《光纤通信课程设计》课件Class6-03

合集下载

一章光纤通信概述ppt课件

一章光纤通信概述ppt课件
光纤、光缆弯曲半径不能过小(>20CM) 在偏僻地区存在有供电困难问题
由于光纤具备一系列优点,所以广泛应用于公用 通信、有线电视图像传输、计算机、空航、航天、船 舰内的通信控制、电力及铁道通信交通控制信号、核 电站通信、油田、炼油厂、矿井等区域内的通信
2020/4/26
图1-1电磁波波谱图
1.11 光纤通信使用波段
2020/4/26
第一章:光纤通信概述
1.1 光纤传输系统的基本组成
光纤通信:以光导纤维(光纤)为传输媒 质,以光波为载波,实现信息传输。
光纤传输系统的基本组成
光发射机
光源
光调制器
已调光 光纤线路
信号
调制电信号
基带处理
光接收机
光检测器 解调电信号 基带处理
2020/4/26
基带电信号
基带电信号
1.1 光纤传输系统的基本组成
第三阶段(1986年~),全面深入开展新技术研究,实现 了1.55 μm单模光纤通信系统(SDH) ,速率达2.5~10Gb/s, 无中继距离为100~150km;2019年后,研发波分复用光纤 2020/4/通26 信系统,每波长传输速率10或40G及光波网络。
1.9 光纤通信的特点与应用
传输容量很大:2.5G~10G/波长;每光纤采用波分复用
1.4 光纤传输特性
传输损耗:由材料吸收和杂质散射等因素引起有 三个低损耗窗口:(1)0.85μm附近,损耗2~4dB/km;(2)
1.31 μm附近,损耗约0.5dB/km;(3)1.55 μm附近,损耗约0.2dB/km。
色散(Dispersion):一般包括材料色散、模式色 散、波导色散等,引起接收的信号脉冲展宽,从 而限制了信息传输速率。

光纤通信PPT课件

光纤通信PPT课件
就叫做“受激辐射的光放大”,简称激光。
1950年,波尔多一所中学的教师阿尔弗雷德·卡斯特 勒同让·布罗塞尔发明了“光泵激”技术。这一发明后 来被用来发射激光
14
2.2.1 光纤通信概述
1951年,美国哥伦比亚大学的一位教授查尔斯·汤 斯(Townes)对微波的放大进行了研究,经过三年 的努力,他成功地制造出了世界上第一个“微波激 射器”,即“受激辐射的微波放大”的理论。 1958年,汤斯和肖洛在《物理评论》杂志上发表了 他们的“发明”——关于“受激辐射的光放大”( 即LASER)的论文。
意思是“受激辐射的光放大”。
13
2.2.1 光纤通信概述
什么叫做“受激辐射”? 在组成物质的原子中,有不同数量的粒子(电子)分 布在不同的能级上,在高能级上的粒子受到某种光子 的激发,会从高能级跳到(跃迁)到低能级上,这时 将会辐射出与激发它的光相同性质的光,而且在某种 状态下,能出现一个弱光激发出一个强光的现象。这
17
2.2.1 光纤通信概述
第二种方式:把光束限制在特定空间
透镜波导:在金属管内每隔一定距离安装一个透镜,
每个透镜把经传输的光束聚到下一个透镜而实现
18
2.2.1 光纤通信概述
反射镜波导:用与光束传输方向成45度角的两个
平行反射镜代替透镜而构成
首先:现场施工中校准和安装十分复杂; 其次:地面活动对波导影响很大
5
2.2.1 光纤通信概述
各种传输介质所能承载的载波大小:
铜线——1MHz 同轴电缆——100MHz 无线电——500kHz~100MHz 微波(包括卫星信道)——100GHz 光纤——几百THz NEC和Alcatel报道他们的传输容量分别达到
10.92Tb/s和10.02Tb/s。(采用波分复用技术 )

光纤通信系统PPT课件

光纤通信系统PPT课件
套塑光纤结构
48 .
现代通信系统 第4章 光纤通信系统
❖按传输波长分类 (1)短波长光纤
37 .
现代通信系统 第4章 光纤通信系统
(3)三角形光纤 纤芯折射
率分布曲线为 三角形。
38 .
现代通信系统 第4章 光纤通信系统
光纤折射率分布曲线 39 .
现代通信系统 第4章 光纤通信系统
❖按传导模的数目分类: 传导模指能够在光纤中远距离传输的传
播模式。 (1)多模光纤
当纤芯的几何尺寸(直径一般为50μm) 远大于光波波长(如1.55μm)时,光纤剖面折 射率分布为渐变型,外径125μm。光纤传输 的过程中会存在着几十种乃至几百种传输模 式,称为多模光纤。
40 .
现代通信系统 第4章 光纤通信系统
(2)单模光纤 当纤芯的几何尺寸较小(一般为
8μm~10μm),与光波长在同一数量级, 这时,光纤只允许一种模式(基模)在 其中传播,其余的高次模全部截止,这 样的光纤称为单模光纤。
单模光纤的折射率分布多呈阶跃性。
41 .
现代通信系统 第4章 光纤通信系统
目前光纤已成为信息宽带传输的主要媒 质,光纤通信系统将成为未来国家信息基础 设施的支柱。
7 .
现代通信系统 第4章 光纤通信系统
光纤通信系统是以光导纤维和激光 技术、光电集成技术为基础发展起来的 通信系统,它具有频带宽、重量轻、体 积小、节省能源,主要用于大容量国际、 国内长途通信干线,也用于短局间中继。 我国今后不再敷设新的长途电缆线路, 而全部采用光缆。
实用的光纤通信系统一般都是双向 的,每一端都有光发送机、光接收机和 电发送机、电接收机并且每一端的光发 送机和光接收机做在一起,称为光端机, 电发送机和电接收机组合起来称为电端 机。同样,中继器也有正反两个方向。

光纤通信基础知识ppt课件

光纤通信基础知识ppt课件
应用场景
光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程

光纤通信ppt模板课件

光纤通信ppt模板课件
1966年英籍华人高琨博士提出光导纤维的
概念在全世界范围内掀起了发展光纤通信 的高潮。
1978年工作于0.8μm的第一代光波系统正
式投入商业应用。
上世纪80年代初,早期的采用多模光纤的
第二代光波通信系统问世。
1990年,工作于2.4Gb/s,1.55μm的第三代
光波系统已能提供通信商业业务。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.5光纤通信的发展趋势
国家863计划通信技术主题专家组副组长 纪
越峰 :在高速光传输方面,目前已实现了 10.96Tbit/s(274波×40Gbit/s)的实验系统 ;在超长距离传输方面,已达到了4000km 无电中继的技术水平
我国已成为世界上为数不多的几个掌握了
全套SDH和WDM光通信系统系列产品技术 的国家之一,在世界光通信系统和光网络 领域已经占据了一席之地。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.3光纤通信的特点
传输频带宽,通信容量大。 中继距离远。 抗电磁干扰能力强,无串话。 光纤细,光缆轻。 资源丰富,节约有色金属和能源。 均衡容易。 经济效益好。 抗腐蚀、不怕潮湿。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(2)G.653光纤。G.653光纤特点是零色散
波长由G.652光纤的1.31μm位移到1.55μm制 得的光纤,故其称为色散位移光纤。G.653 光纤同时实现了1.55μm窗口的低衰减系数 和小色散系数。但是当其用于带有掺铒光 纤放大器的波分复用系统中时,由于光纤 芯中的光功率密度过大产生了非线性效应 ,限制了G.653光纤在单信道速率10Gbit/s以 上波分复用或密集波分复用系统中的应用

现代通信技术课六光纤通信PPT优质资料

现代通信技术课六光纤通信PPT优质资料

光波在光纤中传输时只在其芯区进行,基本上没有光“泄露”出去,因此其保密性能极好。
连接器件:连接光纤到光源、光检测以 渐变型光纤(Graded Index Fiber, GIF) :光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播;
模式色散
单模光纤(Single Mode Fiber, SMF)只能有一道光信号传输,使用单独模式的光信号,无光的信号色散,传输距离会更长,传输
光 的 色 散
结论:白光不是单色光,而是由各 种色光混合成的.
光 的 色
太阳光通过三棱镜后被分解成
七种色光,依次是红、橙、黄、 绿、蓝、靛、紫.

光纤色散(Dispersion)
光纤中的信号是由不同的频率成分或模式 成分构成的,它们是由不同的传播速度,
从而引起比较复杂的色散现象。它是限 制传输容量的主要因素。
90º>θ>临界角
1.光从空气中斜射入玻璃中时,
空气
折射光线向 靠近 法线方向偏
玻璃
折.(填“靠近”或“远离”)
2.一束光线斜射到一块玻璃三棱镜上(如下 图),画出光折射的情况.
光所以能在光纤中传输,主 要是纤芯和包层的共同作用。
4、突变型(突变型)光纤
突变型光纤(Step Index Fiber, SIF)
模式色散
色度色散(模内色散)
① 定义
同一个导波模式的不同光波长之间的色散
② 产生原因
光源光谱不纯;(材料色散)
光纤石英材料的折射率不是一个常数,而是随光 波长的增大而减小; (材料色散)
波导结构与折射率分布等参量有关,使得不同路 径光线之间的速度差是一个随传输路径变化的复
杂函数。(波导色散)

光纤通信教案ppt课件

光纤通信教案ppt课件
▪高强度的、可靠的光源
太阳光、灯光等普通的可见光源,都不适合作为通信 的光源。
1.1光纤通信发展历史
❖ 光源的探索阶段
▪ 认识一下激光
▪ 激光(LASER):Light Amplification by Stimulated Emission of Radiation------------受激辐 射的光放大。
图 透镜波导
1.1光纤通信发展历史 ▪ 反射镜波导:用与光束传输方向成45度角的两
个平行反射镜代替透镜而构成。
首先:现场施工中校准和安装十分复杂; 其次:地面活动对波导影响很大
必须把波导深埋或选择在人车稀少的地区使用。
1.1光纤通信发展历史
现代光纤通信
▪ 光纤的发展 ▪ 光纤即玻璃纤维(透明度很高的石英玻璃丝) ,人们用
1.1光纤通信发展历史
▪利用太阳光作光源,成功进行了光电话的实 验 ,传输距离200多米。 ▪说明:利用光波作为载波传送信息是可行的。 ▪要解决两个问题
▪有稳定的、低损耗的传输媒质
光在大气中的传送要受到气象条件的很大限制,比如 在遇到下雨、下雪、阴天、下雾等情况,就会看不远和 看不清,这叫做大气的能见度降低,使信号传输受到很 大阻碍。
光纤通信培训教材
VoIP & Internet
大客户专线
光传输
宽带接入
2G 3G
IP SAN
IPTV
深圳市讯方通信技术有限公司
第一章 光纤通信概述
1.1光纤通信发展历史 1.2光纤传输原理 1.3光纤基础知识 1.4光纤通信常用仪器仪表 1.5光纤通信系统基本组成结构 1.6光源器件和光发送机 1.7光检测器件和光接收机 1.8光纤通信发展展望
1.1光纤通信发展历史

《光纤通信课程设计》课件Class8-03

《光纤通信课程设计》课件Class8-03
significantly increases intensity noise in both the backscattered and transmitted light.
Experimental and theoretical study confirm:
The intensity noise in the transmitted light is phase noise of the laser source, converted by SBS
Only observe in backscattering in fiber (shift in forward scattering is zero)
A=11GHz; p=1.55m
Reduces signal strength by directing most portion of the transmitted light back toward the transmitter
Since the sound wave, too, is travelling, light is also subjected to a Doppler shift, so its frequency changes.
Brillouin Scattering
Phenomenon
The phonons present inside a solid move in thermal equilibrium with very small amplitudes creating fluctuations in the dielectric constant, which is viewed as a moving diffraction grating by an incident light wave. Therefore Brillouin scattering can be explained by the two concepts of Braggs reflection and Doppler shift:

《光纤通信第六章》PPT课件

《光纤通信第六章》PPT课件

关系。因此,对于光源功率特性的线性要求,对
系统信噪比的要求,都比较高。由于噪声的累
积,和数字光纤通信系统相比,模拟光纤通信系
统的 传输距离较短。但是目前采用频分复用
(FDM)技术,实现了一根光纤传输 100多路电
视节目,在有线电视(CATV)网络中,有巨大
的竞争能力。
Chapter 5 典型光纤传输系统
TV入
箝位 电路
同步 分离
驱动 电路
LED
图 6.6 光发射机方框图
+Ec
Rc C1
V1
R1 LED
光 功 率
V2
Re
时间
时间 电流
(a)
(b)
图6.7 LED驱动电路的末级及其工作原理
2.
光接收机的功能是把光信号转换为电信号。 对光接收机的 基本要求是:
(1) 信噪比(SNR)要高;
(2)
(3) 带宽要宽
• 模拟间接光调制优点:提高传输质量、增加传输 距离。
• 原因:模拟直接光调制(D-IM)光纤电视传输系统的性 能受到光源非线性的限制,一般只能使用线性良好的LED 作光源。 LED入纤功率很小,所以传输距离很短。而模 拟间接光强调制基本不受到光源的非线性影响,所以可以 采用线性较差、入纤光功率较大的LD作为光源,故传输 距离长。
模拟基带DIM光纤电视传输系统光接收机方框图如图6.8所示。
光检测器把输入光信号转换为电信号,经前置放大器和主放大 器放大后输出,为保证输出稳定,通常要用自动增益控制 (AGC)。
光检测器可以用PIN-PD或APD。PIN-PD只需较低偏压(10~ 20 V)就能正常工作,电路简单,但没有内增益,SNR较低。
(4) 光功率温度稳定性要好。LED温度稳定性优于LD, 用LED作光源一般可以不用自动温度控制和自动功率控制, 因而可以简化电路、降低成本。

光纤通信课件第三章

光纤通信课件第三章
第十页,共68页。
3.1.1 激光器的工作 (gōngzuò)原理
(2)泵浦源 使工作物质产生粒子数反转分布的外界激励源,称为泵浦源。 物质在泵浦源的作用下,使得N2>N1,从而受激辐射大于受激吸收,
有光的放大作用。这时的工作物质已被激活,成为激活物质或增益物质。 (3)光学谐振腔 激活物质只能使光放大,只有把激活物质置于光学谐振腔中,以提供
1.激光器的物理基础 (1)光子的概念
光量子学说认为,光是由能量为hf 的光量子组成的,其中 h=6.628×10−34 J·s(焦耳·秒),称为普朗克常数,f 是光波频 率,人们(rén men)将这些光量子称为光子。
当光与物质相互作用时,光子的能量作为一个整体被吸收或发 射。
第五页,共68页。
3.1.1 激光器的工作 (gōngzuò)原理
第十三页,共68页。
3.1.1 激光器的工作 (gōngzuò)原理
图3-3 激光器示意图
第十四页,共68页。
3.1.1 激光器的工作 (gōngzuò)原理
③ 光学谐振腔的谐振条件与谐振频率 设谐振腔的长度为L,则谐振腔的谐振条件为
2nL
q
(3-2)

f c cq (3-3) 式中,c为光在真空中的速 度2,nLλ为激光波长,n为激活物质的折射率,
1.半导体激光器的基本结构和工作原理 有两种方式构成(gòuchéng)的激光器:F-P腔激光器和分布反馈型(DFB) 激光器。F-P腔激光器从结构上可分为3种,如图3-4所示。
图3-4 半导体激光器的结构(jiégòu)示意图
第十八页,共68页。
3.1.2 半导体激光器
(1)同质结半导体激光器。 其核心部分是一个P-N结,由结区发出激光。 缺点是阈值电流高,且不能在室温下连续(liánxù)工作,不能实用。

《光纤通信课程设计》课件Class7-03

《光纤通信课程设计》课件Class7-03
No need of doped fiber,transmission fiber->gain medium Nonlinear effect Detune 100nm, amplify any band by choosing appropriate pump wavelengths Multi-pump configuration -> flat-gain broadband amplification Simple structure
Flat gain can be achieved with the use of more than one pump laser with different wavelengths ( Also possible with Discrete Raman amplifiers ).
Discrete Raman Amplifier
Two scattering events, backward and forward, due to microscopic glass composition non-uniformity, e.g. backward ASE reflected by DRS->forward->noise
Short upper-state lifetime (3-6fs)
Distributed Raman amplifiers: The transmission medium ( fiber ) is used to achieve gain.
Distributed Raman amplifiers benefits:
Reduces the overall Noise Figure ( NF )→ longer links without regeneration & higher modulation rates become possible.

光纤通信(Optical Fiber Communication)Optical FiberPPT课件

光纤通信(Optical Fiber Communication)Optical FiberPPT课件

tan
2
2E0x E0y cos
E02x E02y
2020/7/24
The Sch. Of Information Engineering, WHUT
14
CONTENT
2020/7/24
The Sch. Of Information Engineering, WHUT
15
CONTENT
When E0x E0 y E0 , 2 2m (m 0, 1, 2 )
CONTENT
Chapter2 Optical Fiber
2020/7/24
The Sch. Of Information Engineering, WHUT
1
OUTLINE
CONTENT
The nature of light The fabrication of optical fibers The structure of an optical fiber The propagation principle of light along a fiber The transmission character of fiber
CONTENT
In 1815, Fresnel gived the correct explanation of diffraction. In 1864, Maxwell theorized that light waves must be electromagnetic in nature. The observation of polarization effects indicated that light wave are transverse. It is no different from a radio wave except that the wavelength is much shorter.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Amplified Spontaneous Emission
• Erbium randomly emits photons between 1520 and 1570 nm
– Spontaneous emission (SE) is not polarized or coherent – Like any photon, SE stimulates emission of other photons – With no input signal, eventually all optical energy is consumed into
the 1550 nm range
540
670
• Spontaneous emission
– Occurs randomly (time constant ~1 ms)
820
• Sti
– By electromagnetic wave – Emitted wavelength & phase are
between pump and
data signals
980 nm signal
1550 nm data signal
Input
Isolator
= Fusion Splice
WDM
Erbium Doped Fibre
Pump Source
Isolator
Output
Physics of an EDFA
– Commercially available since the early 1990’s – Works best in the range 1530 to 1565 nm – Gain up to 30 dB (1000 photons out per photon in!)
• Optically transparent
– “Unlimited” RF bandwidth – Wavelength transparent
Input
Coupler
Isolator
1480 or 980 nm Pump Laser
Output Erbium Doped Fiber
Erbium Doped Fiber Amplifier
Class 6
X. Wu, M. Y. Li, H. M. Yan Dept. of Opt. Engr., ZJU
2011
•Optical Amplification •EDFA
• Structure • Parameters • Selection • Gain flattening •Exercise
Technical Characteristics of EDFA
EDFAs have a number of attractive technical characteristics:
Efficient pumping Minimal polarisation sensitivity Low insertion loss High output power (this is not gain but raw amount of possible output power) Low noise Very high sensitivity Low distortion and minimal interchannel crosstalk
3. This high-powered light beam excites the erbium ions to their higherenergy state.
4. When the photons belonging to the signal (at a different wavelength from the pump light) meet the excited erbium atoms, the erbium atoms give up some of their energy to the signal and return to their lower-energy state.
5. A significant point is that the erbium gives up its energy in the form of additional photons which are exactly in the same phase and direction as the signal being amplified.
An optical amplifier is a device which amplifies the optical signal directly without ever changing it to electricity. The light itself is amplified.
Reasons to use the optical amplifiers: Reliability Flexibility Wavelength Division Multiplexing (WDM) Low Cost Variety of optical amplifier types exists, including: Semiconductor Optical Amplifiers (SOAs) Erbium Doped Fiber Amplifiers (EDFAs)
Input
Isolator
WDM
Isolator
Erbium Doped Fibre
= Fusion Splice
Pump Source
Output
Interior of an Erbium Doped Fibre Amplfier (EDFA)
WDM Fibre coupler
Pump laser
Optical fibre amplifiers are now the most common type
One of the most successful optical processing functions
Also used as a building block in DWDM systems
Er+3 Energy Levels
• Pump: ▪ 980 or 1480 nm ▪ Pump power >5 mW
• Emission: ▪ 1.52-1.57 m ▪ Long living upper state (10 ms) ▪ Gain 30 dB
EDFA Operation
6. There is usually an isolator placed at the output to prevent reflections returning from the attached fiber. Such reflections disrupt amplifier operation and in the extreme case can cause the amplifier to become a laser!
Gain versus Amplifier length
Erbium doped fibre
loop
Fibre input/output
Source: Master 7_5
Operation of an EDFA
Power level Power level
980 nm signal
1550 nm data signal
Power interchange
Erbium Properties
• Erbium: rare element with phosphorescent properties
– Photons at 1480 or 980 nm activate electrons into a metastable state
– Electrons falling back emit light in
A pump optical signal is added to an input signal by a WDM coupler Within a length of doped fiber part of the pump energy is transferred to the
input signal by stimulated emission For operation ~ 1550 nm the fiber dopant is Erbium Pump wavelength is either 980 nm or 1480 nm, pump power ~ 50 mW Gains of 30-40 dB possible
Metastable state
1480
identical to incident one
Ground state
Erbium Doped Fibre Amplifiers
•Fiber length: typically ten metres or so •Doping: a small controlled amount of the rare earth element erbium added to the glass in the form of an ion (Er3+). •LD power: between 10 and 200 mW •Wavelengths Light at either 980 or 1,480 nm.) Question #1: Why not increase doping level and decrease length? Question #2: What’s the advantage of pumping 1480nm?
相关文档
最新文档