二面角练习题(练习)

合集下载

高中二面角经典例题

高中二面角经典例题

高中二面角经典例题
高中二面角是几何中的一个重要概念,掌握二面角的概念和计算方法对于理解空间几何和解题都具有重要意义。

下面介绍一些经典的高中二面角例题,供大家练习和参考。

1.已知四面体ABCD中,AB=3,AC=4,AD=5,BC=6,CD=8,BD=7,求角ABC和角BAD的二面角。

2.已知直角棱锥ABCDE,以AD为底面对角线,EA为高,
AB=AC=AD=10,BC=BD=CD=5,求角EAB和角EAC的二面角。

3.已知正四面体ABCDA1B1C1D1中,AB=3,求角A和角A1的二面角。

4.已知正方体ABCDA1B1C1D1E1F1E,F在平面ABC上,以AF为底面对角线,求角FA1B1和角FA1C1的二面角。

5.已知正八面体ABCDEFGH,以AB为底面对角线,求角E和角H 的二面角。

以上这些例题都是比较典型的高中二面角例题,需要运用几何相关知识和计算方法进行解答。

希望同学们能够认真学习和练习,掌握二面角的概念和计算方法,提高几何解题能力。

- 1 -。

高二数学练习卷二面角的基本求法例题及练习

高二数学练习卷二面角的基本求法例题及练习

C1C1B一、平面与平面的垂直关系1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

例1.在空间四边形ABCD 中,AB=CB ,AD=CD ,E 、F 、G 分别是AD 、DC 、CA 的中点。

求证:BEF BDG 平面平面。

例2.AB BCD BC CD 平面,,90BCD ,E 、F 分别是AC 、AD 的中点。

求证:BEF ABC 平面平面 。

2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

例3.在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.。

二、二面角的基本求法1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

例4.在正方体ABCD —A 1B 1C 1D 1中, 求(1)二面角11AB C A 的大小;(2)平面11A DC 与平面11ADD A 所成角的正切值。

练习:过正方形ABCD 的顶点A 作PAABCD 平面,设PA=AB=a ,求二面角B PC D 的大小。

2.三垂线法 例5.ABCD ABEF ABCD 平面平面,是正方形,ABEF 是矩AF=12AD=a ,G 是EF 的中点, (1)求证:AGC BGC 平面平面;(2)求GB 与平面AGC 所成角的正弦值; (3)求二面角B AC G 的大小。

例6.点P 在平面ABC 外,ABC 是等腰直角三角形,90ABC,PAB 是正三角形,PABC 。

(1)求证:平面PA B 平面A BC ;(2)求二面角P ACB 的大小。

练习:正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角1ABD P 的大小。

B1B3.垂面法 例7.SAABC AB BC SA AB BC 平面,,,(1)求证:SB BC ;(2)求二面角C SA B 的大小;(3)求异面直线SC 与AB 所成角的余弦值。

【最新精选】二面角的基本求法例题及练习

【最新精选】二面角的基本求法例题及练习

C1C1一、平面与平面的垂直关系1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

例1.在空间四边形ABCD 中,AB=CB ,AD=CD ,E 、F 、G 分别是AD 、DC 、CA 的中点。

求证:BEF BDG ^平面平面。

例2.AB BCD BC CD ^=平面,,90BCD °,E 、F 分别是AC 、AD 的中点。

求证:BEF ABC ^平面平面 。

2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

例3.在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.。

二、二面角的基本求法1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

例4.在正方体ABCD —A 1B 1C 1D 1中,求(1)二面角11A B C A --的大小;(2)平面11A DC 与平面11ADD A 所成角的正切值。

练习:过正方形ABCD 的顶点A 作PA ABCD ^平面,设PA=AB=a ,求二面角B PC D --的大小。

2.三垂线法C例5.ABCD ABEF ABCD ^平面平面,是正方形,ABEF 是矩形且AF=12AD=a ,G 是EF 的中点,(1)求证:AGC BGC ^平面平面; (2)求GB 与平面AGC 所成角的正弦值; (3)求二面角B AC G --的大小。

例6.点P 在平面ABC 外,ABC 是等腰直角三角形,90ABC°,PAB 是正三角形,PA BC ^。

(1)求证:^平面PA B 平面A BC ; (2)求二面角P AC B --的大小。

练习:正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角1A BD P --的大小。

B13.垂面法例7.SA ABC AB BC SA AB BC ^^==平面,,, (1)求证:SB BC ^;(2)求二面角C SA B --的大小;(3)求异面直线SC 与AB 所成角的余弦值。

完整版二面角练习题

完整版二面角练习题

周练六1.如图,已知在三棱柱ABC ABQ,中,三个侧棱都是矩形,点D为AB的中点+AC 3,BC 4, AB 5,AA, 4 ,(I)求证AC BC i;(n )求证AC1 P平面CDB1;(川)求异面直线AC i与B i C所成角的余弦值+2 .如图,已知正方形ABCD和正方形ABEF所在平面成60°的二面角,所成角的正弦值。

求直线BD与平面ABEF A —"DF3.如图,在棱长为a的正方体ABC—ABCD中,求:(1 )面AABB与面ABCD所成角的大小;(2)二面角C-BD-C的正切值(3)二面角B1 BC1 DP4•过正方形ABCD的顶点A作PA A平面ABCD ,设PA=AB=a , (1)求二面角B- PC- D的大小;(2)求二面角C-PD-AB C5.如图所示,四棱锥P —ABCD的底面ABCD是边长为1的菱形,/ BCD = 60°, E是CD的中点,PA丄底面ABCD , PA= .3•⑴证明:BE丄平面PAB;⑵求二面角A—BE—P的大小(3) PB与面PAC的角6如图,在底面为直角梯形的四棱锥P ABCD 中,AD//BC, ABC 90 ,PA 平面ABCD PA 3, AD 2, AB ^3 BC=6(1)求证:BD平面PAC;⑵求二面角P BD A的大小.(3)求二面角B-PC-A的大小7.如图,直二面角D —AB —E中,四边形ABCD是边长为2的正方形,AE=EB , F为CE 上的点,且BF丄平面ACE.(I)求证AE丄平面BCE;(H)求二面角B—AC —E的大小; (川)求点D到平面ACE的距离.8•如图,在四棱锥P ABCD中,底面ABCD是矩形•已知AB 3 , AD 2 ,PA 2 , PD 2近,/ PAB 60°.(I)证明AD 平面PAB ;(n)求异面直线PC与AD所成的角的大小;(川)求二面角P BD A的正切值.。

(完整版)二面角练习题

(完整版)二面角练习题

1、如图,三棱锥P-ABC中,PB⊥底面ABC,AC⊥BC,PB=BC=AC,点E、F分别是PC、PA的中点.(Ⅰ)求证:PC⊥平面BEF;(Ⅱ)求二面角A-EB-F的大小.(直接证明)2、如图,在棱长为a的正方体ABCD—A1B1C1D1中,O是AC、BD的交点,E,F分别是AB与AD的中点.(1)求证:直线OD1与直线A1C1垂直;(2)求异面直线EF与A1C1所成角的大小;(3)求二面角B-AC-D1的大小.(三垂线定理)如图,已知四棱锥P—ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.(1)求证:AD⊥面PDE;(2)若二面角P-AD—C的大小等于60°,且AB=4,PD=338;①求V P—ABED;②求二面角P—AB—C大小.(垂面法)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求PC与平面ABCD所成角的大小;(Ⅲ)求二面角P一EC一D的大小.如图,在四棱锥P—ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=2,CD=1.(1)证明:MN∥平面PCD;(2)证明:MC⊥BD;(3)求二面角A-PB-D的余弦值.如图,在三棱锥P—ABC中,PB⊥平面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,点D、E、F分别为AC、AB、BC的中点.(I)求证:EF⊥PD;(Ⅱ)求三棱锥D-PEF的体积;(Ⅲ)求二面角E—PF-B的正切值.。

高二数学二面角专项练习题及参考答案(精品)

高二数学二面角专项练习题及参考答案(精品)

高二数学二面角专项练习题及参考答案班级_____________姓名_____________一、定义法:直接在二面角的棱上取一点,分别在两个半平面内作棱的垂线,得出平面角. 例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

二、垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的正切。

三、垂面法:作棱的垂直平面,则这个垂面与二面角两个面的交线所夹的角就是二面角的平面角 例3 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,求B-PC-D 的大小。

四、投影面积法:一个平面α上的图形面积为S ,它在另一个平面β上的投影面积为S',这两个平面的夹角为θ,则S'=Scos θ或cos θ=/SS .例4 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

五、补形法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

例5、在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

方法归纳:二面角的类型和求法可用框图展现如下: [基础练习]1. 二面角是指 ( ) A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有 ( ) A 1条或2条交线 B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( )A 5B 20C 210 D225 4.在直二面角α-l-β中,RtΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为 ( ) A 300 B 450 C 600 D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3的二面角是( ) A D-AC-B B A-CD-BC A-BC-D D A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ,则有( ) A S △A1B1C1=S △ABC ·sinθ B S △A1B1C1= S △ABC ·cosθC S △ABC =S △A1B1C1·sinθD S △ABC =S △A1B1C1·cosθ7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的 大小为γ,则有 ( )A.sinα=sinβsinγB.sinβ=sinαsinγC.sinγ=sinαsinβ D 以上都不对AB C DAB M NP l C1A1B1D8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。

高中数学必修二立体几何面面垂直与二面角专题练习(含答案)

高中数学必修二立体几何面面垂直与二面角专题练习(含答案)

面面垂直与二面角一.选择题(共12小题)1.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1B.2C.3D.42.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是()A.平面BCE⊥平面ABNB.MC⊥ANC.平面CMN⊥平面AMND.平面BDE∥平面AMN3.下列命题中错误的是()A.如果α⊥β,那么α内一定存在直线平行于平面βB.如果α⊥β,那么α内所有直线都垂直于平面βC.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ4.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论中正确的个数为()①DC1⊥D1P ②平面D1A1P⊥平面A1AP③∠APD1的最大值为90°④AP+PD1的最小值为⑤C1P与平面A1B1B所成角正弦值的取值范围是[,]A.1B.2C.3D.45.如图,在正方体ABCDA1B1C1D1中,E为BC1的中点,则DE与平面ABC1D1所成角的正弦值为()A.B.C.D.6.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=2,AC=3,BD=4,CD=,则该二面角的大小为()A.30°B.45°C.60°D.120°7.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为2,则侧面与底面所成的二面角为()A.30°B.45°C.60°D.90°8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°9.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,则二面角C﹣B1D﹣C1的大小的余弦值为()A.B.C.D.10.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,则CD的长为()A.B.7C.2D.911.如图,M,N是圆锥底面圆O上不同两点,且M,N,O不共线,设AN与底面所成角为α,二面角A﹣MN﹣O的平面角为β,ON与平面AMN所成角为γ,则()A.β>α>γB.β>γ>αC.α>β>γD.α>γ>β12.如图,P是△ABC边AB上一点,将△ACP沿CP折成直二面角A'﹣CP﹣B,要使|A'B|最短,则CP是()A.△ABC中AB边上的中线B.△ABC中AB边上的高线C.△ABC中∠ACB的平分线D.要视△ABC的具体情况而定二.解答题(共18小题)13.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,△PAD为等边三角形,E,M分别是AD,PD的中点,PB=2.(Ⅰ)求证:平面PBE⊥平面ABCD;(Ⅱ)求点P到平面ACM的距离.14.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点,E为线段PC 上一点.〔Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC.15.如图,BD是圆O的直径,C是圆周上不同于B,D的任意一点,AB⊥平面BCD,E为AB 的中点.(1)求证:OE∥平面ACD;(2)求证:平面ACD⊥平面ABC.16.在正方体ABCD﹣A1B1C1D1中,点E为CC1的中点.(1)求证:平面AA1CC1⊥平面BDB1D1;(2)求直线BE与平面ACC1A1所成角的余弦值.17.如图1,梯形ABCD满足:AB∥CD,AD⊥AB,AD=DC=2AB=2,E是BA延长线上一点,AE=2.现将△EDA沿直线DA翻折,记翻折后的点E为点P.若PC=2,M为PC的中点,如图2.(Ⅰ)求证:平面ABM⊥平面PBD;(Ⅱ)求直线BC与平面PBD所成的角的正弦值.18.已知三棱锥A﹣BCD中,△BCD是等腰直角三角形,且BC⊥CD,BC=4,AD⊥平面BCD,AD=2.(Ⅰ)求证:平面ABC⊥平面ADC(Ⅱ)若E为AB的中点,求点A到平面CDE的距离.19.如图(1)在直角梯形ABCD中,∠BAD=90°,AB∥CD,CD=2AB=2AD=4,E为CD中点,现将△CEB沿BE折起,使得AC=4,得到如图(2)几何体,记线段CB的中点为F.(1)求证:平面CED⊥平面ABED(2)求点F到平面ACD的距离.20.如图所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面BDE;(2)求证:平面BDE⊥平面ACF.21.如图,在正三棱柱(底面为正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=AA1=2,点Q为BC的中点.(Ⅰ)求证:平面AQC1⊥平面B1BCC1;(Ⅱ)求点B到平面AQC1的距离.22.如图,在正三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都是4,D是CC1的中点,求:(1)三棱锥D﹣ABC的体积;(2)二面角D﹣AB﹣C的大小.23.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:平面PAB⊥平面PAD;(2)求二面角P﹣AB﹣D的大小.24.三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为,点D在棱AA1上,且AD=,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B﹣B1C﹣A1的平面角的余弦值.25.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:EF∥CD;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求锐二面角P﹣AF﹣E的余弦值.26.四棱锥P﹣ABCD中,底面ABCD是平行四边形,BC=2AB,∠ABC=60°,PA=PB,点M为AB 的中点.(Ⅰ)在棱PD上作点N,使得AN∥平面PMC(Ⅱ)若PB⊥AC,且直线PC与平面PAB所成的角是45°,求二面角M﹣PC﹣A的余弦值27.如图,在直三棱柱ABC﹣A1B1C1中,E、F分别为A1C1、BC的中点AB=BC=2,C1F⊥AB.(1)求证:平面ABE⊥平面B1BCC1;(2)若直线C1F和平面ACC1A1所成角的正弦值等于,求二面角A﹣BE﹣C的平面角的正弦值.28.已知PA⊥菱形ABCD所在平面,PA=,G为线段PC的中点,E为线段PD上一点,且=2.(1)求证:BG∥平面AEC;(2)若AB=2,∠ADC=60°,求二面角G﹣AE﹣C的余弦值.29.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,3=,求二面角M﹣BD﹣E的平面角的余弦值.30.如图所示,在四棱锥P﹣ABCD中,底面四边形ABCD是边长为的正方形,,PC=4,点E为PA中点,AC与BD交于点O.(Ⅰ)求证:OE⊥平面ABCD;(Ⅱ)求二面角B﹣PA﹣D的余弦值.参考答案一.选择题(共12小题)1.解:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选:B.2.解:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.∵BC⊥平面ABN,BC⊂平面BCE,∴平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然PB⊥AN,∴MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.∵△AMN和△CMN都是边长为的等边三角形,∴AF⊥MN,CF⊥MN,∴∠AFC为二面角A﹣MN﹣C的平面角,∵AF=CF=,AC=,∴AF2+CF2≠AC2,即∠AFC≠,∴平面CMN与平面AMN不垂直,故C错误;∵DE∥AN,MN∥BD,∴平面BDE∥平面AMN,故D正确.故选:C.3.解:如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A命题正确.B选项中α内与两平面的交线平行的直线都平行于面β,故B命题错误.C根据平面与平面垂直的判定定理可知C命题正确.D根据两个平面垂直的性质推断出D命题正确.故选:B.4.解:对于①,∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,①正确对于②,∵平面D1A1P即为平面D1A1BC,平面A1AP 即为平面A1ABB1,切D1A1⊥平面A1ABB1,∴平面D1A1BC,⊥平面A1ABB1,∴平面D1A1P⊥平面A1AP,∴②正确;对于③,当0<A1P<时,∠APD1为钝角,∴③错;对于④,将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°利用余弦定理解三角形得AD1=,即AP+PD1≥,∴④不正确.对于⑤,C1P与平面A1B1B所成角正弦值为,∵,∴C1P与平面A1B1B所成角正弦值的取值范围是[,],故⑤正确.故选:C.5.解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2,D(0,0,0),E(1,2,1),A(2,0,0),B(2,2,0),C1(0,2,2),=(1,2,1),=(0,2,0),=(﹣2,2,2),设平面ABC1D1的法向量=(x,y,z),则,取x=1,得=(1,0,1),设DE与平面ABC1D1所成角为θ,则sinθ===,∴DE与平面ABC1D1所成角的正弦值为.故选:D.6.解:由已知可得:,,,∴=+2=32+22+42+2×3×4cos<,>=,∴cos<>=﹣,即<>=120°,∴二面角的大小为60°,故选:C.7.解:正四棱锥的体积为12,底面对角线的长为2,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα==,则二面角等于60°,故选:C.8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°解:以A为坐标原点,、的方向分别为y轴和z轴的正方向建立空间直角坐标系.设底面边长为2a,侧棱长为2b,则A(0,0,0),C(0,2a,0),D(0,a,0),B(a,a,0),C1(0,2a,2b),B1(a,a,2b).=(),=(﹣,a,2b),=(,0,0),=(0,a,2b),由AB1⊥BC1,得•=2a2﹣4b2=0,即2b2=a2.设=(x,y,z)为平面DBC1的一个法向量,则•=0,•=0.即,又2b2=a2,令z=1,解得=(0,﹣,1).同理可求得平面CBC1的一个法向量为=(1,,0).设平面DBC1与平面CBC1所成的角为θ,则cos θ==,解得θ=45°.∴平面DBC1与平面CBC1所成的角为45°.故选:B.9.解:建立空间直角坐标系,如图所示;长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,∴A(0,0,0),C(2,,0),D(0,,0),B1(2,0,1),C1(2,,1);∴=(﹣2,,﹣1),=(﹣2,0,0),=(0,,0);设平面CB1D的法向量为=(x,y,z),则,即,令y=1得=(0,1,);同理,设平面C1B1D的法向量为=(x,y,z),则,即,令x=1,则=(1,0,﹣2);∴cos<,>===﹣,∴二面角C﹣B1D﹣C1的余弦值为﹣cos<,>=.故选:A.10.解:∵CA⊥AB,BD⊥AB,∴,.∵,∴=+++2+2+2═62+42+82+2×6×8cos120°=68,∴CD=2故选:C.11.解:连接OA,OM,取MN的中点H,连接OH,AH,过O作OD⊥AH,垂足为D,连接ND,由AO⊥底面,可得∠ANO=α,由OH⊥MN,AO⊥底面,由三垂线定理可得MN⊥AH,可得∠AHO=β,由OD⊥AH,MN⊥平面AHO,可得OD⊥MN,OD⊥平面AMN,可得∠OND=γ,且α,β,γ均为锐角,则sinα=,sinβ=>=sinα,即β>α;=•=>1,即有β>γ,tanα=,tanγ=,设AO=h,ON=r,OH=d,可得OD=,DN=,则tanα=,tanγ=,tan2α﹣tan2γ=>0,可得tanα>tanγ,即有α>γ,即为β>α>γ.故选:A.12.解:如图所示,作A′E⊥CP,垂足为E.∵直二面角A'﹣CP﹣B,∴A′E⊥平面BCP.时AC=b,BC=a,∠ACB=α.设∠ACP=θ.则A′E=bsinθ,CE=bcosθ.BE2=b2cos2θ+a2﹣2abcosθcos(α﹣θ),∴A′B2=(A′E)2+BE2=b2sin2θ+b2cos2θ+a2﹣2abcosθcos(α﹣θ)=b2+a2﹣2abcosθcos(α﹣θ),∵cosθcos(α﹣θ)=cosθ(cosαcosθ+sinαsinθ)=cosαcos2θ+sinαsin2θ=c osα+sinαsin2θ=+cos(α﹣2θ).∴A′B2=b2+a2﹣abcosα﹣abcos(α﹣2θ),当且仅当cos(α﹣2θ)=1时,即α=2θ时,即CP为∠ACB的平分线时,|A'B|最短.故选:C.二.解答题(共18小题)13.(Ⅰ)证明:由题意知,正△PAD边长为2,∵E为AD的中点,∴PE⊥AD,PE=,在正方形ABCD中,E为AD的中点,边长为2,则BE=,在△PBE中,BE2+PE2=8=PB2,∴PE⊥BE,又BE∩AD=E,∴PE⊥平面ABCD,∵PE⊂P平面ABCDM,∴平面PBE⊥平面ABCD;(Ⅱ)由题意知V P﹣ACM=V C﹣APM,△PAD为等边三角形,则AM=,∴S△APM=,∵PE⊥平面ABCD,∴PE⊥CD,∵CD⊥AD.∴CD⊥平面PAD,故CD为三棱锥C﹣PAB的高,∴CD⊥PD,在正方形ABCD中,AC=2,则在△ACM中,满足8=AC2=AM2+CM2,∴△ACM为直角三角形,∴AM⊥MC,∴S△ACM=|AM|•|CM|=,设点P到平面ACM的距离为d,由V P﹣ACM=V C﹣APM,得×d×S△ACM=×CD×S△APM,解得d=14.证明:(Ⅰ)∵在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB∩BC=B,∴PA⊥平面ABC,∵D为线段AC的中点,∴BD⊂平面ABC,∴PA⊥BD.(Ⅱ)∵AB=BC,D为线段AC的中点,∴BD⊥AC,∵PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,∵BD⊂平面BDE,∴平面BDE⊥平面PAC.15..证明:(1)∵BD是圆O的直径,E为AB的中点,∴OE∥AD,∵OE⊄平面ACD,AD⊂平面ACD,∴OE∥平面ACD.(2)∵BD是圆O的直径,∴BC⊥DC,∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵AB∩BC=B,∴平面ACD⊥平面ABC.16.证明:(1)正方体ABCD﹣A1B1C1D1中,有AA1⊥平面ABCD,又BD⊂平面ABCD,∴AA1⊥BD,又由正方形ABCD,可知AC⊥BD,AA1∩AC=A,∴BD⊥平面ACC1A1,又BD⊂平面BDD1B1,∴平面AA1C1C⊥平面BDD1B1.(6分)解:(2)记AC与BD交点为O,连接OE,∵BD⊥平面ACC1A1,∴∠OEB即为直线BE与平面ACC1A1所成角,设正方体棱长AB=2,则OB=,BE=,OE=,则有cos=,直线BE与平面ACC1A1所成角的余弦值为.(12分)17.(Ⅰ)证明:在△ADE中,AD=AE=2,得DE=2,即PD=.在△PDC中,DC=2,PC=2,可得PC2=PD2+DC2,∴∠CDP=90°,即CD⊥PD.又CD⊥AD,∴CD⊥平面PAD.取PD中点N,则MN是△PCD的中位线,∴MN∥CD,MN=.又AB∥CD,AB=,∴AB∥MN,AB=MN,即四边形ABMN为平行四边形.又AN是等腰直角三角形PAD斜边PD的中线,∴PD⊥AN,又CD⊥平面PAD,∴AB⊥平面PAD,AB⊥PD.∴PD⊥平面ABM,又PD⊂平面PBD,∴平面ABM⊥平面PBD;(Ⅱ)解:在△MNB中,作MH⊥NB于H,则MH⊥平面PBD,由已知可得MN=1,MB=,又NB=,∴,即点M到平面PDB的距离为.又由于M是PC的中点,∴点C到平面PBD的距离h=.求得BC=,设直线BC与平面PBD所成的角为θ,则s inθ=.18.(Ⅰ)证明:∵AD⊥平面BCD,BC⊂平面BCD,∴AD⊥BC,又∵BC⊥CD,CD∩AD=D,∴BC⊥平面ACD,又BC⊂平面ABC,∴平面ABC⊥平面ACD.…(5分)(Ⅱ)解:由已知可得,取CD中点为F,连结EF,∵,∴△ECD为等腰三角形,∴,,…(8分)由(Ⅰ)知BC⊥平面ACD,∴E到平面ACD的距离为:,∴S△ACD=4,…(10分)设A到平面CED的距离为d,有,解得,∴A到平面CDE的距离是.…(12分)19.(1)证明:由条件可知BA=DE,BA∥DE,∠BAD=90°,∴四边形ABED为正方形,∴BE⊥EC,BE⊥ED,EC⊥ED=E,⇒BE⊥平面DEC.又BE⊂平面ABCD,所以平面CED⊥平面ABCD.(2)AD∥BE,∴AD⊥平面DEC,∴∠ADC=90°,∴∠CED=120°,△CED为等腰三角形.过点E作EM⊥CD,∴M为CD中点⇒ME=1 ∴ME⊥CD,ME⊥AD⇒ME⊥平ACD.又F为BC的中点,∴.20.证明:(1)设BD与AC交于点O,连接OE、OH.∵O、H分别为AC,BC中点,∴OH∥AB,OH=AB,∴EF∥AB,EF=AB,∴OH=EF,OH∥EF,∴四边形OEFH为平行四边形,∴FH∥OE,又∴FH⊄平面BDE,OE⊂平面BDE,∴FH∥平面BDE.(2)∵EF∥AB,EF⊥FB,AB∩FB=B,∴EF⊥平面ABF,∵FB⊂平面ABF,∴AB⊥FB,∵AB⊥BC,BC∩FB=B,∴AB⊥平面BCF,∵FH⊂BCF,∴AB⊥FH,∵FH⊥BC,AB∩BC=B,∴FH⊥平面ABCD,又FH∥OE,∴OE⊥平面ABCD,∵AC⊂平面ABCD,∴OE⊥AC,∵AC⊥BD,AC∩BD=O,∴AC⊥平面BDE,又AC⊂平面ACF,∴平面BDE⊥平面ACF.21.解:(I)证明:由题意知,AB=AC,Q为BC的中点,∴AQ⊥BC;由B1B⊥平面ABC,得B1B⊥AQ;∵BC,B1B⊂平面B1BCC1,且BC∩B1B=B,∴AQ⊥平面B1BCC1,又∵AQ⊂平面AC1Q,∴平面AC1Q⊥平面B1BCC1;……(6分)(II)设点B到平面AQC1的距离为d,在正三棱柱ABC﹣A1B1C1中,CC1⊥平面ABQ,∴CC1为三棱锥C1﹣ABQ的高;由(I)知,AQ⊥平面B1BCC1,则AQ⊥QC1,∴;∴,;又,∴,即,解得.……(12分)22.解:(1)∵三棱柱ABC﹣A1B1C1为正三棱柱,且底面边长和侧棱长都是4,D是CC1的中点,∴,三棱锥D﹣ABC的高为DC=2.∴三棱锥D﹣ABC的体积V=;(2)取AB中点G,连接DG,CG,则AB⊥平面DGC,∴∠DGC为二面角D﹣AB﹣C的平面角,在Rt△DCG中,DC=2,CG=,∴tan∠DGC=,则.即二面角D﹣AB﹣C的大小为.23.证明:(1)∵四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.∴AB⊥AD,AB⊥PD,又AD∩PD=D,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,设PD=DC=DP=2,则A(2,0,0),P(0,0,2),D(0,0,0),B(2,2,0),=(﹣2,0,2),=(0,2,0),设平面PAB的法向量=(x,y,z),则,取x=1,得=(1,0,1),平面ABD的法向量=(0,0,1),设二面角P﹣AB﹣D的大小为θ,则cosθ===,θ=45°,∴二面角P﹣AB﹣D的大小为45°.24.(1)证明:连接AO,∵A1O⊥底面ABC,AO,BC⊂底面ABC,∴BC⊥A1O,A1O⊥AO,且AA1与底面ABC 所成的角为∠A1AO,即.在等边三角形ABC中,易求得AO=.在△AOD中,由余弦定理,得,∴OD2+AD2=3=OA2,即OD⊥AA1.又∵AA1∥BB1,∴OD⊥BB1.∵AB=AC,OB=OC,∴AO⊥BC,又∵BC⊥A1O,AO∩A1O=O,∴BC⊥平面AA1O,又∵OD⊂平面AA1O,∴OD⊥BC,又BC∩BB1=B,∴OD⊥平面BB1C1C.(2)如下图所示,以O为原点,分别以OA,OB,OA1所在的直线为x,y,z轴建立空间直角坐标系,则故由(1)可知,∴可得点D的坐标为,∴平面BB1C1C的一个法向量是.设平面A1B1C的法向量=(x,y,z),由得,令,则y=3,z=﹣1,则,∴,易知所求的二面角为钝二面角,∴二面角B﹣B1C﹣A1的平面角的余弦角值是.25.解:(1)∵底面ABCD是菱形,∴AB∥CD,又∵AB⊄面PCD,CD⊂面PCD,∴AB∥面PCD,…(2分)又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF,即可得EF∥CD…(5分)(2)取AD中点G,连接PG,GB,∵PA=PD,∴PG⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中点,∴AD⊥GB,…(6分)如图,建立空间直角坐标系G﹣xyz,设PA=PD=AD=2,则G(0,0,0),A(1,0,0),B(0,,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,)又∵AB∥EF,点E是棱PC中点,∴点F是棱PD中点,E(﹣1,,),F(﹣,0,),,,设平面AFE的法向量为=(x,y,z),则有⇒,不妨令x=3,则平面AFE的一个法向量为.∵BG⊥平面PAD,∴是平面PAF的一个法向量,cos==∴锐二面角P﹣AF﹣E的余弦值为..…(12分)26.解:(Ⅰ):点N为PD中点.下证:取PD中点N,PC中点Q,连结AN,QN,MQ,在△PCD中,N,Q分别是所在边PD,PC的中点,则NQ∥CD且.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)因为点M为AB中点,AB=CD,所以NQ∥AM且NQ=AM.﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)所以四边形AMQN是平行四边形,所以AN∥MQ.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)又因为AN⊄平面PMC,MQ⊂平面PMC,所以AN∥平面PMC.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)在△ABC中,BC=2AB,∠ABC=60°,设AB=a,则BC=2a,由余弦定理有:,则BC2=AB2+AC2,由勾股定理的逆定理可得:AC⊥AB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)又因为PB⊥AC,PB∩AB=B,PB,AB⊂平面PAB,所以AC⊥平面PAB.因为PM⊂平面PAB,所以AC⊥PM.因为PA=PB,点M为线段AB的中点,所以PM⊥AB,因此PM,AB,AC两两垂直.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)以A为原点,分别以AB,AC所在直线为x,y轴,建立空间直角坐标系.因为直线PC与平面PAB的所成角是45°,所以∠CPA=45°,所以Rt△CAP是等腰直角三角形,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)则A(0,0,0),,,,,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)设平面PMC的一个法向量为=(x,y,z),则即得,同理可得,平面PAC的一个法向量为,﹣﹣﹣﹣﹣﹣﹣﹣(10分)则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)由图可得所求二面角的平面角为锐角,所以二面角M﹣PC﹣A的余弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)27.(1)证明:在直三棱柱中,CC1⊥AB,又C1F⊥AB,且CC1∩C1F=C1,∴AB⊥平面B1BCC1,又∵AB⊂平面EBA,∴平面ABE⊥平面B1BCC1;(2)解:由(1)可知,AB⊥BC,以B点为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立坐标系.设AA1=a,则B(0,0,0),C(2,0,0),A(0,2,0),B1(0,0,a),C1(2,0,a),A1(0,2,a),E (1,1,a),F(1,0,0).直线FC1的方向向量,平面ACC1A1的法向量.可知||=,∴a=2.,,,设平面ABE的法向量,由,取z=﹣1,可得.设平面CBE的法向量,由,取z=﹣1,可得.记二面角A﹣BE﹣C的平面角为θ,∴|cosθ|=||=,则sin.故二面角A﹣BE﹣C的平面角的正弦值为.28.(1)证明:取PE的中点F,连接GF,BF,∵G为PC的中点,∴GF∥CE,∴GF∥平面AEC.连接BD交AC与点O,连接OE.∵E为DF的中点,∴BF∥OE,∴BF∥平面AEC.∵BF∩GF=F,∴平面BGF∥平面AEC.又BG⊄平面BGF,∴BG∥平面AEC;(2)解:如图,建立空间直角坐标系O﹣xyz.则则O(0,0,0),A(﹣1,0,0),C(1,0,0),P(﹣1,0,),D(0,,0),E(,,),G(0,0,2),∴=(,,),=(2,0,0),=(1,0,),设平面AEC的法向量为,则,∴,即,不妨设得=(0,,),设平面AEG的法向量为,则,∴,即,不妨设z2=1得=(,0,1),∴=.由图可知,二面角G﹣AE﹣C为锐角,则二面角G﹣AE﹣C的余弦值为.29.证明:(1)∵AD=1,CD=2,AC=,∴AD2+CD2=AC2,∴△ADC为直角三角形,且AD⊥DC,同理∵ED=1,CD=2,EC=,∴ED2+CD2=EC2,∴△EDC为直角三角形,且ED⊥DC,又四边形ADEF是正方形,∴AD⊥DE,又∵AB∥DC,∴DA⊥AB.在梯形ABCD中,过点作B作BH⊥CD于H,∴四边形ABHD是正方形,∴∠ADB=45°.在△BCH中,BH=CH=1,∴∠BCH=45°.BC=,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵ED⊥AD,ED⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD.∴BD⊥平面ABCD,又∵BC⊂平面ABCD,∴ED⊥BC,因为BD∩ED=D,BD⊂平面EBD,ED⊂平面EBD.∴BC⊥平面EBD,BC⊂平面EBC,∴平面EBC⊥平面EBD.解:(2)以D为原点,DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系,如图,D(0,0,0),E(0,0,1),B(1,1,0),C(0,2,0).令M(0,y0,z0),则=(0,y0,z0﹣1),=(0,2,﹣1),∵3=,∴(0,3y0,3z0﹣3a)=(0,2,﹣1),∴M(0,,).=(1,1,0),=(0,),∵BC⊥平面EBD,∴=(﹣1,1,0)是平面EBD的一个法向量.设平面MBD的法向量为=(x,y,z).则.令y=1,得=(﹣1,1,1),∴cos<>===,∴二面角M﹣BD﹣E的平面角的余弦值为.30.证明:(I)底面四边形ABCD是边长为的正方形,,PC=4,在△PBC中,∵PB2=PC2+BC2,∴PC⊥BC,同理可得BC⊥CD,而BC∩CD=C,BC、CD⊂平面ABCD,∴PC⊥平面ABCD,在△PAC中,由题意知O、E分别为AC、PA中点,则OE∥PC,而PC⊥平面ABCD,∴OE⊥平面ABCD.解:(II)由(I)知:OE⊥平面ABCD,故可建立空间直角坐标系O﹣xyz,如图所示,A(1,0,0),B(0,1,0),D(0,﹣1,0),P(﹣1,0,4),∴=(﹣2,0,4),=(﹣1,1,0),=(﹣1,﹣1,0),设、=(a,b,c)分别为平面PAB和平面PAD的一个法向量,则,,∴,,不妨设z=c=1,则=(2,2,1),=(2,﹣2,1),∴cos<>===,由图知二面角B﹣PA﹣D为钝二面角,∴二面角的B﹣PA﹣D的余弦值为﹣.。

五种方法求二面角及练习题

五种方法求二面角及练习题

五种方法求二面角及练习题E 、E 、F 分别是棱AD 、AA 、AB 的中点。

(1) 证明:直线EE //平面FCC ;(2)求二面角B-FC -C 的余弦值。

2.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.11111三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。

即当二平面没有明确的交线时,一般用补棱法解决 1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

A CBB C A L2:如图5,E为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成锐角的余弦值.3如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB; (Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. ABCEDPADBCEDBC A图角的平面角(锐角).分析平面AB1E与底面A1B1C1D1交线即二面角的棱没有给出,要找到二面角的平面角,.四、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

1如图,在五面体ABCDEF 中,FA 平面ABCD, AD//BC//FE ,AB AD ,M 为EC 的中点,AF=AB=BC=FE=AD(I) 求异面直线BF 与DE 所成的角的大小;(II) 证明平面AMD 平面CDE ;求二面角A-CD-E 的余弦值。

10.9二面角

10.9二面角

AB1A Mαβl10.9二面角【知识网络】1、二面角的平面角的定义三要素;2、作二面角的平面角的主要方法;3、二面角的范围:[0,]π; 4.二面角的求法。

【典型例题】例1:(1)正四棱锥的一个对角面与侧面的面积之比为8:6,则侧面与底面所成的二 面角为 ( )A .12π B .4π C .6π D .3π 答案:D 。

解析:设高为h ,斜高为h ',∴12sin 142h h ah θ=∴=∴=''⨯即θ=2。

(2)60°的二面角l αβ--,动点A ∈α,动点B ∈β,AA 1⊥β,垂足为A 1,且AA 1=a,AB =,那么B 点到平面α的最大距离是 ( )ABC 、12a D答案:A 。

解析:如图过A 1作A 1M ⊥l ,垂足为M ,连结AM ,则AM ⊥l ,所以∠AMA 1为二面角l αβ--的平面角,即∠AMA 1=60°, 又AA 1⊥β,AA 1=a,AB =,所以A 1A ⊥A 1B ,则A 1B=a ,故B 点的轨迹是平面β内以A 1为圆心,a 为半径的圆,显然当B 、A 1、M 三点共线时,点B 到平面 α的距离最大,其最大距离为1131sin 60()sin 60BM BA A M a +⋅=+=。

(3)两个同底的正棱锥P —ABC 和Q —ABC 都内接于同一个半径为R 的球O ,设正三棱锥的底面边长为a ,侧面与底面所成的二面角分别为α、β,则tan()αβ+等于 ( )A、、、 D 、3Ra- 答案:A 。

解析:不妨设球心O 在底面ABC 上,则α=β,BO=R , 114,tan tan 2,tan()223OD BO αβαβ∴==∴==∴+=-,故选A 。

(4)平面α与平面β相交成锐角θ,面α内一个圆在面β上的射影是离心率为21的椭圆,则角θ等于_______。

CCAOFE D答案:30°.解析:1,,2,2ca r a c ba ==∴=∴,即2,cos 30b r θθ=∴==∴=。

二面角练习题

二面角练习题

二面角练习题1、在三棱锥P-ABC中,已知PB⊥底面ABC,AC⊥BC,PB=BC=AC,点E、F分别是PC、XXX的中点.我们需要证明两个结论:Ⅰ)PC⊥平面BEF;Ⅱ)二面角A-EB-F的大小等于120°。

为证明(Ⅰ),我们可以通过三角形的性质来解决。

首先连接PE、PF,因为PE、PF分别是三角形PBC、PAC的中线,所以PE=PF=1/2BC=1/2AC。

又因为PB=BC=AC,所以△PBE和△PBF是等腰三角形,∠PBE=∠PBF。

又因为EF是△PBE和△PBF的中线,所以EF⊥PB,即EF⊥平面ABC。

又因为BE⊥平面ABC,所以PC⊥平面BEF。

为证明(Ⅱ),我们可以利用向量的知识,设向量PA=a,向量PB=b,则向量PC=a+b。

由于PB⊥平面ABC,所以向量PB在平面ABC上的投影为0,即b在平面ABC的法向量上。

又因为AC⊥BC,所以向量AC在平面ABC的法向量上,且向量AC与向量b的夹角为60°。

因此,向量PC在平面ABC的法向量上的投影为a的模长乘以cos60°,即PC在平面ABC的法向量上的投影为1/2PA。

由于PE、PF分别是△PAC、△PBC的中线,所以PE=PF=1/2PA=1/2PC。

因此,向量PE和向量PF在平面BEF上的投影相等,即二面角A-EB-F的大小等于120°。

2、在正方体ABCD-A1B1C1D1中,已知O是AC、BD的交点,E、F分别是AB、AD的中点。

我们需要证明三个结论:1)直线OD1与直线A1C1垂直;2)异面直线EF与A1C1所成角的大小等于60°;3)二面角B-AC-D1的大小等于90°。

为证明(1),我们可以利用向量的知识。

设向量OA1=a,向量OC1=b,则向量OD1=a+b。

因为正方体ABCD-A1B1C1D1中,向量OA1和向量OC1垂直且长度相等,所以向量OA1和向量OC1的夹角为90°。

线面角、二面角练习(含答案)

线面角、二面角练习(含答案)
(D) 证 明 , 4B L PD; G)若 P4 = PD = AB, /APD = 90“, 设 Q 为 PB 中 点 , 求 直 线 4Q 与 平 面 PBC 所 成 角 的 余 弦 值
.(10分 ) 如 图 , 在 四 楂 锥 P 一 4BC 丁 中 , 底 面 4BC是D矩 形 ,M7 是 P4 的 中 点 ,PD 平 _ 面 4L BCD,
心 的 M L DN, 即 异 面 直 线 4M 与 DN 所 成 角 大 小 为 90., 故 选 D.
2. ( AP4D 为 直 角 三 角 形 , 且 P4 = 4D, …LP4D 二 90., 即 P4 L 4D, 四 边 形 4B8为C正 D方 形 , - DA L BA, N PANBA= 4, P4 c 面 P4B,PB C 面 P4B,
A. 307
B. 45°
二 、 解 答 题 ( 共 14 小 题 , 每 小 题 10 分 , 共 140分 )
C. 60°
D. 90°
2.(分1) 0如 图 , 平面 P4D L 平 面 4BCD,4B为 C正D方 形 ,AP 是 4 直 角D 三 角 形 , 且 P4 = 4D 二 2, E
、 友 、G 分 别 是 线 段 P4、PD、CD 的 中 点 。
(D) 证 明 , PB平 |面 4BC ) 设 二 面 角 D - 4F - C 为 60“,=4P 1,4一Dv, 求 三 棒 锥 丁 一 4CD 的 体 积 .
三 、 填 空 题 ( 共 1 小 题 ,每小 题 5 分 , 共 5 分 )
16.(5 分 ) 已 知 长 方 体 A4BCD 一 4 BCLD 中 ,4B 万 2,4D = AA; 三 1, 则的 线 BDu 与 平 面

高中数学二面角的基本求法例题及练习

高中数学二面角的基本求法例题及练习

一、平面与平面的垂直关系1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

例1.在空间四边形ABCD 中,AB=CB ,AD=CD ,E 、F 、G 分别是AD 、DC 、CA 的中点。

求证:BEFBDG 平面平面。

例2.AB BCD BC CD 平面,,90BCD ,E 、F 分别是AC 、AD 的中点。

求证:BEF ABC 平面平面 。

2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

例3.在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.。

二、二面角的基本求法1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

例4.在正方体ABCD —A 1B 1C 1D 1中, 求(1)二面角11AB CA 的大小;(2)平面11A DC 与平面11ADD A 所成角的正切值。

练习:过正方形ABCD 的顶点A 作PAABCD 平面,设PA=AB=a ,求二面角B PC D 的大小。

2.三垂线法CC1C1例5.ABCD ABEF ABCD 平面平面,是正方形,ABEF 是矩形且AF=1AD=a ,G 是EF 的中点,(1)求证:AGCBGC 平面平面;(2)求GB 与平面AGC 所成角的正弦值; (3)求二面角B AC G 的大小。

例6.点P 在平面ABC 外,ABC 是等腰直角三角形,90ABCPAB 是正三角形,PABC 。

(1)求证:平面PA B 平面A B C ;(2)求二面角P AC B 的大小。

练习:正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角1ABD P 的大小。

3.垂面法 例7.SAABC AB BC SA AB BC 平面,,,(1)求证:SB BC ;(2)求二面角C SA B 的大小;(3)求异面直线SC 与AB 所成角的余弦值。

4.无棱二面角的处理方法 (1)找棱B1BAB例8.过正方形ABCD 的顶点A 作PA ABCD 平面,设PA=AB=a ,求平面PAB 与平面PCD 所成二面角的大小。

高一二面角练习1210

高一二面角练习1210

C1CB二面角练习12101.正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1-C 的大小是( ) A.65π B.32π C.2π D.3π 2.边长为a 的正三角形中,AD ⊥BC 于D,沿AD 折成二面角B -AD -C 后,BC=a 21,这时二面角B -AD -C 的大小为( ) A.30° B.45° C.60° D.90°3.以等腰直角三角形ABC 的斜边BC 上的高为折痕,将△ABC 折起,若折起后的三角形ABC 为等边三角形,则二面角C -AD -B 的大小为( ) A. 30° B . 60° C. 90° D. 120°4在空间四边形ABCD 中,AB=CB ,AD=CD ,E 、F 、G 分别 是AC 、AD 、CA 的中点。

求证:BEFBEG 平面平面^。

性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

5.在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.。

二面角的基本求法(1)定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

9.SA ABC AB BC SA AB BC ^^==平面,,,(1)求证:SB BC ^;(2)求二面角S-BC-A 和C SA B --的大小;(3)求异面直线SC 与AB 所成角的余弦值。

10.在正方体ABCD —A 1B 1C 1D 1中, 求(1)二面角11A B C A --的大小; (2)平面11A DC 与平BCB1BA 面11ADD A 所成角的正切值。

11.正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点, 求二面角1A BD P --的大小。

(2).三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

二面角

二面角
二面角
目录
• • • • • • 引入 基本概念 图形 范例 练习 作业
基本概念:
1、半平面:一个平面内的一条 直线,把这个平面分成两部分, 其中的每一部分都叫做半平面。
D E C
A
F
B
A a B β
2、二面角:从一条直线出发的两个 半平面所组成的图形叫做二面角。 这条直线叫做二面角的棱。 这两个半平面叫做二面角的面。
∠COD= 90?
B a O A
D β
例1.山坡的倾斜度(坡面与水平面所成的二 面角的度数)是60 ,山坡上有一条直道CD, 它和坡脚的水平线AB的夹角是 30 ,沿这条 山路上山,行走100米后升高多少米?
α D
A
D β
H
C
B
30
C
G
60
解:如图所示,DH垂直于过AB的水平平面,垂 足为H,线段DH的长度就是所求的高度。 在平面DBC内,过点D作DG⊥BC,垂足是G, 连接GH。∵DH⊥平面BCH,DG⊥BC∴GH⊥BC
作业
• 第45-46页习题六: 第1、2、4题。
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”

二面角练习题

二面角练习题

二面角练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二面角练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二面角练习题的全部内容。

1、如图,三棱锥P-ABC 中,PB ⊥底面ABC ,AC ⊥BC,PB=BC=AC ,点E 、F 分别是PC 、PA 的中点. (Ⅰ)求证:PC⊥平面BEF ;(Ⅱ)求二面角A —EB —F 的大小.(直接证明)2、如图,在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,O 是AC 、BD 的交点,E,F 分别是AB 与AD 的中点.(1)求证:直线OD 1与直线A 1C 1垂直;(2)求异面直线EF 与A 1C 1所成角的大小;(3)求二面角B —AC —D 1的大小.(三垂线定理)如图,已知四棱锥P-ABCD 的底面为菱形,∠BCD=60°,PD⊥AD .点E 是BC 边上的中点.(1)求证:AD⊥面PDE ; (2)若二面角P —AD —C 的大小等于60°,且AB=4,PD=;①求VP-ABED ; ②求二面角P-AB-C 大小.(垂面法)已知在四棱锥P —ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD ,PA=AD=1,AB=2,E 、F 分别是AB 、PD 的中点. (Ⅰ)求证:AF∥平面PEC ;(Ⅱ)求PC 与平面ABCD 所成角的大小;(Ⅲ)求二面角P 一EC 一D 的大小. 338如图,在四棱锥P—ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.(1)证明:MN∥平面PCD;(2)证明:MC⊥BD;(3)求二面角A-PB-D的余弦值.如图,在三棱锥P-ABC中,PB⊥平面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,点D、E、F分别为AC、AB、BC的中点.(I)求证:EF⊥PD;(Ⅱ)求三棱锥D—PEF的体积;(Ⅲ)求二面角E—PF-B的正切值.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二面角的平面角专题学案
一、二面角定义
从一条直线出发的两个半平面所组成的图形就叫做二面角。

二面角的大小是用二面角的平面角来衡量的。

而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。

二、二面角的求法:
1.几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图4(1)。

②利用三垂线定理及其逆定理,图4(2)最常用。

③作棱的垂面,图4(3)。

α
β
A
O
P A B
O
P α
β 4(1) 4(2) 4(3)
典型例题:
例1.在正四面体ABCD 中,求相邻两个平面所成的二面角的平面角的大小.
例2.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小; (2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小.
例3.已知:二面角l αβ--且,A A α∈到平面β
的距离为A 到l 的距离为4,求二面角l αβ--的大小.
l
B
O
A
β
α
例4.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值.
课堂练习:
1.正方体AC 1中M 是BC 中点,求二面角D 1—AB 1—M 的平面角的正切值.
2.ABC 为等腰直角三角形,∠C=900
. PA ⊥面ABC ,AC=a. PA=2 a. 求A —PB —C 大小.
3.直三棱柱棱长均相等. ∠ADC 1=900
. 求D —AC 1—C 大小.
A
B
C
D
E
F
4.如图,在底面为平行四形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且
PA AB =,点E 是PD 的中点.
(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角D AC E --的大小.
5.已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,
⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=
2
1
AB=1,M 是PB 的中点。

(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;
(Ⅲ)求面AMC 与面BMC 所成二面角的大小。

相关文档
最新文档