数字逻辑与计算机组成原理实验报告
数字逻辑实验报告实验
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
计算机组成原理实验报告
实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
数字逻辑实验报告
数字逻辑实验报告一、引言数字逻辑实验是电子信息类专业的一门重要实践课程。
本实验报告旨在记录和总结我在数字逻辑实验中的学习和实践经验,分享我对数字逻辑的理解和应用。
二、实验概述本次数字逻辑实验的主题是设计一个简单的加法器电路。
实验目的是通过实践操作和设计,加深对数字逻辑电路的理解,并掌握逻辑门的使用和联接方式。
三、实验步骤1. 学习并熟悉逻辑门的基本原理和真值表。
2. 根据加法器的要求,确定所需的逻辑门类型和数量。
3. 使用逻辑门芯片进行电路设计和布线。
4. 连接电路连接线,确保电路的正常工作。
5. 使用示波器验证电路的正确性。
6. 总结实验过程中的问题和解决方法。
四、实验结果经过设计和调试,成功实现了一个4位全加器电路。
通过输入不同的二进制数值,成功实现了两个四位数的相加运算,并正确输出结果。
实验结果表明,逻辑门的正确使用和连接方式能够实现复杂的算术运算。
五、实验心得数字逻辑实验是一门非常实用的实践课程。
通过本次实验,我深刻理解了数字逻辑的基本原理和应用方法。
实验中,我了解了逻辑门的分类和功能,并学会了逐级联接逻辑芯片的技巧。
同时,实验还培养了我解决问题的能力和动手操作的实践技能。
在实验过程中,我遇到了一些问题,如逻辑门连接不正确、芯片损坏等。
但通过仔细检查和重新设计,最终找到了解决问题的方法。
这使得我更加珍惜实验中出现的错误和挑战,因为它们实际上是对我们思维和创造力的锻炼和考验。
通过本次实验,我还意识到数字逻辑的应用范围非常广泛。
数字逻辑不仅仅应用于电子电路中,还可以用于计算机设计、数字通信、自动控制等领域。
数字逻辑的深入学习对我们今后的专业发展非常重要。
总之,数字逻辑实验是一门非常有意义和实践性的课程。
通过实验,我不仅加深了对数字逻辑的理解,还培养了动手操作和解决问题的能力。
我相信通过持续的实践和学习,我将进一步提高数字逻辑的应用水平,为未来的专业发展打下坚实基础。
六、结语通过本次数字逻辑实验的学习和实践,我对数字逻辑有了更深的了解和认识。
数字逻辑上机实验报告
一、实验目的1. 理解数字逻辑的基本概念和基本门电路的功能。
2. 掌握组合逻辑电路和时序逻辑电路的设计方法。
3. 学会使用逻辑仿真软件进行电路设计和验证。
4. 培养动手能力和逻辑思维。
二、实验环境1. 实验软件:Multisim 14.02. 实验设备:个人计算机3. 实验工具:万用表、示波器、数字逻辑实验箱三、实验内容1. 组合逻辑电路设计(1)实验一:全加器设计实验目的:设计并验证一个全加器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建全加器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建全加器电路,输出波形符合预期。
(2)实验二:译码器设计实验目的:设计并验证一个3-8译码器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建3-8译码器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建3-8译码器电路,输出波形符合预期。
2. 时序逻辑电路设计(1)实验一:D触发器设计实验目的:设计并验证一个D触发器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建D触发器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建D触发器电路,输出波形符合预期。
(2)实验二:计数器设计实验目的:设计并验证一个4位同步加法计数器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门、触发器等,搭建4位同步加法计数器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建4位同步加法计数器电路,输出波形符合预期。
四、实验结果分析1. 通过实验,掌握了组合逻辑电路和时序逻辑电路的设计方法。
数字逻辑实验报告
数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。
本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。
实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。
通过对二进制数的逐位相加,我们可以得到正确的结果。
首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。
最后,将得到的结果输出。
实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。
数字比较器可以比较两个数字的大小,并输出比较结果。
通过使用数字比较器,我们可以实现各种判断和选择的功能。
比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。
实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。
通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。
比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。
实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。
时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。
比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。
实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。
状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。
状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。
实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。
通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。
数字逻辑实验报告
数字逻辑实验报告数字逻辑是一门关于数字电路与计算机硬件的专业学科,数学与电子学是数字逻辑的主要支撑学科。
数字逻辑实验则是数字逻辑课程中重要的一环,通过数字逻辑实验,学生们可以更加直观地了解数字电路的原理与构造,掌握数字逻辑设计和模拟的基本方法和技能。
在这次数字逻辑实验中,我们使用了FPGA平台和Verilog HDL编程语言进行数字电路的设计和模拟。
在实验中,我们以设计一个给定数码在七段显示器上输出的电路为例,具体实现方法如下。
首先,我们需要了解七段显示器的原理。
七段显示器是一种基于数码管工作原理的显示设备,它由七个LED元件(排列成了基本的数字“8”形状)和数码控制器组成。
每个LED元件可以显示数字“0”到“9”以及一些字母和特殊符号。
某个数字或字母在七段数码管上的显示是由对应的七段LED元件亮灭状态的组合来实现的。
接着,我们需要确定给定数字在七段显示器上显示的亮灭状态的对应表。
例如,数字“0”的亮灭状态可以表示为1111110,其中1表示亮,0表示灭。
通过查找资料或自行设计,我们可以获得数字0到9的显示亮灭状态的对应表。
然后,我们需要根据数字的输入和输出设计电路。
电路的输入是一个N位二进制数码,输出是控制七段数码管显示的亮灭状态。
我们可以使用Verilog HDL语言描述电路的模块,如下所示:```module seven_segment_display(input [N-1:0] num, output [6:0] seg);assign seg = {~num[3], num[2], num[1], ~(num[0] & num[2]), num[0] & num[1], ~(num[0] | num[1]), num[0] ^ num[1] ^ num[2]};endmodule```在这个Verilog HDL模块中,我们使用assign关键字将七段数码管的亮灭状态seg与输入num进行绑定。
数字逻辑实验报告
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
数字逻辑实习报告
一、实习目的本次数字逻辑实习的主要目的是通过实际操作和理论学习,加深对数字逻辑电路基本原理的理解,掌握数字逻辑电路的设计、分析和仿真方法,提高解决实际问题的能力。
二、实习内容1. 数字逻辑电路基本原理的学习在实习过程中,我们首先学习了数字逻辑电路的基本原理,包括逻辑门、触发器、计数器、寄存器等基本逻辑元件及其组合逻辑和时序逻辑电路的设计方法。
2. 逻辑门电路的设计与仿真通过Logisim软件,我们设计并仿真了各种逻辑门电路,如与门、或门、非门、异或门等。
通过实验,我们验证了所设计的逻辑门电路的正确性。
3. 触发器电路的设计与仿真我们学习了D触发器、JK触发器、T触发器等基本触发器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的触发器电路的功能。
4. 计数器电路的设计与仿真我们学习了同步计数器、异步计数器等计数器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的计数器电路的正确性。
5. 寄存器电路的设计与仿真我们学习了移位寄存器、同步寄存器等寄存器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的寄存器电路的功能。
三、实习过程1. 实验准备在实习开始前,我们查阅了相关资料,了解了数字逻辑电路的基本原理和设计方法。
同时,我们预习了实验指导书,明确了实验目的、内容和步骤。
2. 实验操作在实验过程中,我们按照实验指导书的要求,利用Logisim软件设计并仿真了各种数字逻辑电路。
在实验过程中,我们遇到了一些问题,通过查阅资料、请教老师等方式解决了这些问题。
3. 结果分析通过对所设计的数字逻辑电路进行仿真,我们验证了电路的正确性。
同时,我们分析了电路的性能,如速度、功耗等。
四、实习收获1. 提高了数字逻辑电路设计能力通过本次实习,我们掌握了数字逻辑电路的设计方法,提高了数字逻辑电路的设计能力。
2. 增强了实践操作能力在实习过程中,我们学会了使用Logisim软件进行数字逻辑电路的仿真,提高了实践操作能力。
数字逻辑实验报告至诚
一、实验名称数字逻辑实验二、实验目的1. 理解和掌握数字逻辑的基本概念和基本电路。
2. 学会使用逻辑门进行逻辑运算。
3. 掌握组合逻辑电路的设计方法。
4. 通过实验加深对数字逻辑理论知识的理解。
三、实验原理数字逻辑是研究数字信号及其处理的理论,主要内容包括逻辑门、组合逻辑电路、时序逻辑电路等。
本实验主要围绕组合逻辑电路展开,通过实验加深对组合逻辑电路的理解。
四、实验仪器及材料1. 数字逻辑实验箱2. 逻辑门芯片(如74LS00、74LS04等)3. 逻辑开关4. 逻辑灯5. 逻辑测试笔6. 连接线7. 实验指导书五、实验内容及步骤1. 组合逻辑电路的设计与验证(1)设计一个简单的组合逻辑电路,如异或门、与门、或门等。
(2)根据设计要求,选择合适的逻辑门芯片。
(3)将逻辑门芯片插入实验箱,连接输入端和输出端。
(4)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
2. 译码器和数据选择器的设计与验证(1)设计一个译码器,将输入的二进制信号转换为输出信号。
(2)设计一个数据选择器,根据输入信号选择相应的输出信号。
(3)根据设计要求,选择合适的译码器和数据选择器芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
3. 组合逻辑电路的应用(1)设计一个交通灯控制器,控制红、黄、绿三个信号灯的亮灭。
(2)设计一个密码锁,输入正确的密码后,输出信号使门锁打开。
(3)根据设计要求,选择合适的逻辑门芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
六、实验结果与分析1. 组合逻辑电路的设计与验证通过实验,成功设计并验证了异或门、与门、或门等基本组合逻辑电路。
在实验过程中,了解了逻辑门的工作原理,掌握了组合逻辑电路的设计方法。
2. 译码器和数据选择器的设计与验证成功设计并验证了译码器和数据选择器电路。
计算机组成原理综合实验报告
计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。
二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。
三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。
通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。
2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。
了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。
3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。
通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。
4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。
四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。
(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。
(3)编写测试程序,输入不同的数据进行运算,并观察结果。
2、控制器实验步骤(1)分析控制器的工作流程和指令格式。
(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。
(3)编写测试程序,验证控制器的功能。
3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。
(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。
(3)通过改变缓存策略,观察对存储系统性能的影响。
4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。
(2)编写程序,实现数据的输入和输出。
(3)测试输入输出系统的稳定性和可靠性。
五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。
2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。
数字逻辑实验报告武大(3篇)
第1篇一、实验目的1. 理解数字逻辑的基本概念和原理;2. 掌握数字逻辑电路的基本分析方法;3. 熟悉数字电路仿真软件的使用;4. 培养实验操作能力和问题解决能力。
二、实验内容及步骤1. 实验一:组合逻辑电路设计(1)设计2选1多路选择器(MUX21)1)根据教材5.1节流程,利用Quartus II完成MUX21的文本编辑输入(MUX21.v);2)进行仿真测试,给出仿真波形;3)在实验系统上硬件测试,验证设计功能;4)引脚锁定及硬件下载测试,a和b分别接来自不同的时钟,输出信号接蜂鸣器;5)编译、下载和硬件测试实验,通过选择键1,控制s,可使蜂鸣器输出不同音调。
(2)设计三人表决电路1)根据教材5.1节流程,利用Quartus II完成三人表决电路的文本编辑输入(图5-36);2)进行仿真测试,给出仿真波形;3)在实验系统上硬件测试,验证设计功能;4)引脚锁定及硬件下载测试,ABC[2..0]分别接自键3、键2、键1;CLK接自时钟CLOCK0(256Hz),输出信号X接D1,输出信号Y接蜂鸣器;5)编译、下载和硬件测试实验,通过按下键3、键2、键1,控制D1的亮灭。
2. 实验二:时序逻辑电路设计(1)设计‘101’序列检测器1)验证RS/D/JK/T触发器的功能;2)熟悉逻辑分析仪、字发生器的使用;3)形成原始的状态图和状态表;4)采用Mealy型同步时序逻辑电路实现序列检测器的功能;5)初始状态:A,状态1:B,状态2:C;6)状态化简(用隐含表);7)状态编码(优先级1>2>3的顺序编码);8)确定激励函数和输出函数,并画出逻辑电路图;9)在Ni Multisim上实现电路的仿真;10)记录实验现象,采用截屏波形的方法。
(2)设计RISC-V五级流水线CPU1)了解数字逻辑与组成原理实践教程;2)设计32位RISC-V五级流水线CPU代码;3)使用Modelsim进行仿真;4)提供项目源代码、测试数据、设计图和指令集;5)编写实验报告,包括实验目的、环境介绍、系统设计、实验步骤和结果分析。
最新-数字逻辑与计算机组成原理实验指导书 精品
《数字逻辑与计算机组成原理》实验指导书适用专业:09,10软件工程闽江学院计算机系2010年 7月前言“数字逻辑与计算机组成原理实验”是一门实践性、综合性、应用性较强的计算机基础课程,是必修课程。
对计算机应用及程序有重大意义,有利于理解计算机系统中软件和硬件的关系。
通过实验学生掌握各个单元模块的工作原理,可进一步深化和掌握课堂理论教学内容,为学生提供必要的实践机会,以加强其感性认识和增强其实际动手能力,能使学生更好的领会计算工作原理以及相关接口技术实践知识,激励学生勇于创新,全面提高学生解决实际问题的动手能力。
本实验主要训练和培养学生利用所学的知识进行数字电路和模型机的设计与调试等应用等方面的技能,训练学生开发高级应用系统的设计思路、具体过程和步骤等,激发学生的学习热情和创新性思维。
本指导书中设置的实验项目,包括验证性、综合性和设计性实验,分为必做和选做,可根据学生的专业方向和课时安排以及学生的能力和兴趣等对实验项目的内容和顺序等重新调整安排。
目录实验一:Multisim 仿真实验---------------------------------------------3 实验二:组合逻辑电路的设计与仿真-----------------------------------5 实验三:时序逻辑电路的设计与仿真-----------------------------------7 实验四:算术逻辑运算实验-----------------------------------------------9 实验五:存储器实验-----------------------------------------------------22实验六:微控制器实验---------------------------------------------------28附件:实验报告基本要求 (40)实验一熟悉Multisim 仿真软件实验学时:2实验类型:验证实验要求:必修一、实验目的(1)熟悉Multisim软件的功能及使用(2)掌握Multisim软件的各种仿真手段(3)掌握Multisim软件的各种虚拟仪器的运用(4)熟悉Multisim软件的元件库及调用(5)设计一个半加器电路,运用Multisim软件进行优化和测试。
数字逻辑实验报告
一、实验目的1. 理解数字逻辑的基本概念和原理。
2. 掌握逻辑门电路的基本功能和应用。
3. 学会使用逻辑门电路设计简单的组合逻辑电路。
4. 培养实际动手能力和分析问题、解决问题的能力。
二、实验原理数字逻辑是研究数字电路的基本原理和设计方法的一门学科。
数字电路是由逻辑门电路组成的,逻辑门电路是实现逻辑运算的基本单元。
常见的逻辑门电路有与门、或门、非门、异或门等。
组合逻辑电路是由逻辑门电路组成的,其输出仅与当前的输入有关,而与电路的历史状态无关。
组合逻辑电路的设计方法主要有真值表法、逻辑函数法、卡诺图法等。
三、实验仪器与设备1. 数字逻辑实验箱2. 移动电源3. 连接线4. 逻辑门电路模块5. 计算器四、实验内容1. 逻辑门电路测试(1)测试与门、或门、非门、异或门的功能。
(2)测试逻辑门电路的输出波形。
2. 组合逻辑电路设计(1)设计一个4位二进制加法器。
(2)设计一个4位二进制减法器。
(3)设计一个4位二进制乘法器。
(4)设计一个4位二进制除法器。
五、实验步骤1. 逻辑门电路测试(1)将实验箱上相应的逻辑门电路模块插入实验板。
(2)根据实验要求,连接输入端和输出端。
(3)打开移动电源,将输入端接入逻辑信号发生器。
(4)观察输出波形,记录实验结果。
2. 组合逻辑电路设计(1)根据实验要求,设计组合逻辑电路的原理图。
(2)根据原理图,将逻辑门电路模块插入实验板。
(3)连接输入端和输出端。
(4)打开移动电源,将输入端接入逻辑信号发生器。
(5)观察输出波形,记录实验结果。
六、实验结果与分析1. 逻辑门电路测试实验结果如下:(1)与门:当两个输入端都为高电平时,输出为高电平。
(2)或门:当两个输入端至少有一个为高电平时,输出为高电平。
(3)非门:输入端为高电平时,输出为低电平;输入端为低电平时,输出为高电平。
(4)异或门:当两个输入端不同时,输出为高电平。
2. 组合逻辑电路设计实验结果如下:(1)4位二进制加法器:能够实现两个4位二进制数的加法运算。
计算机组成原理实验报告
计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程之一,通过实验可以更好地理解和掌握计算机的组成原理。
本篇实验报告将介绍我们在计算机组成原理实验中所进行的实验内容和实验结果。
实验一:逻辑门电路设计在这个实验中,我们学习了逻辑门电路的设计和实现。
通过使用门电路,我们可以实现与门、或门、非门等基本逻辑运算。
我们首先学习了逻辑门电路的真值表和逻辑代数的基本运算规则,然后根据实验要求,使用逻辑门电路设计了一个简单的加法器电路,并通过仿真软件进行了验证。
实验结果表明,我们设计的加法器电路能够正确地进行二进制数的加法运算。
实验二:数字逻辑电路实现在这个实验中,我们进一步学习了数字逻辑电路的实现。
通过使用多路选择器、触发器等数字逻辑元件,我们可以实现更复杂的逻辑功能。
我们首先学习了多路选择器的原理和使用方法,然后根据实验要求,设计了一个4位二进制加法器电路,并通过数字逻辑实验板进行了搭建和测试。
实验结果表明,我们设计的4位二进制加法器能够正确地进行二进制数的加法运算。
实验三:存储器设计与实现在这个实验中,我们学习了存储器的设计和实现。
存储器是计算机中用于存储和读取数据的重要组成部分。
我们首先学习了存储器的基本原理和组成结构,然后根据实验要求,设计了一个简单的8位存储器电路,并通过实验板进行了搭建和测试。
实验结果表明,我们设计的8位存储器能够正确地存储和读取数据。
实验四:计算机硬件系统设计与实现在这个实验中,我们学习了计算机硬件系统的设计和实现。
计算机硬件系统是计算机的核心部分,包括中央处理器、存储器、输入输出设备等。
我们首先学习了计算机硬件系统的基本原理和组成结构,然后根据实验要求,设计了一个简单的计算机硬件系统,并通过实验板进行了搭建和测试。
实验结果表明,我们设计的计算机硬件系统能够正确地进行指令的执行和数据的处理。
结论:通过这些实验,我们深入学习了计算机组成原理的相关知识,并通过实践掌握了计算机组成原理的基本原理和实现方法。
数字逻辑实验报告
数字逻辑实验报告本次实验旨在通过数字逻辑实验的设计和实现,加深对数字逻辑电路原理的理解,并通过实际操作提高动手能力和解决问题的能力。
在本次实验中,我们将学习数字逻辑实验的基本原理和方法,掌握数字逻辑实验的设计与调试技巧,提高实验操作的熟练程度。
首先,我们进行了数字逻辑实验的准备工作,包括熟悉实验设备和器材的使用方法,了解实验电路的基本原理和设计要求。
在实验过程中,我们按照实验指导书上的要求,逐步完成了数字逻辑实验电路的设计、搭建和调试。
在实验过程中,我们遇到了一些问题,但通过分析问题的原因并进行逐步排除,最终成功完成了实验。
其次,我们进行了数字逻辑实验电路的测试和验证。
通过使用示波器、逻辑分析仪等测试设备,我们对搭建好的数字逻辑电路进行了测试,验证了实验电路的正确性和稳定性。
在测试过程中,我们发现了一些问题,但通过仔细观察和分析,最终找到了解决问题的方法,并取得了满意的测试结果。
最后,我们总结了本次实验的经验和教训。
通过本次实验,我们深刻理解了数字逻辑电路的原理和实现方法,提高了实验操作的技能和水平,增强了动手能力和解决问题的能力。
在今后的学习和工作中,我们将继续努力,不断提高自己的专业能力和实践能力,为将来的发展打下坚实的基础。
通过本次实验,我们对数字逻辑实验有了更深入的了解,对数字逻辑电路的设计和实现有了更加丰富的经验,相信在今后的学习和工作中,我们能够更加熟练地运用数字逻辑知识,为实际工程问题的解决提供有力的支持。
总之,本次实验不仅增强了我们对数字逻辑实验的理解和掌握,也提高了我们的实验操作能力和解决问题的能力。
希望通过今后的学习和实践,我们能够不断提高自己的专业水平,为将来的发展打下坚实的基础。
数字逻辑实验报告3
数字逻辑实验报告3数字逻辑实验报告3引言数字逻辑实验是计算机科学与技术专业的基础课程之一,通过实验来加深对数字逻辑电路的理解和应用。
本次实验报告将详细介绍我在数字逻辑实验3中的实验过程、结果和分析。
实验目的本次实验的主要目的是设计一个4位二进制加法器电路,实现两个4位二进制数的加法运算,并通过七段数码管显示结果。
实验装置本次实验使用的装置包括:数字逻辑实验箱、示波器、数字逻辑门芯片、七段数码管、开关等。
实验步骤1. 首先,根据设计要求,确定所需的逻辑门芯片种类和数量。
本次实验需要使用AND门、OR门、XOR门、全加器等逻辑门芯片。
2. 根据设计要求,绘制电路图。
将四个4位二进制数的输入引脚连接到开关上,并将七段数码管的显示引脚连接到输出引脚上。
3. 根据电路图,搭建实验电路。
将逻辑门芯片按照电路图的连接方式插入实验箱中,并将开关和七段数码管连接到相应的引脚上。
4. 打开电源,观察七段数码管的显示情况。
如果显示正确,则说明电路连接正确。
5. 输入两个4位二进制数,并将开关切换到加法器模式。
观察七段数码管的显示结果。
实验结果与分析经过实验,我们成功设计并实现了一个4位二进制加法器电路。
输入两个4位二进制数,通过逻辑门芯片的计算和运算,将结果显示在七段数码管上。
实验中,我们发现当两个输入数相加时,如果结果超过了4位二进制数的表示范围,则七段数码管会显示错误的结果。
这是因为我们设计的电路只能处理4位二进制数的加法运算,超出范围的结果无法正确显示。
为了解决这个问题,我们可以进一步扩展电路,增加位数,以处理更大范围的加法运算。
另外,我们还可以进一步优化电路,减少逻辑门芯片的使用数量,提高电路的效率和可靠性。
结论通过本次实验,我们深入学习了数字逻辑电路的设计和实现。
通过搭建4位二进制加法器电路,我们成功实现了两个4位二进制数的加法运算,并通过七段数码管显示了结果。
在实验过程中,我们还发现了电路设计的局限性,并提出了进一步改进的建议。
计算机组成原理实验报告
计算机组成原理实验报告一、实验目的本次计算机组成原理实验的主要目的是深入理解计算机的内部结构和工作原理,通过实际操作和观察,巩固和拓展课堂上学到的理论知识,培养实践动手能力和解决问题的能力。
二、实验设备本次实验所使用的设备包括计算机主机、逻辑分析仪、示波器、面包板、各种芯片(如 74LS 系列、8255 芯片等)、导线若干。
三、实验内容1、算术逻辑运算单元(ALU)实验通过使用芯片搭建一个简单的算术逻辑运算单元,实现加法、减法、与、或等基本运算,并观察运算结果。
2、存储单元实验构建一个存储单元,了解存储器的读写操作和存储原理,包括随机存储器(RAM)和只读存储器(ROM)。
3、控制器实验设计一个简单的控制器,实现指令的译码和执行,理解计算机如何按照指令序列进行工作。
4、总线结构实验研究计算机内部的总线结构,包括数据总线、地址总线和控制总线,了解它们在信息传输中的作用。
四、实验原理1、算术逻辑运算单元算术逻辑运算单元是计算机中进行算术和逻辑运算的核心部件。
它通常由加法器、减法器、逻辑门等组成。
通过对输入的操作数进行相应的运算操作,产生输出结果。
2、存储单元存储器用于存储程序和数据。
随机存储器(RAM)可以随时读写,但其数据在断电后会丢失;只读存储器(ROM)中的数据在制造时就已确定,只能读取不能修改,且断电后数据不会丢失。
3、控制器控制器是计算机的指挥中心,负责从存储器中取出指令,对指令进行译码,并产生控制信号,控制各个部件的操作。
4、总线结构总线是计算机内部各个部件之间传输信息的公共通道。
数据总线用于传输数据,地址总线用于传输地址信息,控制总线用于传输控制信号。
五、实验步骤(1)按照实验电路图,在面包板上正确连接 74LS 系列芯片,如74LS181 等,构建加法器和逻辑运算电路。
(2)通过改变输入信号的值,使用逻辑分析仪观察输出结果,验证运算的正确性。
2、存储单元实验(1)使用芯片搭建随机存储器(RAM)和只读存储器(ROM)电路。
数字逻辑与计算机组成原理实验报告
数字逻辑与计算机组成原理实验指导书实验目录实验一基本逻辑电路测试实验二时序线路分析实验三计算机运算部件设计实验四计算机存储部件设计实验五总线传送技术1实验一基本逻辑电路测试一.实验目的1.掌握TTL与非门,与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中,小规模集成电路的外型,管脚和使用方法。
3.熟悉TDS―1实验系统的功能和使用方法。
二.实验所用器材1.二输入四与非门74LS00一片2.二输入四或非门74LS02(74LS28)一片3.二输入四异或门74LS86一片4.数字万用表5.示波器三.实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.用数字万用表测量各输入输出电压值并记录。
5.熟悉THD―1实验系统的功能和使用方法。
6.熟悉示波器的使用,练习测量各种脉冲波形。
四.实验提示1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的地(GND)连接,将器件的引脚14与实验台的+5V连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接,指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五.实验接线图及实验结果74LS00中包含4个二与非门,74LS02中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V,图中的K1,K2是电平开关输出,LED0是电平指示灯。
231.测试74LS00逻辑关系接线图及测试结果74LS00K1K2LED0图1.1测试74LS00逻辑关系接线图表1.174LS00真值表2.测试74LS02逻辑关系接线图及测试结果74LS02K1K2LED0图1.2测试74LS02逻辑关系接线图3.测试74LS86逻辑关系接线图及测试结果74LS86K1K2LED0图1.3测试74LS86逻辑关系接线图六.实验报告要求1.画出实验线路图。
北方工业大学《数字逻辑与计算机组成原理》课程运算器实验报告总结
计算机组成原理实验系统实验指导书北方工业大学计算机系《数字逻辑与计算机组成原理》课程实验报告实验名称实验一运算器实验姓名专业计算机科学与技术学号实验日期班级成绩一、实验目的和要求实验目的:1.掌握运算器的组成及工作原理;2.了解4 位函数发生器74LS181 的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;3.验证带进位控制的74LS181 的功能。
实验要求:1.复习本次实验所用的各种数字集成电路的性能及工作原理;2.预习实验步骤,了解实验中要求的注意之处。
二、实验内容(包括实验原理,必要实验原理图、连接图等)1.实验原理及原理图:运算器的结构框图见图1-5:算术逻辑单元ALU是运算器的核心。
集成电路74LS181是4位运算器,四片74LS181以并/串形式构成16位运算器。
它可以对两个16位二进制数进行多种算术或逻辑运算,74LS181 有高电平和低电平两种工作方式,高电平方式采用原码输入输出,低电平方式采用反码输入输出,这里采用高电平方式。
三态门74LS244 作为输出缓冲器由ALU-G 信号控制,ALU-G 为“0”时,三态门开通,此时其输出等于其输入;ALU-G 为“1”时,三态门关闭,此时其输出呈高阻。
四片74LS273作为两个16数据暂存器,其控制信号分别为LDR1和LDR2,当LDR1和LDR2 为高电平有效时,在T4脉冲的前沿,总线上的数据被送入暂存器保存。
2.电路组成:本模块由算术逻辑单元ALU 74LS181(U7、U8、U9、U10)、暂存器74LS273(U3、U4、U5、U6)、三态门74LS244(U11、U12)和控制电路(集成于EP1K10 内部)等组成。
电路图见图1-1(a)、1-1(b)。
算术逻辑单元ALU 是由四片74LS181 构成。
74LS181 的功能控制条件由S3、S2、S1、S0、M、Cn 决定。
高电平方式的74LS181 的功能、管脚分配和引出端功能符号详见表1-1、图1-2和表1-2。
数字逻辑实习报告
一、实习背景与目的随着科技的飞速发展,数字逻辑作为电子工程、计算机科学等领域的基础学科,其重要性日益凸显。
为了深入了解数字逻辑的理论与实践,提高自己的专业技能,我于2023年在某知名企业进行了为期一个月的数字逻辑实习。
本次实习旨在通过实际操作,加深对数字逻辑原理的理解,提升电路设计能力,并为将来的职业生涯打下坚实基础。
二、实习单位及实习内容实习单位为我国一家专注于集成电路设计的知名企业,主要从事数字信号处理、嵌入式系统等领域的研究与开发。
在实习期间,我主要参与了以下工作:1. 数字逻辑基础理论学习:通过阅读相关书籍、资料,复习数字逻辑的基本概念、原理和设计方法,为后续实践操作打下理论基础。
2. 数字电路设计与仿真:在导师的指导下,参与设计数字电路,包括组合逻辑电路、时序逻辑电路等,并利用仿真软件进行功能验证。
3. FPGA开发与调试:学习FPGA开发工具,完成数字电路的硬件描述语言(HDL)编程,并在FPGA上实现电路功能。
4. 项目参与:参与企业内部项目,协助工程师完成电路设计、调试和测试等工作。
三、实习过程与收获1. 理论学习与实践相结合:在实习过程中,我深刻体会到理论学习与实践操作的重要性。
通过实际操作,我对数字逻辑原理有了更深入的理解,同时发现自己在理论方面的不足,为今后的学习指明了方向。
2. 电路设计能力提升:通过参与电路设计,我学会了如何根据需求选择合适的电路结构,并进行电路优化。
同时,熟练掌握了仿真软件的使用,提高了电路设计效率。
3. FPGA编程能力提高:在FPGA开发过程中,我学习了VHDL和Verilog等硬件描述语言,掌握了FPGA编程的基本方法。
通过实际操作,我能够独立完成数字电路的FPGA实现。
4. 团队协作与沟通能力增强:在实习过程中,我与团队成员共同完成项目,学会了如何与不同背景的人进行有效沟通,提高了团队协作能力。
四、实习总结与展望通过本次数字逻辑实习,我收获颇丰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑与计算机组成原理实验指导书
实验目录
实验一基本逻辑电路测试
实验二时序线路分析
实验三计算机运算部件设计
实验四计算机存储部件设计
实验五总线传送技术
1
实验一基本逻辑电路测试
一.实验目的
1.掌握TTL与非门,与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中,小规模集成电路的外型,管脚和使用方法。
3.熟悉TDS―1实验系统的功能和使用方法。
二.实验所用器材
1.二输入四与非门74LS00一片
2.二输入四或非门74LS02(74LS28)一片
3.二输入四异或门74LS86一片
4.数字万用表
5.示波器
三.实验内容
1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.用数字万用表测量各输入输出电压值并记录。
5.熟悉THD―1实验系统的功能和使用方法。
6.熟悉示波器的使用,练习测量各种脉冲波形。
四.实验提示
1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的地(GND)连接,将器件的引脚14与实验台的+5V连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接,指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五.实验接线图及实验结果
74LS00中包含4个二与非门,74LS02中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V,图中的K1,K2是电平开关输出,LED0是电平指示灯。
2
3
1.测试74LS00
逻辑关系接线图及测试结果
74LS00
K1K2
LED0
图1.1测试74LS00逻辑关系接线图
表1.174LS00真值表
2.测试74LS02
逻辑关系接线图及测试结果
74LS02
K1K2
LED0
图1.2测试74LS02逻辑关系接线图
3.测试74LS86逻辑关系接线图及测试结果
74LS86
K1K2
LED0
图1.3测试74LS86逻辑关系接线图
六.实验报告要求1.画出实验线路图。
2.说明实验步骤和试验结果。
3.分析实验中所出现的问题。
4
实验二
时序线路分析
一.实验目的
1.掌握简单时序电路的分析测试方法。
2.熟悉JK 触发器的逻辑功能。
二.实验所用器材
1.双JK 触发器74LS732片
2.
4,2输入与非门74LS00
1片
三.实验提示
74LS73引脚11是GND,引脚4是VCC,实验器件功能图见附录,JK 触发器74LS73是下降沿触发。
四.实验内容
1.用2片74LS73构成一个十进制计数器。
2.将Q 0Q 1Q 2Q 3复位。
3.由时钟端CLK 输入单脉冲,测试并记录Q 0~Q 3的状态。
4.用4020构成一个分频器,产生连续脉冲作为时钟信号源,观察计数器的输出变化。
5.画出集成电路74LS73的标准引脚图。
五.实验逻辑图及测试结果1.
实验逻辑图如图3.1所示
LED0
LED1
LED2
LED3
AK1K1
图3.1异步十进制计数器接线图
图中K1是电平开关输出,AK1是单次脉冲源按钮产生的脉冲,LED0--LED3是电平指示灯。
2.置K1为低电平,四个电平指示灯灭,表示Q 3Q 2Q 1Q 0为0000。
3.置K1为高电平,按单脉冲按钮AK1,Q 3Q 2Q 1Q 0的值发生变化(0000―1001)。
4.
分析并验证实验数据的正确性。
5.将接单脉冲的线改接1KHz连续脉冲,用示波器观测Q0Q1Q2Q3波形图。
六.实验报告要求
1.简要说明实验方案。
2.画出异步十进制计数器实验连线图。
3.列表说明异步十进制计数器的变化规律。
4.画出连续计数时钟下Q0Q1Q2Q3的波形图(标注参数:Vamp、Width、Freq、Cyc)。
5.分析实验中所出现的问题。
实验三计算机运算部件设计
一.实验目的
1.熟悉运算器部件的基本组成。
2.了解74LS181ALU器件的功能及使用方法。
3.学会正确使用寄存器和多路开关。
二.实验所用器材
1.74LS181四位算术逻辑运算单元。
2.74LS194四位双向通用移位寄存器。
3.74LS157四2选1多路开关。
4.其他自选器件(提前来实验室选定)。
三.实验内容
设计一个四位运算器电路,采用单累加器结构,寄存器数据可用开关从试验台上输入,运算结果通过实验台上的发光二极管显示,控制信号由实验台开关给出,时序信号由实验台时序部分产生。
主要设计工作有:
1.选择寄存器器件,设计输入,输出和控制端连线。
2.设计多路选择器连线方式,使ALU可连接寄存器的输入,也可选择输出结果。
3.设计运算器数据输入和输出电路。
4.设计时序控制信号的使用。
5.实验系统上完成硬件连线及调试,正确实现如下操作:
(1)传送功能
(2)加法功能
5
(3)减法功能
(4)逻辑运算功能
四.实验报告要求
1.写出设计步骤,给出所设计的逻辑框图。
2.画出实验工程布线图。
3.说明实验步骤。
4.总结分析实验中所出的问题,有何收获和体会。
实验四计算机存储部件设计
一。
实验目的
1.熟悉静态RAM器件控制性能。
2.掌握RAM的读写方法。
3.掌握三态门逻辑功能和使用方法。
二。
实验所用器材
1.2114用作RAM。
2.74LS244三态输出的八缓冲器。
3.74LS194四位双向通用移位寄存器。
4.74LS93四位二进制计数器。
5.其他自选器件(提前来实验室选定)。
三.实验内容
要求用给定器件设计存储器部件实验方案,正确实现RAM器件的读写逻辑功能。
设计要求如下:
1.熟悉所用器件的功能和使用方法。
2.存储器部件需包括存储体,MAR,MBR,三态门。
3.MAR中的地址和MBR中的数据由实验系统中的开关给定。
4.地址线和数据线分别接指示灯,用来显示RAM当前的地址和内容。
5.在实验台上完成硬件接线,选择五个以上连续(或任意)存储单元地址,分别存入内容,完成正确的读写操作实验。
四.实验报告要求
1.画出存储器部件设计实验方案框图,说明设计步骤。
6
2.画出实验工程布线图。
3.说明存储器的读写操作过程。
4.总结分析实验中所出现的问题,又何收获和体会。
实验五总线传送技术
一.实验目的
1.熟悉建立总线的器件特性。
2.掌握总线传送技术的逻辑实现方法。
二.实验所用器材
1.74LS244三态输出的八缓冲器。
2.74LS194四位双向通用移位寄存器。
3.74LS157四2选1多路开关。
4.74LS245八总线传送接收器。
5.其他自选器件(提前来实验室选定)。
三.实验内容
设计一个总线传送实验方案,它能实现数据开关输入(A),存储器数据寄存器(B),地址寄存器(C),这些部件之间的信息传送。
具体要求如下:
1.要求总线宽度为4位。
2.能实现的传送功能有:
(1)AàC送地址,并显示。
(2)AàB送内容。
(3)读出B的内容到总线并显示。
四实验报告要求
1.画出总线传送技术实验原理框图,简述其特点。
2.画出实验工程布线图。
3.简要说明实验步骤。
4.总结分析实验中所出现的问题,有何收获和体会。
7。