是否为指数函数?(2) 3x y =;(2) x a y )1(2+=;(3) 12+=x y ;(4) xy -=5;(5) 23x y =;(6)14+=xy .6 已知函数)10()(≠>=a a a x f x且的图象过点)3(π,,求)3(),1(),0(-f f f 的值.7 求下列函数的定义域: (1) 15-=x y ; (2)412-=x y .8 若10<<<a b ,则函数xa y =与xb y =的图象的相对位置关系如何?9 比较下列各题中两个值的大小 (1)5.27.1与37.1; (2) 1.08.0-与2.08.0-; (3) 3.07.1与1.39.0.10 若指数函数xa y )12(-=是减函数,求实数a 的取值范围.11 确定函数xx f -=2)(的单调区间和值域.12 设n m a 8.09.0⋅=,mn b 8.09.0⋅=,其中n m ,为实数,试比较a 与b 的大小.13 求函数x x f 21)(-=的定义域和值域.14 已知函数x x x f 22)(2-=+的值域是)12(∞+,,求)(x f 的定义域.15 已知关于x 的方程12=--m x 有实根,求实数m 的取值范围.16 已知函数1212)(+-=x x x f(1)确定)(x f 的奇偶性; (2)判断)(x f 的单调性; (3)求)(x f 的值域.17 求函数xx y -=2)31(的单调区间,并指出其单调性.18 已知函数aa a x f xx +=)( (1>a 为常数).(2) 确定)(x f 的单调性;(2)求)109()103()102()101(f f f f ++++ 的值.19 已知函数a x f x+-=121)(,试推断是否存在常数a ,使)(x f 为奇函数? 若存在,求a 的值;若不存在,说明理由.20 已知函数8234)(1+⋅-=+x xx f ,求满足0)(<x f 的x 的取值范围.21 已知当1>x 时,不等式12>-x x a ,)1,0(≠>a a 恒成立,求a 的取值范围.。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、探究、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的灵活运用;(2)解决实际问题。
三、教学准备1. 教具准备:(1)黑板;(2)粉笔;(3)多媒体教学设备。
2. 学具准备:(1)练习本;(2)计算器。
四、教学过程1. 导入新课(1)复习相关知识:幂的定义、运算法则;(2)提出问题:实数指数幂是什么?它有哪些运算法则?2. 自主探究(1)学生自主探究实数指数幂的定义;(2)学生分组讨论实数指数幂的运算法则;(3)各组汇报讨论成果。
3. 课堂讲解(1)讲解实数指数幂的定义;(2)讲解实数指数幂的运算法则;(3)举例说明实数指数幂的运算法则的应用。
4. 巩固练习(1)学生自主完成练习题;(2)教师点评答案,解答疑问。
5. 课堂小结(1)回顾本节课所学内容;(2)强调实数指数幂的运算法则的运用。
五、课后作业1. 完成练习册相关题目;2. 运用实数指数幂及运算法则解决实际问题。
六、教学拓展1. 对比实数指数幂与整数指数幂的差异;2. 探讨实数指数幂在实际问题中的应用,如放射性衰变、人口增长等。
七、实践操作1. 学生分组,利用计算器验证实数指数幂的运算法则;2. 每组选取一个实际问题,运用实数指数幂及运算法则求解,并分享解题过程。
八、课堂互动1. 教师提问,学生回答;2. 学生互相提问,共同解答;3. 教师点评互动过程,解答疑问。
九、总结反思1. 学生总结本节课所学内容;2. 学生分享自己在实践操作中的收获;3. 教师点评学生表现,总结实数指数幂及运算法则的重要性和实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 指数与指数幂的运算(2课时)第一课时根式教学目标:1。
理解n次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教学重点:根式的概念、分数指数幂的概念和运算性质教学难点:根式概念和分数指数幂概念的理解教学方法:学导式教学过程:(I)复习回顾引例:填空m na a+=(m,n∈Z)(II)讲授新课1。
引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念.(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根.由此,可有:2。
n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以—2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于—81,所以-81没有4次方根。
结论2:当n 为偶数时(跟平方根一样),有下列性质:正数的n 次方根有两个且互为相反数,负数没有n 次方根。
此时正数a 的n 次方根可表示为:)0a (a n >± 其中n a 表示a 的正的n 次方根,n a -表示a 的负的n 次方根。
解:因为不论n 为奇数,还是偶数,都有0n =0,所以0的3次方根,0的4次方根均为0。
结论3:0的n 次方根是0,记作n n a ,00即=当a=0时也有意义。
这样,可在实数范围内,得到n 次方根的性质:3 n 次方根的性质:(板书)*)(2,12,N k kn a k n a x n n ∈⎪⎩⎪⎨⎧=±+== 其中叫根式,n 叫根指数,a 叫被 开方数。
注意:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,可得到根式的运算性质。
4.根式运算性质:(板书)①a a n n =)(,即一个数先开方,再乘方(同次),结果仍为被开方数。
问题2:若对一个数先乘方,再开方(同次),结果又是什么?由所得结果,可有:(板书)②⎩⎨⎧=为偶数为奇数;n a n a a n n |,|, 性质的推导如下:n a注意:性质②有一定变化,大家应重点掌握。
(III)例题讲解注意:根指数n为奇数的题目较易处理,要侧重于根指数n为偶数的运算。
(III)课堂练习:求下列各式的值(IV)课时小结通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题。
(V)课后作业1、书面作业:a。
求下列各式的值b。
书P82习题2。
1 A组题第1题.2、预习作业:a.预习内容:课本P59—P62。
b。
预习提纲:(1)根式与分数指数幂有何关系?(2)整数指数幂运算性质推广后有何变化?第二课时分数指数幂教学目标:(一)教学知识点1.分数指数幂的概念.2。
有理指数幂的运算性质。
(二)能力训练要求1。
理解分数指数幂的概念。
2。
掌握有理指数幂的运算性质.3。
会对根式、分数指数幂进行互化。
(三)德育渗透目标培养学生用联系观点看问题。
教学重点:1。
分数指数幂的概念.2.分数指数幂的运算性质。
教学难点:对分数指数幂概念的理解.1。
在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2。
在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法.教学过程:(Ⅰ).复习回顾[师]上一节课,我们一起复习了整数指数幂的运算性质,并学习了根式的运算性质.整数指数幂运算性质(1)a m ·a n =a m +n(m ,n ∈Z ) 根式运算性质 (2)(a m )n =a m ·n (m ,n ∈Z ) ⎩⎨⎧=为偶数为奇数n a n a a n n,, (3)(a ·b )n=a n ·b n (n ∈Z ) [师]对于整数指数幂运算性质(2),当a >0,m ,n 是分数时也成立。
(说明:对于这一点,课本采用了假设性质(2)对a >0,m ,n 是分数也成立这种方法,我认为不妨先推广了性质(2),为下一步利用根式运算性质推导正分数指数幂的意义作准备。
)[师]对于根式的运算性质,大家要注意被开方数a n 的幂指数n 与根式的根指数n 的一致性。
接下来,我们来看几个例子。
例子:当a >0时[师]上述推导过程主要利用了根式的运算性质,例子③、④、⑤用到了推广的整数指数幂运算性质(2)。
因此,我们可以得出正分数指数幂的意义。
(Ⅱ)。
讲授新课1。
正数的正分数指数幂的意义n m n ma a = (a >0,m ,n ∈N *,且n >1)[师]大家要注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定(板书)[师]规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用。
即对于任意有理数r,s,均有下面的运算性质.3。
有理指数幂的运算性质(板书)[师]说明:若a >0,P 是一个无理数,则a P 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略。
这一说明是为下一小节学习指数函数作铺垫。
接下来,大家通过例题来熟悉一下本节的内容。
4。
例题讲解 分析:此题主要运用有理指数幂的运算性质.解:422)2(8232332332====⨯ 827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--a a a a a a ,,3232⋅⋅ (式中a >0)解:252122122a a a a a a ==⋅=⋅+4321232121311323323323)()(a a a a a a aa a a a a ==⋅===⋅=⋅+[师]为使大家进一步熟悉分数指数幂的意义与有理指数幂的运算性质,我们来做一下练习题.Ⅲ.课堂练习例2 求值: 4332132)8116(,)41(,100,8---. 例3用分数指数幂的形式表示下列各式:课本P 51练习1.用根式的形式表示下列各式(a >0)32534351,,,--a aa a解:551a a =323232535353434311a a aa a a a a =====----2.用分数指数幂表示下列各式:解:(1) 3232x x =(2) 4343)()(b a b a +=+(3) 3232)()(n m n m -=-(4) 214)()(n m n m -=-=(m-n)2(5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅(6)252133m mm mm =⋅=-3。
求下列各式的值:(1)2325 ;(2)3227;(3)23)4936( ;(4)23)425(-(5)423981⨯; (6)63125.132⨯⨯解:(1) 12555)5(25323223223====⨯(2) 933)3(27232332332====⨯(3)34321676)76()76(])76[()4936(33323223223=====⨯(4) 125852)25()25()25(])25[()425(3333)23(223223======--⨯-- (5) 4324421232442132244233333])3[(3981⨯=⨯=⨯=⨯⨯⨯6614132414413243333)3()3()33(=⨯=⨯=⨯=(6) 612313163)23()23(32125.132⨯⨯⨯⨯=⨯⨯63232)333()222(2323326131213131161312131313161313121=⨯=⨯=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=+++---要求:学生板演练习,做完后老师讲评. (Ⅳ)。
课时小结[师]通过本节学习,要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质.(Ⅴ).课后作业 (一)1.课本P 53练习题解:(1)1274131413143a aa a a a ==⋅=⋅+(2) 87814121814121212121])([a aa a a a a a a a a ==⋅⋅=⋅⋅=++(3) 3232)()(b a b a -=-(4)4343)()(b a b a +=+(5)3122322)(b a ab b a ab +=+(6)213342334233)()()(b a b a b a +=+=+解:(1)1111)11(221221221===⨯(2)87)78()78()78()4964(1)21(2212221===--⨯--(3) 001.01010)10(100003)43(443443====--⨯--(4) 259)35()35(])35[()35()27125(2)32(3323323332=====--⨯--- 解:(1)315=1。
710(2)32321=46.88(3)2173-=0。
1170(4)5467=28。
90(5)2138⋅=2.881(6)438-=0.08735板书设计分数指数幂1。
正分数指数幂意义 3。
有理指数幂性质n m nm a a=(a>0,m,n∈N *,n>1) (1)ar·as=ar+s(2)(ar)s=ars(a>0,r,s∈Q )(3)(a·b)r=ar·ar(a>0,b>0,r∈Q)2.规定 4。