(完整版)高等数学试题及答案

合集下载

高等数学试题及答案完整版

高等数学试题及答案完整版

高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

(完整word)高等数学下考试题库(附答案)

(完整word)高等数学下考试题库(附答案)

《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a ρρρρρϖϖ+=++-=2,2,则有( ).A.a ρ∥b ρB.a ρ⊥b ρC.3,π=b a ρρD.4,π=b a ρρ3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a ρ与b ρ垂直的充要条件是( ).A.0=⋅b a ρρB.0ρρρ=⨯b aC.0ρρρ=-b aD.0ρρρ=+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ).A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题(5分⨯6)1.设k j b k j i a ρρρρρρρ32,2+=-+=,求.b a ρρ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i ρρρ238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。

1.下列各组函数中,是相同的函数的是()。

A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。

A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。

A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。

A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。

A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。

A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。

A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。

A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。

A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。

A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。

大学高等数学上下考试题库(及答案)

大学高等数学上下考试题库(及答案)

高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学试题及答案word

高等数学试题及答案word

高等数学试题及答案word一、选择题(每题3分,共30分)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,总存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<|ε|D. 对于任意的正数ε,总存在正数δ,使得当|x-a|<δ时,|f(x)-L|<|ε|答案:B2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B3. 函数f(x) = x^2在区间[0,1]上的定积分为:A. 0B. 1/3C. 1/2D. 1答案:C4. 以下哪个选项是洛必达法则的应用条件?A. 极限形式为0/0或∞/∞B. 极限形式为0*∞C. 极限形式为1^∞D. 极限形式为0^0答案:A5. 以下哪个选项是二阶导数的几何意义?A. 表示函数的增减性B. 表示函数的凹凸性C. 表示函数的极值点D. 表示函数的拐点答案:B6. 以下哪个选项是泰勒级数展开的条件?A. 函数在展开点处可导B. 函数在展开点处连续C. 函数在展开点处可积D. 函数在展开点处有界答案:A7. 以下哪个选项是多元函数偏导数的定义?A. 函数对自变量的一阶导数B. 函数对自变量的二阶导数C. 函数对自变量的无穷小变化率D. 函数对自变量的有限变化率答案:C8. 以下哪个选项是多元函数的极值存在的必要条件?A. 偏导数为0B. 偏导数不为0C. 偏导数不存在D. 偏导数为无穷大答案:A9. 以下哪个选项是格林定理的应用条件?A. 区域D为单连通区域B. 区域D为多连通区域C. 区域D为非封闭区域D. 区域D为封闭区域答案:A10. 以下哪个选项是定积分的性质?A. 积分区间可加性B. 积分区间可减性C. 积分区间可乘性D. 积分区间可除性答案:A二、填空题(每题2分,共20分)1. 函数f(x) = sin(x)在区间[0, π/2]上的定积分为________。

(完整版)高等数学测试题及解答(分章)

(完整版)高等数学测试题及解答(分章)

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

高等数学本科试题及答案

高等数学本科试题及答案

高等数学本科试题及答案一、选择题(每题5分,共20分)1. 函数 \( f(x) = \sin x \) 的导数是()。

A. \( \cos x \)B. \( -\cos x \)C. \( \sin x \)D. \( -\sin x \)2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是()。

A. 0B. 1C. 2D. 不存在3. 微分方程 \( y'' - y = 0 \) 的通解是()。

A. \( y = C_1 \cos x + C_2 \sin x \)B. \( y = C_1 e^x + C_2 e^{-x} \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln x + C_2 x \)4. 曲线 \( y = x^2 \) 在点 \( x = 1 \) 处的切线斜率是()。

A. 0B. 1C. 2D. 4二、填空题(每题5分,共20分)1. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{2} x^2 dx = \) ________。

2. 函数 \( f(x) = x^3 - 3x + 2 \) 的极值点是 ________。

3. 曲线 \( y = \ln x \) 在 \( x = e \) 处的切线方程是________。

4. 函数 \( y = \sin x \) 在区间 \( [0, \pi] \) 上的最大值是________。

三、解答题(每题15分,共60分)1. 求函数 \( f(x) = x^3 - 3x + 1 \) 的一阶导数和二阶导数。

2. 计算定积分 \( \int_{0}^{\pi} \sin x \, dx \)。

3. 已知 \( y'' + 4y' + 4y = 0 \),求该微分方程的通解。

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。

参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。

由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学试题及答案

高等数学试题及答案

《高等数学》一.选择题1.当x →0时,y =ln(1+x )与下列那个函数不是等价的()A)、y =xB)、y =sin xC)、y =1-cos xD)、y =e x -12.函数f(x)在点x 0极限存在是函数在该点连续的()A )、必要条件B )、充分条件C )、充要条件D )、无关条件3.下列各组函数中,f (x )和g (x )不是同一函数的原函数的有().A)、f (x )=221x 1e -e -x ,g (x )=e x -e -x 22()()B)、f (x )=ln x +a 2+x 2(),g (x )=-ln (x 2a 2+x 2-x)C)、f (x )=arcsin (2x -1),g (x )=3-2arcsin 1-x D)、f (x )=csc x +sec x ,g (x )=tan4.下列各式正确的是()A )、x x dx =2x ln 2+CB )、sin tdt =-cos t +C⎰⎰C )、dx11D )、dx =arctan x (-)dx =-+C⎰1+x 2⎰x 2x5.下列等式不正确的是().d ⎡b d ⎡b (x )⎤=f (x )B )、()f x dx f (x )dt ⎤=f [b (x )]b '(x )⎰⎰⎥⎥⎣a ⎦⎣a ⎦dx ⎢dx ⎢d ⎡x d ⎡x ⎤=f (x )D )C )、、()f x dx F '(t )dt ⎤=F '(x )⎰⎰⎥⎥⎣a ⎦⎣a ⎦dx ⎢dx ⎢A )、⎰6.limx →0x 0ln(1+t )dt x=()A )、0B )、1C )、2D )、47.设f (x )=sin bx ,则⎰xf ''(x )dx =()xx、cos bx -cos bx +Ccos bx -sin bx +CB )b bC )、bx cos bx -sin bx +CD )、bx sin bx -b cos bx +CA )、8.⎰1xx b 0ef (e )dx =⎰af (t )dt ,则()A )、a =0,b =1B )、a =0,b =eC )、a =1,b =10D )、a =1,b =e9.⎰π3-π(x2sin x )dx =()A )、0B )、2πC )、1D )、2π210.⎰1-1x2ln(x +x 2+1)dx =()A )、0B )、2πC )、1D )、2π211.若f (1x x )=x +1,则⎰1f (x )dx 为()A )、0B )、1C )、1-ln 2D )、ln 212.设f (x )在区间[a ,b ]上连续,F (x )=⎰x af (t )dt (a ≤x ≤b ),则F (x )是f (x )的(A )、不定积分B )、一个原函数C )、全体原函数D )、在[a ,b ]上的定积分13.设y =x -1dx 2sin x ,则dy =()A)、1-12cos y B)、1-12cos x C)、22-cos y D)、22-cos x1+x -e x14.limx →0ln(1+x 2)=( )A-12B 2C 1D -115.函数y =x +x 在区间[0,4]上的最小值为()A 4;B 0 ;C 1;D 3二.填空题x1.x +2x lim →+∞(x +1)2=______..)2.⎰2-24-x 2dx =113.若⎰f (x )e xdx =e x+C ,则⎰f (x )dx =d x 24.dx ⎰61+t 2dt =5.曲线y =x 3在处有拐点三.判断题1.y =ln 1-x1+x是奇函数.()2.设f (x )在开区间(a ,b )上连续,则f (x )在(a ,b )上存在最大值、最小值.(3.若函数f (x )在x 0处极限存在,则f (x )在x 0处连续.()4.⎰π0sin xdx =2.()5.罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1.求lim tan 22xx →01-cos x.2.求lim sin mxx →πsin nx,其中m ,n 为自然数.3.证明方程x 3-4x 2+1=0在(0,1)内至少有一个实根.4.求⎰cos(2-3x )dx .5.求⎰1.x +3x 2dx ⎧6.设f (x )=⎪1⎨x sin x 2,x <0,求f '(x )⎪⎩x +1,x ≥07.求定积分⎰4dx01+x dx)π8.设f(x)在[0,1]上具有二阶连续导数,若f(π)=2,⎰[f(x)+f''(x)]sin xdx=5,求f(0)..9.求由直线x=0,x=1,y=0和曲线y=e x所围成的平面图形绕x轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2.A3.D4.B5.A6.A7.C8.D9.A10.A11.D12.B13.D14.A15.B 二.填空题1.e2.2π3.+C4.2x 1+x 45.(0,0)三.判断题1.T 2.F 3.F 4.T 5.T 四.解答题1.8121x2.令t =x -π,limx →πsin mx sin(mt +m π)m=lim =(-1)m -n sin nx t →0sin(nt +n π)n 3.根据零点存在定理.4.⎰cos(2-3x )dx =-1cos(2-3x )d (2-3x )3⎰1=-sin(2-3x )+C35.令6xt ,则xt 6,dx 6t 5dt526t t 1原式dt 6dt 6(t 1)dt t 3t 41t 1tt 26t ln 1tC23x 6x 6ln 1x C366sinx 22x 22cos x ,x 0f (x)1,x 06.不存在,x 07.42ln38.解:f(x)sin xdxf(x)d(cosx)f()f(0)f (x)sin xdx所以f(0)39.V=e 10x 2112x 1dxe dxe d(2x)e 2x2212x 101(e 21)2《高等数学》试题2一.选择题1.当x0时,下列函数不是无穷小量的是()A )、yx B )、y0 C )、yln(x 1) D )、ye x2.设f(x)2x 1,则当x0时,f(x)是x 的()。

(完整word版)高等数学试题及答案.docx

(完整word版)高等数学试题及答案.docx

高学试题及答案选择题(本大题共40 小题,每小题 2.5 分,共 100 分)1.设 f(x)=lnx,且函数 (x) 的反函数1(x)= 2(x+1) ,则 f(x)( B)x-2 x+22-xx-1 x+2lnlnlnlnA. x+2B.x-2C. x+2D. 2-xe t2 dt2. lime tx1 cosx(A )x 0A . 0B . 1C .-1D .3.设y f ( x 0 x) f ( x 0 ) 且函数 f (x) 在 x x 0 处可导,则必有( A)A. lim y 0B. y 0C.dy 0D. y dyx 04.设函数 f(x)=2x 2, x 1,则 f(x) 在点 x=1处( C)3x1,x 1A. 不连续B. 连续但左、右导数不存在C.连续但不可导D.可导5.设 xf(x)dx=e-x 2C ,则 f(x)= ( D)A.xe6. 设 I-x 2B.-xe -x 2C.2e -x 2D.-2e-x 2( x2y 2 ) dxdy,其中 D 由 x 2y 2 a 2 所围成,则 I =( B ).D(A)2 a 2rdra4(B)2 a 2rdr1 a4dadr22 a 2dr2 a 32a2adr2 a4(C)dr (D)da37. 若 L 是上半椭圆x a cost ,ydxxdy 的值为 ( C ).y 取顺时针方向 , 则b sin t ,L(A)0(B)ab (C)ab(D)28. 设 a 为非零常数 , 则当 ( B )时 , 级数a 收敛 .n 1 rnab(A) | r | | a |(B)| r | | a | (C) | r | 1(D)| r | 19. lim u n 0 是级数u n 收敛的 ( D )条件 .nn 1(A) 充分 (B) 必要 (C) 充分且必要 (D) 既非充分又非必要10. 微分方程 y y0 的通解为 ____B______.(A)y cos x c(B) y c 1 cos x c 2(C) y c 1 c 2 sin x(D) yc 1 cos x c 2 sin x11. 若 a , b 为共线的单位向量,则它们的数量积a b( D ).( A ) 1(B ) -1( C ) 0( D ) cos(a, b)12. 设平面方程为 Bx Cz D 0 ,且 B , C , D 0 , 则平面(C ).( A )平行于 x 轴( B )垂直于 x 轴( C )平行于 y 轴( D )垂直于 y 轴13. 设 f ( x, y)( x 2y 2 ) sin x 2 1 y 2,x 2 y 20 , 则在原点 (0,0) 处 f (x, y) ( D ).0, x 2y 2(A) 不连续 (B)偏导数不存在(C)连续但不可微 (D)可微14. 二元函数 z 3( x y)x 3 y 3 的极值点是 ( D ).(A) (1,2)(B) (1, -2 ) (C) (1,-1)(D) (-1,-1)15. 设 D 为 x 2y 2 1,则11 dxdy=(C ).Dx 2 y 2(A) 0(B)(C) 2(D) 416.1 1 x)0 dxf ( x, y ) dy =( C1 x 11 1 xf ( x , y ) dx (A)0 dyf ( x , y ) dx(B) 0dy11 y f ( x , y ) dx11f ( x , y ) dx(C)dy(D) dy17.x a cost ,ydxxdy 的值为 ( C ).若 L 是上半椭圆取顺时针方向 , 则Lyb sin t ,(A) 0(B)ab(C)ab(D)ab218. 下列级数中 , 收敛的是 ( B ).(A)(5 )n1(B)( 4 ) n 1(C)( 1) n 1( 5) n 1(D)(54)n 1n 1 4n 1 5n 1 4 n 1 4519. 若幂级数a n x n 的收敛半径为 R 1 : 0R 1,幂级数b n x n 的收敛半径为 R 2 : 0 R 2,n 0n 0则幂级数(a nb n ) x n 的收敛半径至少为 ( D )n 0(A) R1R2(B)R1 R2(C)max R1, R2(D)min R1 , R220.下列方程为线性微分方程的是( A )(A)y(sin x) y e x(B)y x sin y e x(C)y sin x e y(D)xy cos y11x21. a b a b 充分必要条件是( B )(A) a ×0(B) a b0(C)a b 0(D) a b 0 b22. 两平面x 4 y z50与 2x 2 y z 30的夹角是( C )(A)6(B)3(C)4(D)223. 若f y(a, b) 1 ,则 lim f a, b y f a,b y=( A )y 0y(A)2(B)1(C)4(D)024.若 f x ( x0 , y0 ) 和 f y ( x0 , y0 ) 都存在,则 f ( x, y) 在 (x 0 , y 0 ) 处( D )(A)连续且可微(C)可微但不一定连续(B)连续但不一定可微(D)不一定连续且不一定可微25.下列不等式正确的是( B )(A)(x3y3 )d0(B)(x2y2 ) d0x 2y 21x2 y 2 1(C)x 2y2(x y)d0(D)x2 y 2( x y)d0 1126.11xf (x, y)dy =( C) dx(A)1 xdy1(B)1 1 x f ( x, y) d x 0f ( x, y)d x dy0011y11f (x, y)d x(C)dy0f (x, y)d x(D)dy00027. 设区域 D 由分段光滑曲线L 所围成, L 取正向, A 为区域 D 的面积,则( B )(A)11 Aydx xdy(B) A xdy ydx2 L 2 L(C) A1xdy ydx(D) Axdy ydx2LLn28. 设a n 是正项级数,前 n 项和为 s na k ,则数列 s n 有界是a n 收敛的( C )n 1k 1n 1(A) 充分条件(B) 必要条件(C) 充分必要条件(D) 既非充分条件,也非必要条件29. 以下级数中,条件收敛的级数是( D )(A)( 1) Nn (B)( 1) n11N 12n10n 1n 3(C)( 1) n 1 ( 1 )n (D)( 1) n13 n12 n 1n30.设 xf(x)dx=e-x 2C ,则 f(x)= (D )A.xe -x 2B.-xe -x 2C.2e -x 2D.-2e-x 231、已知平面: x2 y z4 0 与直线 L :x1y2 z 1 的位置关系是( D )31 1( A )垂直(B )平行但直线不在平面上( C )不平行也不垂直 ( D )直线在平面上 32、 lim3xy( B)x 02xy 1 1y 0( A )不存在 ( B ) 3( C ) 6( D )33、函数 z2 z及2 zD 内f ( x, y) 的两个二阶混合偏导数在区域 D 内连续是这两个二阶混合偏导数在x y y x相等的( B )条件 .( A )必要条件( B )充分条件( C )充分必要条件 ( D )非充分且非必要条件34、设d4 ,这里 a0 ,则 a =( A)x 2y 2a( A ) 4( B )2 ( C ) 1( D ) 035、已知 xay dxydy为某函数的全微分,则 a ( C)x y 2( A ) -1 (B ) 0( C ) 2( D ) 136、曲线积分ds(C ),其中y 2 Lx 2 z 2( A )( B )2( C )x 2 y 2 z 210L :1.z3(D )4555537、数项级数a n 发散,则级数ka n ( k 为常数)( B)n 1n 1(A )发散( B )可能收敛也可能发散( C )收敛 ( D )无界38、微分方程xy y 的通解是( C )(A )y C1x C2(B )y x2C( C)y C1x2 C 2( D)y 1 x2C2。

高等数学试卷及答案

高等数学试卷及答案

《高等数学》试卷及答案填空题(本大题共10小题, 每小题2分, 共20分)1. ;2. ;3. ;4. ;5. ;6. 已知 , 则 ;7. 函数 的单调增区间为 ;8. ; 9. (-5) ;10. 微分方. 的通解. y=C1ex+C.......... ...单项选择题(本大题共8小题, 每小题3分, 共24分)1. 函数 的定义域是( A )。

A. (-1 , 1 ]B. [ -1 , 1 ]C. (-1 , 2 ]D. [-1 , 2 ]2.当 时, 是 的( D )。

A. 低阶无穷小B. 等阶无穷小C. 同阶但不等阶无穷小D. 高阶无穷小3.设 在 上连续, 则 的值为( )。

A. -1B. 0C. 1D. 24. 函数 在 点( D )。

A. 连续且可导B. 连续但不可导C. 不连续但可导D. 不连续且不可导5. 下列论述正确的是( C )。

A. 驻点必是极值点B. 极值点必是最值点C. 可导的极值点必是驻点D. 极值点必是拐点6. 下列凑微分正确的是( )。

A. B.C. D.7.设 是 的一个原函数, 则有下面成立的是( C )。

A. B.C. D.8. 下列那一项不是常微分方程( A )。

A. B.一. C . D.1.计算题(本大题共5小题, 每小题6分, 共30分)2.011lim cot sin x x x x →⎛⎫- ⎪⎝⎭2. 设 , 求3.4.40d x e x ⎰5.求微分方程)(e d d 3x x xy y +=-的通解。

应用题(本大题共3小题, 每小题7分, 共21分)已知曲线 满足方程 , 试求曲线在点(0, 0)处的切线方程。

2. 计算抛物线与所围成的图形的面积。

要制作一个容积为V的圆柱形带盖铁罐, 问圆柱的高h和底半径r各为多少时, 可使所用材料最少?二.证明题(本大题共5分)当时, .。

高数试题及详细答案解析

高数试题及详细答案解析

高数试题及详细答案解析一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3是一个二次函数,我们可以通过判别式Δ = b^2 - 4ac来判断零点的个数。

这里a = 1, b = -4, c = 3,所以Δ = (-4)^2 - 4*1*3 = 16 - 12 = 4 > 0,说明函数有两个不同的实数零点。

2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B解析:这是一个著名的极限,lim(x→0) (sin(x)/x) = 1。

可以通过洛必达法则或者夹逼定理来证明。

3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B解析:奇函数满足f(-x) = -f(x)的性质。

A选项是偶函数,C选项也是偶函数,D选项是奇函数,但B选项f(x) = x^3满足奇函数的性质,因为(-x)^3 = -x^3。

4. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 4 + 8 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...答案:D解析:A选项是等比级数,公比为1/2,收敛;B选项是交错级数,但项的绝对值不递减,不满足交错级数的收敛条件;C选项是等比级数,公比为2,发散;D选项是等比级数,公比为1/2,收敛。

二、填空题(每题5分,共20分)5. 函数f(x) = e^x的导数为_________。

答案:e^x解析:e^x的导数是其本身,这是指数函数的基本性质。

6. 定积分∫(0 to 1) x^2 dx的值为_________。

高等数学试题及答案(可编辑修改word版)

高等数学试题及答案(可编辑修改word版)

n →∞⎰ x 高等数学试题一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设f ( x) =l nx ,且函数( x) 的反函数-1( x) = 2( x+1),则f [( x)] = ()x- 1A .l n x- 2B .l n x+2C .l n 2- xD .l n x+2x+2x- 2 x+2 2- x⎰0(e t + e -t - 2)dt2. lim xx →01- cos x= () A .0B .1C .-1D . ∞3. 设∆y =f (x 0 + ∆x ) - f (x 0 ) 且函数 f (x ) 在 x = x 0 处可导,则必有()A. lim ∆y = 0∆x →0B. ∆y = 0⎧ 2x 2, x ≤ 1C. dy = 0D. ∆y = dy4. 设函数f ( x) =⎨ ⎩3x -1, x > 1 ,则f ( x) 在点x=1处()A. 不连续B .连续但左、右导数不存在C .连续但不可导D . 可导5.设⎰xf ( x) dx=e - x 2+ C ,则f ( x) = ()A. xe - x 2B. - x e - x 2C. 2e - x 2D. - 2e - x 2二、填空题(本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

1 16.设函数 f(x)在区间[0,1]上有定义,则函数 f(x+ )+f(x- )的定义域是.4 47. lim (a + aq + aq 2 + + aq n )( q < 1) =8. lim arctan x =x →∞ xg29. 已知某产品产量为 g 时,总成本是C( g) =9+800,则生产 100 件产品时的边际成本M C g =100 =10.函数 f (x ) = x 3+ 2x 在区间[0,1]上满足拉格朗日中值定理的点ξ是 .11.函数 y = 2x 3 - 9x 2 +12x - 9 的单调减少区间是 .12.微分方程 xy '- y = 1+ x 3 的通解是.2ln 2dt13. 设 a,则a = .6 14. 设 z = cos x y则 dz= .15.设 D = {(x , y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},则⎰⎰ xe -2 y dxdy =.D三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分) ⎛ 1 ⎫x16.设 y = ⎪ ⎝ ⎭,求 dy.e t -1 =1+ x 2 ⎰x y x ⎢ ⎥ 17. 求极限 lim ln cot xx →0+ln x18. 求不定积分19. 计算定积分I= aa 2 - x 2 dx ..20.设方程 x 2 y - 2xz + e z= 1确定隐函数 z=z(x,y),求 z ' , z ' 。

(完整版)大一第一学期期末高等数学(上)试题及答案

(完整版)大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222Λ16、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222Λ =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)一、选择题1. 设函数 $ f(x) = x^3 3x + 2 $,则 $ f'(0) $ 的值为多少?A. 0B. 1C. 1D. 3答案:A2. 设 $ f(x) = e^x $,则 $ f''(x) $ 等于多少?A. $ e^x $B. $ e^x + x $C. $ e^x x $D. $ e^x + 2 $答案:A3. 设 $ y = \ln(x + 1) $,则 $ y' $ 等于多少?A. $ \frac{1}{x + 1} $B. $ \frac{1}{x} $C. $ \frac{1}{x 1} $D. $ \frac{1}{x + 2} $答案:A4. 设 $ y = x^2 $,则 $ y'' $ 等于多少?A. 2B. 4D. 1答案:B5. 设 $ y = \sin(x) $,则 $ y' $ 等于多少?A. $ \cos(x) $B. $ \cos(x) $C. $ \tan(x) $D. $ \tan(x) $答案:A二、填空题1. 设函数 $ f(x) = x^4 2x^3 + x^2 $,则 $ f'(x) $ 的表达式为______。

答案:$ 4x^3 6x^2 + 2x $2. 设 $ y = \ln(x) $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{x} $3. 设 $ y = e^x $,则 $ y'' $ 的表达式为______。

答案:$ e^x $4. 设 $ y = \cos(x) $,则 $ y' $ 的表达式为______。

答案:$ \sin(x) $5. 设 $ y = \sqrt{x} $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{2\sqrt{x}} $三、解答题1. 求函数 $ f(x) = x^3 3x + 2 $ 在点 $ x = 1 $ 处的切线方程。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

完整版)高等数学测试题及答案

完整版)高等数学测试题及答案

完整版)高等数学测试题及答案高等数学测试试题一、是非题(3’×6=18’)1、$\lim_{x\to 1}(1-x)=e$。

(×)2、函数$f(x)$在点$x=x_0$处连续,则它在该点处必可导。

(×)3、函数的极大值一定是它的最大值。

(×)4、设$G(x)=f(x)$,则$G(x)$为$f(x)$的一个原函数。

(√)5、定积分$\int_{-1}^1 x\cos x dx=0$.(√)6、函数$y=x-2$是微分方程$x\frac{dy}{dx}+2y$的解。

(√)二、选择题(4’×5=20’)7、函数$f(x)=\sin\frac{1}{x}$是定义域内的()A、单调函数B、有界函数C、无界函数D、周期函数答案:C8、设$y=1+2x$,则$dy$=()A、$2xdx$B、$2x\ln2$C、$2x\ln2dx$D、$(1+2x\ln2)dx$答案:A9、设在区间$[a,b]$上$f'(x)>0$,$f''(x)>0$,则曲线$y=f(x)$在该区间上沿着$x$轴正向A、上升且为凹弧B、上升且为凸弧C、下降且为凹弧D、下降且为凸弧答案:B10、下列等式正确的是()A、$\int f'(x)dx=f(x)$B、$\int f(x)dx=f'(x)$C、$\int f'(x)dx=f(x)+C$D、$\int f(x)dx=f'(x)+C$答案:C11、$P=-\int \cos^2 x dx$,$Q=3\int dx$,$R=\int xdx$,则int_0^{\frac{\pi}{2}} \sin x dx < \int_0^1 \sin^2 x dx <\int_0^{\frac{\pi}{2}} \sin 2x dx$A、$P<Q<R$B、$Q<P<R$C、$P<R<Q$D、$R<Q<P$答案:D三、选择题(4’×5=20’)12.函数$f(x)=\frac{x^2}{3x-3}$的间断点为()A、3B、4C、5D、6答案:A13、设函数$f(x)$在点$x=0$处可导,且$\lim_{h\to 0}\frac{f(-h)-f(0)}{h}=\frac{1}{2}$,则$f'(0)$=()A、2B、1C、-1D、-2答案:B14、设函数$f(x)=x^2\ln x$,则$f''(1)$=()A、2B、3C、4D、5答案:B15、$\frac{d}{dx}\int_0^{\ln(1+x)}\ln(1+t)dt=$A、$\ln(1+x)$B、$\ln(1+x^2)$C、$2x\ln(1+x^2)$D、$x^2\ln(1+x^2)$答案:C16、$\int f'(e^x)e^xdx=$A、$f(e^x)$B、$f(e^x)+C$C、$f'(e^x)$D、$f'(e^x)+C$答案:B四、选择题(7’×6=42’)17、$\lim_{x\to 2x-2}\frac{x^2+x-6}{x-2x+2}=$A、5B、6C、7D、8答案:B18、函数$y=x^3-3x$的单调减少区间为()A、$(-\infty,-1)$B、$(-\infty,1)$C、$(-1,+\infty)$D、$[-1,1]$答案:A19、已知曲线方程$y=\ln(2+x)$,则点$M(0,\ln2)$处的切线方程为()A、$y=\frac{x}{2}+\ln2$B、$y=\frac{x}{2}-\ln2$C、$y=2x+\ln2$D、$y=2x-\ln2$答案:AB、y=x+1C、y=x^2+ln2D、y=x+ln2x10、函数f(x)=∫lntdt的极值点与极值分别为:A、x=2,极小值f(2)=1B、x=1,极小值f(1)=1/2(ln2-1)C、x=2,极大值f(2)=1D、x=1,极大值f(1)=1/2(ln2-1)21、曲线y=4-x^2,x∈[0,4]与x轴,y轴以及x=4所围的平面图形的面积值S=A、4B、8C、16D、3222、微分方程dy/dx=ex-2y满足初始条件y(0)=1的特解为:A、lny=ex-1B、e2y=2ex-1C、e2y=ex-1D、e2y=e2x-1。

(完整word版)高等数学试题及答案(word文档良心出品)

(完整word版)高等数学试题及答案(word文档良心出品)

《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》试题30考试日期:2004年7月14日 星期三 考试时间:120 分钟一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案30考试日期:2004年7月14日 星期三 考试时间:120 分钟一.选择题 1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B13. D 14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0)三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令 t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx ex x x xπππππ 《高等数学》试题31考试日期:2004年7月14日 星期三 考试时间:120 分钟一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。

A )、高阶无穷小B )、低阶无穷小C )、等价无穷小D )、同阶但不等价无穷3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰5. 10=⎰( )A )、1B )、2C )、0D )、46. 设x xe dt tf 20)(=⎰,则=)(x f ( )A )、x e 2B )、x xe 22C )、x e 22D )、122-x xe7. 10()()bx x a e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,18. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π9. =-⎰-dx xx 2121221)(arcsin ( )A )、0B )、3243π C )、1 D )、22π10. 若1)1(+=x x x f ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln11. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分12. 若()f x 在0x x =处可导,则()f x 在0x x =处( )A )、可导B )、不可导C )、连续但未必可导D )、不连续13. =+x x arccos arcsin ( ).A πB 2π C4π D 2π14. 20sin 1lim x e x xx -+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 2. 如果21)74)(1(132lim 23=+-+-∞→n x x x x x ,则=n ______. 3. 设⎰+=C x dx x f 2cos )(,则=)(x f4. 若⎰++=C x dx x xf )1ln()(2,则⎰=dx x f )(15. ⎰=++dx xx2cos 1cos 12 三.判断题1. 函数1f(x)=(0,1)1x x a a a a +>≠- 是非奇非偶函数. ( )2. 若)(lim 0x f x x →不存在,则02lim ()x x f x →也一定不存在. ( )3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( )4. 方程2cos (0,)x x π=在内至少有一实根. ( )5. 0)(=''x f 对应的点不一定是曲线的拐点( )四.解答题1. 求bxax e e bxax x sin sin lim 0--→ (b a ≠)2. .已知函数⎩⎨⎧≥+<+=0201)(2x bx x x x f 在0=x 处连续,求b 的值.3. 设⎪⎩⎪⎨⎧+=-kx x f x 2)1()( 00=≠x x ,试确定k 的值使)(x f 在0=x 处连续4. 计算tan(32)x dx +⎰.5. 比较大小22211,.xdx x dx ⎰⎰.6. 在抛物线2y x =上取横坐标为121,3x x ==的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线?7. 设函数=)(x f ⎪⎩⎪⎨⎧<<-+≥-01,cos 110,2x xx xe x ,计算⎰-41)2(dx x f .8. 若=)(x f 的一个原函数为x x ln ,求⎰dx x xf )(.9. 求由直线0=y 和曲线12-=x y 所围成的平面图形绕y 轴一周旋转而成的旋转体体积《高等数学》答案31考试日期:2004年7月14日 星期三 考试时间:120 分钟一.选择题1. D2. D3. D4. A5. B6. C7. D8. A9. B 10. D 11. B 12. C 13. D14. A15. B 二.填空题 1. 0 2. 23. x 2sin 2-4. C x x ++3261215. C x x ++21tan 21三.判断题1. F2. F3. F4. F5. T 四.解答题 1. 1 2. 1b = 3. 2-=e k4. 1tan(32)ln cos(323x dx x C +=-++⎰ 5. dx x dx x ⎰⎰<21221 6. (2,4)7. 解:设则,2t x =-⎰-41)2(dx x f =⎰-21)(dt t f =+⎰-01)(dt t f ⎰2)(dt t f =++⎰-01cos 11dt t ⎰-22dt tet =212121tan4+--e8. 解:由已知知1ln )ln ()(+='=x x x x f则C x x x dx x x dx x xf ++=+=⎰⎰2241ln 21)1(ln )(9. ()22101012012ππππ=⎥⎦⎤⎢⎣⎡+=+==---⎰⎰y y dy y dy x V《高等数学》试题32考试日期:2004年7月14日 星期三 考试时间:120 分钟一.选择题1. 设函数)1(log )(2++=x x x f a ,)1,0(≠>a a ,则该函数是( ).A)、奇函数 B)、偶函数C)、非奇非偶函数 D )、既是奇函数又是偶函数2. 下列极限等于1的是( ).A )、x x x sin lim∞→ B )、x x x 2sin lim 0→ C )、xx x sin lim 2π→ D )、x xx -→ππsin lim3. 若⎰+=-C e dx x f x 6)(,则=)(x f ( )A )、()2xx e + B )、()1xx e -C )、66x e --D )、()1xx e +4. 220cos x xdx π=⎰( )A )、1B )、224π- C )、0 D )、45. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin6. 设x xe dt tf 20)(=⎰,则=)(x f ( )A )、x e 2B )、x xe 22C )、x e 22D )、122-x xe7. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π8. =-⎰-dx xx 2121221)(arcsin ( )A )、0B )、3243π C )、1 D )、22π9. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分10. 设dt du u x f x t⎰⎰⎥⎦⎤⎢⎣⎡+=02)1ln()(,则(1)f ''=( )A )、0B )、 1C )、2ln 1-D )、 2ln11. 设ln y x x =,则(10)y =( )A )、91x -B )、91xC )、98!xD )、98!x- 12. 曲线ln y x =在点( )处的切线平行于直线23y x =-A )、1,ln 22⎛⎫-⎪⎝⎭ B )、11,ln 22⎛⎫- ⎪⎝⎭ C )、()2,ln 2 D )、()2,ln 2-13. 1-=x y 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=( ).A 0B 2 C49D 3 14. =-⋅-→21tan limxx b a x x x ( )A 0B b a ln ln -C a lnD b ln15. 函数)1ln(2x y +=在区间]2,1[-上的最大值为( )A 4;B 0 ;C 1;D 5ln二.填空题1. 设函数f x x x x k x (),,=>+≤⎧⎨⎪⎩⎪e 2122,若f x ()在2x =处连续,则k=2. 设x x f +='1)(ln ,则=)(x f3. 若⎰++=C x dx x xf )1ln()(2,则⎰=dx x f )(14. ⎰=++dx xx2cos 1cos 12 5. 曲线15xy e =+ 的水平渐近线为___________.三.判断题1. 2arctan lim π=∞→x x .( )2. 若)(lim 0x f x x →与)(lim 0x g x x →均不存在,则)]()([lim 0x g x f x x ±→的极限也不存在. ( )3. 若函数()f x 在0x 的左、右极限都存在但不相等,则0x为()f x 的第一类间断点. ( )4. 0==x x y 在处不可导( )5. 对于函数()f x ,若0)(0='x f ,则0x 是极值点.()四.解答题1. 设2)(,sin tan )(x x x x x =-=φϕ,判断当0→x 时)(x ϕ与 )(x φ的阶数的高低.2. 证明方程x e x 3=至少有一个小于1的正根.3. 计算⎰+2x x dx.4. 比较大小22211,.xdx x dx ⎰⎰.5. 设函数()y f x =由方程23ln()sin x y x y x +=+确定,求0x dydx=6. 求函数32ln 1x y +=的导数7. 计算dx e xx x x⎰++]1)ln 21(1[38. 设连续函数)(x f 满足⎰-=10)(2)(dx x f x x f ,求)(x f9. 求由曲线2x y =和x y =所围成的平面图形绕y 轴一周旋转而成的旋转体体积。

相关文档
最新文档