数电实验6(计数器设计)

合集下载

显示计数器的设计实验报告

显示计数器的设计实验报告

数字电路与逻辑设计实验报告
(一)实验名称:显示计数器的设计。

(二)实验目的:熟悉同步、异步计数器的工作原理及应用。

掌握任意进制计数器的设计方法。

(三)实验内容:掌握双二-五-十进制计数器74LS390的功能。

利用74LS390设计一个模18的计数器,使用555定时器产生计数脉冲信号,计数结果用数码管显示。

利用示波器观察CP、1QA、1QB、1QC、1QD、2QA的波形,并在报告中绘制。

(四)模拟电路上的运行结果:
(五)心得体会:
此次计数器的有关实验,不仅帮我巩固了计数器相关方面的知识,而且让我懂得和体会到了计数器功能测试的方法,并且也掌握了一些计数器的设计方法。

与此同时,还让我熟悉了同步、异步计数器的工作原理和应用。

虽然刚开始的时候还是遇到了一些难于解决的问题,但最后经过老师的讲解和自己大胆的尝试操作后,最终问题都迎刃而解了。

(六)思考题解答:。

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告
《数电计数器实验报告》
实验目的:通过实验,掌握计数器的工作原理及其应用。

实验仪器:数电实验箱、示波器、计数器芯片、电源等。

实验原理:计数器是一种能够记录输入脉冲信号次数的电子设备,它能够实现数字信号的计数功能。

在实验中,我们将使用计数器芯片来实现二进制计数器的功能,通过观察输出信号的变化来了解计数器的工作原理。

实验步骤:
1. 将计数器芯片连接到数电实验箱上,并接入示波器以观察输出信号。

2. 将电源接通,调节示波器参数,观察计数器的输出波形。

3. 输入不同的脉冲信号,观察计数器的计数变化。

4. 通过改变输入信号的频率和幅度,观察计数器的响应情况。

实验结果:通过实验观察,我们发现计数器能够准确地记录输入脉冲信号的次数,并且能够按照二进制的方式进行计数。

当输入信号的频率增加时,计数器的计数速度也相应增加,而当输入信号停止时,计数器的计数也停止。

实验结论:计数器是一种非常重要的数字电路元件,它在数字系统中具有广泛的应用。

通过本次实验,我们深入了解了计数器的工作原理及其特性,为今后的数字电路设计和应用打下了坚实的基础。

总结:本次实验通过实际操作,让我们对计数器有了更深入的了解,同时也增强了我们对数字电路的理解和应用能力。

希望通过今后的实验和学习,我们能够更加熟练地掌握数字电路的相关知识,为今后的工程实践打下坚实的基础。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于实现对输入信号进行计数的功能。

在本次实验中,我们将通过搭建一个四位二进制计数器的电路,来深入了解计数器的工作原理和应用。

实验目的:1. 熟悉计数器的基本原理和工作方式;2. 掌握计数器的设计与搭建方法;3. 理解计数器在数字系统中的应用。

实验器材:1. 74LS161四位二进制同步计数器芯片;2. 74LS47七段数码管芯片;3. 电路连接线、电源等。

实验步骤:1. 按照电路原理图,连接74LS161计数器芯片和74LS47七段数码管芯片;2. 将74LS161的CLK输入引脚连接到一个可调的方波发生器,用于提供时钟信号;3. 将74LS161的RST引脚连接到一个开关,用于手动复位计数器;4. 将74LS161的QA~QD引脚连接到74LS47的A~D引脚,用于输出计数结果;5. 将74LS47的LT引脚连接到一个LED灯,用于指示计数溢出。

实验原理:计数器是由触发器和逻辑门组成的组合逻辑电路。

在本次实验中,我们使用74LS161芯片作为计数器,它具有四位二进制计数功能。

74LS161芯片内部包含四个D触发器,每个触发器的输出与下一个触发器的时钟输入相连,形成级联的工作方式。

当时钟信号上升沿到来时,触发器会根据输入信号的状态进行状态转移,从而实现计数功能。

实验结果:通过调节方波发生器的频率,我们可以观察到七段数码管上显示的数字不断变化。

当计数器达到最大值时,LED灯会亮起,指示计数溢出。

通过手动复位开关,我们可以将计数器重新复位为0,重新开始计数。

实验分析:1. 在实验过程中,我们发现计数器的工作稳定性较好,能够准确地进行计数;2. 通过改变方波发生器的频率,我们可以调整计数器的计数速度,从而实现不同的计数效果;3. 计数器的应用非常广泛,比如在时钟、计时器、频率分频器等数字系统中都有广泛的应用。

实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和应用。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于计数和记录输入脉冲的次数。

本实验旨在通过搭建一个基本的二进制计数器电路,探究计数器的工作原理,并验证其计数功能的正确性。

实验装置和步骤:实验中所用的装置包括集成电路、数字示波器、电源等。

首先,我们按照电路原理图搭建计数器电路,并连接相应的输入和输出信号线。

然后,我们通过给计数器电路提供时钟信号,观察输出信号的变化情况。

最后,我们通过改变输入信号的频率和幅度,测试计数器的稳定性和可靠性。

实验结果:在实验中,我们观察到计数器电路的输出信号随着时钟信号的输入而变化。

当时钟信号的边沿触发计数器时,计数器按照设定的计数规则进行计数,并输出相应的二进制码。

例如,当计数器为4位二进制计数器时,输入一个时钟脉冲,计数器的输出变化为0001、0010、0011、0100,依次类推。

当计数器达到最大计数值时,会自动归零重新计数。

实验分析:通过实验我们发现,计数器的计数规则是按照二进制码进行计数的。

每一位计数器都有两种状态,0和1,通过时钟信号的输入,计数器的状态会发生变化。

当计数器达到最大计数值时,会自动归零,这是因为计数器的位数是有限的,无法继续计数。

计数器的位数越多,能够计数的范围就越大。

此外,我们还发现计数器的计数速度与输入时钟信号的频率有关。

当时钟信号的频率较高时,计数器的计数速度也会相应增加。

然而,当时钟信号的频率过高时,计数器可能无法跟上时钟信号的输入,导致计数器的计数出错。

因此,在实际应用中,我们需要根据具体的需求来选择合适的计数器和时钟频率。

实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和计数功能。

计数器作为一种常见的组合逻辑电路,广泛应用于各种计数和测量系统中。

在实际应用中,我们需要根据具体的需求选择合适的计数器和时钟频率,以确保计数器的稳定性和可靠性。

未来展望:随着科技的不断发展,计数器的功能和性能也在不断提升。

数电实验之计数器

数电实验之计数器

计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。

2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。

二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。

根据计数的增减趋势分,又分为加法、减法和可逆计数器。

另外,还有可预置数和可编程功能的计数器等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。

如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。

例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。

74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。

如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告引言数电计数器是数字电路中非常重要的一种组合逻辑电路,它能够按照一定的规律输出特定的数字序列。

本次实验旨在通过设计和搭建一个4位二进制计数器,深入理解计数器的原理和工作原理,并验证其在电路实现中的运行情况。

实验过程1. 实验材料准备在开始实验之前,我们需要准备以下物品:- 1个集成电路芯片(例如74LS161)- 1个面包板- 适当数量的导线- 指示灯若干- 功能发生器或时钟装置2. 电路连接根据集成电路芯片的管脚接线图,我们将芯片插入面包板,并根据需要连接各个管脚。

首先,根据实验要求,将芯片的使能引脚接地,以激活芯片。

然后,将芯片的时钟引脚连接到功能发生器或时钟装置的输出端,从而提供计数器的时钟信号。

使用导线将输出引脚连接到相应的指示灯上,以观察计数器的计数值。

3. 计数器设置根据实验要求,我们调整计数器的初始值。

我们可以通过将相应的输入引脚连接到高电平或低电平来设置计数器的初始值。

通常,通过组合逻辑电路将特定的初始值输入到计数器的清零引脚或配置引脚。

4. 实验结果观察启动功能发生器或时钟装置,观察计数器的输出情况。

通过逐渐递增钟脉冲的频率或递减初始值,我们可以观察到计数器依次输出的二进制数字序列。

使用指示灯,我们可以直观地看到计数器的计数情况。

实验结果分析通过观察实验结果,我们可以得出以下结论:- 计数器可以在电路中成功实现不同形式的计数功能,例如二进制计数、十进制计数等。

- 计数器能够按照时钟信号的频率进行计数,具有一定的计数速度。

- 计数器的输出可以通过组合逻辑电路进行控制,实现更加复杂的计数模式,比如递减计数。

实验总结通过本次实验,我们深入了解了数电计数器的工作原理和电路实现过程。

我们通过搭建一个4位二进制计数器,验证了计数器的正常工作,并观察到了不同的计数方式。

实验过程中,我们不仅学习了数电计数器的基本概念和原理,还增强了电路连接与实验操作的能力。

在今后的学习中,我们可以进一步研究和设计更复杂的计数器电路,探索计数器在数字系统中的更广泛应用。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告实验名称:数电计数器实验实验目的:通过实验,了解和掌握数电计数器的原理和工作方式,以及计数器的应用。

实验原理:计数器是一种能够实现数字计数功能的电子元件。

主要由触发器、逻辑门和时钟信号组成。

触发器主要用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。

实验器材:1. 7400四路或五路与门2. 7432四路或五路或六路或七路与非门3. 7474触发器4. 555定时器5. LED灯6. 电源实验步骤:1. 将触发器与逻辑门按照电路图连接,并确保连接正确无误。

2. 将555定时器连接到电路中,并设置合适的时钟频率。

3. 将LED灯连接到电路中,用于显示计数结果。

4. 打开电源,观察LED灯的亮灭情况,并记录计数结果。

5. 可以尝试改变定时器的频率,观察LED灯的计数速度。

实验结果分析:通过实验观察和记录计数结果,可以得出计数器的工作原理和特点。

可以发现,当时钟信号输入时,计数器会根据触发器和逻辑门的控制逻辑实现数字计数功能。

实验结论:1. 数电计数器是一种能够实现数字计数功能的电子元件。

2. 计数器由触发器、逻辑门和时钟信号组成,触发器用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。

3. 数电计数器在实际应用中具有广泛的用途,如计时器、频率计等。

实验中可能遇到的问题和解决方法:1. 连接错误:检查电路连接,确保连接正确无误。

2. LED灯未亮起:检查电路连接,确保连接正确无误。

3. 计数不准确:检查时钟信号的频率,确保设置合适的计数速度。

实验改进思路:1. 尝试使用不同型号的触发器和逻辑门,比较它们的计数效果和特点。

2. 尝试使用其他电子元件,如译码器、多路选择器等,扩展计数器的功能和应用场景。

3. 尝试使用计数器的级联连接,实现更复杂的计数功能和应用。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。

在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。

本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。

一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。

逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。

以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。

触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。

通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。

在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。

然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。

二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。

实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。

此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。

这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。

三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。

通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。

在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。

例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。

此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。

这些改进和扩展将进一步提高计数器的灵活性和实用性。

总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。

数电实验6(计数器设计)

数电实验6(计数器设计)

⑴ CPA接单正脉冲,观察各触发器的输出状态,纪录于表6-4 中。
⑵ CPA接单正脉冲,输出端QD QCQB QA对应接至七段译码/驱 动电路CD4511的输入端D、C、B、A,观察数码管的变化。
2/5十进制计数器74LS90的管脚图:
计数脉冲从CPA输入(下降沿有效), QA与CPB相连, QD QCQB QA输出
异步复位、置位输入端 R01 R02 S91 S92 HHLX HHXL XXHH XLXL LXLX LXXL XLLX
输出端 QD QC QB QA
LLLL LLLL HLLH 计数 计数 计数 计数
BCD码九进制加法计数器示意图
··
+5V
QD QC QB QA
VCC 74LS90 CPB
·
GND
触发器的 驱动方程
J0 = K0 =1 J1 = Q2Q0, K1 = Q0
J 2 = Q1Q0, K 2 = Q0
逻辑图(用2片74LS112和1片74LS00组成)
·Q FF2 1J C1 Q 1K
Q2
1&
1&
00- 4 00-3
Q FF1 1J Q C1
1K
·
Q1
· 00-2 00-1
Q FF0 1J
下周实验: RC环形振荡器和单稳态触发器
请确认本次实验集成电路芯片:74112两 片、7400一片、7490一片的安插位置。
从逻辑开关右面插孔连接+5V和
注意:不要在数电箱面板上写字!
实验六 计数器的设计
6.1实验目的
1、学习用集成触发器组成同步和异步计数器并测试其逻 辑功能。 2、学习用集成计数器组件组成任意进制计数器的方法并 测试其逻辑功能。

数字电路 实验 计数器及其应用 实验报告

数字电路 实验 计数器及其应用 实验报告

实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

计数器计数时所经历的独立状态总数为计数器的模(M)。

计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。

按计数脉冲输入方式不同,可分为同步计数和异步计数。

按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。

1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。

若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。

当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。

执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器《数电实验报告:计数器》实验目的:本实验旨在通过搭建和测试计数器电路,加深对数电原理的理解,掌握计数器的工作原理和应用。

实验器材:1. 74LS76触发器芯片2. 74LS00与非门芯片3. 74LS08与门芯片4. 电源5. 示波器6. 万用表7. 逻辑开关8. 连接线实验原理:计数器是一种能够对输入的脉冲信号进行计数并输出相应计数结果的电路。

在本实验中,我们将使用74LS76触发器芯片搭建一个4位二进制同步计数器。

该计数器能够对输入的脉冲信号进行计数,并通过LED灯显示计数结果。

实验步骤:1. 根据74LS76触发器芯片的引脚图和真值表,搭建4位二进制同步计数器电路。

2. 将74LS00与非门芯片连接到计数器电路中,用于产生时钟信号。

3. 将74LS08与门芯片连接到计数器电路中,用于控制LED灯的显示。

4. 接通电源,使用逻辑开关产生输入脉冲信号。

5. 使用示波器和万用表对计数器电路的各个部分进行测试和调试。

实验结果:经过调试和测试,我们成功搭建了一个4位二进制同步计数器电路。

当输入脉冲信号时,LED灯能够正确显示计数结果,符合预期。

实验分析:通过本次实验,我们深入理解了计数器的工作原理和应用。

计数器是数字电路中常用的基本模块,广泛应用于各种计数和计时场合。

掌握计数器的原理和搭建方法,对于进一步学习和应用数字电路具有重要意义。

结论:本次实验通过搭建和测试计数器电路,加深了我们对数电原理的理解,掌握了计数器的工作原理和应用。

同时,我们也学会了使用示波器和万用表对数字电路进行测试和调试,为今后的实验和工作打下了坚实的基础。

计数器的设计实验报告

计数器的设计实验报告

计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。

二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。

计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。

本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。

计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。

三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。

设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。

画出完整的电路原理图。

2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。

仔细检查电路连接是否正确,确保无短路和断路现象。

3、调试电路接通直流电源,观察计数器的初始状态。

输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。

若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。

4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。

测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。

五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。

清零和置数功能正常,能够满足实验要求。

2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。

设计计数器的实验报告

设计计数器的实验报告

设计计数器的实验报告设计计数器的实验报告引言:计数器是数字电路中常见的一个组件,它可以用来记录和显示某个事件的次数或周期。

本实验旨在设计一个简单的二进制计数器,通过实际操作和观察,加深对计数器的原理和实现方式的理解。

一、实验目的本实验的主要目的是掌握计数器的设计原理和实现方法,具体包括以下几点:1. 了解计数器的基本概念和工作原理;2. 学习使用逻辑门和触发器构建计数器电路;3. 实际操作计数器电路并观察其输出结果。

二、实验器材1. 逻辑门集成电路(如与门、或门、非门等);2. 触发器集成电路(如RS触发器、D触发器等);3. 连线、电源、示波器等实验器材。

三、实验步骤1. 确定计数器的位数:根据实际需求,选择计数器的位数。

本实验以4位计数器为例。

2. 确定计数器的计数方式:根据实际需求,选择计数器的计数方式。

本实验以二进制计数方式为例。

3. 设计计数器的逻辑电路:根据所选择的位数和计数方式,设计计数器的逻辑电路。

以4位二进制计数器为例,可以使用4个D触发器构建。

将D触发器的时钟输入端串联,将每个D触发器的输出端连接到下一个D触发器的数据输入端,形成一个环形结构。

4. 连接电路并进行实验:按照设计好的逻辑电路连接实验器材,接入电源后,观察计数器的输出结果。

5. 调试和优化:如果计数器的输出结果不符合预期,可以检查电路连接是否正确,逻辑门和触发器是否工作正常,及时调试和优化。

四、实验结果与分析在本实验中,我们设计了一个4位二进制计数器,并成功实现了计数功能。

通过观察计数器的输出结果,可以发现计数器按照二进制方式进行计数,每次计数加1,当计数达到最大值时,会回到初始值重新开始计数。

通过实验可以得出以下结论:1. 计数器的位数决定了其能够表示的最大计数值,位数越多,最大计数值越大;2. 计数器的计数方式决定了其计数规律,二进制计数方式是最常见和简单的计数方式;3. 计数器的设计需要根据实际需求进行选择和优化,可以根据需要增加位数或者改变计数方式。

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告数电计数器实验报告引言:计数器是数字电路中常见的一种组合逻辑电路,它可以实现对输入信号进行计数的功能。

在本次实验中,我们将通过搭建一个4位二进制计数器的电路,深入了解计数器的工作原理和应用。

一、实验目的本次实验的目的是通过搭建一个4位二进制计数器的电路,学习计数器的基本原理,掌握计数器的设计和应用方法。

二、实验原理计数器是由触发器和逻辑门组成的组合电路。

触发器是一种存储器件,可以存储一个比特的数据。

逻辑门则负责对输入信号进行处理和控制。

在计数器中,触发器的输出被连接到逻辑门的输入,逻辑门的输出又反馈到触发器的输入,形成了一个闭环。

当输入信号发生变化时,逻辑门会根据其输入信号的状态改变输出信号的状态,从而实现计数器的计数功能。

三、实验材料本次实验所需的材料如下:1. 电路板2. 74LS74触发器芯片3. 74LS08与门芯片4. 74LS32或门芯片5. 连线材料6. 电源四、实验步骤1. 将74LS74触发器芯片插入电路板上的指定位置,并连接电源。

2. 使用连线材料将74LS74触发器芯片的引脚与74LS08与门芯片和74LS32或门芯片的引脚相连,按照电路图进行正确的连接。

3. 检查电路连接是否正确,确保没有短路或接触不良的情况。

4. 打开电源,观察计数器的输出情况。

5. 将输入信号接入计数器,观察计数器的计数变化。

五、实验结果与分析通过实验,我们成功搭建了一个4位二进制计数器的电路。

当输入信号发生变化时,计数器能够按照二进制方式进行计数。

例如,当输入信号从0变为1时,计数器的输出会从0000变为0001;当输入信号再次变为0时,计数器的输出会继续递增,变为0010,0011,0100,以此类推。

实验结果表明,计数器能够准确地对输入信号进行计数,并按照预期的方式输出计数结果。

六、实验总结本次实验通过搭建一个4位二进制计数器的电路,深入了解了计数器的工作原理和应用。

我们学习了计数器的基本原理,掌握了计数器的设计和应用方法。

(完整word版)数电课设6进制计数器

(完整word版)数电课设6进制计数器
图2。2 实验状态图
1)a。确定触发器的数目
电路状态数量M=6,代入 ,计算得n=3,电路需要3个触发器。
b.电路状态编码
电路状态 ~ 用两个触发器的状态组合 来表示,取 ~的编码为111,110,100,101,001,000.
(2)选定触发器,求出电路状态方程、输出方程和驱动方程
a.确定触发器类型,JK触发器。
×ቤተ መጻሕፍቲ ባይዱ
1
0
1
1
1
图1。6 Q2n+1的卡诺图
Qn1Q0n
Q2n
00
01
11
10
0
1
0
×
×
1
0
0
1
0
图1.7 Q1n+1的卡诺图
Qn1Q0n
Q2n
00
01
11
10
0
1
0
×
×
1
1
0
0
1
图1.8 Q0n+1的卡诺图
由卡诺图得出的状态方程
由状态得出的驱动方程
经检查无效状态010和011不能构成循环即能自启动。
2.1.6设计的逻辑电路图
图1.9逻辑连接图
图2。0 实验仿真结果
2.1.7 实验仪器
(1)数字原理实验系统一台
(2)集成电路芯片 74LS08两片.74LS112三片
2.1.8实验结论
经过实验可知,满足时序图的变化,且可以进行自启动。实验中的碰到的小问题告诉我们,学习和理解理论知识会使实验设计更合理。设计要尽可能简单明了且能说明问题,实验前应确保芯片可以正常使用,检查导线好坏,避免导线内部断裂造成实验失败。实验过程中所用芯片引脚较多,要细心认真。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告
实验名称:数电计数器实验报告
一、实验目的
了解数码计数器的基本原理和工作方式,掌握计数原理及电路实现方法,培养实验操作能力。

二、实验内容
1. 设计一个基本的二进制计数器电路
2. 加深对计数器的理解并搭建计数器电路
三、实验器材
1. 计数器芯片:CD74HC161E
2. 电源电源适配器
3. 示波器
4. 直流电压表
5. 万用表
四、实验步骤
1. 将芯片和电路板连接
2. 将电路电源设置到好
3. 用直流电压表测试电路板工作电压是否正常
4. 用万用表检查所连接线路的连通状况
5. 用示波器测量芯片输出波形是否正常
六、实验结果
在实验过程中,我们成功地节点了一个基本的二进制计数器电路,并顺利地搭建了计数器电路。

计数器能够正常工作,实验目
标全部达到。

七、实验结论
通过实验,我们深入了解了数码计数器的基本原理和工作方式,培养了实验操作的能力,并通过实验获得了实际操作的经验。

八、实验感想
通过这次实验,我们深刻认识到了学习知识的重要性。

掌握计
数器原理是我们今后从事电子学领域必要的基础,因此我们要保
持深入学习、不断拓展知识面的心态。

同时,在操作实验过程中,我们也要注重细节、沉着冷静,并时刻保持对失误的辨识、纠正
和处理能力。

数电实验报告之计数器

数电实验报告之计数器

数字逻辑与数字系统设计实验报告——计数器VHDL语言仿真学院电子工程学院班级卓越001012班学号00101201姓名冉艳伟实验时间2012.5.4一.实验目的1.了解计数器的工作原理。

2.对Quartus II 软件使用操作有初步的了解,能用该软件进行简单的VHDL语言编程与功能仿真3、掌握VHDL设计实体的基本结构及文字规则。

二.实验仪器1.计算机一台2.万用表一块3.直流稳压电源一台4.数字电路实验板一台(含cyclone—II FPGA芯片)5.数据下载线,JTAG连接线若干三.实验内容1.用VHDL语言描述模50计数器。

要求完成电路设计,进行电路仿真,并下载后作功能测试。

将计数器时钟置为1HZ方波信号,输出接译码、显示电路,在数码管上观察输出状态变化。

2.设计一个计数型序列码产生电路,产生的序列码(输出Z)为1101000101。

要求用FPGA实现,并在实验箱上测试其功能,时钟设置为1KHZ,在示波器上双踪观察并记录CP,Z的波形。

四.实验数据记录与处理1. 模50计数器1)VHDL语言LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;entity CounterM50 isport(clk,rst,en:in bit;rco:out bit;q:out std_logic_vector(7 downto 0));end CounterM50;architecture behavior of CounterM50 issignal temp_q:std_logic_vector(7 downto 0);beginprocess(clk,rst)beginif(rst='0')thentemp_q<="00000000";rco<='0';elsif(clk'event and clk='1')thenif(en='1')thenif(temp_q<"00110001")thentemp_q<=temp_q+1;else temp_q<="00110001";end if;end if;end if;if(temp_q="00110001")thenrco<='1';else rco<='0';end if;end process;q<=temp_q;end behavior;2)功能仿真建立波形文件,功能仿真结果如下:3)时序仿真建立波形文件,时序仿真结果如下:2.计数型序列码1101000101产生电路1)VHDL语言library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity sequence isport(clk:in std_logic;z:out std_logic);end sequence;architecture behavior of sequence istype state_type is (s0,s1,s2,s3,s4,s5,s6,s7,s8,s9);signal current_state,next_state:state_type; beginprocess(clk)beginif clk'event and clk='1'thencurrent_state<=next_state;end if;end process;state_trans:process(current_state)begincase current_state iswhen s0=>next_state<=s1;z<='1';when s1=>next_state<=s2;z<='1';when s2=>next_state<=s3;z<='0';when s3=>next_state<=s4;z<='1';when s4=>next_state<=s5;z<='0';when s5=>next_state<=s6;z<='0';when s6=>next_state<=s7;z<='0';when s7=>next_state<=s8;z<='1';when s8=>next_state<=s9;z<='0';when s9=>next_state<=s0;z<='1';end case;end process;end behavior;2)功能仿真建立波形文件,功能仿真结果如下:3)时序仿真建立波形文件,时序仿真结果如下:。

数电实验报告 实验六 计数

数电实验报告 实验六  计数

实验六计数、译码、显示综合实验一【实验目的】1.熟悉中规模集成电路计数器的功能及应用。

2.熟悉中规模集成电路译码器的功能及应用。

3.数以LED数码管及显示电路的工作原理。

4.学会综合测试的方法。

二【实验分析与设计】1.六十进制计数器(方案一,异步清零)(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

160 的清除端是异步的。

当清除端/MR 为低电平时,不管时钟端CP 状态如何,即可完成清除功能。

160 的计数是同步的,靠CP 同时加在四个触发器上而实现的。

当CEP、CET 均为高电平时,在CP 上升沿作用下Q0-Q3 同时变化,从而消除了异步计数器中出现的计数尖峰。

54/74LS160的CEP、CET跳变与CP 无关。

160 有超前进位功能。

当计数溢出时,进位输出端(TC)输出一个高电平脉冲,其宽度为Q0 的高电平部分。

对于54/74LS160,在CP 出现前,即使CEP、CET、/MR 发生变化,电路的功能也不受影响。

(2)真值表与接口表达式十进制部分根据74LS160引脚说明,CR=1 CEP=CET=1 PE=1六进制部分CR=(Q2Q1)’根据CEP、CET特点,把十进制进位输出端(高电平)接入六进制的CEP、CET,可实现进位功能,级CEP=CET=TC(十进制进位输出端)(3)电路图设计(4)仿真波形图-CR1图-CR2根据图CR1,CR波形出现低电平毛刺然后Q0~Q3马上清零。

CR2是把CR与CP波形对比,通过放大波形我们CR高电平只出现一瞬间,清零操作并不需要CP上升沿或者下降沿为条件,即异步清零。

2.六十进制计数器(方案二,同步置数)(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

计数器数电实验报告

计数器数电实验报告

计数器数电实验报告《计数器数电实验报告》实验目的:本次实验旨在通过搭建计数器电路,加深学生对数电原理的理解,提高学生的动手能力和实验操作技能。

实验原理:计数器是一种能够按照特定规律对输入信号进行计数的电路。

在本次实验中,我们将使用集成电路74LS90和74LS47来搭建一个模4计数器。

74LS90是一个可递增或递减的4位二进制计数器,而74LS47是一个BCD-7段译码器,用于将二进制计数转换为7段数码管的显示。

实验材料:1. 74LS90集成电路2. 74LS47集成电路3. 7段数码管4. 电源5. 连接线6. 示波器实验步骤:1. 将74LS90和74LS47集成电路插入实验面包板中,并连接好电源和连接线。

2. 根据电路原理图连接好各个元件,确保连接正确无误。

3. 接通电源,调节示波器观察输出波形,验证计数器的工作状态。

4. 通过改变输入信号的方式,观察计数器的不同工作模式,并记录观察结果。

实验结果:经过实验操作,我们成功搭建了一个模4计数器电路,并通过示波器观察到了正确的计数输出波形。

在改变输入信号的情况下,我们也观察到了计数器的不同工作模式,验证了电路的正常工作。

实验结论:通过本次实验,我们深入了解了计数器的工作原理和实验操作技能。

通过动手搭建电路和观察波形,我们加深了对数电原理的理解,提高了实验操作的能力。

同时,我们也发现了实验中可能存在的问题和改进的空间,为今后的实验操作提供了宝贵的经验。

总结:本次实验不仅让我们了解了计数器的原理和工作方式,还提高了我们的动手能力和实验操作技能。

通过实验,我们对数电原理有了更深入的理解,为今后的学习和实践打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表6-2
计数脉冲 Cp数 Cp数
二 Q1
进 制 Q2
码 Q0
对应的 十进制数
接连续脉冲, ⑵(选作) CP接连续脉冲,用示波器观察并对应记 选作) 接连续脉冲 一个计数周期内, 和各输出端的波形 和各输出端的波形。 录在一个计数周期内 录在一个计数周期内,CP和各输出端的波形。
J0 = K 0 = 1
注意:不要在数电箱面板上写字! 注意:不要在数电箱面板上写字!
实验六 计数器的设计
6.1实验目的
1、学习用集成触发器组成同步和异步计数器并测试其逻 辑功能。 辑功能。 2、学习用集成计数器组件组成任意进制计数器的方法并 测试其逻辑功能。 测试其逻辑功能。
6.2实验内容及步骤 6.2实验内容及步骤
用集成JK触发器 触发器74LS112和四2输入与非门 和四2 6.2.2 用集成 触发器 和四 74LS00组成同步六进制减法计数器: 74LS00组成同步六进制减法计数器: 组成同步六进制减法计数器 加单正脉冲, ⑴ CP加单正脉冲,观察各触发器的输出状态,纪录于 加单正脉冲 观察各触发器的输出状态, 表6-2中。
加连续脉冲, 及触发器输出Q 2、CP加连续脉冲,观察并画出 及触发器输出 A、 QB、 QC 、 QD的输出状态 加连续脉冲 观察并画出Cp及触发器输出 、 、
1 2 CPA NC QA QD GND QB QC 14 13 12 11 10 74LS90 3 4 5 6 7 9 8
CPB R01 R02 NC VCC S91 S92
图6-1
异步十进制计数器74LS90功能表 功能表 异步十进制计数器
异步复位、 异步复位、置位输入端 R01 R02 S91 S92 H H L X H H X L X X H H X L X L L X L X L X X L X L L X 输 出 端 QD QC QB QA L L L L L L L L H L L H 计 数 计 数 计 数
·
QD QC QB QA VCC
GND
CPB
74LS90
S91 S92 CPA CP
R01 R02
·
加单正脉冲, 1、CP加单正脉冲,观察触发器的输出状态 加单正脉冲
·
将译码驱动单元VCC接+5V, 计数器输出 D、QC、QB、QA 接 计数器输出Q 将译码驱动单元 接到对应的D、 、 、 插孔 可直接用数码管显示读数。 插孔, 接到对应的 、C、B、A插孔,可直接用数码管显示读数。
计 数
BCD码九进制加法计数器示意图 码九进制加法计数器示意图
+5V
·
VCC
GND
·
CPB
QD QC QB QA
74LS90
S91 S92 CPA
·
CP
R01 R02
·
为可靠清0 可按下图连接: 为可靠清0,可按下图连接:
BCD码九进制加法计数器示意图 码九进制加法计数器示意图
& 08-1 +5V
触发器的 驱动方程
J 1 = Q 2Q 0, K 1 = Q 0 J 2 = Q1Q 0, K 2 = Q 0
逻辑图( 组成) 逻辑图(用2片74LS112和1片74LS00组成) 片 和 组成
1 & 1 &00- 4 00-300-2 00-1
·
Q Q
FF2 1J C1 1K
Q Q
·
FF1 1J C1 1K
下周实验: 下周实验: RC环形振荡器和单稳态触发器 环形振荡器和单稳态触发器
请确认本次实验集成电路芯片:74112两 请确认本次实验集成电路芯片:74112两 7400一片 7490一片的安插位置 一片、 一片的安插位置。 片、7400一片、7490一片的安插位置。
从逻辑开关右面插孔连接+5V和 和 从逻辑开关右面插孔连接
6.2.3用中规模集成电路( 十进制计数器 十进制计数器74LS90)组 6.2.3用中规模集成电路(2/5十进制计数器 用中规模集成电路 ) 码九进制加法计数器: 成BCD码九进制加法计数器: 码九进制加法计数器 接单正脉冲,观察各触发器的输出状态,纪录于表6 ⑴ CPA接单正脉冲,观察各触发器的输出状态,纪录于表6-4 中。 ⑵ CPA接单正脉冲,输出端QD QCQB QA对应接至七段译码/驱 接单正脉冲,输出端 对应接至七段译码/ 动电路CD4511的输入端 、C、B、A,观察数码管的变化。 的输入端D、 、 、 ,观察数码管的变化。 动电路 的输入端 2/5十进制计数器74LS90的管脚图: 十进制计数器74LS90的管脚图: 74LS90的管脚图 计数脉冲从CP 输入(下降沿有效) 计数脉冲从 A输入(下降沿有效), QA与CPB相连, QD QCQB QA输出 相连, ——8421码十进制计数器 码十进制计数器 R01、 R02:异步清零端 高电平有效) (高电平有效) S91、S92:异步置9端 异步置9 高电平有效) (高电平有效)
Q FF0 1J Q C1 1K
·
1
·
Q2 Q1 连在一起接高电平! 注:SD连在一起接高电平!
·
·
Q0
RD
·
CP
逻辑图(用2片74LS112和1片74LS08组成) 逻辑图( 和 片 组成) 组成
VCC 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8
74LS08 & &
1 2 3 4 5 6 7 1A 1B 1Y 2A 2B 2Y GND
08-2
·
Q2 Q
FF2 1J C1 1K
Q Q1
FF1 1J C1 1K
·
08-1 Q Q0
FF0 1J C1 1K
·
1
Q2
Q1
· ·
·
Q0
· ·
RD CP
注:SD连在一起接高电平! 连在一起接高电平!
加单正脉冲, 1、CP加单正脉冲,观察触发器的输出状态 加单正脉冲 加连续脉冲, 及触发器输出Q 2、CP加连续脉冲,观察并画出 及触发器输出 2、 Q1、 Q0的输出状态 加连续脉冲 观察并画出Cp及触发器输出 、 、
相关文档
最新文档