九年级数学二次函数培优试卷及答案

合集下载

初三数学二次函数的专项培优练习题(含答案)及答案

初三数学二次函数的专项培优练习题(含答案)及答案

初三数学二次函数的专项培优练习题(含答案)及答案一、二次函数1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【解析】【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2,∴y=2x-2, 则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6), ∵a <b ,即a <-2a ,∴a <0, 如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x xy x⎧=--+⎨=-⎩,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=94,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -. 综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C .(1)求抛物线的解析式;(2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11 kb=-⎧⎨=-⎩∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±2,∵x>0∴x=1+2.∴P(1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P 的横坐标.5.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17 (0,4),3,2 B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y=>,所以可以通过(3)令8y=,即212486x x-++=,可得212240x x-+=,解得12623,623x x=+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.6.如图,在平面直角坐标系中,二次函数2y ax bx c=++交x轴于点()4,0A-、()2,0B,交y轴于点()0,6C,在y轴上有一点()0,2E-,连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求ADE∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,()1,11-±,()1,219--±. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --),∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA PE AE =,分三种情况讨论:当PA =PE n =1,此时P (﹣1,1);当PA =AE =n =,此时点P 坐标为(﹣1,);当PE =AE =n =﹣2P 坐标为:(﹣1,﹣2).综上所述:P 点的坐标为:(﹣1,1),(﹣1,1,﹣2). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.7.如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则430 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2).【点睛】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.8.(12分)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【答案】(1);(2)E的坐标为(,)、(0,﹣4)、(,);(3),(,).【解析】试题分析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC的解析式为,则可设E(m,),然后分三种情况讨论即可求得;(3)利用△PBD的面积即可求得.试题解析:(1)∵二次函数()的图象与x轴交于A(﹣2,0)、C (8,0)两点,∴,解得:,∴该二次函数的解析式为;(2)由二次函数可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数可知B(0,﹣4),设直线BC的解析式为,∴,解得:,∴直线BC的解析式为,设E(m,),当DC=CE时,,即,解得,(舍去),∴E(,);当DC=DE时,,即,解得,(舍去),∴E(0,﹣4);当EC=DE时,,解得=,∴E(,).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(,)、(0,﹣4)、(,);(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为:,∵△PBD的面积===,∴当m=时,△PBD的最大面积为,∴点P的坐标为(,).考点:二次函数综合题.9.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线223432333y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323y=x+33-;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,-33)、F (0,233)或E (-1,43-3),F (-4,1033)【解析】 【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=;联立两解析式求交点2234323332323y=x+33y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在2234323y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中ACK=EFHAKC=EHFAC=EF∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=23∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2, ∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0,233),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=23-23=43,即E 的纵坐标为-43, ∴ E (-1,-43); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵ C (-3,0),且A (-2,23), ∴线段AC 的中点坐标为(-2.5, 3), 设E (-1,t ),F (x ,y ), 则x-1=2×(-2.5),y+t=23, ∴x= -4,y=23-t ,23-t=-23×(-4)+23,解得t=43-, ∴E (-1,43-),F (-4,1033);综上可知存在满足条件的点F ,此时E (-1,-433)、(0,233)或E (-1,43-),F (-4,103)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题10.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】 【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标. 【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小. 如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C Q (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣ ∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=. ∵PAM PAC S S ∆∆=S △PAM =S △PAC ∴当以PA 为底时,两三角形等高 ∴点C 和点M 到直线PA 距离相等 ∵M 在x 轴上方//CM PA ∴1012A P Q (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩Q 解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.11.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围. 【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩.【解析】 【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标. (2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.(3)△COB 沿x 轴向右平移过程中,分两个阶段: ①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上,∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ; 令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M , 则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C , ∴303k b b +=⎧⎨=⎩,解得1,3k b =-=, ∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-. 设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩.解得32x ty t=-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.12.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。

初三数学二次函数的专项培优练习题(含答案)含详细答案

初三数学二次函数的专项培优练习题(含答案)含详细答案

初三数学二次函数的专项培优练习题(含答案)含详细答案一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C .(1)求抛物线的解析式;(2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11 kb=-⎧⎨=-⎩∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±2,∵x>0∴x=1+2.∴P(1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P 的横坐标.3.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE 2,PF2,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.4.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2);(4)63 8,315,24E⎛⎫-⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=C P时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,S四边形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在△BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【详解】(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩, 解得:12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:y =﹣x 2﹣2x+3;(2)如答图1,∵抛物线解析式为:y =﹣x 2﹣2x+3,∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,∴C (0,3),M (﹣1,0)∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10,∴P 点坐标为:P 2(﹣1,10)或P 3(﹣1,﹣10);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6, ∴P 点坐标为:P 4(﹣1,6).综上所述存在符合条件的点P ,其坐标为P (﹣1,10)或P (﹣1,﹣10)或P (﹣1,6)或P (﹣1,53); (3)存在,Q (﹣1,2),理由如下:如答图2,点C (0,3)关于对称轴x =﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q .设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.5.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92, ∴C (2,92),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t , ∴P (2+t ,92﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=92﹣t , 整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;(3)P 点坐标为(4,92),D 点坐标为(2,52), ∵抛物线平移,使其顶点C (2,92)移到原点O 的位置, ∴抛物线向左平移2个单位,向下平移92个单位,而P 点(4,92)向左平移2个单位,向下平移92个单位得到点E , ∴E 点坐标为(2,﹣2), 设M (0,m ),当m >0时,12•(m+52+2)•2=8,解得m=72,此时M 点坐标为(0,72);当m <0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M 点坐标为(0,﹣72);综上所述,M 点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.9.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4或5412+或5412. 【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45(4)2BP t ︒=-,于是21122)22)2222PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即22NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得1541m +=,2541m -=去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得15412m =(舍去),252m =. 【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B (﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-; ②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=, ∴点P 到BC 的高h为sin 45)BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-, ∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =, Ⅰ.4NH HP +=, ∴265(5)4m m m -+---= 解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=, ∴()25654m m m ---+-=解得1m =,2m =∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴541m +=, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得15412m +=,25412m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴5412m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或541+或541-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.10.已知抛物线C 1:y=ax 2﹣4ax ﹣5(a >0). (1)当a=1时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标; ②将抛物线C 1沿这两个定点所在直线翻折,得到抛物线C 2,直接写出C 2的表达式; (3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax 2+4ax ﹣5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为y=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换11.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD 是矩形的一条对角线,则线段AD 的中点坐标为( ,),Q (2,),m =,则P (1,8a ),∵四边形APDQ 为矩形,∴∠APD =90°,∴,∴,即,∵,∴,∴P 2(1,-4).综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P 的坐标为(1,)或(1,-4).考点:二次函数综合题.12.如图,已知抛物线2(0)y ax bx a =+≠过点3,-3) 和3,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)21332y x x =-;(2)P 点坐标为(383,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩,解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,2x x x ⎛⎫ ⎪ ⎪⎝⎭,则有3AD x =213332PD x x =+, 当OCA ADP ∆∆∽时,OC CA AD DP =2331333x x x =--+, 整理得:239318236x x x -+=-,即23113240x x -+=,解得:6x =,即3x =或x =此时P 4)3-;当OCA PDA ∆∆∽时,OC CA PD AD =22=,296x x -+=-2120x -+=,解得:x =x =此时P 6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P的坐标为10)3-,综上,P的坐标为,4)3-或6)或10)3-或()0,0;(3)在Rt AOC ∆中,3OC =,AC =根据勾股定理得:OA =Q 11··22OC AC OA h =, 32h ∴=,132AOC AOQ S S ∆∆==Q , AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N , 过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,393OH ==,即93(M ,9)4, 设直线MN 解析式为9y kx =+,把M 坐标代入得:99394=+,即3k =39y x =+, 联立得:23913322y x y x x ⎧=-+⎪⎨=-⎪⎩,解得:330x y ⎧=⎪⎨=⎪⎩315x y ⎧=-⎪⎨=⎪⎩(33Q 0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(330)或(23-15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.13.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短. 详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩,解得:2383a c ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x +-, ∵过点B 的直线y=kx+23, ∴代入(1,0),得:k=﹣23, ∴BD 解析式为y=﹣2233x +;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC=3CFP O,即523=103t,解得:t=49,∴t的值为49、151296、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小. 则△EOF ∽△NHD′ 设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.14.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2ba-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2ba-=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________; (2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由. 【答案】(1)PQ 的中点坐标是(2.5,2);(2)9352t -=或3t 4=;(3)124(,)39D ,2240(,)39D -. 【解析】分析:(1)先根据时间t=2,和速度可得动点P 和Q 的路程OP 和AQ 的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ 与△PAQ 相似时,存在两种情况:①当△PAQ ∽△QBC 时,PA QB AQ BC =,②当△PAQ ∽△CBQ 时,PA BC AQ QB=,分别列方程可得t 的值;(3)根据t=1求抛物线的解析式,根据Q (3,2),M (0,2),可得MQ ∥x 轴,∴KM=KQ ,KE ⊥MQ ,画出符合条件的点D ,证明△KEQ ∽△QMH ,列比例式可得点D 的坐标,同理根据对称可得另一个点D .详解:(1)如图1,∵点A 的坐标为(3,0), ∴OA=3,当t=2时,OP=t=2,AQ=2t=4, ∴P (2,0),Q (3,4),。

九年级数学二次函数的专项培优练习题(含答案)及详细答案

九年级数学二次函数的专项培优练习题(含答案)及详细答案

九年级数学二次函数的专项培优练习题(含答案)及详细答案一、二次函数1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.已知,点M 为二次函数y =﹣(x ﹣b )2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴,y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由.(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣(x ﹣b )2+4b +1,根据图象,写出x 的取值范围.(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组415 y xy x=+⎧⎨=-+⎩,解得45215 xy⎧=⎪⎪⎨⎪=⎪⎩,∴点E(45,215),F(0,1).点M在△AOB内,1<4b+1<215,∴0<b<45.当点C,D关于抛物线的对称轴对称时,b﹣14=34﹣b,∴b=12,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.3.对于二次函数 y=ax2+(b+1)x+(b﹣1),若存在实数 x0,使得当 x=x0,函数 y=x0,则称x0为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A、B 两点的横坐标是该函数的“不变值”,且 A、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值.【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得.【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a =-A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b b a a-- ) A 、B 两点关于直线y=kx-2a+3对称,又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上. ∴b a -=b a-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】 本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.4.如图,抛物线2122y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.(Ⅰ)求A B ,两点坐标.(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)222)42(022)S t t =-+<<,当2t =时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:2324m n =-=,或521524m n ==-,或32124m n =-= 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线212222y x x =-++, 令0y =,则212202x x -++=, 解得:2x =-22x = ∴((2,0,22,0A B -(Ⅱ)由抛物线212222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴2122,22,22p t t PQ p BQ t OQ t =-++==-=, ∴()()11122222222AOC PQB OCPQ S S S S p t t p =++=⨯⨯++⨯+⨯-⨯V V 梯形 11222222t pt p pt p t =+++-=++ 2122222t t t ⎛⎫=-++++ ⎪ ⎪⎭ ()22242(022)2t t =--+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线21222y x x =-++的对称轴为2x = ∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A ,①当AP 和HG 为对角线时, ∴()2112111222,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭, ∴234m n ==, ②当AG 和PH 是对角线时,∴(()2112112122,20222222m m n ⎛⎫=-++=+ ⎪ ⎪⎭⎝⎭,∴5215,24m n ==-, ③AH 和PG 为对角线时, ∴()()2121112122,2202222222m m m n ⎛⎫⎛⎫-+=+-+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴321,24m n =-=, 即:满足条件的点m n 、的值为: 23,24m n =-=,或5215,24m n ==-,或321,24m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.5.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5.(1)分别判断函数y =﹣x +1,y =1x-,y =x 2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y =x 2﹣b 2x ,①若其反向距离为零,求b 的值;②若﹣1≤b ≤3,求其反向距离n 的取值范围; (3)若函数y =223()3()x x x m x x x m ⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m 的取值范围.【答案】(1)y =−1x有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n ≤8;(3)当m >2或m ≤﹣2时,n =2,当﹣2<m ≤2时,n =4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.6.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000(2)商场销售该品牌玩具获得的最大利润是8640元.【解析】【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.【详解】解:(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65∴当44≤x≤46时,y随x的增大而增大∴当x=46时,w最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元.【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.7.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P 从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD (或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.【答案】(1) S=﹣2+0<t<5); (2) 307;(3)见解析.【解析】【分析】(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得,计算x的值,根据直角三角形30度角的性质可得AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,由题意得:AP=4t,∴PQ=2t,,∴S=S△ABC﹣S△APQ,=11··22AC OB PQ AQ-,=1110222t⨯⨯⨯⨯,=﹣2(0<t<5);(2)如图2,在Rt△APM中,AP=4t,∵点Q关于O的对称点为M,∴OM=OQ,设PM=x,则AM=2x,∴,∴∴AM=2PM=83t , ∵AM=AO+OM , ∴83t =103+103﹣23t , t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积,∴S △APN =S △PMN ,过M 作MG ⊥PN 于G , ∴11··22PN AP PN MG , ∴MG=AP ,易得△APH ≌△MGH , ∴AH=HM=3t , ∵AM=AO+OM ,同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.8.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.9.如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

人教版九年级(上)数学 第二十二章 二次函数 培优测试卷(附答案)

人教版九年级(上)数学 第二十二章 二次函数 培优测试卷(附答案)

二次函数培优测试卷一.选择题1.下列函数中,一定是二次函数的是()A.y=﹣x2+1 B.y=ax2+bx+c C.y=2x+3 D.y=2.抛物线y=4(x+3)2+12的顶点坐标是()A.(4,12)B.(3,12)C.(﹣3,12)D.(﹣3,﹣12)3.关于抛物线y1=(2+x)2与y2=(2﹣x)2的说法,不正确的是()A.y1与y2的顶点关于y轴对称B.y1与y2的图象关于y轴对称C.y1向右平移4个单位可得到y2的图象D.y1绕原点旋转180°可得到y2的图象4.抛物线y=ax2+bx+c与x轴的交点是(﹣4,0),(6,0),则抛物线的对称轴是()A.1 B.直线x=1 C.2 D.直线x=25.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.6.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y =x2﹣2x+1,则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,187.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒8.若函数y=(a﹣3)x2﹣2ax+a﹣与x轴有交点,且关于x的不等式组无解,则符合条件的整数a的和为()A.7 B.10 C.12 D.159.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①abc>0;②4a+b=0;③9a+c>3b;④5a+2c>0,其中正确的结论有()A.1个B.2个C.3个D.4个10.知:如图抛物线y=ax2+bx+与y轴交于点A,与x轴交于点B、点C.连接AB,以AB为边向右作平行四边形ABDE,点E落在抛物线上,点D落在x轴上,若抛物线的对称轴恰好经过点D,且∠ABD=60°,则这条抛物线的解析式为()A.y=﹣x2xB.y=﹣x2xC.y=﹣x2xD.y=﹣x2﹣xE.故函数的表达式为:y=﹣x2x二.填空题(共6小题)11.抛物线y=x2﹣2x,当y随x的增大而减小时x的取值范围为.12.某种火箭背向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=﹣5t2+160t+10表示.经过s,火箭到达它的最高点.13.已知点P(x,y)在抛物线y=(x﹣1)2+2的图象上,若﹣1<x<2,则y的取值范围是.14.若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k=0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=.15.开口向下的抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,当抛物线与x轴围成的封闭区域(不包含边界)内,仅有4个整数点(整数点就是横、纵坐标均为整数的点)时,a的取值范围是.16.将二次函数y=2x2向上平移1个单位,得到的抛物线的解析式是.三.解答题17.在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,m取满足条件的最小的整数(1)求此二次函数的解析式(2)当n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,求n的值=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),18.若抛物线上y1P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?19.已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.20.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.21.血橙以果肉酷似鲜血的颜色而得名,果实一般在1月下旬成熟,由于果农在生产实践中积累了丰富的经验,采取了留树保鲜技术措施,将鲜果供应期拉长到了5月初.重庆市万州区孙家村晚熟柑橘以血橙为主,主要销售市场是成都、重庆市区、万州城区,据以往经验,孙家村上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数).其销售量P(千克)与月份x之间的函数关系如图.(1)请你求出月销售量P(千克)与月份x之间的函数关系式(不必写出自变量的取值范围);(2)血橙在上半年1﹣5月的哪个月出售,可使销售金额W(元)最大?最大金额是多少(3)由于气候适宜以及留树保鲜技术的提高,预计该产区今年5月将收获60000千克的血橙,由于人力、物力等各方面成本的增加,孙家村决定,将5月的销售价格提高a%,当以提高后的价格销售50000千克血橙后,由于保存技术的限制,剩下的血橙制成一种新型研发出的果肉饼进行销售,每千克的血橙可生产0.8千克果肉饼,果肉饼的售价格在血橙提高后的价格的基础上将再提高a%,最后该产区将这批果肉饼全部售完后,血橙和果肉饼的销售总金额达到了480000元.求a的值.22.在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0),分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y =ax 2+bx +c (a ≠0)经过点D .(1)求点D 的坐标.(2)如图1,若该抛物线经过原点O ,且a =﹣.①求该抛物线的解析式;②连结CD .问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由;(3)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余.若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.23.如图1.已知直线l :y =﹣1和抛物线L :y =ax 2+bx +c (a ≠0),抛物线L 的顶点为原点,且经过点A (2,)直线y =kx +1与y 轴交于点F ,与抛线L 交于点B (x 1,y 1),C (x 2,y 2),且x 1<x 2.(1)求抛物线L 的解析式;(2)求证:无论k 为何值,直线l 总是与以BC 为直径的圆相切;(3)①如图2,点P 是抛物线L 上的一个动点,过点P 作PM ⊥l 于点M ,试判断PM 与PF 之间的数量关系,并说明理由;②将抛物线L 和点F 都向右平移2个单位后,得到抛物线L 1和点F 1,Q 是抛物线L 1上的一动点,且点Q在L的对称轴的右侧,过点Q作QN⊥l于点N,连接QA.求|QA﹣QN|的1最大值,并直接写出此时点Q的坐标.参考答案一.选择题1.解:A 、是二次函数,故本选项符合题意;B 、当a =0时,函数不是二次函数,故本选项不符合题意;C 、不是二次函数,故本选项不符合题意;D 、不是二次函数,故本选项不符合题意;故选:A .2.解:∵抛物线y =4(x +3)2+12,∴该抛物线的顶点坐标为(﹣3,12),故选:C .3.解:∵抛物线y 1=(2+x )2=(x +2)2,∴抛物线y 1的开口向上,顶点为(﹣2,0),对称轴为直线x =﹣2;抛物线y 2=(2﹣x )2=(x ﹣2)2,∴抛物线y 2的开口向上,顶点为(2,0),对称轴为直线x =2;∴y 1与y 2的顶点关于y 轴对称,∴它们的对称轴相同,y 1与y 2的图象关于y 轴对称,y 1向右平移4个单位可得到y 2的图象,∵y 1绕原点旋转180°得到的抛物线为y =﹣(x +2)2,与y 2开口方向不同, ∴关于抛物线y 1=(2+x )2与y 2=(2﹣x )2的说法,不正确的是D ,故选:D .4.解:∵抛物线与x轴的交点为(﹣4,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==1,即x=1.故选:B.5.解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选:A.6.解:∵得到函数解析y=x2﹣2x+1∴y=(x﹣1)2∴将新二次函数y=(x﹣1)2向下平移3个单位,再向右平移2个单位,得到的解析式为y=(x﹣1﹣2)2﹣3,即y=x2﹣6x+6又∵y=x2+bx+c∴b=﹣6,c=6故选:C.7.解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.8.解:当a﹣3≠0且△=4a2﹣4×(a﹣3)(a﹣)≥0,解得a>且a≠3,当a﹣3=0,函数为一次函数,它与x轴有一个交点,所以a>,解两个不等式得,因为不等式组无解,所以a≤5,所以a的范围为<a≤5,所以满足条件的a的值为0,1,2,3,4,5所以所有满足条件的整数a之和为0+1+2+3+4+5=15.故选:D.9.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a>0,∵抛物线与x轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣4a,∴4a+b=0,所以②正确;∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,所以③错误;把(﹣1,0)代入解析式得a﹣b+c=0,而b=﹣4a,∴c=﹣5a,∴5a+2c=5a﹣10a=﹣5a>0,所以④正确.故选:B.10.解:如下图所示,OA=,∠ABD=60°,则OB==1,过点B(﹣1,0),∵四边形ABDE平行四边形,则∠AED=∠ABD=60°,OH=OA=,同理可得:HE=1=AH,过点E(2,),将点B、E的坐标代入函数表达式得:,解得:,故函数的表达式为:y=﹣x2x故选:B.二.填空题11.解:∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴当y随x的增大而减小时x的取值范围为x<1,故答案为:x<1.12.解:函数的对称轴为:t=﹣=﹣=16,即经过16s,火箭到达它的最高点,故答案为16.13.解:∵抛物线y=(x﹣1)2+2,∴该函数开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点P(x,y)在抛物线y=(x﹣1)2+2的图象上,﹣1<x<2,1﹣(﹣1)=2,2﹣1=1,∴当x=1时,y取得最小值,此时y=2,当x=﹣1时,y取得最大值,此时y=(﹣1﹣1)2+2=6,∴﹣1<x<2,则y的取值范围是2≤y≤6,故答案为:2≤y≤6.=3,14.解:∵关于x的一元二次方程x2﹣2x+k=0的解一个为x1∴二次函数y=x2﹣2x+k与x轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x=1,∴二次函数y=x2﹣2x+k与x轴的另一个交点坐标为(﹣1,0),=﹣1.∴方程x2﹣2x+k=0另一个解x2故答案为﹣1.15.解:∵y=a(x+1)(x﹣3)=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a).当x=0时,y=a(x+1)(x﹣3)=﹣3a,∴抛物线与y轴的交点坐标为(0,﹣3a).则,解得:﹣≤a<﹣,故答案为:﹣≤a<﹣.16.解:将抛物线y=2x2向上平移1个单位,得到的抛物线的解析式为y=2x2+1.故答案为:y=2x2+1.三.解答题17.解:(1)∵二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,∴关于x的方程mx2﹣(2m+1)x+m﹣4=0有两个不相等的实数根,∴解得:m >﹣且m ≠0.∵m >且m ≠0,m 取其内的最小整数,∴m =1, ∴二次函数的解析式为y =x 2﹣3x ﹣3;(2)∵抛物线的对称轴为x =﹣=,∵1>0,∴当x ≤时,y 随x 的增大而减小.又∵n ≤x ≤1时,函数值y 的取值范围是﹣5≤y ≤1﹣n ,∴n 2﹣3n ﹣3=1﹣n ,1﹣3﹣3=﹣5,解得:n =1﹣.18.解:(1)k =4时,由交点式得y =a (x +1)(x ﹣4),(0,4)代入得a =﹣1,∴y =﹣3x 2+3x +4,则B (4,0),连OP ,设P (m ,﹣m 2+3m +4),S △BCP =S △OPB +S △OPB ﹣S △OBC ==﹣2(m ﹣2)2+8m =2时,最大值为8,∴P 的横坐标为2时有最大值.(2)a =1时,c =4,设y =x 2+bx +4,A (﹣1,0)代入得b =5,∴y=x2+5x+4.令y=0求得B(﹣4,0),则直线BC方程为y=x+4,过P作PH平行于y轴交直线BC于H,设P(n,n2+5n+4)、H(n,n+4),==﹣2(n+2)2+8n=﹣2面积最大值为8,此时P的横坐标为﹣2.(3)由(1)知,当面积最大时,P的横坐标等于B的横坐标的一半,由(2)知,面积最大时,P的横坐标等于B的横坐标的一半,故:可以推断,当面积最大时,P的横坐标等于B的横坐标的一半.19.解:(1)(﹣1,0)代入得0=1+2a+4a+2,∴,∴y=x2+x,∴另一交点为(0,0).(2)①整理得y=a(4﹣2x)+x2+2,令x=2代入y=6,故定点为(2,6),②∵y=x2﹣2ax+4a+2=(x﹣a)2+(﹣a2+4a+2),顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,当a=2时,纵坐标有最大值6,此时x=2,y=6,顶点(2,6),故定点(2,6)是所有顶点中纵坐标最大的点.20.解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:a=﹣,故函数的表达式为:y=﹣(x﹣8)2+8,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)点A、D关于函数对称轴对称,则设AD=2m,则点A(8﹣m,y),则AB=y=﹣(x﹣8)2+8=8﹣m2,设:w=AB+AD+DC=2m+2AB=﹣m2+2m+16,∵﹣<0,故w有最大值,当m=4时,w的最大值为20,故AB、AD、DC的长度之和的最大值是20.21.解:(1)设P=kx+b,将(1,70000),(5,50000)代入得:,解得∴P=﹣5000x+75000.(2)∵上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数)∴W=Py=(﹣5000x+75000)(x+2.5)=﹣2500x2+25000x+187500∴当x=﹣=5时,销售金额W(元)最大,最大金额是250000元.(3)设a%=t,5月份的销售价格y=×5+2.5=5由题意得:5(1+t)×50000+(60000﹣50000)×0.8×5(1+t)(1+)=480000 ∴25(1+t)+4(1+t)(1+t)=48∴化简得:6t2+35t﹣19=0∴(2t﹣1)(3t+19)=0∴t=50%或t=﹣(舍)故a=50.22.解:(1)过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),(2)①根据题意,得a=﹣,c=0,且a×32+b×3+c=1,解得:b=,∴抛物线的解析式为y=.②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴点P的坐标为().(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴P点坐标为(),综上所述,在抛物线上是否存在点P()或,使得∠POB与∠BCD 互余.(3)如图4,∵D(3,1),E(1,1),抛物线y=ax2+bx+c过点E、D,代入可得,解得,∴y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个.(i)当点Q在x轴的下方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;(ii)当点Q在x轴的上方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,∴3a+1<0,解得a<﹣;②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个.根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,∴,设Q(2a,﹣a)在直线OQ上,设直线OQ的解析式为y=kx,∴k=﹣,则直线OQ的解析式为y=﹣x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,∴方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根,∴,整理得:,解得:或(舍去),综上所示,a的取值范围为a<﹣或.23.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2;(2)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切;(3)①设点P(m, m2)、点M(m,﹣1),点F(0,1),则PF2=m2+(m2﹣1)2=(m2+4)2,PM=m2+1=(m2+4)=PF,即:PM与PF之间的数量关系为:PM=PF;②抛物线新抛物线的表达式为:y=(x﹣2)2…①,如图2,设平移后点F的对应点为F′(2,1),由①知:PM=PF,同理QN=QF′,故当A、F′、Q三点共线时,|QA﹣QN|有最大值,|QA﹣QN|的最大值=|QA﹣QF′|=AF′,则AF′==;将点A、F′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AF′的表达式为:y=x﹣…②,联立①②并解得:x=1或6(舍去1),故点Q(6,4);故:|QA﹣QN|的最大值为,此时点Q的坐标为(6,4).。

九年级数学二次函数的专项培优练习题(含答案)含答案

九年级数学二次函数的专项培优练习题(含答案)含答案

九年级数学二次函数的专项培优练习题(含答案)含答案一、二次函数1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.2.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.【解析】【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【详解】(1)由题意得,32 2a bba+-⎧⎪⎨-⎪⎩==,解得14ab-⎧⎨⎩==,∴抛物线的解析式为y=x2-4x,令y=0,得x2-2x=0,解得x=0或4,结合图象知,A的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),∵PA⊥BA∴∠PAF+∠BAE=90°,∵∠PAF+∠FPA=90°,∴∠FPA=∠BAE又∠PFA=∠AEB=90°∴△PFA∽△AEB,∴PF AFAE BE=,即244213x x x--=-,解得,x= −1,x=4(舍去)∴x2-4x=-5∴点P的坐标为(-1,-5),又∵B点坐标为(1,-3),易得到BP直线为y=-4x+1所以BP与x轴交点为(14,0)∴S△PAB=115531524⨯⨯+=【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.3.已知,抛物线y=x 2+2mx(m 为常数且m≠0).(1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A (-n+5,0),B(n-1,0)在该抛物线上,点M 为抛物线的顶点,求△ABM 的面积.(3)若点(2,p),(3,g ),(4,r)均在该抛物线上,且p<g<r ,求m 的取值范围.【答案】(1)抛物线与x 轴有2个交点,理由见解析;(2)△ABM 的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b 2-4ac 的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x 轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B 两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m 的值,进而求出抛物线的解析式,得出A,B,M 三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m 的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m 的取值范围,综上所述,求出m 的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m 的式子表示出p,g,r ,再代入 p<g<r 即可列出关于m 的不等式组,求解即可。

九年级数学二次函数的专项培优练习题含详细答案

九年级数学二次函数的专项培优练习题含详细答案

九年级数学二次函数的专项培优练习题含详细答案一、二次函数1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为P (2,9),与x 轴交于点A ,B ,与y 轴交于点C (0,5).(Ⅰ)求二次函数的解析式及点A ,B 的坐标;(Ⅱ)设点Q 在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q 的坐标;(Ⅲ)若点M 在抛物线上,点N 在抛物线的对称轴上,使得以A ,C ,M ,N 为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(5,45);(3)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M 的横坐标为1,∴y=8,∴M (1,8),N (2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC 可应用“一组对边平行且相等”得到平行四边形.3.如图,抛物线212222y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.(Ⅰ)求A B ,两点坐标.(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值. 【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)22(2)42(022)2S t t =--+<<,当2t =时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:2324m n =-=,或521524m n ==-,或32124m n =-= 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线212222y x x =-++, 令0y =,则212202x x -++=, 解得:2x =-或22x =,∴()()2,0,22,0A B -(Ⅱ)由抛物线212222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴2122,22,22p t t PQ p BQ t OQ t =-++==-=, ∴()()11122222222AOC PQB OCPQ S S S S p t t p =++=⨯⨯++⨯+⨯-⨯V V 梯形 11222222t pt p pt p t =+++-=++ 21222222t t t ⎛⎫=-++++ ⎪ ⎪⎭()22242(022)2t t =--+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线212222y x x =-++的对称轴为22x =, ∴设2122,2,2G m m H n ⎛⎫⎫-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()A ,①当AP 和HG 为对角线时,∴()211111,2022222222m m m n ⎛⎫⎛⎫=++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴324m n =-=, ②当AG 和PH 是对角线时,∴(()211111,2022222222m m m n ⎫⎛⎫=-+++=+⎪ ⎪⎪ ⎪⎭⎝⎭,∴15,24m n ==-, ③AH 和PG 为对角线时,∴(()211111,2202222222m m m n ⎛⎫⎛⎫=+-+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴124m n =-=, 即:满足条件的点m n 、的值为:34m n ==,或154m n ==-,或14m n == 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.4.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M82秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B的坐标为(0,3),∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴3=a+4,得a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,∴点C的坐标为(3,0),∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,∴0<m<3,点M的坐标为(m,﹣m2+2m+3),将y=0代入y=﹣3x+3,得x=1,∴点A的坐标(1,0),∵△ABM的面积为S,∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=()2123313 222m mm⨯-++⨯⨯+-,化简,得S=252m m--=21525228m⎛⎫--+⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=, ∵A ′H +A ′C ≥HC =2218233⎛⎫+= ⎪⎝⎭, ∴t ≥82, 即点M 在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.5.已知,抛物线y=x 2+2mx(m 为常数且m≠0).(1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A (-n+5,0),B(n-1,0)在该抛物线上,点M 为抛物线的顶点,求△ABM 的面积.(3)若点(2,p),(3,g ),(4,r)均在该抛物线上,且p<g<r ,求m 的取值范围.【答案】(1)抛物线与x 轴有2个交点,理由见解析;(2)△ABM 的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b 2-4ac 的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x 轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B 两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m 的值,进而求出抛物线的解析式,得出A,B,M 三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m 的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m 的取值范围,综上所述,求出m 的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m 的式子表示出p,g,r ,再代入 p<g<r 即可列出关于m 的不等式组,求解即可。

初三数学二次函数的专项培优练习题附详细答案

初三数学二次函数的专项培优练习题附详细答案

初三数学二次函数的专项培优练习题附详细答案一、二次函数1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

(2)点B的坐标为:(4,4)。

(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。

(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。

(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。

【详解】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。

∴这个二次函数的解析式为y=x2﹣3x。

(2)如图,过点B做BD⊥x轴于点D,令x 2﹣3x=0,解得:x=0或3。

∴AO=3。

∵△AOB 的面积等于6,∴12AO•BD=6。

∴BD=4。

∵点B 在函数y=x 2﹣3x 的图象上,∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。

又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4, ∴x 轴下方不存在B 点。

∴点B 的坐标为:(4,4)。

(3)存在。

∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 442=+=。

若∠POB=90°,则∠POD=45°。

九年级数学 二次函数的专项 培优练习题含详细答案

九年级数学 二次函数的专项 培优练习题含详细答案

九年级数学 二次函数的专项 培优练习题含详细答案一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.【答案】(1)y =-x 2+4x ;(2)C (3,3),面积为3;(3)P 的坐标为(5,-5);(4)52或5. 【解析】 试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C 的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P 所处象限的特点即可求;(4)分情况进行讨论,确定点M 、N ,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩ , ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.3.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.4.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.5.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°3=设DC为y=kx﹣33,0),可得:k3=联立两个方程可得:233133y xy x⎧=-⎪⎨=-⎪⎩,解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩,, 所以M 1(33,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=33,设EC 为y =kx ﹣3,代入(33,0)可得:k 33=, 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩,, 所以M 2(3,﹣2).综上所述M 的坐标为(33,6)或(3,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.6.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

人教版九年级数学上册第二十二章 《二次函数》培优训练题(含答案)

人教版九年级数学上册第二十二章 《二次函数》培优训练题(含答案)

人教版九年级数学上册第二十二章《二次函数》培优训练题(含答案)一.选择题1.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.2.抛物线y=x2的图象向左平移3个单位,所得抛物线的解析式为()A.y=x2﹣3 B.y=(x﹣3)2C.y=x2+3 D.y=(x+3)23.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点4.已知二次函数y=ax2﹣4ax+4,当x分别取x1、x2两个不同的值时,函数值相等,则当x取x1+x2时,y的值为()A.6 B.5 C.4 D.35.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m6.某商场降价销售一批名牌衬衫,已知所获利利y(元)与降价金额x(元)之间满足函数关系式y=﹣2x2+60x+800,则获利最多为()A.15元B.400元C.800元D.1250元7.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b8.已知二次函数y=mx2﹣3mx﹣4m(m≠0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C 且∠ACB=90°,则m的值为()A.±2 B.±4 C.±D.±9.抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④二.填空题 10.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为 . 11.若抛物线y =a (x ﹣h )2+k 经过(﹣1,0)和(5,0)两点,则关于x 的一元二次方程a (x +h ﹣2)2+k =0的解为 .12.抛物线经过原点O ,还经过A (2,m ),B (4,m ),若△AOB 的面积为4,则抛物线的解析式为 . 13.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m /h 的速度上涨,那么达到警戒水位后,再过 h 水位达到桥拱最高点O .14.如图,抛物线解析式为y =x 2,点A 1的坐标为(1,1),连接OA 1;过A 1作A 1B 1⊥OA 1,分别交y 轴、抛物线于点P 1、B 1;过B 1作B 1A 2⊥A 1B 1分别交y 轴、抛物线于点P 2、A 2;过A 2作A 2B 2⊥B 1A 2,分别交y 轴、抛物线于点P 3、B 2…;则点P n 的坐标是 .三.解答题16.已知抛物线G :y =mx 2﹣2mx ﹣3有最低点P .(1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)若点P 关于坐标系原点O 的对称点仍然在抛物线上,求此时m 的值;(3)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围.17.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降2元,则每月可多销售10条,设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于4175元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?18.在平面直角坐标系中,抛物线y =mx 2﹣4mx +n (m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且S △ABC :S △BCE =3:4.(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上,①求直线CE 的解析式;②求抛物线的解析式.19.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为ts.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.20.某班“数学兴趣小组”对函数y=﹣x2+3|x|+4的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…﹣6 0 4 6 6 4 6 6 4 0 m…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)直线y=kx+b经过(,),若关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,则b的取值范围为.参考答案一.选择题1.解:由一次函数解析式为:y=kx+2可知,图象应该与y轴交在正半轴上,故A、B、C错误;D符合题意;故选:D.2.解:∵抛物线y=x2的图象向左平移3个单位,∴平移后的抛物线的顶点坐标为(﹣3,0),∴所得抛物线的解析式为y=(x+3)2.故选:D.3.解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.4.解:∵y=ax2﹣4ax+4=a(x﹣2)2﹣4a+4,当x分别取x1、x2两个不同的值时,函数值相等,∴x1+x2=4,∴当x取x1+x2时,y=a(4﹣2)2﹣4a+4=4,故选:C.5.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.6.解:对于抛物线y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵a=﹣2<0,∴x=15时,y有最大值,最大值为1250,故选:D.7.解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=﹣(x﹣a)(x﹣b)+1的图象与x轴交于点(m,0)、(n,0),∴将y=﹣(x﹣a)(x﹣b)+1的图象往下平移一个单位可得二次函数y=﹣(x﹣a)(x﹣b)的图象,二次函数y=﹣(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.8.解:设y=0,则=mx2﹣3mx﹣4m=0,解得:m=4或m=﹣1,∵点A在点B的左侧,∴OA=1,OB=4,设x=0,则y=﹣4m,∴OC=|﹣4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,∴OC2=OA•OB,即16m2=4,解得:m=±,故选:C.9.解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,而抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a﹣b+c<0,所以②错误;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∵x=﹣1时,y=2,即a﹣b+c=2,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),即x=﹣1时,y有最大值2,∴抛物线与直线y=2只有一个公共点,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:A.二.填空题(共5小题)10.解:∵抛物线的顶点坐标为(2,9),∴抛物线的对称轴为直线x=2,∵抛物线在x轴截得的线段长为6,∴抛物线与x轴的交点为(﹣1,0),(5,0),设此抛物线的解析式为:y=a(x﹣2)2+9,代入(5,0)得,9a+9=0,解得a=﹣1,∴抛物线的表达式为y=﹣(x﹣2)2+9,故答案为y=﹣(x﹣2)2+9.11.解:将抛物线y=a(x﹣h)2+k关于y轴对称得新抛物线为y′=a(x+h)2+k,∵抛物线y=a(x﹣h)2+k经过(﹣1,0)和(5,0)两点,∴抛物线为y′=a(x+h)2+k与x轴的交点为(﹣5,0)和(1,0),将新抛物线y′=a(x+h)2+k向右平移2个单位得抛物线y″=a(x+h﹣2)2+k,其与x轴的两个交点为(﹣3,0)和(3,0),∴方程a(x+h﹣2)2+k=0的解为x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.12.解:∵抛物线经过A(2,m),B(4,m),∴对称轴是:x=3,AB=2,∵△AOB的面积为4,∴AB•|m|=4,m=±4,当m=4时,则A(2,4),B(4,4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,4)代入得:,解得:,∴抛物线的解析式为:y=﹣(x﹣3)2+,即y=﹣x2+3x;当m=﹣4时,则A(2,﹣4),B(4,﹣4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,﹣4)代入得:,解得:,∴抛物线的解析式为:y=(x﹣3)2﹣=x2﹣3x;综上所述,抛物线的解析式为:y=﹣x2+3x或y=x2﹣3x,故答案为y=﹣x2+3x或y=x2﹣3x.13.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==4(h),答:再过4小时水位达到桥拱最高点O.故答案为:4.14.解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴P n(0,n2+n),故答案为(0,n2+n).三.解答题(共6小题)15.证明:(1)∵点E为CD中点,∴CE=DE.∵EF=BE,∴四边形DBCF是平行四边形.(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC.∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°.在Rt△FCG中,CF=6,∴,.∵DF=BC=4,∴DG=1.在Rt△DCG中,CD==216.解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3;(2)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,∴抛物线的顶点P为(1,﹣m﹣3),∴点P关于坐标系原点O的对称点(﹣1,m+3),∵对称点仍然在抛物线上,∴m+3=m+2m﹣3,解得m=3;(3)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1).17.解:(1)由题意可得:y=100+×10=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为:y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,∴当x=70时,w有最大利润,最大利润是4500元;∴应降价80﹣70=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是4500元;(3)由题意得:﹣5(x﹣70)2+4500=4175+200,解得:x1=65,x2=75,∵抛物线开口向下,对称轴为直线x=70,∴当65≤x≤75时,符合该网店要求,而为了让顾客得到最大实惠,故x=65.∴当销售单价定为65元时,既符合网店要求,又能让顾客得到最大实惠.18.解:(1)如图,过点C作CF⊥AB于F,∵抛物线y=mx2﹣4mx+n(m>0),∴对称轴为直线x=2,∴AF=BF,点F(2,0),即OF=2,∵S△ABC :S△BCE=3:4,∴S△ABC =3S△ABE,∴3××AB×OE=AB×CF,∴CF=3OE,∵CF⊥AB,OE⊥AB,∴CF∥OE,∴,∴AF=3OA,∵OF=OA+AF=2,∴OA=,AF=,∴点A坐标为(,0),∵AB=2AF=3,∴OB=,∴点B坐标为(,0);(2)①∵抛物线y=mx2﹣4mx+n(m>0)过点A(,0),∴0=m﹣2m+n,∴n=m,∴y=mx2﹣4mx+n=m(x﹣2)2﹣m,∴点C(2,﹣m),如图2,过点C作CF⊥OB于F,CH⊥y轴于H,又∵∠FOH=90°,∴四边形OFCH是矩形,∴CF=OH=m,∵将△BCO绕点C逆时针旋转一定角度后,点B与点A重合,点O恰好落在y轴上,∴OC=O'C,OB=O'A=,又∵CH⊥OO',∴OO'=2OH=m,∵OA2+O'O2=O'A2,∴+m2=,∴m=,∴点C坐标为(2,﹣),设直线CE的解析式为y=kx+b,∴,解得:∴直线CE的解析式为y=﹣x+;②∵m=,∴y=x2﹣x+.19.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.20.解:(1)把x=5代入函数y=﹣x2+3|x|+4中,得y=﹣25+15+4=﹣6,∴m=﹣6,故答案为:﹣6;(2)连线得,(3)由函数图象可知①该函数的图象关于y轴对称:②该函数的图象有最高点:(答案不唯一)(4)∵直线y=kx+b经过(,),∴,∴k=∵关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,∴x2﹣3x﹣4+kx+b=0和方程x2+3x﹣4+kx+b=0各有两个不相等的实数根,即方程x2﹣(3﹣)x﹣4+b=和0x2+(3+)x﹣4+b=0各有两个不相等的实数根,∴,解得b≠,且b>或b<,∴b的取值范围为b>或b<.故答案为:b>或b<.。

九年级数学二次函数培优试卷与答案

九年级数学二次函数培优试卷与答案

二次函数二、填空题9.在二次函数y=-2〔x-3〕1.一次函数y(2)4的图象经过原点,那么k的值为〔〕.2kxk 是.10.二次函数y=ax2+bx+c〔a≠0〕的下图,以下结论:①2a+b=0;②a+c2+bx+c〔a≠0〕的图图,以下结论:①2a+b=0;②a+cA.2B.-2C.2或-2D.3>b;③抛物线与x轴的另一个交点为〔3,0〕;④abc>0.其中正确的结论是22.对于二次函数y=〔x-1〕+2的图象,以下说法正确的选项是〔〕〔填写序号〕.A、开口向下B、对称轴是x=-1C、顶点坐标是〔1,2〕D、与x轴有两个交点3.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为〔〕11.二次函数2y3x的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数2y3x的菱形OBAC12.如图,平行于x轴的直线AC分2y=x〔x≥0〕与14.二次2+1〔a≠0〕的图象经过点〔1,1〕,那么a+b+1的值是〔〕的图象于B,C两点C作y轴的平行线交y1的点D,直线DE∥ACA.﹣3B.﹣1C.2D.32 5.抛物线y(x3)2可以由抛物线2yx平移得到,那么以下平移过程正确的选项是〔〕交y的图象于点E,那么2D EAB.A.先向左平移3个单位,再向上平移2个单位13.a3,点A〔a,y1〕,B〔a+1,y2〕都在二次函数B.先向右平移3个单位,再向下平移2个单位上,那么y1、y2的大小关系是.C.先向左平移3个单位,再向下平移2个单位D .先向2+1的图象上,x1>x2>1,6.对于二次函数y=-x那么y1y2.〔填“>〞“=〞或“<〞〕.2+2x.有以下四个结论:2+2x.有以下四个结论:①它的对称轴是直线x 2+2x 1,y2=-x22,那么当x2>x1时,有y2>y1;2+2x2+2x③它的图象与x轴的两个交点是〔0,0〕和〔2,0〕;④当0<x<2时,y>0.三、计算题其中正确结论的个数为〔〕15.抛物线y=ax2+bx+c经过点A〔-1,0〕,且经过直线y=x-3与x轴的交点B及与y轴的交2+bx+c经过点A〔-1,0〕,且经过直线y=x-3与x轴的交点B及与y轴的交A.1B.2C.3D.4点C.7.如图,二次函数2yaxbxc与一次函数y2kxm的图像相交1〔1〕求抛物线的解析式;〔2〕求抛物线的顶点坐标;于点A〔-3,5〕,B〔7,2〕,那么能使yy成立的x的取值X围是〔〕12〔3〕假设点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.A.2x5B.x3或x7C.3x7D.x5或x2 8b 〕,C 〔-1,c 〕三点.四、解答题〔1〕请直线写出点A 坐标及a 的值;16.水果批发市场有一种高档水果,如果每千克盈利〔毛利润〕10元,每天可售出500千克.经市场调 〔2〕当直线l 过点B 时,求k 的发现,在进货价不,假设每千克涨价1元,日销量20千克. 〔3〕在y 轴上一点P 到A,C 的距离和最小,求P 点坐标;〔1〕假设以每千克能盈利18元的单价出售,问每天〔4〕在〔2〕的条件下,x 取值时,ax 2<kx+2k+2. 〔2〕现市场要保证每天1〔3〕现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日10219.如图,抛物线y=-x 2+bx+c的顶点为D,与x轴交于A〔-1,0〕、B〔3,0〕,元,假设剩下的每天总纯利润要到达5100元,那么每千克涨价应为多少?与y轴交于点C.〔1〕求该抛物线的解析式;〔2〕假设点P为线段BC上的一点〔不与B、C重合〕,PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;〔3〕在〔2〕的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?假设存在,直接写出点Q的坐标.17.二次函数的图象以A(1,4)为顶点,且过点B(2,5).〔1〕求该二次函数的解析式;20.如图,在平面直角坐标系中,二次函数y=﹣2x+bx的图像经过点A〔4,0〕.点〔2〕求该二次函数图象与坐标轴的交点坐标;E是过点C〔2,0〕且与y轴平行的直线上的一个动点,过线段CE的中点G作DF⊥CE交二次函数的图像于D、F两点.〔1〕求二次函数的表达式.〔2〕当点E落在二次函数的图像的顶点上时,求DF的长.〔3〕当四边形CDEF是正方形时,请直接写出点E的坐标.21.如图,抛物线y=x 2+bx+c与x轴交于A〔﹣1,0〕,B〔3,0〕两点,顶点M关于x轴的对称点是M′.18.如图,抛物线y=ax2+bx〔a>0〕经过原点O和点A〔2,0〕.2+bx〔a>0〕经过原点O和点A〔2,0〕.〔1〕求抛物线的解析式;〔1〕写出抛物线的对称轴与x轴的交点坐标;〔2〕假设直线AM′与此抛物线的另一个交点为C,求△CAB的面积;〔2〕点〔x1,y1〕,〔x2,y2〕在抛物线上,假设x1<x2<1,比拟y1,y2的大小;〔3〕是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?〔3〕点B〔-1,2〕在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.假设存在,求出此抛物线的解析式;假设不存在,请说明理由.2本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2023年九年级数学下册中考综合培优测试卷:二次函数【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数一、单选题1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当x<0时,y随x增大而增大,其中结论正确的个数是( )A.4个B.3个C.2个D.1个2.如图图形中阴影部分的面积相等的是( )A.①②B.②③C.①③D.①②③3.将二次函数y=x22个单位后,所得图象的函数表达式是( )A.y=(x-2)2B.y=(x+2)2C.y=x2-2D.y=x2+24.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( )A.1B.-1C.2D.-2m1m25.已知直线y=kx与抛物线y=ax2+bx+c在坐标系中如图所示,和是方程m1m2m1m2ax2+(b-k)x+c=0的两个根,且>,则函数y= x+在坐标系中的图象大致为( )A .B .C .D .6.已知二次函数y=ax2+bx+3自变量x 的部分取值和对应函数值y 如表:则在实数范围内能使得y+5>0成立的x 取值范围是( )A .x>-2B .x<-2C .-2<x<4D .x>-2或x<47.已知点A 、B 的坐标分别为(1,0)、(2,0).若顶点在x 轴下方的二次函数y=x 2+(a﹣3)x+3的图象与线段AB 恰好只有一个交点,则a 的取值范围( ) A .B .−1≤a <−12−1≤a ≤12C .D .﹣1<a≤112<a <28.下列函数中,y 随x 的增大而增大的是( )A .y=﹣2x+3B .y=﹣ (x <0)2xC .y=D .y=﹣2x 2(x >0)2x9.如图,坐标平面上,二次函数y =﹣x 2+4x﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .C .D .12434510.如图,直线yx +3分别与x 轴,y 轴交于点A 、点B ,抛物线y =x 2+2x ﹣2与y 轴交于点C ,=−34点E 在抛物线y =x 2+2x ﹣2的对称轴上移动,点F 在直线AB 上移动,CE +EF 的最小值是( )A .4B .4.6C .5.2D .5.611.把抛物线y=3x 2向右平移一个单位,则所得抛物线的解析式为 ( )A .y=3(x+1)2B .2C .y=3x 2+1D .y=3x 2-112.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .二、填空题13.若二次函数y =ax 2-3x +a 2-1的图象开口向下且经过原点,则a 的值是  .14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >3b ;(3)8a+7b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C ( ,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x﹣5)=﹣3的两根72为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论是  .15.抛物线y =ax 2+bx+c 的部分图象如图所示,则当y >0时,x 的取值范围是 16.将抛物线 向下平移3个单位,所得的抛物线的表达式是 .y =2x 217.抛物线y=x 2+2向左平移2个单位得到的抛物线表达式为  .18.如图,抛物线y =ax 2+bx+c (a≠0)与y 轴交于点C ,与x 轴交于A ,B 两点,其中点B 的坐标为B (4,0),抛物线的对称轴交x 轴于点D ,CE ∥AB ,并与抛物线的对称轴交于点E .现有下列结论:①a >0;②b >0;③4a+2b+c <0;④AD+CE =4.其中所有正确结论的序号是  .三、解答题19.已知y=(m+1),当m 为何值时,是二次函数?xm 2−2m−1+(m−3)x +m 20.已知二次函数y=﹣x 2﹣2x ,用配方法把该函数化为y=a (x﹣h )2+c 的形式,并指出函数图象的对称轴和顶点坐标.21.已知:二次函数y=(n﹣1)x 2+2mx+1图象的顶点在x 轴上.(1)请写出m与n的关系式,并判断已知中函数图象的开口方向;(2)是否存在整数m,n的值,使函数图象的对称轴与x轴的交点横坐标为整数?若存在,请求出m,n的值;若不存在,请说明理由;(3)若y关于x的函数关系式为y=nx2﹣m2x﹣2n﹣2①当n≠0时,求该函数必过的定点坐标;②探索这个函数图象与坐标轴有两个交点时n的值.22.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).求此二次函数的解析式.23.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,求该抛物线的解析式并写出顶点坐标.24.二次函数图象过A(﹣1,0),B(2,0),C(0,﹣2)三点,求此抛物线的解析式.答案解析部分1.【答案】B2.【答案】B3.【答案】A4.【答案】A5.【答案】D6.【答案】C7.【答案】B8.【答案】B9.【答案】D10.【答案】C11.【答案】B12.【答案】B13.【答案】-114.【答案】①③⑤15.【答案】﹣1<x<316.【答案】y=2x2−317.【答案】y=(x+2)2+218.【答案】②④19.【答案】解:根据题意得:原函数为二次函数,则有{m+1≠0 m2−2m−1=2解得:m=3.20.【答案】解:y=﹣x2﹣2x,=﹣(x2+2x)=﹣(x2+2x+1﹣1)=﹣(x+1)2+1即对称轴是直线x=﹣1,顶点坐标是(﹣1,1)21.【答案】解:(1)∵二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上,∴4m2﹣4(n﹣1)=0,∴n﹣1=m2,∴n=m2+1,∵n﹣1≠0,且m 2≥0∴n﹣1>0,∴图象开口向上;(2)∵y=(n﹣1)x 2+2mx+1,∴对称轴x=,−b 2a=−m n−1=1m 要使为整数,−1n ∵m ,n 为整数,∴只要m=±1,此时n=2,∴存在m=±1,n=2,符合要求;(3)①y=nx 2﹣(n﹣1)x﹣2n﹣2=n (x 2﹣x﹣2)+x﹣2,令x 2﹣x﹣2=0,得x=﹣1或2,所以必过的定点为(2,0),(﹣1,﹣3),②若n=0,则y=x﹣2,直线与坐标轴有两个交点,若n≠0:b 2﹣4ac=(n﹣1)2+4n (2n+2)=(3n+1)2≥0,当抛物线过原点时,n=﹣1,此时图象与坐标轴有两个交点,当抛物线不过原点时,n=时,b 2﹣4ac=0,图象与x 轴,y 轴各有1个交点,−13综上,当n=0或﹣1或时,函数图象与坐标轴有两个交点.−1322.【答案】解:将点A (0,4)与B (1,﹣2)代入解析式,得: , {c =4−2+b +c =−2解得: ,{b =−4c =4则此函数解析式为y =﹣2x 2﹣4x+4.23.【答案】解:∵A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,∴代入得 ,{c =3−4+2b +c =3解得:b=2,c=3,∴抛物线的解析式为:y=﹣x 2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4)24.【答案】解:由题意得:设 ,y =a(x +1)(x−2)点C (0,﹣2)代入: ,-2=a(0+1)(0−2)∴a =1,y=(x+1)(x−2)∴,y=x2−x−2即.。

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为  .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE=  ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。

九年级数学二次函数的专项培优练习题含答案解析

九年级数学二次函数的专项培优练习题含答案解析

九年级数学二次函数的专项培优练习题含答案解析一、二次函数1.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=12AM×EM=12.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC∵FG=,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m表示出矩形PMNQ的周长.2.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.【答案】(1)y=38x2﹣34x﹣3(2)运动1秒使△PBQ的面积最大,最大面积是9 10(3)K1(1,﹣278),K2(3,﹣158)【解析】【详解】试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣9 10(t﹣1)2+910.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=34x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=94.则根据图形得到:S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m),把相关线段的长度代入推知:﹣34m2+3m=94.易求得K1(1,﹣278),K2(3,﹣158).解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834ab ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3).在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910.当△PBQ 存在时,0<t <2 ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩,解得3 k4 c3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,34m﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=910.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.3.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+14(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.【答案】(1) y=-x2+2x+3;(2)223(03){3(3)d t t td t t t=-+<<=->;(3)t=1,2,2)和(12,2).【解析】【分析】(1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐标,就可以得出直线的解析式,就可以求出B的坐标,在直角三角形AOC中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n,y=ax2+bx+3=3,∴OC=3=n . 当y=0,∴-x+3=0,x=3=OB , ∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1, ∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3, 得9330{30a b a b ++=-+=, 解得:1{2a b =-= ∴抛物线的解析式:y=-x 2+2x+3; (2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3), Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|="|" t 2-3t |∴223(03){3(3)d t t t d t t t =-+<<=->; ∵d ,e 是y 2-(m+3)y+14(5m 2-2m+13)=0(m 为常数)的两个实数根, ∴△≥0,即△=(m+3)2-4×14(5m 2-2m+13)≥0 整理得:△= -4(m -1)2≥0,∵-4(m -1)2≤0, ∴△=0,m=1,∴ PQ 与PH 是y 2-4y+4=0的两个实数根,解得y 1=y 2=2 ∴ PQ=PH=2,∴-t+3=2,∴t="1," ∴此时Q 是抛物线的顶点,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,∵LP=MP ,PQ=PH ,∴四边形LQMH 是平行四边形, ∴LH ∥QM ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴LH=MH ,∴平行四边形LQMH 是菱形,∴PM ⊥QH ,∴点M 的纵坐标与P 点纵坐标相同,都是2, ∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x 2=1-2 综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2).4.如图,抛物线21222y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.(Ⅰ)求A B ,两点坐标.(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)22(2)42(022)2S t t =--+<<,当2t =时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:234m n ==,或521524m n ==-,或32124m n =-= 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论. 【详解】解:(Ⅰ)抛物线212222y x x =-++, 令0y =,则2122022x x -++=, 解得:2x =-或22x =, ∴()()2,0,22,0A B - (Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q , ∵P 的横坐标为t ,∴设(),P t p , ∴2122,22,2p t t PQ p BQ t OQ t =-++==-=, ∴()()11122222222AOC PQB OCPQ S S S S p t t p =++=⨯⨯++⨯+⨯-⨯V V 梯形 11222222t pt p pt p t =+++-=++ 21222222t t t ⎛⎫=-++++ ⎪ ⎪⎭()22242(022)t t =--+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =,∴)P,∵抛物线21222y x x =-++的对称轴为2x =,∴设21,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()A , ①当AP 和HG 为对角线时,∴()211111,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭,∴324m n =-=, ②当AG 和PH 是对角线时,∴(()211111,2022222222m m m n ⎫⎛⎫=-+++=+⎪ ⎪⎪ ⎪⎭⎝⎭,∴15,24m n ==-, ③AH 和PG 为对角线时,∴(()211111,2202222222m m m n ⎛⎫⎛⎫=+-+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴124m n =-=, 即:满足条件的点m n 、的值为:324m n =-=,或15,24m n ==-,或124m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.5.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ.①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题.详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x2+2x+3-(-x+54)=-x2+3x+74,∴S△DPQ=12DE•(x Q-x P)=-2x2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .6.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2.∵EG 关于y 轴对称,∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG设点E 的坐标为(n ,n +3),点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n∵DE =DC =4,∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3)将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1).∴EC =22(0)(31)k k -+++=22816k k ++.∵EC =CD =4,∴2k 2+8k +16=16,解得k 1=0(舍去),k 2=﹣4.∴点E 的坐标为(﹣4,﹣1)将点E 上移1个单位长度得点G .∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.如图,在平面直角坐标系中,直线483y x =-+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.(1)求抛物线的解析式;(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似;(3)当△ADE 为等腰三角形时,求t 的值; (4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由.【答案】(1)抛物线的解析式为228833y x x =-++; (2)t 的值为3011或5013; (3)t 的值为103或6017或258; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8).【解析】(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.解:(1)A (6,0),B (0,8),依题意知36240{8a a c c -+==,解得2{38a c =-=, ∴228833y x x =-++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t ,①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴3011t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴5013t =; 综上所述,t 的值为3011或5013. (3) ①当AD=AE 时,t=10-2t ,∴103t =; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,AH=()31025t -,∴()61025t t -=,∴6017t =; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35t ,∴61025t t -=,∴258t =; 综上所述,t 的值为103或6017或258. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴2288833x x -++=-,解得2x =±∵x ﹥0,∴2x =+∴()28+-.综上所述,符合条件的点F 存在,共有两个1F (4,8),2(2F +,-8).“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.9.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.10.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.11.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

九年级数学二次函数的专项培优 易错 难题练习题(含答案)含答案解析

九年级数学二次函数的专项培优 易错 难题练习题(含答案)含答案解析

九年级数学二次函数的专项培优 易错 难题练习题(含答案)含答案解析一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y xy x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题;(3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC =时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ PO AC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0);∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.3.如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3).(1)求抛物线y =x 2+bx +c 的表达式;(2)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标;(3)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值.【答案】(1)y=x 2﹣4x+3;(2)(2,﹣1);(3)42 【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D (2,y ),利用两点间的距离公式得到BC 2=32+32=18,DC 2=4+(y ﹣3)2,BD 2=(3﹣2)2+y 2=1+y 2,然后讨论:当BD 为斜边时得到18+4+(y ﹣3)2=1+y 2;当CD为斜边时得到4+(y ﹣3)2=1+y 2+18,再分别解方程即可得到对应D 的坐标;(3)先证明∠CEF =90°得到△ECF 为等腰直角三角形,作PH ⊥y 轴于H ,PG ∥y 轴交BC 于G ,如图2,△EPG 、△PHF 都为等腰直角三角形,则PE 2,PF 2,设P (t ,t 2﹣4t +3)(1<t <3),则G (t ,﹣t +3),接着利用t 表示PF 、PE ,这样PE +EF =2PE +PF =﹣2t 22,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.4.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.6.如图1,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:12S S 的最大值; ②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是45;②点D的坐标是(2,3)- 【解析】 【分析】(1)根据题意得到A (-4,0),C (0,2)代入y=-12x 2+bx+c ,于是得到结论; (2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,∠DCF=2∠BAC=∠DGC+∠CDG ,解直角三角形即可得到结论. 【详解】解:(1)根据题意得A (-4,0),C (0,2),∵抛物线y=-12x 2+bx+c 经过A .C 两点, ∴1016422b c c⎧-⨯-+⎪⎨⎪⎩==,∴3 b=-2 c=2⎧⎪⎨⎪⎩,抛物线解析式为:213222y x x=--+ ;(2)①令0y=,∴2132022x x--+=解得:14x=- ,21x=∴B(1,0)过点D作DM x⊥轴交AC于M,过点B作BN x⊥轴交AC于点N,∴DM∥BN∴DME BNE∆∆∽∴12S DE DMS BE BN==设:213222D a a a⎛⎫--+⎪⎝⎭,∴122M a a⎛⎫+⎪⎝⎭,∵()10B,∴51,2N⎛⎫⎪⎝⎭∴()22121214225552a aS DMaS BN--===-++∴当2a=-时,12SS的最大值是45;②∵A(-4,0),B(1,0),C(0,2),∴AC=25,BC=5,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(-32,0),∴PA=PC=PB=52,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=43,过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=12,即RC:DR=12,令D(a,-12a2-32a+2),∴DR=-a,RC=-12a2-32a,∴(-12a2-32a):(-a)=1:2,∴a1=0(舍去),a2=-2,∴x D=-2,∴-12a2-32a+2=3,∴点D的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.7.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+5P35+51+5P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.8.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可; (2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.9.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x 2﹣2x+3;(2)抛物线与x 轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y 轴的交点坐标;令y=0,可求得抛物线与x 轴交点坐标;(3)由(2)可知:抛物线与x 轴的交点分别在原点两侧,由此可求出当抛物线与x 轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a (x+1)2+4,将B (2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x 2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y 轴的交点为:(0,3),令y=0,﹣x 2﹣2x+3=0,解得:x 1=﹣3,x 2=1,即抛物线与x 轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x 轴的交点为M 、N (M 在N 的左侧),由(2)知:M (﹣3,0),N (1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.10.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

九年级数学二次函数的专项培优练习题(含答案)及答案

九年级数学二次函数的专项培优练习题(含答案)及答案

九年级数学二次函数的专项培优练习题(含答案)及答案一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题3.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF , ∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.4.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可; (2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可.【详解】(1)()()()80802320w x y x x =-=--+,2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-;(2)()2224802560021203200w x x x =-+-=--+,2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.(3)当2400w =时,()2212032002400x --+=.解得:12100140x x ,.== ∵想卖得快,2140x∴=不符合题意,应舍去.答:销售单价应定为100元.5.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1113+0)、N1131);M2113+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.【详解】(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:203a a cc++=⎧⎨=⎩,解得:13a c =-⎧⎨=⎩, ∴抛物线C 1的解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4, 所以点G 的坐标为(1,4);(2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k , 过点G′作G′D ⊥x 轴于点D ,设BD′=m ,∵△A′B′G′为等边三角形,∴G′D=3B′D=3m ,则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩, ∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角,∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°,又∵△AOQ ≌△PQN ,∴OQ=QN ,∠AOQ=∠PQN ,∴∠MOQ=∠HQN ,∴△OQM ≌△QNH (AAS ),∴OM=QH ,即x=﹣x 2+2x+2+1,解得:x=1132±(负值舍去), 当x=1132+时,HN=QM=﹣x 2+2x+2=1312-,点M (1132+,0), ∴点N 坐标为(1132++1312-,﹣1),即(13,﹣1); 或(113+﹣131-,﹣1),即(1,﹣1); 如图3,同理可得△OQM ≌△PNH ,∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M 1113+0)、N 1131);M 2113+0)、N 2(1,﹣1);M 3(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.6.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】【分析】 (1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1). ∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x .设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上.设O 'C '与x 轴交于点E ,与直线OD 交于点P ;设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+ 当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题的关键是求出S的表达式,注意图形面积的计算方法.7.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2.∴P (1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.8.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】(1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.9.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x 元. (1)写出销售量y (件)和获得利润w (元)与销售单价x (元)之间的函数关系; (2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【答案】(1)y =﹣10x+1000;w=﹣10x 2+1300x ﹣30000(2)商场销售该品牌玩具获得的最大利润是8640元.【解析】【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y =600﹣10(x ﹣40),再利用w= y•(x ﹣30)即可表示出w 与x 之间的关系式;(2)先将w =﹣10x 2+1300x ﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x =46时有最大值,代入求值即可解题.【详解】解:(1)依题意,易得销售量y (件)与销售单价x (元)之间的函数关系:y =600﹣10(x ﹣40)=﹣10x+1000获得利润w (元)与销售单价x (元)之间的函数关系为:w =y•(x ﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65∴当44≤x≤46时,y随x的增大而增大∴当x=46时,w最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元.【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.10.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=22PG,PF2,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t22,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.11.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=22﹣1时,点P的坐标为(0,2)和(0,223);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12BG•x N﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=2282k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4), ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2,∴点B (1,2),则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =12BG•(x N ﹣1)-12BG•(x M -1)=1, ∴x N ﹣x M =1,由2421y kx k y x x =-+⎧⎨=--+⎩得:x 2+(k ﹣2)x ﹣k+3=0, 解得:x=()()22243k k k -±---=228k k -±-, 则x N =228k k -+-、x M =228k k ---, 由x N ﹣x M =1得28k -=1,∴k=±3,∵k <0,∴k=﹣3;(3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m ,∴C (0,1+m )、D (2,1+m )、F (1,0), 设P (0,t ),(a )当△PCD ∽△FOP 时,PC FO CD OP =, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC PO CD OF =, ∴121m t t +-=,∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时,△=(1+m )2﹣8=0,解得:1(负值舍去),此时方程①有两个相等实数根t 1=t 2,方程②有一个实数根t=3, ∴﹣1,此时点P 的坐标为(0)和(0); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0, 解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2,方程②有一个实数根t=1,∴m=2,此时点P 的坐标为(0,1)和(0,2);综上,当﹣1时,点P 的坐标为(0)和(0,3); 当m=2时,点P 的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN 的面积求得点N 与点M 的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.12.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.【答案】(1)-3;(2)坐标(-1,1);(3)Q ()4,1-.【解析】【分析】(1)利用抛物线解析式得到A 、B 、C 三点坐标,然后利用三角形面积公式列出方程解出a ;(2)利用第一问得到A 、B 、C 三点坐标,求出AC 解析式,找到AC 垂直平分线的解析式,与AB 垂直平分线解析式联立,解出x 、y 即为圆心坐标;(3)过点P 做PD ⊥x 轴,PD =d ,发现△ABP 与△QBP 的面积相等,得到A 、D 两点到PB 得距离相等,可得AQ PB ∥,求出PB 解析式,与二次函数解析式联立得到P 点坐标,又易证ABQ QPA ∆∆≌,得到BQ =AP 26Q 点坐标,点与点的距离列出方程,解出Q 点坐标即可【详解】(1)解:由题意得()()1y x x a =---由图知:0a <所以A (,0a ),()10B ,,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()10B ,,()0,3C ∴直线AC 得解析式为:3y x =+AC 中点坐标为33,22⎛⎫-⎪⎝⎭ ∴AC 的垂直平分线为:y x =- 又∵AB 的垂直平分线为:1x =-∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴由题意得:PD =d ,∴12ABP S PD AB ∆=⋅ =2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠易得:ABQ QPA ∆∆≌∴BQ =AP 26设Q (m ,-1)(0m <)∴()221126m -+= 4m =-∴Q ()4,1-.【点睛】本题考查二次函数综合性问题,涉及到一次函数、三角形外接圆圆心、全等三角形等知识点,第一问关键在于用a 表示出A 、B 、C 三点坐标;第二问关键在于找到AC 垂直平分线的解析式,与AB 垂直平分线解析式;第三问关键在于能够求出PB 的解析式13.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【答案】(1)点A的坐标为(4,8)将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx得8=16a+4b0=64a+8b解得a=,b=4∴抛物线的解析式为:y=-x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=AP=t.PB=8-t.∴点E的坐标为(4+t,8-t).∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8.∴EG=-t2+8-(8-t)=-t2+t.∵-<0,∴当t=4时,线段EG最长为2.②共有三个时刻:t1=163, t2=4013,t38525.【解析】(1)根据题意即可得到点A的坐标,再由A、C两点坐标根据待定系数法即可求得抛物线的解析式;(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出点E的坐标,从而得到点G的坐标,EG 的长等于点G 的纵坐标减去点E 的纵坐标,得到一个函数关系式,根据函数关系式的特征即可求得结果;②考虑腰和底,分情况讨论.14.如图,已知抛物线y=ax 2+bx ﹣2(a≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且D (2,3),tan ∠DBA=12. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C 、A ,求四边形BMCA 面积的最大值;(3)在(2)中四边形BMCA 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x 2+32x ﹣2;(2)9;(3)点Q 的坐标为(﹣2,4)或(﹣2,﹣1).【解析】 (1)如答图1所示,利用已知条件求出点B 的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA 面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC 与直线x=2的交点F 的坐标,从而确定了Rt △AGF 的各个边长;然后证明Rt △AGF ∽Rt △QEF ,利用相似线段比例关系列出方程,求出点Q 的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.15.如图,已知抛物线2(0)y ax bx a =+≠过点3,-3) 和3,0),过点A 作直线AC//x 轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)213322y x x =-;(2)P 点坐标为(383,- 43);(3)Q 点坐标(30)或(315)【解析】【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标; (3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可.【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩, 解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,2x x x ⎛⎫ ⎪ ⎪⎝⎭,则有3AD x =213332PD x x =+,当OCA ADP ∆∆∽时,OC CA AD DP ==,整理得:23186x -+=-,即23240x -+=,解得:x =,即x =或x =此时P 4)3-; 当OCA PDA ∆∆∽时,OC CA PD AD ==,296x x -+=-2120x -+=,解得:2x =,即x =此时P 6);当点()0,0P 时,也满足OCA PDA ∆∆∽;当P 在直线AD 下方时,同理可得:P的坐标为10)3-, 综上,P的坐标为(3,4)3-或6)或(3,10)3-或()0,0; (3)在Rt AOC ∆中,3OC =,AC =根据勾股定理得:OA =Q 11··22OC AC OA h =, 32h ∴=,13AOC AOQ S S ∆∆==Q AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N ,过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,393OH ==,即93(M ,9)4, 设直线MN 解析式为9y kx =+, 把M 坐标代入得:99394=+,即3k =39y x =+, 联立得:23913322y x y x x ⎧=-+⎪⎨=-⎪⎩, 解得:330x y ⎧=⎪⎨=⎪⎩315x y ⎧=-⎪⎨=⎪⎩(33Q 0)或(23-,15), 则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(330)或(23-15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.。

人教版九年级数学上册《二次函数》培优练习(含答案)

人教版九年级数学上册《二次函数》培优练习(含答案)

人教版九年级数学上册《二次函数》培优练习(含答案)一.选择题1.下列函数是二次函数的是()A.y=x+B.y=3(x﹣1)2C.y=ax2+bx+c D.y=+3x2.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)3.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.一次函数y=ax+c与二次函数y=ax2+bx+c在同一直角坐标系中大致的图象可能是()A.B.C.D.5.二次函数y=2(x﹣3)2+2图象向左平移6个单位,再向下平移2个单位后,所得图象的函数表达式是()A.y=2x2﹣12x B.y=﹣2x2+6x+12 C.y=2x2+12x+18 D.y=﹣2x2﹣6x+186.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m7.二次函数y=﹣3x2+6x变形为y=a(x+m)2+n形式,正确的是()A.y=﹣3(x+1)2﹣3 B.y=﹣3(x﹣1)2﹣3 C.y=﹣3(x+1)2+3 D.y=﹣3(x﹣1)2+38.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3D.k≤3且k≠09.已知二次函数y=2x2﹣bx+1,当x<1时,y随x的增大而减小,则实数b的取值范围为()A.b≤4B.b≥2C.b≤2D.b≥410.已知二次函数y=ax2+bx+c的图象如右图所示,则a、b、c满足()A.a>0,b>0,c<0 B.a>0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>0二.填空题11.若函数y=x2﹣2x+1图象与直线有两个交点,则b为.12.若二次函数y=ax2+4ax+c的最大值为4,且图象过点(﹣3,0),则二次函数解析式为:.13.如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是.14.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③a>;④当y>0时,x的取值范围是﹣1<x≤3;⑤当x>0时,y随x增大而增大.上述五个结论中正确的有(填序号)三.解答题16.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围.17.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?18.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式,对称轴,顶点坐标;(2)画二次函数的图象并标出图象与x轴的另一个交点为D,求点D的坐标.19.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)20.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E 点的坐标.参考答案一.选择题1.解:A、y=x+是一次函数,此选项错误;B、y=3(x﹣1)2是二次函数,此选项正确;C、y=ax2+bx+c不是二次函数,此选项错误;D、y=+3x不是二次函数,此选项错误;故选:B.2.解:y=x2﹣6x+4=(x﹣3)2﹣5,故抛物线y=x2﹣6x+4的顶点坐标是:(3,﹣5).故选:C.3.解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.4.解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除D;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除A;当a<0时,二次函数开口向下,一次函数经过二、四象限,排除B;故选:C.5.解:二次函数y=2(x﹣3)2+2图象向左平移6个单位,再向下平移2个单位后,所得图象的函数表达式是:y =2(x﹣3+6)2+2﹣2,即y=2x2+12x+18.故选:C.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.7.解:y=﹣3x2+6x=﹣3(x2﹣2x)=﹣3(x2﹣2x+1﹣1)=﹣3(x﹣1)2+3 故选:D.8.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.9.解:∵y=2x2﹣bx+1,∴对称轴为x=,∵当x<1时,y随x的增大而减小,∴≥1,∴b≥4,故选:D.10.解:∵二次函数的图象开口向上,∴a>0,∵二次函数的图象与y轴的交点在y轴的负半轴上,∴c<0,∵二次函数的对称轴在y轴的右边,∴﹣>0,∴<0,∵a>0,∴b<0,故选:B.二.填空题(共5小题)11.解:将y=x2﹣2x+1和组成方程组得,,整理得,x2﹣x+1﹣b=0,∵两函数有两个交点,∴△>0,∴(﹣)2﹣4(1﹣b)>0,解得b>﹣,故答案为b>﹣.12.解:抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的顶点坐标为(﹣2,4),设抛物线解析式为y=a(x+2)2+4,把(﹣3,0)代入得a•(﹣3+2)2+4=0,解得a=﹣4,所以抛物线解析式为y=﹣4(x+2)2+4.故答案为y=﹣4(x+2)2+4.13.解:∵y=(k﹣3)x2+k(x﹣3)是二次函数,∴k﹣3≠0,解得:k≠3,∴k需满足的条件是:k≠3,故答案为:k≠3.14.解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故答案是:﹣3<m<﹣.15.解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0,即a=﹣,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤错误.故答案为①②.三.解答题(共5小题)16.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)∵y=(x﹣1)2﹣4,∴抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大,∴当0<x<1时,当x=0时,y有最大值为﹣3,当x=1时,y有最小值为﹣4,当1<x<3时,当x=3时,y有最大值为0,当x=1时,y有最小值为﹣4,∴当0<x<3时,﹣4≤y<0.17.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.18.解:(1)把A(2,0),B(0,﹣1),C(4,5)代入得:,解得:,则二次函数解析式为y=x2﹣x﹣1=(x﹣)2﹣,即对称轴为直线x=,顶点坐标为(,﹣);(2)如图所示:y=x2﹣x﹣1,令y=0,得到x2﹣x﹣1=0,解得:x=2或x=﹣1,则D(﹣1,0).19.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着x的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P随x的增大而减小.∴当x=32时,P的值最小,P=3600.最小值答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.20.解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得:.∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如答图1,∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6).综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2),理由如下:如答图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得,解得,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S=BF•EF+(OC+EF)•OF四边形BOCE=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)=﹣a2﹣a+=﹣(a+)2+,∴当a=﹣时,S最大,且最大值为.四边形BOCE此时,点E坐标为(﹣).。

九年级数学二次函数的专项培优 易错 难题练习题及详细答案

九年级数学二次函数的专项培优 易错 难题练习题及详细答案

【解析】
【分析】
(1)根据题意列函数关系式即可; (2)设每天扣除捐赠后可获得利润为 w 元.根据题意得到 w=(x-20-a)(-10x+500)=-
10x2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为 x=35+ 1 a,且 0<a≤6,则 30< 2
35+ 1 a≤38,则当 x 35 1 a 时, w 取得最大值,解方程得到 a1=2,a2=58,于是得到
2
2
即:抛物线的表达式为:y= 1 x2-x- 3 . 22
令 y=0,则 1 x2-x- 3 =0,解得:x1=-1,x2=3,即 B(3,0); 22
(2)过点 P 作 PF⊥x 轴,垂足为 F.
∵ EG∥ PF,AE:EP=1:4,∴ AE = AG = EG = 1 . AP AF PF 5
2
2
则当 x 35 1 a 时, w 取得最大值, 2

35
1 2
a
20
a
10x
35
1 2
a
500
1960
∴ a1 2, a2 58 (不合题意舍去), ∴ a 2.
,得:

将 x 1 1 t 代入得

2
∴ N(1 1 t , ), 2
∴ MN



∴ 当 t=2时,△ AMC 面积的最大值为 1.
(3)①如图1,当点H在N点上方时,
∵ N(1 1 t , 2
),P(1 1 t ,4), 2
∴ PN=4—( )= =CQ,
又∵ PN∥ CQ,
∴ 四边形 PNCQ 为平行四边形,

九年级数学二次函数的专项培优练习题(含答案)含详细答案

九年级数学二次函数的专项培优练习题(含答案)含详细答案

九年级数学二次函数的专项培优练习题(含答案)含详细答案一、二次函数1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.2.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【解析】 【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值. 【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=,y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+.Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大, 80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.3.如图1,抛物线C 1:y=ax 2﹣2ax+c (a <0)与x 轴交于A 、B 两点,与y 轴交于点C .已知点A 的坐标为(﹣1,0),点O 为坐标原点,OC=3OA ,抛物线C 1的顶点为G .(1)求出抛物线C 1的解析式,并写出点G 的坐标;(2)如图2,将抛物线C 1向下平移k (k >0)个单位,得到抛物线C 2,设C 2与x 轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k 的值:(3)在(2)的条件下,如图3,设点M 为x 轴正半轴上一动点,过点M 作x 轴的垂线分别交抛物线C 1、C 2于P 、Q 两点,试探究在直线y=﹣1上是否存在点N ,使得以P 、Q 、N 为顶点的三角形与△AOQ 全等,若存在,直接写出点M ,N 的坐标:若不存在,请说明理由.【答案】(1)抛物线C 1的解析式为y=﹣x 2+2x+3,点G 的坐标为(1,4);(2)k=1;(3)M 1(1132+,0)、N 1131);M 2(1132+,0)、N 2(1,﹣1);M 3(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1). 【解析】【分析】(1)由点A 的坐标及OC=3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得; (2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m ),代入所设解析式求解可得;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2),根据PQ=OA=1且∠AOQ 、∠PQN 均为钝角知△AOQ ≌△PQN ,延长PQ 交直线y=﹣1于点H ,证△OQM ≌△QNH ,根据对应边相等建立关于x 的方程,解之求得x 的值从而进一步求解即可.【详解】(1)∵点A 的坐标为(﹣1,0), ∴OA=1,∴OC=3OA ,∴点C 的坐标为(0,3),将A 、C 坐标代入y=ax 2﹣2ax+c ,得:203a a c c ++=⎧⎨=⎩,解得:13a c =-⎧⎨=⎩,∴抛物线C 1的解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4, 所以点G 的坐标为(1,4);(2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k , 过点G′作G′D ⊥x 轴于点D ,设BD′=m ,∵△A′B′G′为等边三角形, ∴G′D=3B′D=3m ,则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m ⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩,∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=1132±(负值舍去), 当x=113+时,HN=QM=﹣x 2+2x+2=131-,点M (113+,0), ∴点N 坐标为(1132++1312-,﹣1),即(13,﹣1); 或(1132+﹣1312-,﹣1),即(1,﹣1); 如图3,同理可得△OQM ≌△PNH ,∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1, 解得:x=﹣1(舍)或x=4,当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M 1(1132,0)、N 1131);M 2(1132+,0)、N 2(1,﹣1);M 3(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.4.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m 2-5m =0,解得m 1=0(舍),m 2=5,∴点P 的坐标为(5,-5). (4)52或5. 提示:①当以M 为直角顶点,则S △CMN =52; ②当以N 为直角顶点,S △CMN =5;③当以C 为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论6.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,D 为抛物线对称轴上一动点,求D 运动到什么位置时△DAC 的周长最小; (3)如图2,点E 在第一象限抛物线上,AE 与BC 交于点F ,若AF :FE =2:1,求E 点坐标;(4)点M 、N 同时从B 点出发,分别沿BA 、BC 方向运动,它们的运动速度都是1个单位/秒,当点M 运动到点A 时,点N 停止运动,则当点N 停止运动后,在x 轴上是否存在点P ,使得△PBN 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)248433y x x =-++(2)81,3D ⎛⎫⎪⎝⎭(3)点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【解析】 【分析】(1)直接待定系数法代入求解即可 (2)找到D 点在对称轴时是△DAC 周长最小的点,先求出直线BC ,然后D 点横坐标是1,直接代入直线BC 求出纵坐标即可 (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,易证△ABF ∽△EHF ,得AB AF2EH EF==,得EH=2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+),y E =y H ,解出方程x =1或x =2,得到E 点坐标 (4)△PBN 是等腰三角形,分成三种情况,①BP =BC 时,利用等腰三角性质直接得到P 1(﹣1,0)或P 2(7,0),②当NB =NP 时,作NH ⊥x 轴,易得△NHB ∽△COB ,利用比例式得到NH 、 BH 从而得到 PH =BH ,BP ,进而得到OP ,即得到P 点坐标,③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P ,易得△NOB ∽△PKB ,利用比例式求出PB ,进而得到OP ,即求出P 点坐标 【详解】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx+4,得 40930a b a b c -+=⎧⎨++=⎩解得a =43-,b =83, ∴抛物线的解析式248433y x x =-++; (2)22484164(1)3333=-++=--+y x x x ∴抛物线对称轴为直线x =1, ∴D 的横坐标为1,由(1)可得C (0,4), ∵B (3,0),∴直线BC :4y 43x =-+ ∵DA =DB ,△DAC 的周长=AC+CD+AD =AC+CD+BD , 连接BC ,与对称轴交于点D ,此时CD+BD 最小, ∵AC 为定值, ∴此时△DAC 的周长, 当x =1时,y =﹣43×1+4=83, ∴D (1,83); (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,∴△ABF ∽△EHF , ∵AF :FE =2:1,∴AB AF2EH EF ==, ∵AB =4, ∴EH =2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+) ∵EH ∥AB , ∴y E =y H ,∴248x x 433-++=420x 33-+ 解得x =1或x =2,y =163或4, ∴E (1,163)或(2,4); (4)∵A (﹣1,0)、B (3,0),C (0,4) ∴AB =4,OC =4,点M 运动到点A 时,BM =AB =4, ∴BN =4,∵△PBN 是等腰三角形, ①BP =BC 时,若P 在点B 左侧,OP =PB ﹣OB =4﹣3=1, ∴P 1(﹣1,0),若P 在点B 右侧,OP =OB+BP =4+3=7, ∴P 2(7,0);②当NB =NP 时,作NH ⊥x 轴, △NHB ∽△COB ,∴45NH BH BN OC OB BC === ∴NH =45OC =445⨯=165,BH =45BC =125,∴PH=BH=125,BP=245,∴OP=BP﹣OB=249355-=,∴P3(﹣95,0);③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,∴△NOB∽△PKB,∴PB BKBN OB=∴PB=83,∴OP=OB﹣PB=3﹣83=13P4(13,0)综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣95,0)或P4(13,0).【点睛】本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键7.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数一、选择题1. 一次函数4)2(2-+-=k x k y 的图象经过原点,则k 的值为( ).A .2B .-2C .2或-2D .32.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )A 、开口向下B 、对称轴是x=-1C 、顶点坐标是(1,2)D 、与x 轴有两个交点3.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )4.二次函数y=ax 2+bx ﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是( ) A .﹣3 B .﹣1 C .2 D .35.抛物线2)3(2-+=x y 可以由抛物线2y x =平移得到,则下列平移过程正确的是() A .先向左平移3个单位,再向上平移2个单位 B .先向右平移3个单位,再向下平移2个单位 C .先向左平移3个单位,再向下平移2个单位 D .先向右平移3个单位,再向上平移2个单位[来6.对于二次函数y=-x 2+2x .有下列四个结论:①它的对称轴是直线x=1; ②设y 1=-x 12 +2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1; ③它的图象与x 轴的两个交点是(0,0)和(2,0); ④当0<x <2时,y >0. 其中正确结论的个数为( )A .1B .2C .3D .47.如图,已知二次函数21y ax bx c =++与一次函数2y kx m =+ 的图像相交于点A (-3,5),B (7,2),则能使12y y ≤ 成立的x 的取值范围是( )A .25x ≤≤B .37x x ≤-≥或C .37x -≤≤D .52x x ≥≤或8.如图,已知:无论常数k 为何值,直线l :y=kx+2k+2总经过定点A ,若抛物线y=ax 2过A ,B (1,b ),C (-1,c )三点.(1)请直线写出点A 坐标及a 的值; (2)当直线l 过点B 时,求k 的值;(3)在y 轴上一点P 到A ,C 的距离和最小,求P 点坐标;(4)在(2)的条件下,x 取 值时,ax 2<kx+2k+2.二、填空题9.在二次函数y=-2(x-3)2+1中,若y 随x 的增大而增大,则x 的取值范围是 .10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c >b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号). 11.二次函数23y x =的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数23y x =的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为 .12.如图,平行于x 轴的直线AC 分别交函数21y x (x ≥0)与223x y (x ≥0)的图象于B ,C 两点,过点C 作y 轴的平行线交1y 的图象于点D ,直线DE ∥AC ,交2y 的图象于点E ,则=ABDE. 13.已知3a <-,点 A (a,y 1 ), B ( a+1,y 2)都在 二次函数223y x x =+图像上,那么y 1 、y 2的大小关系是 .14.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-错误!未找到引用源。

1)2+1的图象上,若x 1>x 2>1,则y 1 y 2 .(填“>”“=”或“<”).三、计算题15.已知抛物线y=ax 2+bx +c 经过点A (-1,0),且经过直线y=x -3与x 轴的交点B 及与y 轴的交点C .(1)求抛物线的解析式; (2)求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标.四、解答题16.水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克. (1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?17.已知二次函数的图象以)4,1(-A为顶点,且过点)5,2(-B.(1)求该二次函数的解析式;(2)求该二次函数图象与坐标轴的交点坐标;18.如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(-1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.19.如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;(3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标.20.如图,在平面直角坐标系中,二次函数y=﹣2x+bx的图像经过点A(4,0).点E是过点C(2,0)且与y轴平行的直线上的一个动点,过线段CE的中点G作DF⊥CE交二次函数的图像于D、F两点.(1)求二次函数的表达式.(2)当点E落在二次函数的图像的顶点上时,求DF的长.(3)当四边形CDEF是正方形时,请直接写出点E的坐标.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.参考答案1.B . 【解析】试题分析:∵图象经过原点,∴将(0,0)代入得:k2-4=0,k=±2,又∵k-2≠0,∴k ≠2,∴k=-2,故选B .考点:一次函数图像性质. 2.C . 【解析】 试题分析:根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x 轴没有公共点.试题解析:二次函数y=(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x 轴没有公共点. 故选C .考点:二次函数的性质. 3.D . 【解析】试题分析:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0时,二次函数开口向上,一次函数经过一、三象限,故C 选项错误; 当a <0时,二次函数开口向下,一次函数经过二、四象限,故A 选项错误; 故选D .考点:1.二次函数的图象;2.一次函数的图象. 4.D . 【解析】试题分析:把(1,1)代入y=ax 2+bx ﹣1可得到a+b-1=1,即可得a+b=3,故答案选D .. 考点:二次函数图象上点的坐标特征. 5.C 【解析】试题分析:根据二次函数的平移规律可知:左加右减,上加下减.因此可知把抛物线2y x =先向左平移三个单位,再向下平移2个单位,即可得到2)3(2-+=x y . 故选C考点:二次函数的平移 6.C 【解析】试题分析:根据对称轴公式x=()21221b a -=-=⨯-,故①正确; 根据函数的开口方向和对称轴,可知当x <1时,y 随x 的增大而增大,当x >1时,y 随x的增大而减小,由于x 1与x 2与1的关系不知道,故②不正确;令y=0,解方程- x 2+ 2x=0,可得x 1=0,x 2=2,因此图像与x 轴的交点为(0,0)(2,0),故③正确;结合图像与x 的交点可知当0 < x < 2时,y >0,故④正确. 因此共有3个正确的. 故选C考点:二次函数的图像与性质 7.C 【解析】试题分析:已知函数图象的两个交点坐标分别为A (-3,5),B (7,2), ∴当有y 1≤y 2时,有37x -≤≤. 故选C .考点:二次函数的图象 8.(1)A (-2,2),a=12;(2)k=-12;(3)点P 的坐标为(0,1);(4)-2<x <1. 【解析】试题分析:(1)把直线解析式整理成关于k 的形式,然后令k 的系数等于0求解即可得到定点A 的坐标,将点A 的坐标代入抛物线求解即可得到a 的值;(2)将点B 的坐标代入抛物线求解得到b 的值,再把点B 的坐标代入直线计算即可求出k ; (3)判断出B 、C 关于y 轴对称,再根据轴对称确定最短路线问题,直线AB 与y 轴的交点即为所求的点P ,然后根据直线解析式求解即可;(4)根据函数图象写出直线在抛物线上方部分的x 的取值范围即可. 试题解析:(1)y=kx+2k+2=k (x+2)+2, 当x+2=0,即x=-2时,直线经过定点, 此时,y=2,所以,A (-2,2),将点A 代入a•(-2)2=2, 解得a=12; (2)抛物线解析式为y=12x 2, x=1时,b=12×12=12, 所以,点B (1,12),将点B 代入直线得,k+2k+2=12, 解得,k=-12; (3)抛物线y=12x 2的对称轴为y 轴, 当x=-1时,c=12×(-1)2=12, 所以,点C (-1,12),所以,点B 、C 关于y 轴对称,由轴对称确定最短路线问题,直线AB 与y 轴的交点即为所求的点P , 由(2)知,直线AB 的解析式为y=-12x+1, 令x=0,则y=1,所以,点P 的坐标为(0,1);(4)由图可知,-2<x <1时,ax 2<kx+2k+2. 考点:二次函数综合题. 9.x ≤3 【解析】试题分析:∵a=-2<0, ∴二次函数图象开口向下, 又对称轴是直线x=3,∴当x ≤3时,函数图象在对称轴的左边,y 随x 的增大增大. 考点:二次函数的性质. 10.①④ 【解析】试题分析:根据抛物线2y ax bx c a 0=++≠()的对称轴直线x=﹣2ba=1,可得2a+b=0,所以①正确;根据x=﹣1时,y <0,可得a ﹣b+c <0,即a+c <b ,所以②错误;由抛物线与x 轴的一个交点为(﹣2,0)得到抛物线与x 轴的另一个交点为(4,0),所以③错误;由抛物线开口方向得到a >0,由对称轴x=﹣2ba>0,可得b <0,由抛物线与y 轴的交点位置可得c <0,因此abc >0,所以④正确. 考点:二次函数图象与系数的关系 11.23.【解析】试题分析:连结BC 交OA 于D ,如图,∵四边形OBAC 为菱形,∴BC ⊥OA ,∵∠OBA=120°,∴∠OBD=60°,∴OD=3BD ,设BD=t ,则OD=3t ,∴B (t ,3t ),把B (t ,3t )代入23y x =得23t =3t ,解得10t =(舍去),21t =,∴BD=1,OD=3,∴BC=2BD=2,OA=2OD=23,∴菱形OBAC 的面积=12232⨯⨯=23.故答案为:23.考点:1.菱形的性质;2.二次函数图象上点的坐标特征.12.3【解析】试题分析:首先设点A 的坐标为(0,x ),则点B 的坐标为x ),点C 的坐标为),点D 3x ),点E 的坐标为(),则DEAB 3x =3 考点:二次函数的性质. 13.y 1>y 2 【解析】试题分析:抛物线的对称轴为直线x=-223 =-43, ∵a <-3,点A (a ,y 1),B (a+1,y 2), ∴点A 和点B 都在对称轴的左侧, 而a <a+1, ∴y 1>y 2.考点:二次函数性质的应用 14.> 【解析】试题分析:∵a=1>0,∴抛物线的开口向上,∵对称轴为直线x=1,∴在对称轴右侧,y 随x 的增大而增大,∵x 1>x 2>1,∴y 1>y 2. 考点:二次函数的性质.15.(1)y=x 2-x-2;(2)(12,-94);(3),), 【解析】试题分析:(1)先根据坐标轴上点的坐标特征确定B (2,0),C (0,-2),然后利用待定系数法确定二次函数解析式;(2)把(1)的解析式y=x 2-x-2配成顶点式得y=(x-12)2-94,然后根据二次函数的性质确定顶点坐标;(3)由于△OBC 为等腰直角三角形,而OM ⊥BC ,则OM 的解析式为y=-x ,可设M (x ,-x ),把它代入二次函数解析式得x 2-x-2=-x ,解得x 1,x 2.则M 点坐标为,),然后计算出OM=2,,再利用三角形面积公式计算四边形OBMC 的面积. 试题解析:(1)把y=0代入y=x-2得x-2=0,解得x=2,则B 点坐标为(2,0); 把x=0代入y=x-2得y=-2,则C 点坐标为(0,-2), 根据题意得04202a b c a b c c -+=++==-⎧⎪⎨⎪⎩, 解得112.a b c ==-=-⎧⎪⎨⎪⎩, 所以所求抛物线的解析式是y=x 2-x-2;(2)y=x 2-x-2=(x-12)2-94, 所以抛物线的顶点坐标为(12,-94);(3)∵OC=OB ,∴△OBC 为等腰直角三角形, ∴OM 的解析式为y=-x , 设M (x ,-x ),∵点M 在抛物线上, ∴x 2-x-2=-x ,解得x 1,x 2∵点M 在第四象限,∴M,),考点:1.待定系数法求二次函数解析式;2.二次函数的性质. 16.(1)当定价为4元时,能实现每天800元的销售利润;(2)800元的销售利润不是最多,当定价为4.8元时,每天的销售利润最大. 【解析】 试题分析:(1)设定价为x 元,利润为y 元,根据利润=(定价-进价)×销售量,列出函数关系式,结合x 的取值范围,求出当y 取800时,定价x 的值即可;(2)根据(1)中求出的函数解析式,运用配方法求最大值,并求此时x 的值即可. 试题解析:(1)设定价为x 元,利润为y 元,则销售量为:(500-30.1x -×10), 由题意得,y=(x-2)(500-30.1x -×10) =-100x 2+1000x-1600=-100(x-5)2+900, 当y=800时,-100(x-5)2+900=800, 解得:x=4或x=6,∵售价不能超过进价的240%, ∴x ≤2×240%, 即x ≤4.8,故x=4,即小华问题的解答为:当定价为4元时,能实现每天800元的销售利润;(2)由(1)得y=-100(x-5)2+900, ∵-100<0,∴函数图象开口向下,且对称轴为直线x=5, ∵x ≤4.8,故当x=4.8时函数能取最大值,即y max =-100(4.8-5)2+900=896.故小明的问题的解答为:800元的销售利润不是最多,当定价为4.8元时,每天的销售利润最大.考点:二次函数的应用. 17.(1)6120元;(2)5元;(3)8元. 【解析】 试题分析:(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;(2)设涨价x 元,则日销售量为500-20x ,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解;(2))每千克涨价应为y 元,,根据每天总纯利润=每天的总毛利润—毛利润的10%交纳各种税费—人工费—水电房租费即可列方程求解. 试题解析:解:(1)()18500820⨯-⨯=6120元. 设涨价x 元,则日销售量为500-20x ,根据题意得:, (10+x )(500-20x )=6000 解得x=10或5,为了使顾客得到实惠,每千克应涨价5元. 答:为了使顾客得到实惠,每千克应涨价5元. (3)每千克涨价应为y 元, (10+y )(500-20y )(1-10%)-0.9(500-20y )-102=5100 (y-8)²=0 y=8答:每千克应涨价8元. 考点:一元二次方程的应用.18.(1)4)1(2++-=x y ;(2)与y 轴的交点为(0,3)【解析】试题分析:(1)设4)1(2++=x a y , 把)5,2(-B 代入,得495+=-a ∴ 1-=a∴4)1(2++-=x y 3分 (2)当0=y 时,4)1(02++-=x 解得11=x ,32-=x∴ 与x 轴的交点为(1 ,0) ,(3- ,0) 2分 当0=x 时, 341=+-=y ∴ 与y 轴的交点为(0,3). 1分考点: 1.二次函数的解析式;2.函数与数轴的交点特点 19.(1)(1,0);(2)x 1<x 2<1时,y 1>y 2;(3)y=2x-4. 【解析】 试题分析:(1)根据图示可以直接写出抛物线的对称轴与x 轴的交点坐标;(2)根据抛物线的对称轴与x 轴的交点坐标可以求得该抛物线的对称轴是直线x=1,然后根据函数图象的增减性进行解题;(3)根据已知条件可以求得点C 的坐标是(3,2),所以根据点A 、C 的坐标来求直线AC 的函数关系式. 试题解析:(1)根据图示,由抛物线的对称性可知,抛物线的对称轴与x 轴的交点坐标(1,0);(2)抛物线的对称轴是直线x=1.根据图示知,当x <1时,y 随x 的增大而减小, 所以,当x 1<x 2<1时,y 1>y 2;(3)∵对称轴是直线x=1,点B (-1,2)在该抛物线上,点C 与点B 关于抛物线的对称轴对称,∴点C 的坐标是(3,2).设直线AC 的关系式为y=kx+b (k ≠0).则0223k bk b =+=+⎧⎨⎩, 解得24k b ==-⎧⎨⎩.∴直线AC 的函数关系式是:y=2x-4.考点:1.抛物线与x 轴的交点,2.待定系数法求一次函数解析式,3.二次函数图象上点的坐标特征20.(1)抛物线解析式为y=-x 2+2x+3;(2)3+322;(3)Q 点坐标为(1,32+112)或(1,32-112)或(1,72)或(1,-14). 【解析】 试题分析:(1)把A 、B 两点坐标代入可求得b 、c 的值,可求得抛物线的解析式;(2)△BOC 面积不变,故当M 点离直线BC 最远时,四边形OBMC 的面积最大,可求得直线BC 的解析式,则过M 且与直线BC 平行的直线与抛物线只有一个交点时,M 离直线BC 的距离最远,可求得M 点的坐标,则可求得BN 、PN 和PB ,可求得答案; (3)可设出Q 点坐标,可分别表示出CQ 、NQ 和CN ,分∠CQN=90°、∠QCN=90°和∠QNC=90°三种情况,结合勾股定理可得到方程,可求得Q 点坐标. 试题解析:(1)把A 、B 坐标代入抛物线解析式可得:10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩, ∴抛物线解析式为y=-x 2+2x+3;(2)∵y=-x 2+2x+3, ∴C (0,3),且B (3,0), ∴△BOC 面积固定,∴当M 离直线BC 最远时,四边形OBMC 的面积最大,设直线BC 的解析式为y=kx+b ,把B 、C 坐标代入可得330b k b =⎧⎨+=⎩,解得13k b =-⎧⎨=⎩,∴直线BC 解析式为y=-x+3,∴当过点M 与直线平行的直线l 与抛物线有一个交点时,M 离直线BC 最远,如图1,可设该直线解析式为y=-x+m ,联立抛物线解析式可得223y x x y x m⎧=-++⎨=-+⎩,消去y ,整理可得:x 2-3x+m-3=0,当该方程有两个相等的实数根时,直线l 与抛物线有一个交点, ∴(-3)2-4(m-3)=0,解得m=214,此时可解得方程组的解为32134xy⎧=⎪⎪⎨⎪=⎪⎩,∴M点坐标为(32,134),又∵PM∥y轴,∴ON=32,且OB=3,∴BN=32,在直线y=-x+3中,当x=32时,代入可求得y=32,即PN=32,在Rt△BPN中,由勾股定理可求得,∴,即当四边形OBMC面积最大时,△BPN的周长为3+2;(3)∵y=-x2+2x+3,∴抛物线对称轴方程为x=1,∴设Q点坐标为(1,y),由(2)可知N点坐标为(32,0),∴===若△CNQ为直角三角形,则有三种情况:①当∠CQN=90°时,由勾股定理可得CQ2+NQ2=CN2,即y2-6y+10+14+y2=454,整理可得2y2-6y-1=0,解得y=32Q点坐标为(1,321,32;②当∠QCN=90°时,由勾股定理可得CQ2+CN2=NQ2,即y2-6y+10+454=14+y2,解得y=72,此时Q点坐标为(1,72);③当∠QNC=90°时,由勾股定理可得NQ2+CN2=CQ2,即14+y2+454=y2-6y+10,解得y=-14,此时Q 点坐标为(1,-14); 综上可知存在满足条件的Q 点,其坐标为(1,32+112)或(1,32-112)或(1,72)或(1,-14). 考点:二次函数综合题.21.y=﹣2x +4x ;22;1E (2,﹣1+17),2E (2,﹣1﹣17).【解析】试题分析:将点A 的坐标代入求出b 的值,得到函数解析式;根据解析式得出顶点坐标,根据中点求出点D 和点F 的横坐标,然后求出DF 的长度;根据正方形的性质得出点E 的坐标. 试题解析:(1)把(4,0)代入y=﹣2x +bx 中,得b=4. ∴二次函数的表达式为y=﹣2x +4x (2)由(1)可知二次函数的图像的顶点坐标为(2,4)∵G 是EC 的中点,∴当y=2时,﹣2x +4x=2.∴1x =2﹣2,2x =2+2,. ∴DF=2+2﹣(2﹣2)=22.(3)1E (2,﹣1+17),2E (2,﹣1﹣17). 考点:二次函数的应用.22.(1)y=2x -2x -3;(2)24;(3)y=21(1)2x -2或y=-21(1)2x +2. 【解析】试题分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M ′的坐标,根据待定系数法,可得AM ′的解析式,根据解方程组,可得B 点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P 、Q 点坐标,根据待定系数法,可得函数解析式. 试题解析:(1)将A 、B 点坐标代入函数解析式,得,解得,抛物线的解析式y=2x ﹣2x ﹣3;(2)将抛物线的解析式化为顶点式,得y=2(1)x ﹣4,M 点的坐标为(1,﹣4), M ′点的坐标为(1,4),设AM ′的解析式为y=kx+b , 将A 、M ′点的坐标代入,得,解得,AM ′的解析式为y=2x+2,联立AM ′与抛物线,得 ,解得,C 点坐标为(5,12).S △ABC =12×4×12=24; (3)存在过A ,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形,由ABPQ 是正方形,A (﹣1,0)B (3,0),得P (1,﹣2),Q (1,2),或P (1,2),Q (1,﹣2), ①当顶点P (1,﹣2)时,设抛物线的解析式为y=a 2(1)x ﹣2,将A 点坐标代入函数解析式,得a 2(11)﹣2=0,解得a=12, 抛物线的解析式为y=21(1)2x -2, ②当P (1,2)时,设抛物线的解析式为y=a 2(1)x +2,将A 点坐标代入函数解析式,得a 2(11)+2=0,解得a=﹣12,抛物线的解析式为y=-21(1)2x +2, 综上所述:y=21(1)2x -2或y=-21(1)2x +2,使得四边形APBQ 为正方形.考点:二次函数综合题。

相关文档
最新文档