高考解析几何中的基本公式

合集下载

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

平面解析几何的基本公式

平面解析几何的基本公式

平面解析几何的基本公式平面解析几何是数学中的一个重要分支,它研究平面上点、线、圆等几何图形的性质和关系。

在平面解析几何中,有一些基本公式被广泛应用于求解几何问题。

本文将介绍平面解析几何的基本公式,并给出相应的示例和应用。

1. 点到直线的距离公式平面解析几何中,求点到直线的距离是一个常见的问题。

设直线的方程为Ax + By + C = 0,点的坐标为(x0, y0),则点到直线的距离公式如下:d = |Ax0 + By0 + C| / √(A^2 + B^2)示例:求点P(1, 2)到直线2x + 3y - 6 = 0的距离。

解:代入公式,得到d = |2*1 + 3*2 - 6| / √(2^2 + 3^2) = |7| / √13 ≈ 7 / 3.61 ≈ 1.942. 直线的斜率公式及两直线的夹角公式直线的斜率描述了它的方向性质,在平面解析几何中,直线的斜率可以表示为k = tanθ,其中θ为直线与x轴的夹角。

直线斜率和两直线夹角的公式如下:k = (y2 - y1) / (x2 - x1)θ = arctan(k)示例:已知两点A(1, 2)和B(3, 4),求直线AB的斜率和与x轴的夹角。

解:代入公式,得到k = (4 - 2) / (3 - 1) = 2 / 2 = 1,θ = arctan(1) ≈ 45°3. 两直线的垂直和平行判定公式在平面解析几何中,判断两条直线是否垂直可以通过斜率来判断。

若两直线斜率分别为k1和k2,则它们垂直的条件是k1 * k2 = -1。

判断两条直线是否平行可以通过比较斜率来判断。

若两直线斜率分别为k1和k2,则它们平行的条件是k1 = k2。

示例:已知直线L1过点A(1, 2)且斜率为2,直线L2垂直于L1,求直线L2的方程。

解:由L1斜率为2,得到L2斜率为-1/2。

过点A(1, 2)且斜率为-1/2的直线方程为y - 2 = (-1/2)(x - 1),整理得到直线L2的方程为2x + y - 4 = 0。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

解析几何常用公式

解析几何常用公式

解析几何常用公式-CAL-FENGHAI.-(YICAI)-Company One11. AB →,A 为AB →的起点,B 为AB →的终点。

线段AB 的长度称作AB →的长度,记作|AB →|.数轴上同向且相等的向量叫做相等的向量.....。

零向量的方向任意。

..........在数轴上任意三点A 、B 、C ,向量AB →、BC →、AC →的坐标都具有关系:AC =AB +BC . ..AC →=AB →+2.设 AB → 是数轴上的任一个向量,则AB =OB -OA =x 2-x 1,d (A ,B )=|AB |=|x 2-x 1|. 4.. A (x 1,y 1),B (x 2,y 2),则两点A 、B 的距离公式d (A ,B )=x 2-x 12+y 2-y 12若B 点为原点,则d (A ,B )=d (O ,A )=x 21+y 21;5. A (x 1,y 1),B (x 2,y 2),中点M(x 1+x 22,y 1+y 22). A (x ,y )关于M (a ,b )的对称点B(2x 0-x ,2y 0-y ).6. 直线倾斜角::x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定,与x 轴 平行或重合的直线的倾斜角为0°.7.直线的位置与斜率、倾斜角的关系①k =0时,倾斜角为0°,直线平行于x 轴或与x 轴重合.②k >0时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也增大,此时直线过第一、三象限.③k <0时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也增大,此时直线过第二、四象限.④垂直于x 轴的直线的斜率不存在,它的倾斜角为90°.8. 若直线l 上任意两点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,则直线l 的斜率k =y 2-y 1x 2-x 1. 9.直线方程的五种形式(1)点斜式:经过点P 0(x 0,y 0)的直线有无数条,可分为两类:斜率存在时,直线方程为 y -y 0=k (x -x 0);斜率不存在时,直线方程为x =x 0.(2)斜截式:已知点(0,b ),斜率为k 的直线y =kx +b 中,截距b 可为正数、零、负数. (3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2)(4) 截距式:当直线过(a,0)和(0,b )(a ≠0,b ≠0)时,直线方程可以写为x a +yb =1,当直线斜率 不 存在(a =0)或斜率为0(b =0)时或直线过原点时,不能用截距式方程表示直线. (5)一般式:Ax +By +C =0的形式.(220A B +≠)10. (1)已知两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.那么①l 1与l 2相交的条件是:A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0).②l 1与l 2平行的条件是:A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0).③l 1与l 2重合的条件是:A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0).2)已知两条直线的方程为l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.那么①l 1与l 2相交的条件为k 1≠k 2.②l 1与l 2平行的条件为k 1=k 2且b 1≠b 2. ③l 1与l 2重合的条件为k 1=k 2且b 1=b 2.11. 直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直________.直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2垂直________.若两直线中有一条斜率不存在时,则另一条的斜率为0,即倾斜角分别为90°和0°,也满足|α-β|=90°.12.与直线Ax +By +C =0平行的直线可表示为Ax +By +m =0(m ≠C ); 与直线Ax +By +C =0垂直的直线可表示为Bx -Ay +m =0,14. 点P (x 1,y 1)到直线Ax +By +C =0(A 2+B 2≠0)的距离为d =|Ax 1+By 1+C |A 2+B2 应用点到直线的距离公式时,若给出的直线方程不是一般式,则应先把直线方程化为一般式,然后再利用公式求解. 15.点到几种特殊直线的距离:①点P (x 1,y 1)到x 轴的距离d =|y 1| .②点P (x 1,y 1)到y 轴的距离d =|x 1|.③点P (x 1,y 1)到直线x =a 的距离为d =|x 1-a |. ④点P (x 1,y 1)到直线y =b 的距离为d =|y 1-b |.16.两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,C 1≠C 2,则l 1与l 2的距离为 d =|C 1-C 2|A 2+B 2. 两条平行线间的距离公式要求:l 1、l 2这两条直线的一般式中x 的系数相等,y 的系数也必须相等;当不相等时,应化成相等的形式,然后求解.17. 圆的标准方程为(x-a)2+(y-b)2=r2;18.点到圆心的距离为d,圆的半径为r.则点在圆外d>r;点在圆上d=r;点在圆内0≤d<r. 20.规律技巧圆的几何性质:①若直线与圆相切,则圆心到直线的距离等于半径,过切点与切线垂直线的直线过圆心;②若直线与圆相交,圆心、弦的中点及弦的一个端点组成的三角形是直角三角形,弦的垂直平分线经过圆心.④以A(x1,y1)、B(x2,y2)为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.21. 形如Ax2+Bxy+Cy2+Dx+Ey+F=0的方程表示圆的等价条件(1)A=C≠0;x2、y2的系数相同且不等于零;(2)B=0;不含xy项.(3)(DA)2+(EA)2-4FA>0,即D2+E2-4AF>0.23.圆的一般方程形式为x2+y2+Dx+Ey+F=0,配方为 (x+D2)2+(y+E2)2=D2+E2-4F4.(1)当D2+E2-4F>0时,它表示以 (-D2,-E2)为圆心,D2+E2-4F2为半径的圆.(2)当D2+E2-4F=0时,它表示点 (-D2,-E2).(3)当D2+E2-4F<0时,它不表示任何图形24.直线与圆的位置关系(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.25.直线与圆位置关系的判定有两种方法(1)代数法:通过直线方程与圆的方程所组成的方程组,根据解的个数来判断.若有两组不同的实数解,即Δ>0,则相交;若有两组相同的实数解,即Δ=0,则相切;若无实数解,即Δ<0,则相离.(2)几何法:由圆心到直线的距离d与半径r的大小来判断:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离.26.直线与圆相切,切线的求法(1)当点(x0,y0)在圆x2+y2=r2上时,切线方程为x0x+y0y=r2;(2)若点(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上,切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2; 27.若弦长为l ,弦心距为d ,半径为r ,则(l2)2+d 2=r 2.28.判断两圆的位置关系设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0, ① 圆C 2:x 2+y 2+D 2x +E 2y +F 2=0. ② ①-②得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. ③若圆C 1与C 2相交,则③为过两圆交点的弦所在的直线方程.求两圆的公共弦所在直线方程,就是使表示圆的两个方程相减即可得到. 31.空间直角坐标系中的对称点点P (x ,y ,z )的对称点的坐标 11112222|P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.到定点(a ,b ,c )距离等于定长R 的点的轨迹方程为(x -a )2+(y -b )2+(z -c )2=R 2,此即以定点(a ,b ,c )为球心,R 为半径的球面方程. 33..空间线段的中点坐标公式在空间直角坐标系中,已知点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则线段P 1P 2的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22).。

高中解析几何公式大全

高中解析几何公式大全

高中解析几何公式大全
1. 平行线:
a. 如果两条直线l和m都不存在相交点,则两条直线平行,记作
l⊥m。

2. 垂直线:
a. 如果l和m是两条直线,依次成一定关系,其中一条不与两条直线垂直,则记作:l∥m。

3. 中垂线:
a. 如果AB是一个两边均相等的三角形的边,那么以边AB为直径的圆的切线称为中垂线,记为MN,一般以AB的中点O作为圆心,则中垂线的一般方程为:y=x tan A/2+k。

4. 直角三角形:
a. 直角三角形由两条直角边和一条斜边组成,直角三角形有两个特性:斜腰两边乘积等于直角腰;斜腰平方等于两直腰之和。

5. 梯形:
a. 梯形由两条平行边、两条斜边组成,梯形有两个特性:四边中两个对角线之积等于对应对边之积;两腰之和等于斜边。

6. 双曲线:
a. 双曲线是自变量为x,因变量为y的曲线,它有一个特点:双曲线的抛物线式满足关系x^2/a^2 - y^2/b^2 = 1。

7. 伯努利曲线:
a. 伯努利曲线是一类双曲线,它有两条渐近线,它的抛物线方程式满足y^2 = x^3 + ax + b。

8. 圆的方程式:
a. 如果O为圆心,则圆的方程式可写成:(x-x_0)^2 +(y-y_0)^2 = r^2,其中r为圆的半径,x_0和y_0分别为圆心的横纵坐标。

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

解析几何公式大全

解析几何公式大全

解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。

则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。

P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。

tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。

(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结在高中数学的学习中,平面解析几何是一个重要的板块,它将代数与几何巧妙地结合在一起,为我们解决各种几何问题提供了有力的工具。

下面就让我们来详细总结一下这部分的知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π) 。

倾斜角为 0 时,直线与 x 轴平行或重合;倾斜角为π/2 时,直线与 x 轴垂直。

2、直线的斜率过两点 P(x₁, y₁),Q(x₂, y₂)(x₁ ≠ x₂)的直线的斜率 k =(y₂y₁) /(x₂ x₁) 。

当直线与 x 轴垂直时,斜率不存在。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上两点。

(4)截距式:x / a + y / b = 1 ,其中 a ,b 分别是直线在 x 轴和 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A,B 不同时为 0)。

4、两条直线的位置关系(1)平行:两条直线斜率相等且截距不同。

(2)垂直:两条直线斜率的乘积为-1 (当其中一条直线斜率为0 ,另一条直线斜率不存在时也垂直)。

5、点到直线的距离公式点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。

2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0 ),圆心坐标为(D/2, E/2) ,半径 r =√(D²+ E² 4F) / 2 。

高考数学中的解析几何中的距离公式证明

高考数学中的解析几何中的距离公式证明

高考数学中的解析几何中的距离公式证明在高考数学中,解析几何是一个非常重要的部分。

解析几何是数学中的一门学科,它研究的是平面和空间图形的性质和关系。

在解析几何中,距离公式是一个非常重要的公式。

本文将探讨高考数学中的解析几何中的距离公式证明。

解析几何中的距离公式是指在平面直角坐标系或空间直角坐标系中,两点之间的距离公式。

在平面直角坐标系中,两点之间的距离公式为:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$在空间直角坐标系中,两点之间的距离公式为:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$这两个公式在解析几何中的应用非常广泛。

例如,在平面直角坐标系中,我们可以通过这个公式来求两点之间的距离,从而确定一条直线的长度。

在空间直角坐标系中,我们可以通过这个公式来求两点之间的距离,从而确定一个平面的面积。

那么,解析几何中的距离公式是如何推导出来的呢?下面,本文将为大家详细介绍其证明过程。

首先,我们需要明确一点,距离公式的证明是建立在勾股定理的基础上的。

勾股定理是说,一个直角三角形的两条直角边的平方和等于这个直角三角形的斜边的平方。

这个定理可以用数学表述为:$c^2=a^2+b^2$其中,c表示斜边的长度,a和b分别表示两条直角边的长度。

那么,距离公式的证明过程如下:证明平面直角坐标系中的距离公式:1. 假设A(x1,y1)和B(x2,y2)是平面坐标系中的两个点。

2. 假设点A和点B之间的距离为AB。

3. 构建直角三角形OAB,其中O是坐标系的原点。

4. 将OA和OB分别表示为a和b,AB表示为c。

5. 根据勾股定理,我们可以得出以下公式:$c^2=a^2+b^2$6. 将a和b用x1,y1,x2和y2表达出来,得到以下公式:$a=\left|x_2-x_1\right|$$b=\left|y_2-y_1\right|$7. 将公式6中的a和b代入公式5,得到以下公式:$c^2=\left|x_2-x_1\right|^2+\left|y_2-y_1\right|^2$8. 根据乘法公式,我们可以把公式7化简为以下形式:$c^2=(x_2-x_1)^2+(y_2-y_1)^2$9. 取平方根,即可得到平面直角坐标系中的距离公式:$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$证明空间直角坐标系中的距离公式:1. 假设A(x1,y1,z1)和B(x2,y2,z2)是空间坐标系中的两个点。

解析几何中的基本公式

解析几何中的基本公式

解析几何中的基本公式解析几何是高中数学中的一门重要学科,它研究几何图形的坐标表示方法和相关性质。

在解析几何中,使用了一系列经典的基本公式,本文将对这些公式进行详细解析。

一、两点间距离公式在解析几何中,经常需要计算两点之间的距离。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们之间的距离可以用以下公式表示:$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$其中 $d$ 表示两点之间的距离。

这个公式的计算方法非常简单,只需要将两点横、纵坐标的差值平方相加,再开方即可。

二、两点间中点公式在解析几何中,还需要计算两点间的中点。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们的中点可以用以下公式表示:$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$这个公式的计算方法也非常简单,只需要将两点横、纵坐标分别求出平均值,即可得到中点的坐标。

三、点到直线距离公式在解析几何中,还需要计算一个点到一条直线的距离。

对于一条直线 $ax+by+c=0$ 和一个点 $P(x_0,y_0)$,它们之间的距离可以用以下公式表示:$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$其中 $d$ 表示点 $P$ 到直线的距离。

这个公式的计算方法稍微有些复杂,但是可以通过向量的方法来简化计算。

四、直线的斜截式方程公式在解析几何中,我们经常需要用一条直线的方程表示它的位置关系。

在平面直角坐标系中,如果直线的斜率为$k$,截距为$b$,则这条直线的方程可以用以下公式表示:$$y=kx+b$$这个公式非常简单明了,如果已知一条直线的斜率和截距,则可以用这个公式求出它的方程。

五、两条直线的交点公式在解析几何中,我们经常需要求出两条直线的交点,以确定它们的位置关系。

对于一条直线 $y=k_1x+b_1$ 和另一条直线$y=k_2x+b_2$,它们的交点可以用以下公式表示:$$(\frac{b_2-b_1}{k_1-k_2},\frac{k_1b_2-k_2b_1}{k_1-k_2})$$这个公式的计算方法稍微有些复杂,需要将两条直线的方程联立后,解出它们的交点坐标。

解析几何的相关公式

解析几何的相关公式

一、倾斜角和斜率:1.倾斜角的范围: .2.已知倾斜角α求斜率 ⎧=⎨⎩k ;已知斜率k 求倾斜角⎧=⎨⎩α.1.00(,)P x y 到直线l :220,0ax by c a b ++=+≠的距离为 . 2.直线221122:0,:0,0l ax by c l ax by c a b ++=++=+≠间的距离为 .注:在研究多点到直线的距离的问题时,通常要分点在直线的 或 两类.3.弦长公式:若直线y kx b =+(倾斜角为α)被曲线截得弦AB ,其中1122(,),(,)A x y B x y ,则弦长d ====四.两直线的夹角公式:1.两直线的夹角范围 .2.2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠对应斜率分别为12,k k ,夹角为θ,则有cos θ=或者tan θ=.五.两条直线的位置关系:2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠,则1l 与2l 分别满足下列情况时,相应地求系数满足的条件:①相交 ;②平行 ;③重合 ;④垂直 ; 六.对称问题:1.点00(,)A x y 关于点(,)P m n 对称的点的坐标为 ;2.直线0ax by c ++=关于点(,)P m n 对称的直线方程为 ;3.曲线(,)0f x y =关于点(,)P m n 对称的曲线方程为 ;4.点00(,)A x y 关于直线2y x =-+对称的点的坐标为 ;5.直线0ax by c ++=关于直线3y x =-对称的直线方程为 ;6.曲线(,)0f x y =关于直线4y x =--对称的曲线方程为 ; 七.直线系方程:1.直线(1)(3)(11)0m x m y m --+--=恒过定点 .2.方程30x y n +-=表示两条平行线,则实数n 的取值范围是 . 八.曲线与方程:1.已知曲线C 的方程不是(,)0f x y =,则下列选项正确的是( )A .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠;B .方程(,)0f x y =至少有一组解为坐标的点00(,)P x y 不在曲线C 上;C .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,且方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上;D .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,或者方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上.2.“以方程(,)0f x y =的解为坐标的点都在曲线C 上”是“曲线C 的方程为(,)f x y0=”的 条件?3.方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件 ?4.24D F =是曲线220x y Dx Ey F ++++=与x 轴相切的 条件? 5.若点(,)P m n 在圆222x y R +=上,则过此点的圆的切线方程为 .6.(,)P m n 是圆222x y R +=外一点,过此点向圆引切线,切点分别为,A B ,则过,A B 两点的直线方程为 .7.圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=相交,则过两圆交点的直线方程为 .8.若圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=的半径相等,则两圆的对称轴方程为 .9.圆222x y R +=的参数方程:x y =⎧⎨=⎩练习1:圆心在原点,半径为1的圆交x 轴的正半轴于A 点,,P Q 分别是圆上的两个动点,它们同时从A 点出发,沿圆作匀速圆周运动,点P 绕逆时针方向每秒钟转3π,点Q 绕顺时针方向每秒钟转6π.(1)当,P Q 第一次相距最远时,求,P Q 的坐标;(2)当它们出发后第五次相遇,试求相遇时该点的位置.练习2:设实数,x y 满足221x y +=,(1)求13y x +-的取值范围;(2)求2x y -的取值范围;九.椭圆、双曲线、抛物线1.①到定点距离等于定值的点的轨迹是 ? ②到定直线距离等于定值的点的轨迹是 ? ③到两条平行直线距离相等的点的轨迹是 ? ④到两条相交直线距离相等的点的轨迹是 ? ⑤到两个定点距离之和等于定值的点的轨迹是 ? ⑥到两个定点距离之差的绝对值等于定值的点的轨迹是 ? ⑦到定点的距离等于到定直线的距离的点的轨迹是 ?2.12,F F 为椭圆22221x y a b +=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .3.12,F F 为双曲线22221x y a b -=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .4.12,F F 分别为椭圆22221x y a b+=的左右焦点,P 为椭圆上的点,记12F PF θ∠=,当θ达到最大值时,点P 的坐标为 .5.椭圆22221x y a b +=与双曲线22221x y m n-=共焦点,P 为二者在第一象限的交点,12,F F 分别为它们的左右焦点,用,b n 表示①12cos F PF ∠=②12sin F PF ∠=③12PF F S ∆=. 6.对直线,0y kx m m =+≠与双曲线22221x y a b-=来说,若||b k a >,那么直线与双曲线有三种可能①② ③ ;若||b k a =,则直线与双曲线 ;若||bk a<,则直线必然 .7.若直线与抛物线22,0y px p =>只有一个公共点,则有 .8.过抛物线22,0y px p =>的焦点F 作倾斜角为θ的直线交抛物线于,A B 两点,线段AB 的中点为M点,,,A M B 在准线2px =-上的射影分别为111,,A M B . ①11A FB ∠= ②1AM B ∠= ③ 三点共线④||AB =9.抛物线22,0y px p =>上两点,A B 满足90AOB ∠=,则直线AB 恒过定点 . 10.研究曲线上的点到直线的最短距离时,通常利用 的方法.。

解析几何中的三角函数基本公式

解析几何中的三角函数基本公式

解析几何中的三角函数基本公式解析几何是数学中的一个分支,它是对几何学进行抽象化和推广化的过程,通过引入解析坐标系和运用代数方法来处理几何问题。

而三角函数是解析几何中最基础的内容之一,它是描述三角形及其在解析几何中所扮演角色的一种工具。

在本文中,我们将详细解析几何中的三角函数及其基本公式,帮助读者更好地理解解析几何的概念!第一部分:三角函数的定义三角函数是描述任何角的性质的一组有用的函数,三角函数有多种表达形式,如正弦、余弦、正切等。

在解析几何中,我们常常使用正弦、余弦、正切三种函数来描述角的性质。

下面是三角函数的定义:①正弦函数正弦函数是指角的对边和斜边比值。

②余弦函数余弦函数是指角的邻边和斜边比值。

③正切函数正切函数是指角的对边和邻边比值。

第二部分:三角函数的基本公式在解析几何中,三角函数的基本公式有很多种,下面将介绍其中的几个。

①正弦函数的基本公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB这两个公式是正弦函数的基本公式之一,它们描述了角的和差变形后的正弦值。

这个公式在解析几何的很多计算中都有常常使用。

②余弦函数的基本公式cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB和正弦函数的基本公式一样,余弦函数的基本公式也是描述角的和差变形后的余弦值,它也是在解析几何中使用频繁的公式之一。

③正切函数的基本公式tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)正切函数是解析几何中处理三角形问题的重要工具之一,它的基本公式描述了角的和差变形后正切值的计算,也是在解析几何中使用频繁的公式之一。

第三部分:三角函数的应用三角函数不仅仅在解析几何中被广泛使用,而且它也常常出现在其他学科中,例如物理学、工程学等等。

下面我们简单介绍三角函数在两个领域的应用:①物理学在物理学中,三角函数常常用来描述物理量之间的关系。

高考数学知识总结:解析几何公式大全

高考数学知识总结:解析几何公式大全

高考数学知识总结:解析几何公式大全一、标准方程:中心在原点,焦点在x轴上的椭圆标准方程:(x2/a2)+(y2/b2)=1其中a>b>0,c>0,c2=a2-b2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x2/b2) +(y2/a2)=1其中a>b>0,c>0,c2=a2-b2.参数方程:X=acosY=bsin(为参数)二、双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x2/a2)-(y2/b2)=1其中a>0,b>0,c2=a2+b2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y2/a2)-(x2/b2)=1.其中a>0,b>0,c2=a2+b2.参数方程:x=asecy=btan(为参数)直角坐标(中心为原点):x2/a2-y2/b2=1(开口方向为x 轴)y2/a2-x2/b2=1(开口方向为y轴)三、抛物线参数方程x=2pt2y=2pt(t为参数)t=1/tan(tan为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标y=ax2+bx+c(开口方向为y轴,a0)x=ay2+by+c(开口方向为x轴,a0)圆锥曲线(二次非圆曲线)的统一极坐标方程为=ep/(1-ecos)其中e表示离心率,p为焦点到准线的距离。

焦点到最近的准线的距离等于exa圆锥曲线的焦半径(焦点在x轴上,F1F2为左右焦点,P(x,y),长半轴长为a焦半径圆锥曲线上任意一点到焦点的距离成为焦半径。

圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为:椭圆|PF1|=a+ex|PF2|=a-ex双曲线P在左支,|PF1|=-a-ex|PF2|=a-exP在右支,|PF1|=a+ex|PF2|=-a+exP在下支,|PF1|=-a-ey|PF2|=a-eyP在上支,|PF1|=a+ey|PF2|=-a+ey抛物线|PF|=x+p/2圆锥曲线的切线方程圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x2,以。

解析几何公式大全

解析几何公式大全

解析几何公式大全一份付出一分耕耘圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k yy -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -==3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y xa b a b+=>> 第一定义 到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 222.双曲线焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=> 范围 或x a ≤-x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 实轴的长2a = 虚轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==+离心率 22222221(1)c c a b b e e a a a a+====+>准线方程 2a x c=±2a y c=±渐近线方 程b y x a=±a y x b=±焦半径0,0()M x y M 在右支1020MF ex aMF ex a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 在左支1020MF ex a MF ex a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:M 上支1020MF ey aMF ey a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 下支1020MF ey aMF ey a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:焦点三角形面积 12212cot()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径:ab 22【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201 由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y k y y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=3.抛物线图形五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y=kx+b与椭圆x2a2+y2b2=1 (a>b>0)的位置关系:直线与椭圆相交?⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P +=。

高中解析几何公式大全

高中解析几何公式大全

高中解析几何公式大全1. 平面解析几何公式1.1 直线方程- 一般式直线方程:$Ax + By + C = 0$- 点斜式直线方程:$y - y_1 = k(x - x_1)$- 两点式直线方程:$\frac{x - x_1}{x_2 - x_1} = \frac{y -y_1}{y_2 - y_1}$1.2 距离公式- 两点间距离公式:$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$1.3 中点公式- 两点中点公式:$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$1.4 斜率公式- 直线斜率公式:$k = \frac{y_2 - y_1}{x_2 - x_1}$1.5 垂直/平行线判定公式- 斜率相乘为-1时,两直线垂直;斜率相等时,两直线平行2. 空间解析几何公式2.1 点和向量坐标表示- 一点坐标:$P(x, y, z)$- 向量坐标:$\vec{AB}=(x_2 - x_1, y_2 - y_1, z_2 - z_1)$2.2 向量公式- 两点连线向量:$\vec{AB}=(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ - 向量加法:$\vec{AB} + \vec{BC} = \vec{AC}$- 向量数量积:$\vec{a} \cdot \vec{b} = ab\cos\theta$2.3 平面方程- 法线向量公式:$ax + by + cz + d = 0$2.4 空间距离公式- 两点间距离公式:$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$3. 圆的解析几何公式3.1 圆的标准方程- 圆的标准方程:$(x - a)^2 + (y - b)^2 = r^2$3.2 圆的一般方程- 圆的一般方程:$x^2 + y^2 + Dx + Ey + F = 0$3.3 切线公式- 点与圆的切线公式:$y - y_1 = k(x - x_1) \pm \sqrt{r^2 - (x - x_1)^2}$以上是一些高中解析几何中常用的公式,希望对你有帮助!。

高中数学公式总结解析几何

高中数学公式总结解析几何

高中数学公式总结解析几何解析几何是数学中的一个分支,研究的对象是平面和空间中的几何图形。

它以坐标系为基础,通过代数的方法来研究几何问题。

在高中数学中,解析几何是一个重要的内容,下面是高中数学解析几何的一些重要公式的总结。

1.一次函数的标准方程对于一次函数y = kx + b,其中k为斜率,b为截距。

可以得到它的标准方程为Ax + By + C = 0,其中A = -k,B = 1,C = -b。

通过标准方程可以求得直线的斜率、截距等信息。

2.直线的距离公式设直线方程为Ax+By+C=0,点P(x1,y1)到该直线的距离为d=,Ax1+By1+C,/√(A^2+B^2)。

3.直线的倾斜角的求解对于斜率为k的直线,其倾斜角θ满足tanθ = k。

4.直线的平行和垂直关系两条直线斜率分别为k1和k2,如果k1=k2,则两条直线平行;如果k1*k2=-1,则两条直线垂直。

5.圆的标准方程设圆的圆心为C(h,k),半径为r,则圆的标准方程为(x-h)^2+(y-k)^2=r^26.两点间的距离公式设两点A(x1,y1)和B(x2,y2),则两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)。

7.点到直线的距离公式设直线方程为Ax+By+C=0,点P(x0,y0)到该直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。

8.点在直线上的条件对于一条直线Ax+By+C=0,如果点P(x,y)满足该方程,则点P在直线上。

9.直线与圆的位置关系对于一条直线Ax+By+C=0和圆(x-h)^2+(y-k)^2=r^2,可以通过判别式D=,Ah+Bk+C,/√(A^2+B^2)来判断直线和圆的位置关系。

当D>r时,直线与圆相离;当D=r时,直线与圆相切;当D<r时,直线与圆相交。

10.两圆的位置关系对于两个圆(x-h1)^2+(y-k1)^2=r1^2和(x-h2)^2+(y-k2)^2=r2^2,可以通过判别式D=√((h1-h2)^2+(k1-k2)^2)来判断两个圆的位置关系。

高中数学含及解析几何三角函数和各种常用公式大全!

高中数学含及解析几何三角函数和各种常用公式大全!

高中数学含及解析几何三角函数公式大全!一. 代数!1. 集合,函数{}{}{}()A B B A A BA B x x A x B A B x x A x B A x x U x A card A B card A card B card A B U ⊆⊆⇔==∈∈=∈∈=∈∉=+-,,,且或且 |||()()()()()aa a m n N n a a a a m n N n m n m n mn mn m n =>∈>==>∈>-011101,,,,且且,, ()()a N N Na MN M NM N M N M n M n R N N ba N ab b a a a a a a a n a b a a log log log log log log log log log log log log log log log ===+⎛⎝ ⎫⎭⎪=-=∈=, 基本型:()a b f x b a a b f x a ()()log =⇔=>≠>010,,()log ()()a b f x b f x a a a =⇔=>≠01,同底型:a a f x g x a a f x g x ()()()()()=⇔=>≠01,()log ()log ()()()a a f x g x f x g x a a =⇔=>>≠001,换元型:()f a x=0或()f x a log =02. 数列(1)等差数列()()()a a da a n da Ab A a b m n k l a a a a S a a nna n n d n n n m n k ln n +-==+-⇒=++=+⇒+=+=+=+-1111122121,,成等差(2)等比数列a a q a Gb G ab m n k l a a a a n n m n k l=⇒=+=+⇒=-112,,成等比 ()()()S a q q q na q n n =--≠=⎧⎨⎪⎩⎪111111(3)求和公式()()()()k n n k n n n k n n k n k n k n ===∑∑∑=+=++=+⎡⎣⎢⎤⎦⎥12131212121612 3. 不等式a b b aa b b c a ca b a c b ca b c a c ba b c d a c b da b c ac bc >⇔<>>⇒>>⇒+>++>⇒>->>⇒+>+>>⇒>,,,0()()a b c ac bca b c d ac bd a b d b n Z n a b a b n Z n n n n n ><⇒<>>>>⇒<>>⇒>∈>>>⇒>∈>,,,,0000101()a b a b R a b aba b R a b ab a b c R a b c abca b c R a b c abc a b a b a b-≥∈⇒+≥∈⇒+≥∈⇒++≥∈⇒++≥-≤±≤+2+++22333302233,,,,,, 4. 复数()()()()()()()()()()()()a bi c di a c b da bi ab a bic di a c bd ia bi c di a cb d i a bic di ac bd bc ad ia bi c di ac bd c d bc ad cb i +=+⇔==+=++++=++++-+=-+-++=-++++=+++-+,222222()()()a bi a C a bi C bi n n n n n n n +=+++-11…()()()()()[]()[]()()()()()[]a bi r i r i r i r r i r r n i n r i r i r r i r k ni k n k n nn k n +=++⋅+=⋅++++=+++=-+-=+++⎛⎝ ⎫⎭⎪=-cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθθθθθωπθπθ11122212121211222212121222011,,…,z z z z z z z z z zz z z z z z z z zzz z z z z z z z n n 121212121212122212121212=⋅==-≤±≤+==±=±⋅=⋅ z z z z 1212⎛⎝ ⎫⎭⎪= 5. 排列组合与二项式定理()()()()()()()A n n n n m A n n m C A m n n n m m C n m n m C C C C C n m n m n mn m n m n m n m n m n m nn m =---+=-==--+=-=+=+--1211111……!!!!!!!()a b C a C a b C a b C b T C a b n n n n n n r n r r n n n r n rn r r +=+++++=--+-0111……二. 三角函数1. 同角关系sin cos tan sec cot csc sin csc tan sin cos cos sec cot cos sin tan cot 222222111111αααααααααααααααααα+=+=+======,,2. 诱导公式()()()()()()()()()sin sin cos cos tan tan cos cos sin sin tan tan sin sin cos cos tan tan k k k ⋅︒+=⋅︒+=⋅︒+=-=-=--=-︒±=︒±=-︒±=±360360360180180180αααααααααααααααααα()()()()()()()()()sin sin cos cos tan tan sin cos cos sin tan cot sin cos cos sin tan cot 360360360909090270270270︒-=-︒-=︒-=-︒±=︒±=︒±=︒±=-︒±=±︒±=αααααααααααααααααα3. 和差公式()()()sin sin cos cos sin cos cos cos sin sin tan tan tan tan tan αβαβαβαβαβαβαβαβαβ±=±±=±=± 14. 倍角公式 sin sin cos cos cos sin cos sin tan tan tan 222211222122222ααααααααααα==-=-=-=-5. 半角公式 sin cos cos cos tan cos cos tan cos sin sin cos αααααααθθθθθ212212211211=±-=±+=±-+=-=+6. 万能公式()sin tan tan cos tan tan tan tan tan sin cos sin ααααααααααααϕ=+=-+=-+=++221212122212222222,a b a b 7. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:a A b B c Csin sin sin == 8. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即:a b c bc Ab c a ca B c a b ab C222222222222=+-=+-=+-cos cos cos三. 向量运算1. 向量的加法()()a aa b b a a b c a b c +=++=+++=++002. 向量减法()()()()--=+-=-+=-=+-a aa a a a ab a b 03. 实数与向量的积:以下公式λ、u 为实数,a b 、为向量()()()λλλλλλa aua u a u a a ua==+=+()λλλa b a b +=+线段的定比分点:设,P P P 13、、的坐标分别为()x y 11,,()x y ,,()x y 22,,则有:x x x y y y =++=++121211λλλλ 向量的数量积及运算律数量积(内积):a b a b ⋅=cos θ向量b 在a 方向的投影为b cos θ设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e a a e a ⋅=⋅=cos θ(2)a b a b ⊥⇔⋅=0(3)当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;a a a aa a a ⋅===⋅22(4)cos θ=⋅a b a b(5)a b a b ⋅≤数量积运算律:(a ,b ,c 为向量,λ为实数)a b b a ⋅=⋅(交换律)()()()()λλλa b a b a b a b c a c b c⋅=⋅=⋅+⋅=⋅+⋅四. 解析几何1. 直线方程()y y k x x y kx by y y y x x x x x a y bAx By C -=-=+--=--+=++=11121121102. 两点距离、定比分点()()AB x x P P x x y y B A=-=-+-12212212 x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪121211λλλλx x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪1212223. 两直线关系l l A A B B C C 12121212//⇔=≠ 或k k 12=且b b 12≠ l 1与l 2重合⇔==A A B B C C 121212 或k k 12=且b b 12= l 1与l 2相交⇔≠A A B B 1212 或k k 12≠l l A A B B 1212120⊥⇔+= 或k k 121=-l 1到l 2的角()tan θ=-++≠k k k k k k 211212110 l 1到l 2的夹角()tan θ=-++≠k k k k k k 211212110 点到直线的距离d Ax By CA B =+++00224. 圆锥曲线(1)圆()()x a y b R -+-=222 圆心为()a b ,,半径为R(2)椭圆()x a y ba b 222210+=>> 焦点()()F c F c 1200-,,, ()b a c222=- 离心率e c a= 准线方程x a c =±2焦半径MF a ex MF a ex 1020=+=-,(3)双曲线:x a y b22221-= (4)抛物线抛物线y px p 220=>() 焦点F p 20,⎛⎝ ⎫⎭⎪ 准线方程x p =-2五. 立体几何1. 空间两直线平行判定(1)a b b c a c //////,⇒(2)a b a b ⊥⊥⎫⎬⎭⇒αα//(3)a b a b ////ααβαβ⊂=⎫⎬⎪⎭⎪⇒(4)αβγαγβ//// ==⎫⎬⎪⎭⎪⇒a b a b 2. 空间两直线垂直判定(1)a b a b ⊥⊂⎫⎬⎭⇒⊥αα (2)a b l l b //⊥⎫⎬⎭⇒⊥α 3. 直线与平面平行(1)判定a b a b a a a ⊄⊂⎫⎬⎪⎭⎪⇒⊂⎫⎬⎭⇒ααααβαβ//////// (2)性质a ab a b ////βααβ⊂=⎫⎬⎪⎭⎪⇒4. 直线与平面垂直(1)判定 m n m n B l m l n l a b a b ⊂⊂=⊥⊥⎫⎬⎭⇒⊥⊥⎫⎬⎭⇒⊥ααααα,,, // (2)性质a b a b ⊥⊥⎫⎬⎭⇒αα// 5. 平面与平面平行(1)判定<>⊂=⎫⎬⎪⎭⎪⇒<>⊥⊥⎫⎬⎭⇒<>⎫⎬⎪⎭⎪⇒123a b a b a b A a a ,//,//////////////βαααβαβαβαγβγαβαβ<>⎫⎬⎭⇒3αγβγαβ////// (2)性质<>==⎫⎬⎪⎭⎪⇒<>⊂⎫⎬⎭⇒12αβγαγβαβααβ//////// a b a ba 6. 平面与平面垂直(1)判定<>⊂⊥⎫⎬⎭⇒⊥1a a αβαβ <2>二面角的平面角θ=︒90(2)性质<>⊥=∈⊥⎫⎬⎭⇒⊥<>∈∈⊥⊥⎫⎬⎪⎭⎪⇒⊂12αβαβαβααββα,,, b a a b a A a A a a 7. 几何体的侧面积S ChS Ch 正棱柱侧正棱锥侧==12' S RhS Rl S R 圆柱侧圆锥侧球===242πππ8. 几何体的体积V ShV Sh V R h V R h V R 棱柱棱锥圆柱圆锥球=====131343223πππ六. 概率与统计1. 概率性质(1)p i i ≥=012,,,……;(2)p p 121++=……2. 二次分布()C p qb k n p n k k n k -=;, 3. 期望()E x p x p x p E a b aE b n n ξξξ=+++++=+1122…………若()ξ~B n p ,,则E np ξ=4. 方差()()()D x E p x E p x E p n n ξξξξ=-⋅+-⋅++-⋅+1212222…………5. 正态分布()()f x e x x u ()=∈-∞+∞--12222πσσ,,式中的实数u ,σσ(>0)是参数,分别表示总体的平均数与标准差。

高中-解析几何-常用公式

高中-解析几何-常用公式

解析几何1.两直线分别为A1x+B1y+C1=0和A2x+B2y+C2=0的关系平行不重合A1B2=A2B1且C1B2≠C2B1相交:A1B2≠A2B1垂直:B1B2≠0时,A1A2=-B1B2B1=0,A2=0或B2=0,A1=0重合:A1B2=A2B1且C1B2=C2B1://3.三角函数公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的基本公式两点间距离:若A(X i,y」,B(X2,y2),则AB注意点:x,y对应项系数应相等。

则P到1的距离为:Ax / By /Cd低2+B2消y:ax2bx • c = 0,务必注意厶• 0.若I与曲线交于A (x1, y1), B(x2, y2)则:AB = (1 k2)(X2 -xj25、若A(X1,yJ, B(X2, y2),P(x,y)o P在直线AB上,且P分有向线段AB所成的比为变形后:6、若直线l1的斜率为k1,直线l2的斜率为k2,则h到12的角为〉,二三(0,二)适用范围:k1, k2都存在且k1k2= — 1 ,1、2、特别地:平行线间距离:若h:则:dAB //x 轴,AB //y 轴,Ax By &C1 - C2则AB则AB=0, 12: Ax By C 2= 03、点到直线的距离:P(x ■, y ), 1: Ax By C = 04、直线与圆锥曲线相交的弦长公式:y = kx 十b:F(x,y)=O% +小2 y「2,特别地:X2「X y2 一yk^ - k11 k1k2■ =1时,P为AB中点且若i i与12的夹角为日,则tan日=kl _k2,濮(0,上]1 k1k2 2 注意:(1)l i到12的角,指从丨1按逆时针方向旋转到12所成的角,范围(0,二)11到12的夹角:指I i、12相交所成的锐角或直角。

TT(2)11 _12时,夹角、到角二一。

一2(3)当11与12中有一条不存在斜率时,画图,求到角或夹角。

7、(1)倾斜角〉,:乂三(0,二);(2)a,b 夹角二-[0,二];(3)直线I与平面:•的夹角1, " [0,,];(4)11与12的夹角为——[0, —],其中I1//I2时夹角"0;(5)二面角2卅三(0,二];(6) 11 到12 的角二v • (0,二)9、直线的倾斜角:-与斜率k的关系a)每一条直线都有倾斜角:,但不一定有斜率。

b)若直线存在斜率k,而倾斜角为直线l i与直线(1)若l i,I2的的平行与垂直l2均存在斜率且不重合: ① l l//l2:±?② h | 12 =k i=k2k i k2=—110、名称斜截式:点斜式: 两点式: 截距式:般式:若11A1X B1y C^ 0,若A1、A 2、B1、B2都不为零①1I1//I2UA1 B1 C1—HA2 B2 C 2②1〔1 _ 12 =A 1A2 +B1B2=0;③1h 与l2 相交 1 A1 -■ B1A2 B2I l与l2重合=l2: A2X B2y C2= 0C1;------ ?C注意:若A2或B2中含有字母,应注意讨论字母=0与=0的情况。

直线方程的五种形式方程y=kx+by - 力 _ x - X1y2 一y1 X2 - X1A X By 0注意点应分①斜率不存在②斜率存在(1)斜率不存在:x = X,(2)斜率存在时为y-y二k(x-x)其中I交X轴于(a,0),交y轴于(0,b)分:(1)截距=0 设y=kxX v(2)截距=a = 0 设 a a即x+y= a(其中A、B不同时为零)(2)A1A211、确定圆需三个独立的条件12、 直线Ax By • C = 0与圆(x - a )2 • (y -b )2 =r 2的位置关系有三种卄 Aa + Bb +C丄亠右d =——I , d > r =相离二也< 0JA 2 +B 2d = r =相切 u ■■: = 0d ::: r :=相交 u .■: - 013、 两圆位置关系的判定方法设两圆圆心分别为 0仆。

2,半径分别为口,① O 1O 2 =dd • R • r 2二外离二4条公切线 d =匚• r 2 = 外切:=3条公切线A - r 2 c d c 几十r 2二 相交二2条公切线 d = » -r 2二内切二1条公切线 0 c d c A - r 2二内含二无公切线13、圆锥曲线定义、标准方程及性质 (一)椭圆定义I :若F 1, F 2是两定点,P 为动点,且 PF 1 + PF^2^|F 1F 2 ( a 为常数)则P 点的轨迹是椭圆。

定义n :若F 1为定点,I 为定直线,动点 P 到F 1的距离与到定直线I 的距离之比为常数 e (0<e<1),贝U P 点的轨迹是椭圆。

圆的方程(1)标准方程: (x-a)2 • (y -b)2 = r 2, (a, b)——圆心,r ——半径。

(2) 一般方程:x 2 y 2 Dx Ey F =0, ( D 2 E 2 -4F . 0)2-4FX y标准方程:—牙=1 (a • b • 0)a b定义域:{x-a 込值域:{x-b^y^b}长轴长=2a,短轴长=2b焦距:2c2a准线方程:x二ca2a2焦半径:PF」=e(x +—), PF2=e(——-x) , PF, =2a—PF2, a—PF,兰a + cc c等(注意涉及焦半径①用点P坐标表示,②第一定义。

)注意:(1)图中线段的几何特征:A,F, =|A2F2| =a—c,AF2=|人2只=a + cB i F^ - B1F2 - B2F^ - B2F i =a ,I A2B2 = AB2 二a b 等等。

顶点与准线距离、焦点与准线距离分别与a,b,c有关。

(2) A PF1F2中经常利用余弦定理.、三角形面积公式将有关线段PF i、PF2、2c,有关角N F1PF2结合起来,建立PF i + PF2、PF i * PF2等关系x = acos 日(3)椭圆上的点有时常用到三角换元:丿;、目=bsi n日(4)注意题目中椭圆的焦点在x轴上还是在y轴上,请补充当焦点在y轴上时,其相应的性质。

y」kJ = —Xh z《Az°芒及X一(三)性质2 2方程:笃-卑-1 (a 0,b 0)a b2 2y x ‘2 2=1 (a 0,b 0) a b定义域:{xx_a或x乞a};值域为R;实轴长=2a,虚轴长=2b焦距:2c2a准线方程:x二c焦半径:2PR =e(x+J ,ca2PF2=e(——x), I PR—PF2〔=2a ;c注意:(1)图中线段的几何特征: AR = BF2 =c-a, AF2 = BR =a + c顶点到准线的距离:a2a2a 或a ;焦点到准线的距离:c c2 a c - c a2两准线间的距离= 2a2、双曲线(一)定义:i若F l, F2是两定点,||PF i — PF2I =2a C|F I F2(a为常数),则动点P的轨迹是双曲线。

n若动点P到定点F与定直线I的距离之比是常数e(e>1),则动点P 的轨迹是双曲线。

(二)图形:(3)特别地当a = b时二离心率e = • 2 :=两渐近线互相垂直,分别为此时双曲线为等轴双曲线,可设为x2- y2—;(4)注意.PF1F2中结合定义||PFj |PF2 =2a与余弦定理cos RPF?,将有关(5)完成当焦点在y轴上时,标准方程及相应性质。

、抛物线(一)定义:到定点F与定直线I的距离相等的点的轨迹是抛物线。

即:到定点F的距离与到定直线I的距离之比是常数e( e=1)。

(2)若双曲线方程为2 2—2 2=1=渐近线方程:a b若渐近线方程为1-1=^双曲线可设为2x~2a2y_22x若双曲线与—a2爲=1有公共渐近线,可设为b2x~2a2y_b2(■0,焦点在x轴上, ■ ::: 0,焦点在y轴上)线段PF1、PF2、F i F2和角结合起来。

注意:(1)几何特征:焦点到顶点的距离 =-;焦点到准线的距离=p ;通径长=2p 2 顶点是焦点向准线所作垂线段中点。

2(2)抛物线宀细上的动点可设为P(詁y )或P(2 pt 2,2pt)或 P (x $ yj 其中 y : = 2px~(三)性质:方程:y 2=2px,(p . 0), p -—焦参数;焦占: 八、、八\、♦(号,0),通径 AB =2p ; 准线: -f ;CF =x °+卫,过焦点弦长 CD2二 % 卫 X 2 卫二 %X 2p2 2焦半径:。

相关文档
最新文档