高光谱遥感图像分类54页PPT

合集下载

遥感图像的分类课件

遥感图像的分类课件
通过模拟水流淹没过程,将图像 分割成不同区域,然后对每个区 域进行特征提取和分类。这种方 法能够充分利用图像的形状、纹
理等空间信息。
区域生长法
从种子点开始,根据像素之间的 相似性(如灰度值、纹理等)进 行区域扩展,直到无法再扩展为 止。然后对每个区域进行特征提
取和分类。
随机森林
随机森林是一种集成学习算法, 通过构建多个决策树并结合它们 的预测结果来进行分类。这种方 法能够处理高维特征,并在一定
支持向量机(SVM) SVM是一种二分类模型,通过寻找最优超平面来对像素进 行分类。对于多类别分类问题,可以通过构建多个二分类 器来解决。
K最近邻(KNN) KNN算法根据像素周围K个最近邻的类别来决定该像素的 类别。这种方法考虑了空间上下文信息,通常能够取得较 好的分类效果。
基于对象的分类算法
分水岭算法
遥感图像分类的基本流程
• 流程概述:遥感图像分类的基本流程包括数据预处理、特征提取、分类器设计和分类结果评价四个主要步骤。其中,数据 预处理是对原始遥感图像进行预处理操作,如去噪、增强等,以改善图像质量和提高分类精度;特征提取是从预处理后的 图像中提取出有效的光谱、空间、纹理等特征,为后续分类器设计提供输入;分类器设计是根据提取的特征,选择合适的 算法设计分类器,实现对图像的自动分类;分类结果评价是对分类结果进行评估和分析,以验证分类方法的有效性和可行性。
城市用地分 类
遥感图像分类可用于城市用地类型的 识别与划分,为城市规划提供基础数 据。
城市扩展与变化监测
利用遥感图像分类技术对城市扩展和 变化进行监测,为城市规划和管理提 供科学依据。
遥感图像分类的研究前沿与挑战
深度学习技术应用
将深度学习技术应用于遥感图像分类, 提高分类精度和自动化程度。

高光谱遥感的发展PPT课件.ppt

高光谱遥感的发展PPT课件.ppt
(4)基于光谱数据库的地物光谱匹配识别算法; (5)混合光谱分解模型; (6)基于光谱模型的地表生物物理化学过程与参数的识别和反演算

24
高光谱影像分析技术:
国内外关于成像光谱仪的遥感应用研究中,所采用 的分析方法可归纳为两大类:
一、 基于纯像元的分析方法 (1)。。。 (2)。。。
二、基于混合像元的分析方法
14
历史:
• 20世纪80年代兴起的新型对地观测技术——高光谱遥感技 术,始于成像光谱仪(Imaging Spectrometer)的研究计划。 该计划最早由美国加州理工学院喷气推进实验室(Jet Propulsion Lab,JPL)的一些学者提出。
• 1983年,世界第一台成像光谱仪AIS-1在美国研制成功, 并在矿物填图、植被生化特征等研究方面取得了成功,初 显了高光谱遥感的魅力。
➢ 成像光谱仪为每个像元提供数十个至数百个窄波段的光谱信 息,每个像元都能产生一条完整而连续的光谱曲线。这就是 高光谱遥感与常规遥感的主要区别。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光 成像光谱仪(AVIRIS)记录这一波段范围内的光谱信息用10个 以上数据点。
7
8
• 成像光谱技术则把遥感波段从几个、几十 个推向数百个、上千个。高光谱遥感数据 每个像元可以提供几乎连续的地物光谱曲 线,使我们利用高光谱反演陆地细节成为 可能。
28
高光谱的应用
• 由于高光谱图像具有很高的光谱分辨率,因而能够提 供更为丰富的地物细节,有利于地物物理化学特性的 反演。
(1)海洋遥感方面。 • 由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨
率高和波段多等许多优点,因此已成为海洋水色、水 温的有效探测工具。它不仅可用于海水中叶绿素浓度、 悬浮泥沙含量、某些污染物和表层水温探测,也可用 于海冰、海岸带等的探测。

《遥感图像分类》PPT课件

《遥感图像分类》PPT课件

9.5 非监督分类
4-3-2原始图像 分类结果(10类)
结果合并(5类)
精选ppt
最终结果
16
9.5 非监督分类
3、监督分类与非监督分类方法比较
➢ 根本区别在于是否利用训练场地来获取先验的类别知识。 ➢ 监督分类的关键是选择训练场地。训练场地要有代表性,
样本数目要能够满足分类要求。此为监督分类的不足之 处。 ➢ 非监督分类不需要更多的先验知识,据地物的光谱统计 特性进行分类,分类方法简单。当两地物类型对应的光 谱特征差异很小时,分类效果不如监督分类效果好。
精选ppt
2
9.1 概述
• 9.1.1 基本原理
同类地物在相同的条件下(光照、地形等)应该具有相同或 相似的光谱信息和空间信息特征。不同类的地物之间具 有差异根据这种差异,将图像中的所有像素按其性质分 为若干个类别(Class)的过程,称为图像的分类。
精选ppt
3
9.1 概述
• 9.1.2 分类方法
精选ppt
4
9.2 相似性度量
遥感图像计算机分类的依据是遥感图像像素的相似度。 常使用距离来衡量相似度。
距离是常用的相似性度量的概念。分类是确定像素距 离哪个点群中心较近,或落入哪个点群范围可能性大的问 题。像素与点群的距离越近,那么,属于该点群的可能性 越高。
精选ppt
5
9.3 工作流程
1.确定工作范围 2.多源图像的几何配准 3.噪声处理 4.辐射校正 5.几何精纠正 6.多图像融合
图像的预处理
自动识别分类
图像的预处理
定义分类模板 评价分类模板
监督分类法
非监督分类法
初始分类 专题判断
执行监督分类
分类后重编码

遥感影像分类ppt课件

遥感影像分类ppt课件
(2)摄影像片的解译标志
解译标志又称判读标志,指能够反映和表 现目标地物信息的遥感影像各种特征,这 些特征能够帮助判读者识别遥感图像上目 标地物或现象。
编辑课件
39
• 直接判读标志
• 形状:人造地物具有规则的几何外形和清晰的边界,自然地物具有不 规则的外形和规则的边界。
• 大小:不知道比例尺时,可以比较两个物体的相对大小;已知比例尺, 可直接算出地物的实际大小和分布规模。
✓ 阴影:目标地物与背景之间的辐射差异造成
阴影
编辑课件
42
编辑课件
43
2.遥感扫描影像的判读
• 1、常见遥感扫描影像的主要特点及其应用
✓ MSS影象:
✓ 不同卫星上的波段对比; ✓ MSS各波段应用范围(重点)。
✓ TM影象:
✓ TM影象与MSS影象的对比 ✓ 波段设置 ✓ 主要应用
✓ SPOT影象:
植物含水量的影响,吸收
率大增,反射率大大下降,
绿叶的反射率
特别是在水的吸收带形成
低谷。
编辑课件
11
• 植物波谱具有上述的基本特征,但仍有细 部差别,这种差别与植物种类、季节、病 虫害影响、含水量多少等有关系。为了区 分植被种类,需要对植被波谱进行研究。
编辑课件
12
9月20日玉米、大豆
• 5月20日小麦、油菜
• 本质的区别 :电磁波在真空中也能传播 ; 机械波必须在弹性媒质中才能传播
• 两者在运动形式上都是波动。
• 基本的波动形式有两种:
横波:质点的振动方向与波的传播方向垂直。 如水波、电磁波。
纵波:质点的振动方向与波的传播方向相同。 如声波。
• 电磁波一定是横波,机械波却可以是横波

《遥感图像分类》课件

《遥感图像分类》课件
特征变换
将原始特征进行变换,生成新的特征,以更好地 反映地物类别之间的差异。
分类器设计
监督分类
利用已知样本的训练集设计分类器,对未知样本进行分类。
非监督分类
对未知样本进行聚类分析,将相似的样本归为同一类。
混合分类
结合监督分类和非监督分类的优势,提高分类精度和稳定性。
分类结果评价
精度评价
通过比较分类结果与实际地物类别, 计算分类精度、混淆矩阵等指标。
THANKS
感谢观看
分类器。
多源遥感数据融合问题
多源遥感数据融合可以提高分类精度和可靠性,但同时也带 来了数据匹配、融合算法选择等问题。
解决多源遥感数据融合问题的策略包括使用先进的融合算法 ,如基于深度学习的融合方法,以及优化数据匹配方法。
遥感图像分类技术的发展趋势
01
遥感图像分类技术正朝着高精度、高效率和自动化的方向发展 。
可靠性评价
评估分类结果的稳定性、可靠性以及 抗干扰能力。
应用价值评价
根据分类结果在实际应用中的价值, 如土地利用、资源调查、环境监测等
,对分类方法进行综合评价。
04
CATALOGUE
遥感图像分类的挑战与展望
数据质量问题
遥感图像常常受到噪声、失真和 模糊等影响,导致数据质量下降

数据质量问题还表现在不同传感 器获取的图像之间的差异,以及 不同时间获取的图像之间的变化
遥感图像分类的应用
遥感图像分类在多个领域有广泛应用,如环境保护、城市规划、资源调查、军事 侦察等。
通过遥感图像分类,可以快速获取大范围的地物信息,为相关领域的决策提供科 学依据。
02
CATALOGUE
遥感图像分类的方法

遥感图像分类ppt课件

遥感图像分类ppt课件

– 假设遥感图像有K个波段,则(i,j)位置的像素在
每个波段上的灰度值可以构成表示为X=(x1,
T
5
8.1 概述
• 8.1.2 分类方法
– 根据是否需要分类人员事先提供已知类别及其 训练样本,对分类器进行训练和监督,可将遥 感图像分类方法划分为监督分类和非监督分类。
– 事先己经知道类别的部分信息(即类别的先验知 识),对未知类别的样本进行分类的方法称之为 监督分类(Supervised Classification)。事先没 有类别的先验知识,对未知类别的样本进行分 类的方法称之为非监督分类(Unsupervised Classification)
14
8.4 非监督分类
• 非监督分类,是指人们事先对分类过程不
施加任何的先验知识,仅凭据遥感影像地 物的光谱特征的分布规律,随其自然地进 行盲目的分类。其分类的结果,只是对不 同类别进行了区分,并不确定类别的属性, 其属性是通过事后对各类的光谱响应曲线 进行分析,以及与实地调查相比较后确定 的。
• 非监督分类的理论依据:遥感图像上的同
4
8.1 概述
• 8.1.1 基本原理
– 同类地物在相同的条件下(光照、地形等)应该 具有相同或相似的光谱信息和空间信息特征。 不同类的地物之间具有差异根据这种差异,将 图像中的所有像素按其性质分为若干个类别 (Class)的过程,称为图像的分类。
– 遥感图像分类以每个像素的光谱数据为基础进 行。
9
8.2 相似性度量
3.马氏(Mahalanobis)距离
马氏距离是一种加权的欧氏距离,它通 过协方差矩阵来考虑变量的相关性。这 是由于在实际中,各点群的形状是大小 和方向各不相同的椭球体,如图所示, 尽管K点距MA的距离DA比距MB的距离 DB小,即DA<DB ,但由于B点群比A点 群离散得多,因而把K点划入B类更合 理。加权可以这样理解,计算的距离与 各点群的方差有关。方差愈大,计算的 距离就愈短。如果各个点群具有相同的 方差,则马氏距离是欧氏距离的平方。

遥感图像分类 PPT

遥感图像分类 PPT

大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
基于光谱特征的分类原理
✓ 遥感图像计算机分类的依据是遥感图像像素的相似度。
常使用距离和相关系数来衡量相似度。
➢采用距离衡量相似度时,距离越小相似度越大。 ➢采用相关系数衡量相似度时,相关程度越大,相似
度越大。
➢ 监督分类法:选择具有代表性的典型实验区或训练区, 用训练区中已知地面各类地物样本的光谱特性来“训练” 计算机,获得识别各类地物的判别函数或模式,并以此 对未知地区的像元进行分类处理,分别归入到已知的类 别中。
对象合并准则
在初始分割基础上,通过将 初始影像对象逐步合并为较 大的对象来实现多尺度对象 的构建,对象合并的停止条 件是由其尺度准则决定的
fw vah lvuael uw esh h aspheape
h va luw e c ( n 1 (m c1 c ) n 2 (m c2 c ))
c
收集现场信息 在屏训练数据多边形选择 在屏训练数据的种子选择
获取每个感兴趣类在各波段上的训练统计量后,必 须确定能最有效区分各种类的波段
方法: 统计分析方法 图形分析方法
距离作为判别准则,根据像点到各类中心的距离来判别分类
距离式
p
Dj (xi Mij)2 i1
p
Dj | xi Mij | i1
输入影像
设置分割参数 (尺度阈值、光谱形状特征权值)
第 1 次分割 (基于影像像元层的分割)
否 f≤s
是 第 n(n≥2) 次分割 (基于影像对象层的分割)
对象多边形的生成 分割结果
尺度空间内影像对象构建
• 考虑遥感、高程、专题矢量图层等多源信息的构建模型 • 多种约束的基元构建方法保证基元的准确性 • 阈值控制基元所在尺度层次

遥感图像类型与特性PPT课件

遥感图像类型与特性PPT课件

3.投影性质 动态多中心投影
(385个投影中心)
185 km
480 m
185 km
动态多中心投影的影像亦存在像点位移。像 点位移的大小与卫星平台运行高度、地表起伏高 差以及扫描角有关。
由于卫星平台运行高度较高,总扫描角较小 (11.56°),所以当地表相对高差较小且成图精 度要求不高时,可将图像近似看作是垂直投影 (正射投影)。当成图精度要求较高时(如 TM 1 : 5万成图),应根据DEM进行几何精校正。
像元
像元数目:
TM 1-5、7 6166×6166
TM 6
1542×1542
像元大小(对应地面面积):
TM 1-5、7 30m×30m
TM 6
120m×120m
像元是在扫描成像过程中通过采样而形成的 采样点,是扫描影像中最小可分辨面积,也是进 行计算机处理时的最基本单元。
② 量化
图像函数数值离散化
Landsat/TM
(专题制图仪)
TM1 0.45~0.52 μm (30m)
Landsat/MSS
(多光谱扫描仪)
————
TM2 0.52~0.60 μm (30m) MSS4 0.5~0.6 μm (79m)
TM3 0.63~0.69 μm (30m) MSS5 0.6~0.7 μm (79m)
按遥感器成像方式和工作波段划分常规摄影像片非常规摄影像片光机扫描图像固体自扫描图像天线扫描图像黑白全色像片可见光天然彩色像片可见光黑白红外像片近红外彩色红外像片部分可见光近红外紫外像片紫外多波段像片紫外近红外全景像片可见光近红外红外扫描图像中热远红外多波段扫描图像紫外远红外超多波段扫描图像可见光远红外固体自扫描图像可见光近红外成像雷达图像微波航空摄影像片航天摄影像片热红外图像landsattm图像成像波谱仪图像spothrv图像sar图像1

第7-3章 高光谱遥感图像分类

第7-3章 高光谱遥感图像分类

3、神经网络分类算法
目前的多种先进而新颖的技术手段层出不穷, 人工智能,模糊理论,决策树,神经网络等都 被应用于遥感图像的理解和分析当中。
人工神经网络技术,黑匣子,能被用于多源数 据的综合分析被广泛用于遥感图像分类。
3.1 神经系统原理
神经网络是在生物功能启示下建立的信息 处理系统,摸仿了人脑的结构特征和信息处 理机制,表现出了许多与人脑相同的特征。
x2
o2
……
xn 输入层


隐藏层
… …… om
输出层
多级网——h层网络
x1
o1
x2
o2
W(1)
W(2)
W(3)
W(h)
……

…Leabharlann ………xn 输入层
隐藏层
om 输出层
3.4 学习规则与方式
学习规则:外部环境对系统的输出结果给出评 价,学习系统通过强化受奖的动作来改善自身 性能。
误差纠错学习(delta) Hebb学习 竞争学习
简单的神经元网络是对生物神经元的简化 和模拟,其模型如下图:
n
Si w ji x j i j 1
yi f (Si )
3.2 人工神经元的基本构成
x1 w1
x2 w2
… xn wn
∑ net=XW
人工神经元模拟生物神经元的一阶特性。
输入:X=(x1,x2,…,xn) 联接权:W=(w1,w2,…,wn)T 网络输入: net=∑xiwi 向量形式: net=XW
x1
o1
x2
o2
……
xn 输入层
…… 隐藏层
… ……
om 输出层

遥感图像分类分析PPT课件

遥感图像分类分析PPT课件
“Max stdev from Mean”文本框中输入用于限定相对于均值的标 准差的大小。 ➢要 为 每 一 类 别 设 置 不 同 的 阈 值 :
➢A. 在类别列表中,点击想要设置不同阈值的类别。 ➢B. 点击“Multiple Values”来选择它。 ➢C. 点击“Assign Multiple Values”按钮。 ➢D. 在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本
➢选择Classification > Super vised > Maximum Likelihood ➢设 定 似 然 度 的 阈 值 , 范 围 0 - 1 ➢数 据 比 例 系 数 : 这 个 比 例 系 数 是 一 个 比 值 系 数 , 用 于 将 整 型 反 射 率 或 辐 射 率
多辅助方法,如上面的可以显示不同的假彩色合成窗口,也可以进行主成分分析后进行 假彩色合成,由于去除了波段间的相关性,不同地物区分的更加明显;还可以借助 Google Earth辅助解译。
第8页/共53页
ENVI/IDL
6.2 监督分类
➢第二种方法,在散点图上进行选择 ➢(1)在主图像上,选择tools > 2D scatter plots,将1波段作为X,4波段作为Y,原理
第2页/共53页
ENVI/IDL
6.1 分类类型
❖1、监督分类
❖监 督 分 类 : 又 称 训 练 分 类 法 , 用 被 确 认 类 别 的 样 本 像 元 去 识 别 其他未知类别像元的过程。它就是在分类之前通过目视判读和野 外调查,对遥感图像上某些样区中影像地物的类别属性有了先验 知识,对每一种类别选取一定数量的训练样本,计算机计算每种 训练样区的统计或其他信息,同时用这些种子类别对判决函数进 行训练,使其符合于对各种子类别分类的要求,随后用训练好的 判决函数去对其他待分数据进行分类。使每个像元和训练样本作

遥感图像专题分类(ppt 46页)

遥感图像专题分类(ppt 46页)

x A1 B1 C1 D
图像类别
y
z
A2
A3
B2
B3
C2
C3
E
F
行和 A B C N
图像 类别
x y z 列和
x A1 B1 C1 D
检验数据
y
z
A2
A3
B2
B3
C2
C3
E
F
行和 A B C N
第五章 遥感分类中的不确定性和 尺度问题
1. 分类精度评价—混淆矩阵
2. 后处理实测结果
分 类 结 果
第二节 非监督分类
2. Isodata 法
⑦ 计算每个类别中标准差,如果某个类别标准差大于指定参 数S,则将该类别拆分为两类,产生两个类别中心。
⑧ 计算类别中心两两之间的距离,将距离小于指定参数D的 两个类别合并,直到满足指定的允许合并的类别的对数L;
⑨ 如果迭代次数大于I,计算结束,否则转到第3步,即将每 一个像元归类到距离最近的类别中。
pc pkk / p k 1
第五章 遥感分类中的不确定性 和尺度问题
生产者精度:
p jj / p j
又称制图精度,表示实际的任意一个随机样本与分类图上
同一地点的分类结果相一致的条件概率。
第五章 遥感分类中的不确定性 和尺度问题
漏分误差: (p 2 1 + p 3 1 ++ p n 1 )/p j (pj pjj)/pj
是实际的某一类地物被错误的分到其他类别的百分比。
第五章 遥感分类中的不确定性 和尺度问题
用户精度:
pii / pi
表示从分类结果中任取一个随机样本,其所具有的类型与
地面实际类型相同的条件概率。

第72章高光谱遥感图像分类ppt课件

第72章高光谱遥感图像分类ppt课件
28
初始类别参数的选定
初始类别参数是指:基准类别集群中心(数学期 望)以及集群分布的协方差矩阵。因为无论采用 何种判别函数,都要预先确定其初始类别的参量。 以下为几种常用的方法:
29
1、像素光谱特征的比较法
首先,在遥感图像中定义一个抽样集,它可以是整幅 图像的所有像素,但通常是按一定间隔抽样的像素;
15
欧几里德距离就是两点之间的直线距离。这是我们用的最多因 而也是最为熟悉的一种距离。与我们习惯用的距离一致。欧氏 距离的表达式为:
2. 欧几里德距离
n
2
di x k
x kj M ij
j1
欧氏距离中各特征参数也是等权的。 以上两种距离都称为明可夫斯基(Minkowski)距离(以下 简称明氏距离),使用明氏距离应该注意以下问题:
式中:Pwi 为先验概率,也就是在被分类的图像中类别wi出现的 概率。PX wi 为似然概率,它表示在 wi这一类中出现像元X的
概率。只要有一个已知的训练区域,用这些已知类别的像元做
统计就可以求出平均值及方差、协方差等特征参数,从而可以
求出总体的先验概率。在不知道的情况下,也可以认为所有的Pwi
为相同。Pwi X 为后验概率。PX 表示不管什么类别出现的概率:
31
初始类别参数的选定
19
3、最大似然监督分类
最大似然法是经典的分类方法,已在宽波段遥感图像分类
中普遍采用。它主要根据相似的光谱性质和属于某类的概率最
大的假设来指定每个像元的类别。MLC法最大优点是能快速指定
被分类像元到若干类之中的一类中去 。
从概率统计分析,要想判别某位置的向量属于哪一个类别,
判别函数要从条件概率 Pwi X i 1 , 2 , 3 , 来, m决定,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
高光谱遥感图像分类
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
40、学而不思则罔,思而不学则殆。——孔子
相关文档
最新文档