求最大公因数和最小公倍数练习
找最大公因数和最小公倍数练习题(50)
最小公倍数: 最小公倍数: 最小公倍数:
6和3 18和21 20和27
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
8和3 16和21 18和3
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
2和3 18和5 26和39
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 4和9 20和15 32和27
最大公因数: 最大公因数: 最大公因数:
最小公倍数: 最小公倍数: 最小公倍数:
2和9 12和5 26和13
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
6和3 18和7 16和9
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
8和9 20和17 14和9
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
8和9 14和9 20和7
最大公因数: 最大公因数: 最大公因数:
最小公倍数: 最小公倍数: 最小公倍数:
6和3 2和15 16和21
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
8和5 2和13 26和19
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:
8和5 4和5 20和11
最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:。
最小公倍数与最大公因数经典练习
最小公倍数与最大公因数几个自然数公有的倍数,叫做这几个数的公倍数.几个自然数的公倍数有无限多个,所以不存在最大公倍数,除零外,其中最小的只有一个,这个数就叫做这几个数的最小公倍数.自然数a和b的最小公倍数记作[a,b].例如,4和6的最小公倍数是12,记作[4,6]=12.18、24、36的最小公倍数是72,记作[18,24,36]=72.性质:两个自然数的最大公约数与它们的最小公倍数的一个重要性质是:两个数的乘积等于这两个数的最大公约数和最小公倍数的乘积。
若a,b表示两个自然数,则:为什么呢?例如自然数132和140,它们分别分解质因数为:即:132×140=22×22×3×11×5×7而(132,140)=22[132,140]=22×3×11×5×7 (132,140)×[132,140]=22×22× 3×11×5×7,它们的质因数与132×140的质因数完全相同。
所以说:132×140=(132,140)×[132,140]例1:两个数的积是6912,最大公因数是24,求它们的最小公倍数?练习1、两个数的最大公因数是4,最小公倍数是252,其中一个是28,另一个是多少?2、已知两个数的最大公因数是6,最小公倍数是144,求这两个数的和是多少?3、两个数的最大公因数是42,最小公倍数是2940,且两个数的和是714,这两个数各是多少?4、两个数的最小公倍数是140,最大公因数是4,且小数不能整除大数,这两个数分别是多例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?我们把这两个自然数称为甲数和乙数。
因为甲、乙两数的积一定等于甲、乙两数的最大公约数与最小公倍数的积。
根据这一规律,我们可以求出这两个数的最大公约数是360÷120=3。
最大公因数和最小公倍数练习题
最大公因数与最小公倍数考点分析最大公因数和最小公倍数的性质。
(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。
(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
典型例题例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?例2、一长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,形的边长可以是多少厘米?能截多少个形?例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?例5、某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?例6、有一批机器零件。
每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。
这些零件总数在300至400之间。
这批零件共有多少个?例7、公路上一排电线杆,共25根。
每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?【模拟试题】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。
五年级数学最大公因数,最小公倍数练习题(含提高)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
最大公因数和最小公倍数计算练习
最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。
求最大公因数、最小公倍数、约分、通分练习题
求最大公因数、最小公倍数、约分、通分练习题
一、用短除法求几个数的最大公因数
(1) 12和30 (2) 24和36 (3)39和78 (4)72和84
(5)45和60 (6)45和75 ⑺42和10 5 ⑻36和60
二、给下面的分数约分
108
2416 2035
三、用短除法求几个数的最小公倍数。
(1) 25和30 (2) 24和30 (3) 39和78 (4) 60和84
(5) 126和60 (6) 45和75 ⑺12和24 ⑻12和14
四、将下列各组分数通分。
85和127 143和352
97和65 229和3310 52和157
172和 5110
32和
5
4
41和32
五、写出下列各数的最大公因数和最小公倍数
(1) 15和5的最大公因数是 ;最小公倍数是 ; (2) 9和3的最大公因数是 ;最小公倍数是 ; (3) 9和18的最大公因数是 ;最小公倍数是 ; (4) 11和44的最大公因数是 ;最小公倍数是 ; (5)30和60 的最大公因数是 ;最小公倍数是 ; (6)7和12的最大公因数是 ;最小公倍数是 ; (7)1和11的最大公因数是 ;最小公倍数是 ; (8)1和9的最大公因数是 ;最小公倍数是 ;
六、用短除法求几个数的最大公因数与最小公倍数。
⑴45和60 ⑵36和60 ⑶27和72 ⑷76和80
⑸6、12和24 ⑹7、21和49 ⑺8、12和36。
五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)
五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)一. 口算。
(1)1.5÷0.3=(2)1.8×0.4=(3)5.2×10=(4)4.2÷0.7=(5)3.6÷0.9=(6)0.32÷0.8=(7)14.7÷7=(8)3.5×0.2=(9)2.1×0.6=(10)9.5÷5=(11)12.5×0.8=(12)50×2.4=(13)0.38×10=(14)1.5×0.4=(15)2.8÷0.7=(16)30×1.2=(17)5.6÷0.7=(18)0.03×40=(19)0.5×0.12=(20)11.2×0.2=二、找出下列各组数的最大公因数。
(1)6和18 (2)12和28 (3)48和56 (4)33和55 (5)35和75 (6)40和95 (7)63和54 (8)120和125(9)42和63 (10)168和126 (11)24和58 (12)84和96 (13)270和405 (14)228和177 (15)25、45和75 (16)12、36和42 (17)40、20和35 (18)18、84和120三、找出下列各组数的最小公倍数。
(1)5和7 (2)9和12 (3)6和15 (4)4和12 (5)30和50 (6)45和25 (7)12和32 (8)28和18 (9)15和35 (10)24和18 (11)12和20 (12)45和75 (13)90和27 (14)24和120 (15)6、8和15 (16)12、36和40参考答案:一. 口算。
(1)1.5÷0.3=5 (2)1.8×0.4=0.72 (3)5.2×10=52 (4)4.2÷0.7=6 (5)3.6÷0.9=4 (6)0.32÷0.8=0.4 (7)14.7÷7=2.1 (8)3.5×0.2=0.7 (9)2.1×0.6=1.26 (10)9.5÷5=1.9 (11)12.5×0.8=10 (12)50×2.4=120 (13)0.38×10=3.8 (14)1.5×0.4=0.6 (15)2.8÷0.7=4 (16)30×1.2=36 (17)5.6÷0.7=8 (18)0.03×40=1.2(19)0.5×0.12=0.06(20)11.2×0.2=2.24二、找出下列各组数的最大公因数。
最大公因数和最小公倍数练习题
最大公因数和最小公倍数练习题最大公因数和最小公倍数练1.求出下列数的最大公因数和最小公倍数:1) 4和6的最大公因数是2;最小公倍数是12.2) 9和3的最大公因数是3;最小公倍数是9.3) 9和18的最大公因数是9;最小公倍数是18.4) 11和44的最大公因数是11;最小公倍数是44.5) 8和11的最大公因数是1;最小公倍数是88.6) 1和9的最大公因数是1;最小公倍数是9.7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是6;最小公倍数是420.8) 已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是15;最小公倍数是1650.2.在17、18、15、20和30五个数中,能被2整除的数是18、20、30;能被3整除的数是15、30;能被5整除的数是15、20、30;能同时被2、3整除的数是6;能同时被3、5整除的数是15;能同时被2、5整除的数是20、30;能同时被2、3、5整除的数是30.3.在20以内的质数中,只有3加上2还是质数。
4.如果有两个质数的和等于24,可以是5+19,7+17或11+13.5.把330分解质因数是2×3×5×11.6.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是150.7.在50以内的自然数中,最大的质数是47,最小的合数是4.判断题1.错误。
两个质数相乘的积一定是合数。
2.错误。
两个数互质不一定都是质数。
3.正确。
4.错误。
一个合数至少有四个约数,即1、本身和两个不同的因数。
5.错误。
除2以外的偶数都是合数。
6.正确。
选择题1.最大约数是3,最小倍数是30.选项③。
2.2和7都是14的质因数。
选项③。
3.12的倍数必须是12的因数的倍数,因此这个数是12.选项②。
人教版小学五年级下册求最大公因数和最小公倍数练习题
出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38出下列各组数的最大公因数和最小公倍数(1)25和30 (2)36和24 (3)15和12 (4)30和15 (5)60和40 (6)7和8 (7)18和36 (8)39和26 (9)6和12 (10)9和10 (11)17和51 (12)20和24 (13)8和16 (14)25和35 (15)16和24 (16)19和38。
最大公因数和最小公倍数
最大公因数和最小公倍数例1.(1)用一个数去除30,60,75,都能整除,这个数最大是多少?(2)一个数用9,15,20除都能整除,这个数最小是多少?针对练习1:一个数用35,98,112都能整除,这个数是多少?例2.把一张长20厘米,宽12厘米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没有剩余,至少可以裁多少个?针对练习2:一张长方形长60厘米,宽45厘米,把它剪成若干个同样大的正方形,使边长是整厘米数且不能有剩余,最少能剪多少个?例3.有一个电子程控打铃器,每隔25分钟打铃一次,每隔整点灯亮一次,上午10点钟,电子程控打铃器既打铃又亮了灯。
下一次电子程控打铃器既打铃又亮灯是几点钟?针对练习3.公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?例4.有3根铁丝,长度分别是12厘米,18厘米和24厘米。
现在要把它们裁成相等的小段,每根都不许剩余。
每小段最长是多少厘米?针对练习4.有三堆货,甲堆重150吨,乙堆重180吨,丙堆重420吨,现在要把它们分成同样多的吨数的小堆,而不准有剩余,最少可以分成几小堆?例 5.甲乙丙三个人是好朋友,他们每隔不同的天数就要到图书馆去一次。
甲3天去一次,乙4天去一次,丙5天去一次。
有一天,他们三人恰好在图书馆相会。
至少再过多少天他们三人又在图书馆相会?针对练习5.一次会餐,每两人合用一只饭碗,三人合用一只菜碗,四人合用一只汤碗,会餐共用了65只碗。
问:参加会餐的有多少人?经典变化题型:1.在1~100中,所有的只有3个约数的自然数的和是多少?2.两个数的积是2028,它们的最大公约数是13,求这两个数。
3.写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
4.两个数的最大公约数是6,最小公倍数是144,求这两个数。
课后作业:1.把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能多的同样大小的正方体木块,锯后不许有剩余(损耗不计)。
最大公因数和最小公倍数的综合练习
01
把1到100排成一行,先圈出 6 的倍数,再圈出8的倍数, 如果某个数已经被圈了,就不 再圈,那么一共要画几个圈?
02 思考题:
03
大厅里有100盏电灯,分别编 上1到100号,每盏灯都有一 个拉线开关,每拉一下开关, 电灯就由关变成开,由开变成 关,现在全部处于关闭状态。 现在有个对数学充满好奇的学 生,他先把编号是6 的倍数的 开关拉一下,再把编号是8 的 倍数的开关拉一下。请问现在 大厅里有几盏灯亮着?
是多少厘米?
二.用长12厘米,宽20厘米的长方形纸,拼成一个大正方形, 最少需要多少个这样的长方形?这时边长是多少厘米?
一.红花64朵,黄花48朵,用这两种花搭配成同样的花束,最少可以扎成多少束? 每束有多少朵花?
二.两个义工社团分别有56人和48人,现在要分别分成若干个人数相等的小组, 每组最多有多少人?可以分成几个小组?
独立练习:
一、 用短除法求最大公因数和最小公倍数 20和32 24和30 64和48 12、28和56
二、解决问题 1.把32块橡皮和40枝铅笔全部平均分给同样 数量的小朋友,最多可以分给几个小朋友?每 人分到几块橡皮几只铅笔? 2.有一批地砖,每块长45厘米,宽30厘米。 至少用多少块砖才能铺成一个正方形? 3.一批书不论分给10人还是15人,都多3本, 这批书至少多少本? 4.红花56朵,黄花42朵,用这两种花搭配成 同样的花束,最少可以扎成多少束?
三.学校要做团体操表演,排成每行32人或每行28人都刚好不多不少,参加这次 团体操表演的最少有多少人?
辨析:
拓展:
一.一个数既是6的倍数,又是8的倍数,还是10的倍 数,这个数最小是多少?
二.一个数除以6余2,除以8也余2,除以10还是余2, 这个数最小是多少?
求最大公因数与最小公倍数的习题
一、求几个数的最大公因数
12和30 24和36 39和78 72和84 36和60
45和60 45和75 45和60 42、105和56 24、36和48
二、给下面的分数约分
2035 2416
108 7545 2718 3624 8016 51
17
三、求几个数的最小公倍数。
25和30 24和30 39和78 60和84 18和20
126和60 45和75 12和24 12和14 45和60
四、将下列各组分数通分。
12785
和352143和95153913和33
10229和5110172和
六、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80 6、12和24 76和80 7、21和49
45和60 8、12和36 36和60 27和72 42和56 24、36和48
七、写出下列各数的最大公因数和最小公倍数
15和5的最大公因数是 最小公倍数是 ;9和3的最大公因数是 最小公倍数是 9和18的最大公因数是 最小公倍数是 ;11和44的最大公因数是 最小公倍数是 30和60 的最大公因数是 最小公倍数是 ;13和91 的最大公因数是 最小公倍数是 7和12的最大公因数是 最小公倍数是 ;8和11的最大公因数是 最小公倍数是 1和9的最大公因数是 最小公倍数是 ;8和10的最大公因数是 最小公倍数是 6和9的最大公因数是 最小公倍数是 ;8和6的最大公因数是 最小公倍数是 27
7185和6597和15752和21472
和5432和3
241和97103和5432
和。
(完整版)求最大公因数与最小公倍数的习题
求最大公因数、最小公倍数、约分、通分练习题一、求几个数的最大公因数12和30 24和3639和78 72和8436和60 45和6045和75 45和6042、105和56 24、36和48二、给下面的分数约分3624 75452718 2416 2035 80165117 108三、求几个数的最小公倍数。
25和30 24和30 39和7860和84 18和20126和60 45和7512和24 45和6076和80 36和60 27和7242、105和56 24、36和48四、将下列各组分数通分。
12785和352143和6597和95153913和5432和六、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80 6、12和24 7、21和49 8、12和36七. 填空题。
1. 都是自然数,如果b a =10 , 的最大公约数是( ),最小公倍数是( )。
2. 甲=2×3×3 ,乙=2×3×5 ,甲和乙的最大公约数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。
3. 所有自然数的公约数为( )。
4. 如果m 和n 是互质数,那么它们的最大公约数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
277185和3310229和15752和21472和5110172和3241和97103和5432和。
最大公因数和最小公倍数典型例题和专项练习
最大公因数和最小公倍数典型例题和专项练习最大公因数和最小公倍数是数学中的基本概念,经常在实际问题中应用。
下面是一些典型例题和专项练。
典型例题】例1、有三根铁丝,分别长18米、24米、30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6,(18+24+30)÷6=12段。
答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12,(60÷12)×(36÷12)=15个。
答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24,(2)每个花束里有几朵红玫瑰花96÷24=4朵,(3)每个花束里有几朵白玫瑰花72÷24=3朵,(4)每个花束里最少有几朵花4+3=7朵。
例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。
最大公因数和最小公倍数练习题(专项练习)
最大公因数和最小公倍数练习题(专项练习)最大公因数和最小公倍数练题一、填空题1.A与B的下一个公倍数应该是20.2.所有自然数的公因数为1.3.如果a÷b=10,a和b的最大公因数是10,最小公倍数是b×10.4.如果m和n是互质数,那么它们的最大公因数是1,最小公倍数是m×n。
5.在4、9、10和16这四个数中,4和9是互质数,4和10是互质数,4和16不是互质数,9和10是互质数,9和16不是互质数,10和16不是互质数。
6.分母是15的最简真分数一共有8个。
三、最大公约数和最小公倍数26和13:最大公约数为13,最小公倍数为26.13和6:最大公约数为1,最小公倍数为78.4和6:最大公约数为2,最小公倍数为12.5和9:最大公约数为1,最小公倍数为45.29和87:最大公约数为29,最小公倍数为87.13、26和52:最大公约数为13,最小公倍数为52.30和15:最大公约数为15,最小公倍数为30.2、3和7:最大公约数为1,最小公倍数为42.四、用短除法求最大公因数和最小公倍数45÷60,余数为45,60÷45,余数为15,45÷15,余数为0,因此最大公因数为15.最小公倍数为45×60÷15=180.五、生活中的应用1.8和14的最小公倍数为56,因此五年级最少有56人。
2.40和50的最大公因数为10,因此这个班有10个人。
3.18和24的最大公因数为6,因此每段最长可以有6米,一共可以截成6段。
4.7路车每5分钟发一班车,12路车每8分钟发一班车,它们同时出发后,至少再经过40分钟后又同时发车。
六、动脑筋,想一想1.这个数是105.2.最大公因数是30,最小公倍数是420.3.钢笔和练本的个数分别为44和54,因此有44个三好学生。
4.这两个连续自然数是10和11,它们的最大公因数是1,最小公倍数是110.5.从起点开始到第一根不需移动的电线杆之间的距离是45米。
最大公因数和最小公倍数练习题
最大公因数与最小公倍数考点分析最大公因数和最小公倍数的性质。
〔1〕两个数分别除以它们的最大公因数,所得的商一定是互质数。
〔2〕两个数的最大公因数的因数,都是这两个数的公因数,〔3〕两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
典型例题例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?例2、一长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
假如每个花束里的红玫瑰花的朵数一样,白玫瑰花的朵数也一样,最多可以做多少个花束?每个花束里至少要有几朵花?例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?例5、某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?例6、有一批机器零件。
每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。
这些零件总数在300至400之间。
这批零件共有多少个?例7、公路上一排电线杆,共25根。
每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?【模拟试题】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?〔长和宽都是素数〕3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。
最大公因数-最小公倍数-练习题2
最大公因数和最小公倍数一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。
1.在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。
2.在20以内的质数中,()加上2还是质数。
3.如果有两个质数的和等于24,可以是()+(),()+()或()+()。
4.把330分解质因数是()。
5.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。
6.在50以内的自然数中,最大的质数是(),最小的合数是()。
7.既是质数又是奇数的最小的一位数是()。
二、判断题1.两个质数相乘的积还是质数。
()2.成为互质数的两个数,必须都是质数。
()3.任何一个自然数,它的最大约数和最小倍数都是它本身。
()4.一个合数至少得有三个约数。
()5.在自然数列中,除2以外,所有的偶数都是合数。
()6.12是36与48的最大公约数。
()三、选择题1.15的最大约数是(),最小倍数是()。
①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的()。
①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
求下面每组数的最大公因数和最小公倍数。 (三个数的只求最小公倍数)
•45和60 •27和72 •42、105和56
36和60 76和80
4、36和48
4
动脑筋,想一想:
7
•某市1路、2路和8路公交车都从南站 出发,1路车每隔10分钟发出一辆车,2 路车每隔12分钟发出一辆车,8路车每 隔15分钟发出一辆车,当这三种路线 的车同时发车后,至少要经过多少分 钟又同时发车?
8
•一块长45厘米,宽30厘米的长方形木 板,把它锯成若干块相同的正方形而 没有剩余,所锯成的正方形的边长 (整厘米数)最长是多少厘米?共能 锯成习 本,平均奖给四年级三好学生, 结果圆珠笔多4支,练习本多2本, 四年级有多少名三好学生,他们 各得到多少奖品?
5
•有三根钢筋,分别长12分米,18分 米、30分米,把它们都截成同样长 的小段(整分米),不许有剩余, 每小段最长是多少分米?
6
•有50个梨、75个苹果和100个桔子, 要把这些水果平均分给几个小组, 并且每个小组分得的三种水果的 个数也相同,最多可以分给几个小 组?每组中每样水果各几个?
求最大公因数和最小公倍数练习题
白雪娥 1
二. 判断题。 1. 互质的两个数必定都是质数。( ) 2. 两个不同的奇数一定是互质数。( ) 3. 最小的质数是所有偶数的最大公因数。( ) 4. 有公约数(公因数)1的两个数,一定是互质数。
() 5. a是质数,b也是质数,a×b 一定是质数。
()
2
直接说出每组数的最大公因数和最小公倍数。