高三数学-30道压轴题及答案 精品
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考解析几何压轴题精选(含答案)
1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
高考数学压轴题系列训(共六套)(含答案及解析详解)
高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考必做的36道压轴题变式题答案
高考数学必做36道压轴题答案(解析几何部分)1-1 解:(Ⅰ)设双曲线的方程是12222=-by a x (0>a ,0>b ),则由于离心率2==ace ,所以a c 2=,223a b =. 从而双曲线的方程为132222=-ay a x ,且其右焦点为F (a 2,0). 把直线MN 的方程a x y 2-=代入双曲线的方程,消去y 并整理,得074222=-+a ax x .设M 11(,)x y ,N 22(,)x y ,则a x x 221-=+,22127a x x -=. 由弦长公式,得212214)(2||x x x x MN -+⋅=)27(4)2(222a a ---⋅==6.所以1=a ,3322==a b .从而双曲线的方程是1322=-y x . (Ⅱ)由m kx y +=和1322=-y x ,消去y ,得032)3(222=----m kmx x k . 根据条件,得0)3)(3(442222>----=∆m k m k 且032≠-k .所以 3322≠>+k m .设A ),(33y x ,B ),(44y x ,则24332k km x x -=+,332243-+=k m x x . 由于以线段AB 为直径的圆过原点,所以04343=+y y x x . 即 0)()1(243432=++++m x x km x x k .从而有03233)1(22222=+-⋅+-+⋅+m k km km k m k ,即22321m k =+. 所以 点Q 到直线l :m kx y +=的距离为|11|2632|1|1|1|22mm m k m d +=+=++=.由 13222-=m k ≥0,解得 36136≤≤-m 且01≠m . 由 13222-=m k 3≠,解得 ≠m 166±. 所以当26=m 时,d 取最大值226)361(26+=+,此时0=k . 因此d 的最大值为226+,此时直线l 的方程是26=y . 1-2 解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l=2c = 所以椭圆C 的焦距为4.(Ⅱ)设1122(,),(,)A x y B x y ,由题意知10y <,20y >,且直线l的方程为2).y x -联立22222),1y x x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y y b +--=,解得12y y ==. 因为222AF F B =,所以122y y -=,即222222(22)(22)233a a a b a b+-=⋅++,得3a =.而224a b -=,所以b =故椭圆C 的方程为221.95x y += 2-1 解:(Ⅰ)因为c e a ==所以 22222213c a b e a a -=== ,即2223b a =,又b == 所以22b =,23a =,即a =b =(Ⅱ)解法1:由(1)知12,F F 两点分别为(1,0)-,(1,0),由题意可设(1,)P t . 那么线段1PF 中点为(0,)2tN ,设(,)M x y .由于(,)2tMN x y =--,1(2,)PF t --, 则1,2(),2y t t MN PF x t y =⎧⎪⎨⋅=+-⎪⎩消去参数t ,得24y x =-,其轨迹为抛物线. 解法2:如图,因为M 是线段1PF 垂直平分线上的点,所以1||||MP MF =,即动点M 到定点1F 的距离与的定直线1l 的距离相等,1F ,由抛物线的定义知,动点M 的轨迹是以定点以定直线1l 为准线的抛物线,易得其方程是24y x =-.2-2 解:(Ⅰ)设动点E 的坐标为(,)x y ,依题意可知1222y y x x ⋅=-+-,整理得221(2)2x y x +=≠±. 所以动点E 的轨迹C 的方程为221(2)2x y x +=≠±. (II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+. 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++.由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++.当0k >时,因为12k k +≥0P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= 综上所述,点P纵坐标的取值范围是[. 3-1 解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为所以1c =,a =22b =. 所以W 的方程是22132x y +=.(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221,132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=.所以122632k x x k +=-+, 所以12023232x x kx k +==-+, 从而0022132y kx k =+=+.所以MN 斜率2002232332MNy k k k x m m k +==---+. 又因为CM DM =, 所以CD MN ⊥,所以222132332k k k m k +=---+,即 212323k m k k k=-=-++6[,0)(0,]1212∈-. 故所求m 的取范围是[]1212-. 3-2 解:(Ⅰ)依题意,c =1b =,所以a .故椭圆C 的方程为2213x y +=. (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设A ,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=. 综上所述,,m n 的关系式为10m n --=.4-1 解:(Ⅰ)设椭圆长半轴长及分别为a ,c ,由已知得,1,7.a c a c -=⎧⎨+=⎩解得a =4,c =3.所以椭圆C 的方程为221.167x y += (Ⅱ)设M (x ,y ),P(x ,1y ),其中[]4,4.x ∈- 由已知得222122.x y e x y+=+ 因为 34e =, 所以 2222116()9().x y x y +=+由点P 在椭圆C 上得,221112716x y -=,化简得 29112y =. 所以点M的轨迹方程为(44)3y x =±-≤≤, 轨迹是两条平行于x 轴的线段.4-2(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行. 设M (x , y ),由题意,得(),(,3)A x B x x ,所以||,||AM y MB y -=,因为||||3AM MB ,所以)()3y y -⨯=,即2213y x -=,所以点M 的轨迹W 的方程为221(0)3y x x -=>.(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M , 此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠;当02x 时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+, 又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x y x y x ⨯++==+--+, 因为点M 在W 上,所以220013y x -=,即220033y x =-,所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-, 所以tan tan 2MQP MPQ ∠=∠, 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠.综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立.5-1 解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等, 即(,2)M m 到2py =-的距离为3; 所以 232p-+=,解得2p =. 所以 抛物线P 的方程为24x y =.(ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 216160k ∆=-=,解得1k =±.所以切线方程为1y x =±-.(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. 所以 122x x pk +=,212x x p ⋅=-; 因为 11(,)A x y , 所以 直线OA :11y y x x =,与2p y =-联立可得11(,)22px p C y --, 同理得22(,)22px pD y --. 因为 焦点(0,)2pF , 所以 11(,)2px FC p y =--,22(,)2pxFD p y =--, 所以 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- 所以 以CD 为直径的圆过焦点F .5-2 解:(Ⅰ)如图,由题意得,22b c ==.所以b c ==2a =.所以所求的椭圆方程为22142x y +=. (Ⅱ)由(Ⅰ)知,C (2-,0),D (2,0).由题意可设CM :(2)y k x =+,P (1x ,1y ).MD CD ⊥,∴M (2,4k ).由 22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩,整理 得:2222(12)8840k x k x k +++-=.因为21284212k x k --=+, 所以2122412k x k-=+. 所以1124(2)12k y k x k =+=+,222244(,)1212k kP k k-++. 所以222222444(12)244121212k k k OM OP k k k k-+⋅=⋅+⋅==+++. 即OM OP ⋅为定值. (Ⅲ)设0(,0)Q x ,则02x ≠-.若以MP 为直径的圆恒过DP ,MQ 的交点,则MQ DP ⊥,∴0MQ DP ⋅=恒成立.由(Ⅱ)可知0(2,4)QM x k =-,22284(,)1212k kDP k k -=++. 所以202284(2)401212k kQM DP x k k k -⋅=-⋅+⋅=++. 即2028012k x k =+恒成立. 所以00x =.所以存在(0,0)Q 使得以MP 为直径的圆恒过直线DP ,MQ 的交点. 5-3 解:(I)直线l 的方程为210x y --=;(II) 由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=. (*)由2228(1)804m m m ∆=--=-+>,知28m <.设11(,)A x y ,22(,)B x y ,则由(*)式,有12212,21.82m y y m y y ⎧+=-⎪⎪⎨⎪=-⎪⎩由于1(,0)F c -,2(,0)F c ,且O 是12F F 的中点,依题意,由2AG GO =,2BH HO =,可知,11(,)33x y G ,22(,)33x yH . 若原点在以线段GH 为直径的圆内,则0OG OH ⋅<,即12120x x y y +<.而2222121212121()()(1)()2282m m m x x y y my my y y m +=+++=+-, 所以21082m -<,即24m <.又由已知1m >,所以12m <<. 即,实数m 的取值范围是(1,2).5-4 解:(Ⅰ)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:1(0)x x =>,化简得24(0)y x x =>.(Ⅱ)设过点M (m ,0)(m >0)的直线l 与曲线C 的交点为A 12(,)x y ,B 22(,)x y . 设直线l 的方程为x =ty +m , 由2,4x ty m y x=+⎧⎨=⎩得2440y ty m --=,△=16(2t +m )>0,于是12124,4.y y t y y m +=⎧⎨=-⎩ ①又1122(1,),(1,)FA x y FB x y =-=-.0FA FB ⋅<1212(1)(1)x x y y ⇔--+=1212()x x x x -++1+120y y < ②又24y x =,于是不等式②等价于2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+<⎣⎦ ③ 由①式,不等式③等价于22614m m t -+< ④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+<, 即33m -<<+由此可知,存在正实数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0FA FB ⋅<,且m的取值范围(3-+.6-1 解:(Ⅰ)由题意,2221,,a c b a b c ⎧-=⎪⎪=⎨⎪=+⎪⎩解得1a c ==.即:椭圆方程为.12322=+y x (Ⅱ)当直线AB 与x轴垂直时,AB =,此时AOB S ∆不符合题意故舍掉;当直线AB 与x 轴不垂直时,设直线 AB 的方程为:)1(+=x k y , 代入消去y 得:2222(23)6(36)0k x k x k +++-=.设1122(,),(,)A x y B x y ,则212221226,2336.23k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以AB =. 原点到直线的AB距离d =,所以三角形的面积12S AB d ==由224S k k =⇒=⇒=所以直线0AB l y -=或0AB l y +=.6-2 解:(I )椭圆C 的方程为)0(12222>>=+b a b y a x,由已知得2222.c e a a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩解得1,1a b c ===所以所求椭圆的方程为1222=+y x .(II)由题意知l 的斜率存在且不为零,设l 方程为2(0)x my m =+≠ ①,将①代入1222=+y x ,整理得 22(2)420m y my +++=,由0>∆得2 2.m >设),(11y x E ,),(22y x F ,则1221224222m y y m y y m -⎧+=⎪⎪+⎨⎪=⎪+⎩②由已知,12OBE OBF S S ∆∆=, 则||1||2BE BF = 由此可知,2BF BE =,即212y y =,代入②得,12212432222m y m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,消去1y 得222221629(2)2m m m ⋅=++ 解得,2187m =,满足22.m >即7m =±. 所以,所求直线l的方程为71407140x x --=+-=或.7-1 解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F .所以532422a ==+=. 所以2a =,又1c = 2413b =-=,故椭圆的方程为22143x y +=. (Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=,显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k -+=-⋅=++又||AB ==即2212(1)||34k AB k+==+, 又圆2F的半径r ==所以2221112(1)||,22347AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±,所以,r ==故圆2F 的方程为:22(1)2x y -+=. (Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ 所以12||y y -== 又圆2F的半径为r ==,所以21212121||||||27AF B S F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==2F 的方程为:22(1)2x y -+=.7-2 (Ⅰ)解 设直线PQ 的方程为)3(-=x k y .由⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得,062718)13(2222=-+-+k x k x k , 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②由直线PQ 的方程得 11(3)y k x =-,22(3)y k x =-.于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ 因为0OP OQ ⋅=,所以 02121=+y y x x . ④ 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (Ⅱ)证法1 ),3(),,3(2211y x AQ y x AP -=-=. 由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--=.而2221(2,)(,)2FQ x y y λλ-=-=,所以FM FQ λ=-. 证法2 (坐标法与几何证法结合)为使结论更具一般性,下面就椭圆方程为22221(0)x y a b a b +=>>,点A 的坐标为2(,0)a c进行证明(其中22c a b =+).如图,对三角形PHA ∆应用梅涅劳斯定理,得1AQ PM HEQP MH EA⋅⋅=,又2PM MH =, 所以,12AQ HE QP EA ⋅=, 作QD x ⊥轴于D ,则,12AD HE DH EA ⋅=, (二维问题一维化)设),(),,(2211y x Q y x P ,0(,0)E x , 将上式用坐标表示,得2201221012a x x x c a x x x c--⋅=--,整理得,2201212122[()]()2a a x x x x x x x c c-+=⋅+-. (这个过程虽然复杂,但却表现出强烈的目标意识!下面的目标是非常明确的,即用解析几何的常规方法,求出12x x +与12x x )显然,直线AP 不垂直x 轴,故可设直线AP 的方程为2()a y k x c=-,由22222(),1a y k x c x y ab ⎧=-⎪⎪⎨⎪+=⎪⎩消去y ,整理得,242622222222()0k a k a a k b x x a b c c +-+-=, 所以,24122222*********,()().()k a x x c a k b k a abc x x c a k b ⎧+=⎪+⎪⎨-⎪=⎪+⎩222422122222222222()()()a a k a ab x xc c c a k b c a k b -+=-=++ 22242622212122222222222222()2()2()()a a k a k a abc a b x x x x c c c a k b c a k b a k b-⋅+-=⋅-=+++ 所以,222220222222()2a b c a k b x c a k b a b+=⋅=+. 这说明,直线MQ 与x 轴的交点是椭圆的右焦点(,0)F c . 所以,若AP AQ λ=,即,AP AQλ=,则PH MH MFQD QD FQ λ===,即FM FQ λ=-.注:λ可以是一切正实数,当1λ=时,,P Q 重合. 8-1 解:(Ⅰ)由焦点F ( 1, 0 ) 在l 上, 得k = –21, 所以l : y = –21x +21. 设点N( m , n ) , 则有: 11()()1,12112 1.22n m m n -⎧-=-⎪-⎨++⎪+=⎩解得1,53.5m n ⎧=⎪⎨⎪=-⎩所以N (51, – 53), 因为54≠ ( –53)2 ,所以N 点不在抛物线C 上. (2) 把直线方程11--=kk y x 代入抛物线方程得: k 2y 2 + 4y + 4k +4 = 0 , 因为相交,所以△ = 16 (–k 2 – k + 1)≥ 0,解得251--≤ k ≤251+- 且k ≠ 0 . 由对称得⎪⎪⎩⎪⎪⎨⎧+++=+-=⋅--1221110000k a x k y k a x y ,解得 x 0 =12)1(222+--k k k a (2511+-≤ k ≤251+-,且k ≠ 0). 当P 与M 重合时, a = 1,所以 f ( k ) = x 0 =13122+-k k = – 3 +142+k (2511+-≤ k ≤251+-, 且k ≠ 0), 因为函数x 0 = f ( k )(k ∈R)是偶函数,且k > 0时单调递减. 所以当k =251--时, (x 0)min =5525+-, 1lim 00=→x k ,所以 x 0 ∈[5525+-,1). 8-2 解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b ,所以椭圆方程是:1322=+y x . (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由DF ED 2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y , 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),直线EF 的方程为:1-=y x 即01=+-y x .(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, 所以存在67=k ,满足题设条件. 9-1 解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===. 即2243a b =.又因为b == 所以24a =,23b =.故椭圆C 的方程为22143x y +=. (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-. ②由①得 21223243k x x k +=+,2122641243k x x k -=+代入② 整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上.由22(1),1.43y m x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+, 22943M N m y y m =-+. 则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++. 因为20m ≥,所以21133044(43)m -≤-<+. 所以5[4,)4OM ON ⋅∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是5[4,]4--.9-2 (Ⅰ)解:由题意可设抛物线的方程为22x py =(0)p ≠.因为点(,4)A a 在抛物线上,所以0p >. 又点(,4)A a 到抛物线准线的距离是5,所以452p+=,可得2p =. 所以抛物线的标准方程为24x y =.(Ⅱ)解:点F 为抛物线的焦点,则(0,1)F .依题意可知直线MN 不与x 轴垂直,所以设直线MN 的方程为1y kx =+.由21,4.y kx x y =+⎧⎨=⎩ 得2440x kx --=.因为MN 过焦点F ,所以判别式大于零. 设11(,)M x y ,22(,)N x y . 则124x x k +=,124x x =-.2121(,)MN x x y y =--2121(,())x x k x x =--.由于24x y =,所以'12y x =. 切线MT 的方程为1111()2y y x x x -=-, ① 切线NT 的方程为2221()2y y x x x -=-. ② 由①,②,得1212(,)24x x x x T + 则1212(,1)(2,2)24x x x x FT k +=-=-. 所以21212()2()0FT MN k x x k x x ⋅=---=. (Ⅲ)证明:2222(2)(2)44FTk k =+-=+.由抛物线的定义知 11MF y =+,21NF y =+.则12(1)(1)MF NF y y ⋅=++2121212(2)(2)2()4kx kx k x x k x x =++=+++244k =+.所以2FTMF NF =⋅.即FT 是MF 和NF 的等比中项.10-1 (Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PFO ∠=︒, 所以1bc . 所以 2222ab c .所以 椭圆G 的标准方程为2212x y +=. (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ∆=-+>,1122211224,1222.12km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以||AB ===同理||CD =因为 ||||AB CD =, 所以=因为 12m m ≠, 所以 120m m +=.(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则1221m m dk.因为 120m m +=, 所以 1221m dk.所以||S AB d =⋅=2221121k m m -++=≤=.(或S ==≤ 所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为10-2 (Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. 将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① 因为 2AF FB =, 所以 122y y =-. ②联立①和②,消去12,y y,得4m =±. 所以直线AB的斜率是±.(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅-==所以 0m =时,四边形OACB 的面积最小,最小值是4.11-1 解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① 又点3(1,)2M 在椭圆C 上,所以221914a b += ② 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =||OP = 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. 由于点P 在椭圆C 上,所以 2200143x y +=. 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式.又||OP =====因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. 综上,所求OP的取值范围是. (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥把④⑤⑥代入③整理得0034x ky =- 与22003412x y +=联立消0x 整理得202943y k =+.由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+, 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤. 所求OP的取值范围是. 11-2 解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+, 所以24622+=+c a ,,即c a =,所以c =,所以3a =,c =所以1b =,椭圆M 的方程为1922=+y x . (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x ,同理可得2219327n n x +-=,所以1961||22++=n n BC ,222961||nn n n AC ++=, 964)1()1(2||||212+++==∆n n n n AC BC S ABC, 设21≥+=nn t , 则22236464899t S t t t==≤++, 当且仅当38=t 时取等号, 所以ABC ∆面积的最大值为83. 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-, 得 1212(3)(3)0x x y y --+=. 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点), 所以121||||2ABC S DC y y ∆=-12== 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 12-1 解:(Ⅰ)因为四边形AMBN 是平行四边形,周长为8,所以两点,A B 到,M N 的距离之和均为4,可知所求曲线为椭圆.由椭圆定义可知,2,a c ==1b =,所求曲线方程为1422=+y x . (Ⅱ)由已知可知直线l 的斜率存在,又直线l 过点(2,0)C -,设直线l 的方程为:(2)y k x =+,代入曲线方程221(0)4x y y +=≠,并整理得2222(14)161640k x k x k +++-=, 点(2,0)C -在曲线上,所以D (228214k k -++,2414kk +),(0,2)E k ,CD =2244(,)1414kk k++,(2,2)CE k =, 因为OA //l ,所以设OA 的方程为y kx =.代入曲线方程,并整理得22(14)4k x +=,所以(A .22222228814142441414k CD CE k k k OA k k+⋅++==+++,所以2CD CE OA ⋅为定值.12-2 解:(Ⅰ)由题意得2c a =① 因为椭圆经过点)21,26(P ,所以22221()221a b += ② 又222a b c =+ ③由①②③ 解得 22=a ,122==c b .所以椭圆方程为2212x y +=. (Ⅱ)以OM 为直径的圆的圆心为(1,)2t ,半径r =方程为222(1)()124t t xy -+-=+,因为以OM 为直径的圆被直线3450x y --=截得的弦长为2, 所以圆心到直线3450x y --=的距离d 2t=. 所以32552t t--=,解得4t =. 所求圆的方程为22(1)(2)5x y -+-=.(Ⅲ)方法一:过点F 作OM 的垂线,垂足设为K ,由平几知:2ONOK OM =.则直线OM :2t y x =,直线FN :2(1)y x t=--,由,22(1),t y x y x t ⎧=⎪⎪⎨⎪=--⎪⎩得244K x t =+.所以2M ONx x =22444422=⋅+⋅+=t t . 所以线段ON方法二:设00(,)N x y ,则 ),1(00y x FN -=,),2(t OM =,),2(00t y x MN --=,),(00y x ON =.因为 OM FN ⊥,所以 0)1(200=+-ty x .所以 2200=+ty x . 又因为 ON MN ⊥,所以0)()2(0000=-+-t y y x x , 所以22002020=+=+ty x y x . 所以22020=+=y x 为定值.12-3 解:(Ⅰ)(ⅰ)因为 圆O 过椭圆的焦点,圆O :222x y b +=,所以b c =,所以2222b ac c =-=, 所以222a c =,所以e =(ⅱ)由90APB ∠=及圆的性质,可得OP =,所以2222,OP b a =≤所以222a c ≤ 所以212e ≥,12e ≤<. (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y x x x y -=--整理得220011x x y y x y +=+ 因为22211x y b +=所以PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.所以11x x y y +=22x x y y +, 所以021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,所以2222222220022442a y b x a b a b a b b bON OM ++===,所以2222a b ON OM+为定值,定值是22a b . 13-1 解:(Ⅰ)由题意可知:222,c c e a a b c ⎧=⎪⎪==⎨⎪=+⎪⎩解得 1,2==b a .所以椭圆的方程为:1422=+y x . (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(0)44)(41(4)8(222>-+-=∆m k km ,整理得01422>+-m k , 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+. 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A , 所以1212(2)(2)0x x y y --+=,2212122121)())((m x x km x x k m kx m kx y y +++=++=,即04))(2()1(221212=+++-++m x x km x x k ,也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k , 整理得:01216522=++k mk m , 解得562k m k m -=-=或均满足01422>+-m k . 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去; 当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(. 故直线l 过定点,且定点的坐标为)0,56(. 13-2 解:(I )由题意可得OP OM ⊥, 所以0OP OM ⋅=,即(,)(,4)0x y x -=,即240x y -=,即动点P 的轨迹W 的方程为24x y =.(II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 则216640k ∆=->,即||2k >.12124,16x x k x x +==.直线212221':()y y A B y y x x x x --=-+,所以212221()y y y x x y x x -=-++,2222122121()4()4x x y x x x x x -=-++,222121221444x x x x x y x x --=-+,2112y 44x x x xx -=+,即2144x x y x -=+. 所以,直线'A B 恒过定点(0,4). 13-3 解:(Ⅰ)设动点M 的坐标为(,)x y ,|1|x =+,化简得24y x =,所以点M 的轨迹C 的方程为24y x =.(Ⅱ)设,A B 两点坐标分别为11(, )x y ,22(,)x y , 则点P 的坐标为1212(,)22x x y y ++. 由题意可设直线1l 的方程为(1)y k x =- (0)k ≠,由24, (1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=. 2242(24)416160k k k .因为直线1l 与曲线C 于,A B 两点, 所以12242x x k +=+,12124(2)y y k x x k+=+-=. 所以点P 的坐标为222(1, )k k+. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为2(12,2)k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为222(12)1k y k x k k+=---, 整理得2(3)0yk x k y +--=.于是,直线PQ 恒过定点(3, 0)E ;当1k =±时,直线PQ 的方程为3x =,也过点(3, 0)E . 综上所述,直线PQ 恒过定点(3, 0)E . (Ⅲ)可求的||2EF ,所以FPQ ∆面积121||(2||)2(||)42||||S FE k k k k =+=+≥. 当且仅当1k =±时,“=”成立,所以FPQ ∆面积的最小值为4. 14-1 解:(Ⅰ)由题意知:1c .根据椭圆的定义得:22222(11)()22a ,即2a .所以 2211b.所以 椭圆C 的标准方程为2212x y +=. (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立.当直线l 的斜率为0时,(A B .则 7,0)(2,0)16m m . 解得 54m.当直线l 的斜率不存在时,(1,22A B -. 由于52527(1,)(1,)424216,所以54m . 下面证明54m时,716QA QB ⋅=-恒成立. 显然 直线l 的斜率为0时,716QA QB ⋅=-. 当直线l 的斜率不为0时,设直线l 的方程为:1xty ,1122,,,A x y B x y .由221,21x y x ty 可得:22(2)210t y ty .显然0∆.1221222,21.2t y y t y y t因为 111x ty ,221x ty ,所以 112212125511(,)(,)()()4444x y x y ty ty y y2121211(1)()416t y y t y y2221121(1)24216t t t t t22222172(2)1616t t t . 综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 14-2解:(Ⅰ)由题意可知2)(136abe -==,得 223b a =. 因为1,1B()在椭圆上11122=+b a 解得:34422==b ,a .故椭圆M 的方程为:143422=+y x . (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为k -,因此PB ,QB 的直线方程分别为(1)1y k x =-+,(1)1y k x =--+.由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k .因为点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P所以22361131P k k x k --⋅=+,即2236131P k k x k --=+,同理1316322+-+=k k k x Q .所以=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P .因为(2,0),(1,1)A C --,所以13AC k =, 即 AC PQ k k =. 所以向量AC //PQ ,则总存在实数λ使AC PQ λ=成立.15-1 解:(Ⅰ)因为ace ==22, 12122=+a b ,222c b a +=所以2=a ,2=b ,2=c所以14222=+y x . (Ⅱ)设直线BD 的方程为b x y +=2所以⎩⎨⎧=++=42222y x bx y 0422422=-++⇒b bx x所以06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----②因为12BD x =-===,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =所以2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2.(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y=]1)(2[22212121++--++x x x x x x b ------*将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0.15-2 解:(Ⅰ)设1122(,),(,)C x y D x y ,直线l 的方程为1(0)y kx k =+≠.由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)16480k k k ∆=++=+>,12224k x x k -+=+,12234x x k -=+, 由已知1(,0),(0,1)E F k-, 又CE FD =,所以11221(,)(,1)x y x y k---=- 所以121x x k --=,即211x x k+=-, 所以2214k k k-=-+,解得2k =±,符合题意, 所以,所求直线l 的方程为210x y -+=或210x y +-=. (Ⅱ)2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+,平方得 22212212(1)4(1)y x y x -=+, 又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=.假设满足条件的实数k 存在,则由(Ⅰ)得12224k x x k -+=+,12234x x k-=+. 所以231030k k -+=,解得3k =或13k =, 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以存在实数k ,使得12:2:1k k =,且3k =.16- 1 解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191,41,2.a b c a a b c ⎧+=⎪⎪⎨=⎪⎪=+⎩解得24a =,23b =,故椭圆C 的方程为22143x y +=. (Ⅱ)因为过点(2, 1)P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1,x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ① 因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=. 整理,得32(63)0k +=. 解得12k =-. 所以直线l 方程为11(2)1222y x x =--+=-+. 将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为3(1, )2. (Ⅲ)若存在直线1l 满足条件,设直线1l 的方程为1(2)1y k x =-+,代入椭圆C 的方程得22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以222111111[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>.。
高考必做的 道压轴题 数学 变式题 pdf版
所以
e2
c2 a2
a2 b2 a2
1 3
,即 b2 a2
2 3
,又 b
2 11
2,
所以 b2 2 , a2 3,即 a 3 , b 2 .
(Ⅱ)解法 1:
由(1)知 F1, F2 两点分别为 (1, 0) , (1, 0) ,由题意可设 P(1,t) .
那么线段
PF1
中点为
N
(0,
t 2
)
,
N (x2,
y2 ) ,则
x1
x2
4k 2 2k 2 1
,
x1x2
2k 2 2k 2
2 1
.
设 MN
的中点为 Q
,则
xQ
2k 2 2k 2 1 ,
yQ
k ( xQ
1)
k, 2k 2 1
所以 Q( 2k 2 , k ) . 2k 2 1 2k 2 1
第 3 页 共 83 页
上的 离与
F1 ,
由题意可知 k 0 ,
当 k 0 时,显然 m 0 ; 当 k 0 时,
y kx 1,
由
x
2
y2
3 2 1
得 (3k2 2)x2 6kx 3 0 .
所以
x1
x2
6k 3k 2
2
,
所以 x0
x1
x2 2
3k , 3k 2 2
从而
y0
kx0
1
2 3k 2
2
.
2
所以 MN
斜率 kMN
y0 x0 m
4
2
当 x0 ¹
2 时,直线 PM、QM 的斜率分别为 kPM
上海高考数学压轴题50道(有答案-精品)
高考压轴题目选(50题)1.(函数)设32()log (f x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的 条件。
2.(函数)设)22,22(),(y x y x y x f +-=为定义在平面上的函数,且+=2),{(x y x A }0,0,12≥≥≤y x y ,令}),(),({A y x y x f B ∈=,则B 所覆盖的面积为3.(函数)老师在黑板上写出了若干个幂函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(,)-∞+∞上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幂函数共有 个。
4.(函数)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=5.(函数)已知函数()1).f x a =≠在区间(]0,1上是减函数,则实数a 的取值范围是6.(函数)方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是7.(函数)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的轨迹方程是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
8.(三角函数)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________ 9.(三角函数)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图像与直线1=y 交点个数的最大值为2,则ω的取值范围为10.(三角函数)已知方程x 2+33x+4=0的两个实根分别是x 1,x 2,则21a r c t a n a r c t a n x x += 11.(数列)设定义在*N 上的函数:(21)()()(2)2n n k f n n f n k =-⎧⎪=⎨=⎪⎩,其中*k N ∈,记(1)(2)(3)(4)(2)n n a f f f f f =+++++,则1n n a a +-=12.(数列)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高考数学压轴题精选精编附详细解答试题
2021年高考数学压轴题精选精编附详细解答1、〔本小题满分是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点,过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF 是1OA 和2OA 的等比中项;〔5分〕(Ⅲ) 对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。
〔5分〕2、〔本小题满分是14分〕设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+ 〔Ⅰ〕求)0(f ;〔2分〕(Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n an a a a a a a T b b b S b n ,试比拟S n 与 n T 的大小.〔7分〕3、〔此题满分是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P 在第一象限),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下图). 〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S =-⋅∠求直线l 的方程.4、〔此题满分是14分〕数列{}n a 的前n项和nS 满足11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比拟n a 与n b 的大小,并加以证明;〔III 〕是否存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?说明理由.5、(本小题满分是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕.6、(本小题满分是14分)数列{}n a 的前n 项和为S n *()n N ∈,点〔a n ,S n 〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 合适条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++ (4分)8、〔本小题满分是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. 〔Ⅰ〕假设b =2,且h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(7分) 〔Ⅱ〕设函数f (x )的图象C 1与函数g (x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. (7分)9、〔本小题满分是14分〕设抛物线214C y mx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P . 〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假如弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题满分是14分〕〔Ⅰ〕函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;〔Ⅱ〕证明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,ka a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明: 当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、本小题满分是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程;〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题满分是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式; 〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假如存在,求出实数a 的值;假如不存在,请说明理由.13、〔小题满分是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。
【压轴题】高考数学试卷带答案
【压轴题】高考数学试卷带答案一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14- B .14 C .23- D .23 2.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃A .(-1,2)B .(0,1)C .(-1,0)D .(1,2) 3.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .194.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( )A .22B .23C .28D .245.函数()ln f x x x =的大致图像为 ( )A .B .C .D .6.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元7.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .48.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4- B .3- C .2- D .1-9.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .5 10.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .﹣2C .6D .2 11.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 212.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )A 3B .2C 6D 5二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.复数()1i i +的实部为 .16.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____. 17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.20.函数()lg 12sin y x =-的定义域是________.三、解答题21.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离. 22.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.23.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.24.如图:在ABC ∆中,10a =,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.25.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程.(2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.26.△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB .(Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A. 2.A解析:A【解析】 利用数轴,取,P Q 所有元素,得PQ =(1,2)-. 【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 3.D解析:D【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D 4.D解析:D【解析】【分析】 根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,22a ba b a b ⋅∴<>===本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.5.A解析:A【解析】【分析】【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方∴可以排除B 答案考点:函数图像.6.D解析:D【解析】【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D .【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.7.A解析:A【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.8.B解析:B【解析】【分析】【详解】∵()()m n m n +⊥-,∴()()0m n m n +⋅-=. ∴,即22(1)1[(2)4]0λλ++-++=, ∴3λ=-,,故选B.【考点定位】向量的坐标运算9.A解析:A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==. 2e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.C解析:C【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可.解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素,当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素,当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素,当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素,故选C .点评:本题考查元素与集合的关系,基本知识的考查.11.B解析:B【解析】【分析】【详解】M N ,是双曲线的两顶点,M O N ,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选B12.D解析:D【解析】 由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】 双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±. 直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点.当∆<0时,直线与抛物线相离,没有交点.二、填空题13.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】 试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.14.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2【解析】【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点;当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点,所以共有2个零点.故答案为:2.【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数15.【解析】复数其实部为考点:复数的乘法运算实部解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-.考点:复数的乘法运算、实部.16.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使 解析:34【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。
高考数学压轴题精选100题汇总(含答案)
7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln
;
an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;
高考数学压轴题及答案汇总
高考数学压轴题及答案汇总1500字以下是一些高考数学压轴题及答案的汇总,共1500字。
1. 题目:已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。
答案:使用勾股定理,可得另一条直角边长为8cm。
2. 题目:已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。
答案:将x替换为-1,计算f(-1) = 2(-1)^2 + 3(-1) - 5,最终结果为-10。
3. 题目:已知正方形ABCD的边长为8cm,E是BC的中点,连接AE并延长至F,求BF的长度。
答案:由于E是BC的中点,所以BE的长度为4cm。
注意到三角形AEF是等腰直角三角形,所以AE = AF。
又有AB = AE + EB,所以AE = AB - EB = 8 - 4 = 4cm。
根据勾股定理,可得BF的长度为4√2 cm。
4. 题目:若a是一个大于1的正整数,且满足a^2 - 3a + 2 = 0,求a的值。
答案:将方程重新组织,得到a^2 - 2a - a + 2 = 0,进一步化简为a(a - 2) - 1(a - 2) = 0。
根据因式分解,可得(a - 2)(a - 1) = 0。
因此,a的值可以是2或1。
5. 题目:已知点A(1,2)和B(4,5),求线段AB的中点坐标。
答案:线段AB的中点坐标可以通过求AB的横坐标和纵坐标的平均值来得到。
横坐标的平均值为(1 + 4) / 2 = 2.5,纵坐标的平均值为(2 + 5) / 2 = 3.5。
因此,线段AB 的中点坐标为(2.5, 3.5)。
6. 题目:已知等差数列的首项为a,公差为d,若其第5项为11,第8项为20,求a 和d的值。
答案:设等差数列的第1项为a,公差为d,则第5项可以表示为a + 4d,第8项可以表示为a + 7d。
根据已知条件,可列出以下两个方程:a + 4d = 11,a + 7d = 20。
解这个方程组,可得a = 1,d = 2。
2021年高考数学压轴题100题精选含答案
S 13 23 2 9
∴梯形的面积为 2
2 2 ,故正确.
C:如下图知:四面体 ACBD 的体积为正方体体积减去四个直棱锥的体积,
V 841 18 8
∴
32
3 ,而四面体的棱长都为 22 ,有表面积为
S 4 1 2 2 2 2 sin 8 3
2
3
,
18 3r 8 r 3
4 r2 4
| AM || DB | 5 8 10 ,故正确. B:若 N 为 CC 的中点,连接 MN,则有 MN / / AD ,如下图示,
∴梯形 AMND’为过三点 A 、 M 、 D 的正方体 ABCD ABCD 的截面,
32 而 MN 2, AD 2 2, AM DN 5 ,可得梯形的高为 2 ,
【答案】ABD
【分析】
选项 A,B 可利用球的截面小圆的半径来判断;由平面 A1BD// 平面 B1D1C ,知满足 A1P// 平面 B1D1C
的点 P 在 BD 上, A1P 长的最大值为
2r A1P 2 ;结合以上条件点 P 与 B 或 D 重合,利用 sin 60 ,求
r 6 出 3 ,进而求出面积.
A(0, 0, 2), M ( 2 , 3 2 , 2),C(0, 2 2, 0)
构建如下空间直角坐标系,
22
, 若 P(x, y,0) , 则
AM ( 2 , 3 2 , 0), AC (0, 2 2, 2), AP (x, y, 2)
22
,
cos MAC AM AC 6 15
∴
| AM || AC | 5 12 5 ,
【详解】
对 A 选项,如下图:由 A1P 3 ,知点 P 在以 A1 为球心,半径为 3 的球上,又因为 P 在底面 ABCD 内(含边界),底面截球可得一个小圆,由 A1A 底面 ABCD,知点 P 的轨迹是在底面上以 A 为圆心 的小圆圆弧,半径为 r A1P2 A1A2 2 ,则只有唯一一点 C 满足,故 A 正确;
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
【压轴题】高考数学试卷带答案
【压轴题】高考数学试卷带答案一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12 C .1 D2.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A .13B .12C .23D .564.函数()()2ln 1f x x x=+-的一个零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,45.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .326.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19B .29C .49D .7187.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( )A .2B .3C .8D .48.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ).ABCD .69.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .2310.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( )A .1B .-1C .2D .-211.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,712.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( ) A .7B .10C .13D .4二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 15.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.16.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 17.若9()ax x-的展开式中3x 的系数是84-,则a = .18.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).19.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为25,求直线l 的普通方程. 22.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 23.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.24.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
(解析几何压轴题)(30题)2021高考数学考点必杀500题(新高考) (解析版)
解析几何压轴题 (30题)(新高考)1.(2020·江苏苏州市·吴江中学高三其他模拟)(本题满分14分)已知椭圆2221+=+x y mm m 的右焦点为F ,右准线为l ,且直线y x =与l 相交于A 点.(Ⅰ)若⊙C 经过O 、F 、A 三点,求⊙C 的方程;(Ⅱ)当m 变化时, 求证:⊙C 经过除原点O 外的另一个定点B ; (Ⅲ)若5⋅<AF AB 时,求椭圆离心率e 的范围. 【答案】(Ⅰ)22(2)0x y mx m y +--+=;(Ⅱ)证明见解析;(Ⅲ)0e <<. 【详解】(Ⅰ)22222,,a m m b m c m =+=∴=,即c m =,(,0)F m ∴,准线1x m =+,(1,1)A m m ∴++ ……………………………(2分)设⊙C 的方程为220x y Dx Ey F ++++=,将O 、F 、A 三点坐标代入得:200220F m Dm m D E =⎧⎪+=⎨⎪+++=⎩,解得02F D m E m=⎧⎪=-⎨⎪=--⎩ ……………………(4分) ∴⊙C 的方程为22(2)0xy mx m y +--+= ……………………………(5分)(Ⅱ)设点B 坐标为(,)p q ,则22(2)0p q mp m q +--+=,整理得:222()0p q q m p q +--+=对任意实数m 都成立 ……………………(7分)∴22020p q p q q +=⎧⎨+-=⎩,解得00p q =⎧⎨=⎩或11p q =-⎧⎨=⎩, 故当m 变化时,⊙C 经过除原点O 外的另外一个定点B (1,1)-……………(9分) (Ⅲ)由B (1,1)-、(,0)F m 、(1,1)A m m ++得(1,1)AFm =---,(2,)AB m m =---∴2225AF AB m m ⋅=++<,解得31m -<< ………………………(10分)又200m m m ⎧+>⎨>⎩,∴01m <<又椭圆的离心率e ===(01m <<)…………(12分) ∴椭圆的离心率的范围是02e <<………………………………(14分)2.(2017·四川成都市·成都七中高三一模(文))如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记GFD 的面积为1S ,OED (O 为原点)的面积为2S ,求12S S 的取值范围. 【答案】(Ⅰ)12e =;(Ⅱ)(9,)+∞. 【解析】(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒1分 则tan 603bc︒== 2分 将3b c =代入222a b c =+, 解得2a c =. 3分 所以椭圆的离心率为12c e a ==. 4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. 5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=得222222(43)84120k x ck x k c c +++-=. 7分则2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+, 22243(,)4343ck ckG k k -++. 8分 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. 9分因为 △GFD ∽△OED ,所以2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+11分 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. 13分所以12S S 的取值范围是(9,)+∞. 14分 3.(2021·江西上饶市·高三三模(理))已知椭圆22221(0)x y a b a b +=>>的两个顶点在直线12x y +=上,直线l 经过椭圆的右焦点F ,与椭圆交于A 、B两点,点P ⎛ ⎝⎭(P 不在直线l 上) (1)求椭圆的标准方程;(2)直线l 与2x =交于点M ,设PA ,PB ,PM 的斜率分别为123,,k k k .试问:是否存在常数λ使得123k k k λ+=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在,2λ=.【详解】(1)直线12x y +=与坐标轴的交点为,1a b ∴==故椭圆的标准方程为2212x y +=(2)设()()1122,,,A x y B x y ,直线:(1)AB y k x =-,则(2,)M k .由22222(1)2(1)2012y k x x k x x y =-⎧⎪⇒+--=⎨+=⎪⎩,即()222124220k k x k +-+-=, 22121222422,1212k k x x x x k k -∴+==++,()()12121212121122221111y y k x k x k k x x x x --∴+=+=+----()22122212121222422111222222421121211212k x x k k k k k k x x x x x x k k-⎫+-+=-+=-=-⎪----++⎝⎭-+++22221k k -=-⨯=-又32122k kk -==--123222k k k k ⎛⎫∴+=-= ⎪ ⎪⎝⎭故存在常数2λ=使得1232k k k +=4.(2021·湖南高三三模)已知椭圆221169x y +=,A 是椭圆的右顶点,B 是椭圆的上顶点,直线():0l y kx b k =+>与椭圆交于M 、N 两点,且M 点位于第一象限.(1)若0b =,证明:直线AM 和AN 的斜率之积为定值;(2)若34k =,求四边形AMBN 的面积的最大值.【答案】(1)证明见解析;(2) 【详解】(1)证明:设11(,)M x y ,则11(,)N x y --, ∵(4,0)A ,(0,3)B ,∴114AM y k x =-+,114AN y k x =+,∵11(,)M x y 在椭圆上,∴22119(16)16y x =- ∴22112211169916161616AM ANy x k k x x -⋅==⋅=---为定值. (2)设3:4l y x b =+,依题意:0k >,M 点在第一象限,∴33b -<<. 联立:22341169y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:229128720x bx b ++-=, ∴1243bx x +=-,212889x x b ⋅=-,设A 到l 的距离为1d ,B 到l 的距离为2d ,∴1|124|44|3|(3)555b d b b +==⋅+=+,2|124|44|3|(3)555b d b b -+==⋅-=-, ∴12245d d +=.又∵2212121295516||1||()4325216449MN x x x x x x b =+⋅-=+-=-+≤ (当0b =时取等号), ∴121124||()52122225AMBN S MN d d =⋅+≤⋅⋅=. ∴四边形AMBN 的面积的最大值为1225.(2021·全国高三专题练习(理))如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2A B y y ⋅=-;(2)存在,2λ=.【详解】(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=-又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+则212222A NA N A NB M A Ny y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.6.(2021·云南高三其他模拟(文))已知焦点为F 的抛物线()2:20C y px p =>经过圆()()()222:440D x y r r -+-=>的圆心,点E 是抛物线C 与圆D 在第一象限的一个公共点,且2EF =.(1)分别求p 与r 的值;(2)点M 与点E 关于原点O 对称,点A ,B 是异于点O 的抛物线C 上的两点,且M ,A ,B 三点共线,直线EA ,EB 分别与x 轴交于点P ,Q ,问:PF QF ⋅是否为定值?若为定值,求出该定值;若不为定值,试说明理由.【答案】(1)2p =,r =;(2)为定值,2. 【详解】(1)由已知得抛物线C 过点()44D ,, 所以1624p =⨯,所以2p =. 即抛物线C 的方程为24y x =.设点()()000,0E x y y >,则012EF x =+=, 所以01x =,于是得02y ==,即()1,2E ,将点E 的坐标代入圆D 的方程,得()()222142413r =-+-=,所以r =.(2)设点()11,A x y ,()22,B x y ,由已知得()1,2M --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()24,12,y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 由0∆>,得2210k k --<,即11k << 因为A ,B 异于原点O , 所以2k ≠,则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1111212241214EA y y k x y y --===-+-,2222412EBy k x y -==-+. 因为EF x ⊥轴,所以 ||||4||||||||||EA EB EA EB EF EF PF QF k k k k ⋅=⋅=⋅ ()()()121212|22||24|44y y y y y y +++++==88|44|24k k -++==, 所以||||PF QF ⋅的值为定值2.7.(2021·天津高三一模)已知椭圆()2222:10x y C a b a b +=>>的短半轴长为1,离心率为2. (1)求C 的方程;(2)设C 的上、下顶点分别为B 、D ,动点P (横坐标不为0)在直线2y =上,直线PB 交C 于点M ,记直线DM ,DP 的斜率分别为1k ,2k ,求12k k ⋅的值. 【答案】(1)2214x y +=(2)34-【详解】(1)依题意可知1b =,c a =2212a a ⎛⎫+= ⎪ ⎪⎝⎭,解得24a =, 所以椭圆C 的方程为2214x y +=.(2)依题意可知(0,1)B ,(0,1)D -, 设00(,)M x y ,则001DB y k x -=,直线BD :0011y y x x -=+,令2y =,得001x x y =-,即00(,2)1x P y -, 0101DMy k k x +==,020003(1)2101DP y k k x x y -+===--,所以00120013(1)y y k k x x +-⋅=⋅2203(1)y x -=20203()344x x ⨯-==-. 8.(2021·全国高三专题练习(文))已知抛物线1C 的顶点为坐标原点O ,焦点为圆222:4C x y +=与圆()223:31C x y +-=的公共点.(1)求1C 的方程; (2)直线1:34l y x =+与1C 交于A ,B 两点,点P 在1C 上,且P 在AOB 这一段曲线上运动(P 异于端点A 与B ),求PAB △面积的取值范围. 【答案】(1)28x y =;(2)1250,8⎛⎤⎥⎝⎦. 【详解】(1)联立()22224,31,x y x y ⎧+=⎪⎨+-=⎪⎩得0,2.x y =⎧⎨=⎩因此1C 的焦点为()0,2,设抛物线()21:20C x py p =>,则22p=, 则4p =,故1C 的方程为28x y =.(2)联立28,13,4x y y x ⎧=⎪⎨=+⎪⎩得6,92x y =⎧⎪⎨=⎪⎩或4,2,x y =-⎧⎨=⎩ 不妨假设96,2A ⎛⎫ ⎪⎝⎭,()4,2B -,则()64AB =--=.设()00,P x y ,则046x -<<,P 到直线l的距离d ===因为当46x -<<时,函数()2125y x =--的值域为[)25,0-,所以0<≤111250228PABS d AB <=⨯⨯≤=△, 故PAB △面积的取值范围是1250,8⎛⎤⎥⎝⎦. 9.(2021·全国高三专题练习(文))已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为23. (1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π. 【详解】(1)由题意得12223c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由()10,3B ,()21,0F ,知12B F 的斜率为3-,因12MN B F ⊥,故MN 的斜率为33, 则直线l 的方程为()313y x =-,即31x y =+, 联立221,4331,x y x y ⎧+=⎪⎨⎪=+⎩可得:2136390y y +-=,设()11,M x y ,()22,N x y ,则126313y y +=-,12913y y =-,则1F MN △的面积()212121224413S c y y y y y y =⋅-=+-=, 由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==, 所以1F MN △的内切圆面积为236ππ169R =. 10.(2021·黑龙江大庆市·高三一模(理))已知焦点在x 轴上的椭圆C :222210)x ya b a b+=>>(,短轴长为23,椭圆左顶点到左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.【答案】(1)22143x y +=;(2)证明见解析,(6,0).【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=.(2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k-=+. 因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033m kx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0).11.(2021·辽宁高三其他模拟(理))已知圆()22:11F x y -+=,动点()(),0M x y x ≥,线段FM 与圆F 交于点I ,MH y ⊥轴,垂足为H ,||||MI MH =,设动点M 形成的轨迹为曲线C . (Ⅰ)求曲线C 的轨迹方程,并证明斜率为2-的一组平行直线与曲线C 相交形成的弦的中点在一条直线上; (Ⅱ)曲线C 上存在关于直线:230l x y --=对称的相异两点A 和B ,求线段AB 的中点D 的坐标.【答案】(Ⅰ)24y x =,证明见解析; (Ⅱ)()1,1-.【详解】(Ⅰ)||1||||1MI MF MH +==+,∴点M 的轨迹C 为以F 为焦点,1x =-为准线的抛物线,曲线C 的方程为24y x =,设点()()111222,,,A x y A x y 为其中任意一条斜率为2-的直线与曲线C 的两个交点,设线段12 A A 的中点为(),E x y ,则21122244y x y x ⎧=⎨=⎩,则()()()1212124y y y y x x -+=-,121242A A k y y ∴==-+,1222y y y ∴+=-=, 1y,所以这组斜率为2-的平行直线与曲线C 相交形成的弦的中点在直线1y =-上;(Ⅱ)设点()()3344,,,A x y B x y ,则23324444y x y x ⎧=⎨=⎩,则()()()3434344y y y y x x -+=-,344AB k y y ∴=+,又,A B 关于直线l 对称,2AB k ∴=-,即34 2y y +=-,3412y y +∴=-, 又,A B 的中点一定在直线l 上,343423122x x y y ++∴=⨯+=, ∴线段AB 的中点D 坐标为()1,1-.12.(2021·湖南长沙市·长沙一中高三一模)已知抛物线()2:20C y px p =>的准线为l ,过抛物线上一点B 向x轴作垂线,垂足恰好为抛物线C 的焦点F ,且4BF =. (Ⅰ)求抛物线C 的方程;(Ⅱ)设l 与x 轴的交点为A ,过x 轴上的一个定点()1,0的直线m 与抛物线C 交于,D E 两点.记直线,AD AE 的斜率分别为12,k k ,若1213k k +=,求直线m 的方程. 【答案】(Ⅰ)28y x =;(Ⅱ)4340x y --=. 【详解】(Ⅰ)由题意,42p B ⎛⎫ ⎪⎝⎭, 代入22y px =, 得216p =,4p =,∴抛物线C 的方程为28y x =.(Ⅱ)当直线m 的斜率不存在时,120k k +=与题意不符,所以直线的斜率一定存在,设直线m 的方程为()1y k x =-代入到28y x =中,()2222280k x k x k -++=,设()11,D x y ,()22,E x y ,则21222122281k x x k k x x k ⎧++=⎪⎪⎨⎪==⎪⎩, 12121222y yk k x x +=+++ ()()12121122k x k x x x --=+++()()()1212122422k x x x x x x ++-⎡⎤⎣⎦=++ 2819163k k ==+43k ∴=,所以直线m 的方程为4340x y --=. 13.(2021·全国高三专题练习(文))已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P 是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积.【答案】(1)2214x y +=;(2【详解】(1)由条件可知222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,12y y +=1215y y -=,11212AOBSOF y y =⨯⨯-==14.(2021·全国高三专题练习)已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)最大值为1.【详解】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p -, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,∴24a=,p = ∴椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)由(1)可知:F 的坐标为:,设直线l的方程为:y kx =+O 到MN 的距离为d,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩可得:()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.15.(2021·广东佛山市·高三一模)已知椭圆C :22221(0)x y a b a b+=>>右焦点为()1,0F ,且过点()2,0A -.(1)求C 的方程;(2)点P 、Q 分别在C 和直线4x =上,//OQ AP ,M 为AP 的中点,求证:直线OM 与直线QF 的交点在某定曲线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)依题意知()2,0A -为椭圆C 的左顶点,故2a =, 又()1,0F 为C 的右焦点,所以221a b -=.于是23b =,b =所以C 的方程为22143x y +=.(2)设00()2),(P x y x ≠±,则002,22x y M -⎛⎫⎪⎝⎭, 直线AP 的斜率002y k x =+, 又//OQ AP ,所以直线OQ 的方程为002y y x x =+, 令4x =得0044,2y Q x ⎛⎫⎪+⎝⎭, 002,22x y OM -⎛⎫= ⎪⎝⎭,0043,2y FQ x ⎛⎫= ⎪+⎝⎭,2220000003(2)23(4)4(*)222(2)x y x y OM FQ x x --+⋅=+=++,又P 在C 上,所以2200143x y +=,即22003412x y +=,代入(*)得0OM FQ ⋅=,所以OM QF ⊥.故直线OM 与QF 的交点在以OF 为直径的圆上,且该圆方程为221124x y ⎛⎫-+= ⎪⎝⎭.即直线OM 与直线QF 的交点在某定曲线221124x y ⎛⎫-+= ⎪⎝⎭上.16.(2020·福建宁德市·高三其他模拟)已知椭圆E :22221(0)x y a b a b+=>>的右焦点是(1,0)F ,点P 是椭圆E上一点,且||PF 的最大值为2b . (1)求椭圆方程;(2)过椭圆右顶点A 的直线l 与椭圆交于B ,与y 轴交于C .设FAB 和FAC 的面积分别为1S 和2S ,求12S S ⋅的取值范围.【答案】(1)22143x y +=;(2)2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.【详解】(1)因为椭圆2222:1(0)x y E a b a b+=>>的焦点为(1,0)F ,所以1c =,又2a c b +=,222a b c =+,所以24a =,23b =,即椭圆方程为22143x y +=.(2)由题可知直线l 的斜率存在且不为0,设直线l 的解析式为2x my =+, 则C 点为2(0,)m-, 由221432x y x my ⎧+=⎪⎨⎪=+⎩,可得:22(34)120m y my ++=, 解得:21243B my m=-+, 故11||||2B S FA y =,21||||2C S FA y =, 由此可得:212216||||434B C S S FA y y m ⋅=⋅⋅⋅=+,所以2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.17.(2021·四川高三三模(理))已知椭圆C :22221x y a b+=()0a b >>的两个焦点与短轴的两个顶点围成一个正方形,且()2,1P 在椭圆上. (1)求椭圆的方程;(2)A ,B 是椭圆上异于P 的两点,设直线PA ,PB 斜率分别为1k ,2k ,点()8,3Q 到直线AB 的距离为d ,若121k k +=,求以d 的最大值为直径的圆的面积.【答案】(1)22163x y +=;(2)25π. 【详解】(1)由题意知b c =,a =∴设椭圆的方程为222212x y b b+=()0b >∵点()2,1P 在椭圆上, ∴224112b b+=,23b =, ∴椭圆方程为22163x y +=(2)当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,()12,A x y ,()22,B x y由22163y kx mx y =+⎧⎪⎨+=⎪⎩,得()222214260k x kmx m +++-=,()22863k m ∆=-+122421km x x k +=-+,21222621m x x k -⋅=+ ∵直线PA 、PB 的斜率分别为1k ,2k ,且121k k += ∴121211122y y x x --+=--,即()()121212121220y x x y x x y y x x +++-+-= ∴()()()1212211240k x x m k x x m -++-+-=∴()()2222642112402121m kmk m k m k k --⋅-+-⋅-=++ ∴()()3210m k m ++-=, ∴3m =-或12m k =-当12m k =-时,直线AB 的方程为()21y k x =-+恒过()2,1P ,不合题意 当3m =-时,由()28660k ∆=->,得1k >或1k <-当直线AB 的斜率不存在,直线AB 过()0,3C-时,不妨设(0,A,(B121k k +=+= ∴当直线AB 恒过定点过()0,3C -,则()8,3Q 到直线AB 的距离为10d QC ≤=,当AB CD ⊥时等号成立,此时,1413CD k k =-=-<- ∴以d 的最大值为直径的圆的面积210π25π2S ⎛⎫== ⎪⎝⎭.18.(2021·四川高三三模(文))已知O 为坐标原点,,A B 分别为椭圆()2222:10x y C a b a b+=>>的右顶点和上顶点,AOB 的面积为1,椭圆C的离心率为2. (1)求,a b 的值;(2)若与AB 垂直的直线交椭圆C 于,M N 两点,且OM ON ⊥,求AMN 的面积. 【答案】(1)2a =,1b =;(2或17. 【详解】(1)由椭圆方程知:(),0A a ,()0,B b ,112AOBSab ∴==,由222112ab c e a a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩得:2a =,1b =.(2)由(1)知:椭圆C 的方程为2214x y +=,()2,0A ,()0,1B ;101022AB k -==--,2MN k ∴=,可设直线MN 方程为2y x m =+, 由22214y x m x y =+⎧⎪⎨+=⎪⎩得:221716440x mx m ++-=, 则()2225668440m m ∆=-->,解得:m <<设()11,M x y ,()22,N x y ,121617m x x ∴+=-,2124417m x x -=,()()()221212121216224217m y y x m x m x x m x x m -∴=++=+++=, OM ON ⊥,12120OM ON x x y y ∴⋅=+=,即22441601717m m --+=,解得:2m =±,此时17MN ==; 当2m =时,直线MN :22y x =+,即220x y -+=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==; 当2m =-时,直线MN :22y x =-,即220x y --=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==综上所述:AMN . 19.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,过点2F 的直线l 交椭圆C 于,P Q 两点.(1)若1F PQ 的周长为8,12F PF △C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,直线PA ,QB 的斜率分别为1221,,k k k k λ=,若()3,4λ∈,求椭圆C 的离心率的取值范围.【答案】(1)答案见解析;(2)13,25⎛⎫⎪⎝⎭. 【详解】(1)由椭圆定义得:11||48PF QF PQ a ++==,所以2a =, 又当点P 位于短轴端点时,12F PF △的面积最大,此时12122F PF S b c ∆=⨯⨯=bc =又222a b c =+,解得①1b c ==时,椭圆的标准方程为22143x y +=,②1,b c ==2214x y +=.(2)设(,0)A a -,(,0)b a ,()11,P x y ,()22,Q x y 由题意知直线斜率不为0,且过(,0)c ,设:l x my c =+,联立22221x my c x y a b =+⎧⎪⎨+=⎪⎩,整理得()22222222220b m a y mcb y b c b a +++-=,所以()212222222122222mcb y y b m a b c a y y b m a ⎧-+=⎪+⎪⎨-⎪=⎪+⎩(*),且121212,y y k k x a x a ==+-, 由题知21k k λ=,则有()()()()2121212211212121()()y x a y my c a k my y c a y k y x a y my c a my y c a y λ+++++====-+-+-, 将(*)代入整理得:21212221212()()mcb my y c a y b m a my y c a y λ⎛⎫-++- ⎪+⎝⎭==+-()()()222212222221222()2()()mb c a c a mcb c a y b m a mb c a c a y b m a -++--++-+-+()()()2222212222221222()2()()mb c a c a mc c a c a y b m a mb c a c a y b m a⎡⎤-++-⎣⎦-++==-+-+()()222122222212222()()()ca mb mc c a c a y b m amb c a c a y b m a ⎡⎤-++⎣⎦-++-+-+()()()222122222221222()()()ca m a c c a yb m am a c c a c a y b m a-+-++==--+-+()()221221()11()m a c c a y a c a c ea c a c em a c c a y +--+++==---+--所以12111e λλλ-==-++,(3,4)λ∈ 所以13,25e ⎛⎫∈⎪⎝⎭20.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(文))定义:由椭圆的两个焦点和短轴的一个端点组成的三角形称为该椭圆的“特征三角形”.若两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将“特征三角形”的相似比称为椭圆的相似比.已知椭圆221:142x y C +=,椭圆2C 与1C 是“相似椭圆”,已知椭圆2C 的短半轴长为b .(1)写出椭圆2C 的方程(用b 表示);(2)若椭圆2C 的焦点在x 轴上,且2C 上存在两点M ,N 关于直线21y x =+对称,求实数b 的取值范围.【答案】(1)222212x y b b +=或222212y x b b +=;(2))+∞.【详解】(1)由椭圆2C 与1C 是相似椭圆,得224221a b ==,∴椭圆2C 的方程为222212x y b b +=或222212y x b b +=.(2)由题设知:椭圆2C 为222212x y b b+=,设()11,M x y ,()22,N x y ,M ,N 的中点为E ,1:2MN l y x m =-+. ∴联立MN l 与椭圆2C 的方程,整理得()2223440x mx m b-+-=,∴0∆>,即2223b m >且12423E mx x x +==, 23E m x ∴=,1223E E my x m =-+=,由22,33m m E ⎛⎫⎪⎝⎭在直线21y x =+,得32m =-,于是222332b m >=,∴b 的取值范围为)+∞. 21.(2021·四川德阳市·高三三模(文))已知平面上的动点(),E x y 及两定点()2,0A -,()2,0B ,直线EA 、EB 的斜率分别为1k 、2k ,且1234k k =-,设动点E 的轨迹为曲线R . (1)求曲线R 的方程;(2)过点()1,0P -的直线l 与曲线R 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【答案】(1)()221043x y y +=≠;(2【详解】(1)由题意知2x ≠±,且12yk x =+,22y k x =-则3224y y x x ⋅=-+- 整理得,曲线R 的方程为()221043x y y +=≠.(2)当直线l 的斜率不存在时,直线方程为1x =- 此时ABD △与ABC 面积相等,120S S -=当直线l 的斜率存在时,设直线方程为()()10y k x k =+≠()11,C x y 、()22,D x y 联立方程,得()221431x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得:()22223484120kxk x k +++-=0∆>,且2122834k x x k +=-+,212241234k x x k-=+ 此时()()1221212122211S S y y y y k x k x -=-=+=+++()212122234kk x x k k =++=+因为0k ≠,上式234k k=≤+==当且仅当k =) 所以12S S -22.(2021·天津高三其他模拟)已知椭圆()2222:10y x C a b a b +=>>的离心率为e =其左右顶点分别为,A B ,下焦点为F,若ABFS.(1)求椭圆C 的方程;(2)若点P 为椭圆C 上的动点,且在第一象限运动,直线AP 的斜率为k ,且与y 轴交于点M ,过点M 与AP 垂直的直线交x 轴于点N ,若直线PN 的斜率为25k -,求k 值.【详解】(1)由题可知:122ABFSbc =⋅=2bc e ==,22221bc a cb ac a b c⎧=⎧⎪=⎪⎪∴=⇒=⎨⎨⎪⎪=⎩=+⎪⎩, ∴椭圆方程为2214y x +=; (2)()1,0,AP A k k -=,设直线():(1),0,AP l y k x M k =+∴,联立方程()222222(1)424014y k x k x k x k y x =+⎧⎪⇒+++-=⎨+=⎪⎩, 222224,44A P A P k k x x x x k k --∴+=⋅=++, ()22248,144p p p k kx y k x k k -∴=∴=+=++,22248,44k k P k k ⎛⎫-∴ ⎪++⎝⎭,MN AP ⊥,设直线1:,MN l y x k k=-+令0y =,解得2N x k =,()2,0N k ∴, 2222824454PNk k k k k k k +==---+,即425240k k +-=,解得23k =或28k =-(舍), P 在第一象限,k ∴=23.(2021·全国高三其他模拟)已知双曲线C :()22221,0x y a b a b-=>>的一条渐近线与直线0l :0x -=垂直,且双曲线C 的右焦点F 到直线0l 的距离为1. (1)求双曲线C 的标准方程;(2)记C 的左、右顶点分别为1A ,2A ,过点F 的直线l 与双曲线C 的右支交于M ,N 点,且直线1A M 与直线2A N交于点Q ,求证:1AQ QF =.【详解】(1)由题知双曲线C 的渐近线方程为by x a =±, ∵双曲线的一条渐近线与直线0l:0x -=垂直,∴ba=b =.设(),0F c ,12c==,∴2c =. ∵222c a b =+,∴22244a b a =+=, ∴21a =,23b =,故双曲线C 的标准方程为2213y x -=.(2)由(1)可得()2,0F ,()11,0A -,()21,0A . ①当直线l 的斜率不存在时,直线l 的方程为2x =,结合双曲线C 的方程可得3=±y , 若()2,3M ,()2,3N -,则直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 若()2,3M -,()2,3N ,则直线1A M 的方程为1y x =--,直线2A N 的方程为33y x =-, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫- ⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. ②当直线l 的斜率存在时,设直线l 的方程为()2y k x =-,()11,M x y ,()22,N x y , 由题可知0k ≠,联立,得()22213y k x y x =-⎧⎪⎨-=⎪⎩,消去y 可得()222234430k x k x k -+--=,由直线l 与双曲线C 有两个交点,得23k ≠,212243k x x k +=-,2122433k x x k +=-.∵直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,∵()()21121111y x x x y x ++=--,两边同时平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-, 又221113y x -=,222213y x -=,∴()()()()()()222221212222121231111311x x y x y x x x -++=---()()()()21121111x x x x ++=--()()1212121211x x x x x x x x +++=-++22222222434133434133k k k k k kk k +++--=+-+-- 22222243434343k k k k k k +++-=+-+- 9=,∴2191x x +⎛⎫= ⎪-⎝⎭,解得12x =或2x =. 由题易知()()211101y x y x +<-,当2x =时,101x x +>-,矛盾,舍去,故12Q x =,即点Q 在直线12x =上, 又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 24.(2021·河南郑州市·高三三模(文))椭圆()222210,0x y a b a b +=>>经过点()0,1.若斜率为k的直线l 与椭圆交于不同的两点E 、G . (1)求椭圆的标准方程;(2)设()2,0P -,直线PE 与椭圆的另一点交点为M ,直线PG 与椭圆的另一个交点为N .若M 、N 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(1)2213x y +=;(2)1k =.【详解】(1)因为椭圆()222210,0x y a b a b +=>>经过点()0,1,所以b =1,222213b e a =-= ,即2213b a =,解得a所以椭圆的方程是2213x y +=.(2)设()()11223344,,,,(,),(,)E x y G x y M x y N x y ,则221133x y +=,①222233x y +=,② 又()2,0P -,所以设1112PE y k k x ==+,直线PE 的方程为()12y k x =+, 由()122213y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222211113121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,所以13171247x x x --=+,13147y y x =+,即1111712(,)4747x y M x x --++,同理可得2222712(,)4747x y N x x --++,又因为71,44Q ⎛⎫-⎪⎝⎭,由Q 、M 、N 三点共线, 可得121212124747712712471144777444y y x x x x x x --++=----++++,化简得12121y y x x -=-,即1k =. 25.(2021·浙江高三二模)如图,A 点在y 轴正半轴上,抛物线2y x =上有三个不同的点B ,C ,D ,使得四边形ABCD 是菱形,C 点在第四象限.(1)若B 点与坐标原点重合,求菱形ABCD 的面积; (2)求OA 的最小值.【答案】(1)63(51)25++【详解】(1)设点A (0,2a ),因四边形ABCD 是菱形且B 点与坐标原点,则CD ⊥x 轴且|CD |=2a , 由抛物线对称性知C (a 2,-a ),D (a 2,a ),由|AB |=|BC |得2222()a a a =+3a =所以菱形ABCD 的边|AB |=3h =a 2=3,其面积为||333S AB h =⋅==(2)设点B (s 2,s ),D (t 2,t ),则线段BD 中点坐标为22(,)22s t s t++,而线段AC 与BD 有相同中点,点A 在y 轴上,则点2222(,)C s t s t +-+,22(0,)A s t s t ++,因AC ⊥BD ,即0AC BD ⋅=,222222(,2),(,)AC s t s t s t BD t s t s =+---+=--,222222()()(2)()0s t t s s t s t t s +-+---+-=,而t ≠s ,则22222()()s t s t s t s t +++=++令222s t m +=,则221m s t m +=-,而222()2()s t s t +<+,m>0,有12m + 322222||11m m m OA s t s t m m m +=+++=+=--,令32(),(12)1m mf m m m +=>+-,22342222222(31)(1)2()41(25)(25)()(1)(1)m m m m m m m m m f m m m +--+-----+'==-- ()025f m m '=⇒=+1225,()0m f m '+<<+<,25,()0m f m '>+>,所以()f m 在(12,25)++上单调递减,在(25,)++∞上单调递增,25m =+时,()f m 取最小值2(35)25(51)25(51)25(25)512(51)f +++++++===++. 26.(2021·四川广元市·高三三模(理))已知抛物线22(0)y px p =>的焦点为F .(1)若点(),1C p 3(2)点(),1C p ,若线段CF 的中垂线交抛物线于A ,B 两点,求三角形ABF 面积的最小值. 【答案】(1)2y =;(2)4. 【详解】(1)抛物线的准线方程是2p x =-,焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,2p p ∴+=0p >,p ∴=∴抛物线的方程为2y =(2)由题意知线段CF 的中点坐标为31,42p M ⎛⎫⎪⎝⎭,1022CF k p p p -==-, 2AB pk ∴=-∴直线AB 的方程为13224p p y x ⎛⎫-=- ⎪⎝⎭设()11,A x y ,()22,B x y由2213224y pxp p y x ⎧=⎪⎨⎛⎫-=-- ⎪⎪⎝⎭⎩,得2234202p y y +--= 124y y ∴+=-,212322y y p =--)2124||p AB y p+∴=-==又||CF ==2411||||228ABFp SAB CF p+∴=⨯⨯==令2(0)t p t =>,则3(4)()t f t t +=,222(4)(2)()t t f t t+-'= ∴当02t <<时,()0f t '<,()f t 递减,当2t >时,()0f t '>,()f t 递增, ∴当2t =即p =ABFS △取得最小值,最小值为84=.27.(2021·河南郑州市·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于A 、B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率; (2)若02y ≥,求△PAB 面积的最小值. 【答案】(1)3±;(2)最小值为2.【详解】(1)由题意,可设切线PB 的方程为y kx m =+,代入抛物线的方程得2440x kx m --=, 由相切的条件得:216160k m ∆=+=,即20k m +=,由直线与圆相切可得圆心到直线距离1d ==,即222k m m =+,∴230m m +=,可得3m =-或0m =,∵当0m =时,有PB 的方程为0y =,此时(0,0)P 与圆E 的有且仅有一条切线, ∴3m =-,舍去0m =,故23k =,即3k =±.(2)设切线方程为00()y y k x x -=-,即000kx y y kx -+-=,圆心到直线距离1d ==,整理得222000000(1)(22)20k x x y x k y y --+++=,而220004(2)0x y y ∆=++>(02y ≥),设P A ,PB 斜率分别为12,k k ,则20000012122200222+,,11x y x y y k k k k x x ++=⋅=-- 令y =0,得000012,A B y yx x x x k k =-=-,0000120000121212000|||()()|||||y y y y k k AB x x y y k k k k k k -=---=-=⋅==00011||22PABSAB y y =⋅== 令222(6)(),2(2)y y y f y y y +=≥+,2232(4+18()0(2)y y y f y y +'=>+),则()f y 在[2,)+∞上单调递增,即min ()(2) 4.f y f ==∴PABS的最小值为2.28.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程; (2)求点A 到直线l 的距离的最小值.【答案】(1)焦点坐标()0,1,准线方程1y =-;(2)232416. 【详解】(1)抛物线的标准方程为24x y =,所以其焦点坐标()0,1,准线方程1y =-;(2)已知204x y =,则点A 处的切线方程:20024x x y x =-,因为过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线所以()202222004124x t x t x x x t t t ⎧-⎪⋅=-⎪⎪-⎨⎪⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,化简得:224200030216x t t x x +--=.由0t >得:)242000200042202x x x t y y y t -+==-++> 设()11,E x y ,()22,F x y ,则由120k k +=得:1020044x x x x +++=,即0122x x x -=+, 所以021212EF x y y k x x -==--,由8OM NO =得0,8t N ⎛⎫- ⎪⎝⎭, 所以,直线l :028x ty x =--,则023y d +==23=[)01,y ∈+∞上单调递增所以,当01y =时,min 416d =, 此时,直线l 与抛物线相交.29.(2021·宁夏银川市·银川一中高三三模(理))已知椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率e =,椭圆上的点到焦点的最短距离为1. 直线l 与y 轴交于点()0,P m ,与椭圆C 交于相异两点A 、B ,且3AP PB =.(1)求椭圆C 的方程; (2)求m 的取值范围.【答案】(1)22112x y +=; (2)11(1,)(,1)22--. 【详解】(1)设椭圆的方程为2222:1(0)C bb x a a y +>>=,因为椭圆C 的离心率e =,椭圆上的点到焦点的最短距离为1-, 可得2c e a ==且12a c -=-,解得1,2a c ==, 则22212b ac =-=,所以椭圆的方程为22112x y +=. (2)由题意,直线l 的斜率显然存在,设:l y kx m =+,与椭圆C 交点为1122(,),(,)A x y B x y ,联立方程组2221y kx m x y =+⎧⎨+=⎩,整理得222(2)2(1)0k x kmx m +++-=, 所以22222(2)4(2)(1)4(22)0km k m k m ∆=-+-=-+>,且212122221,22km m x x x x k k --+==++, 因为3AP PB =,所以123x x -=,可得122212223x x x x x x +=-⎧⎨=-⎩, 消去2x 得212123()40x x x x ++=,即2222213()4022km m k k --⨯+⨯=++, 整理得22224220k m m k +--=,即222(41)22m k m -=-, 当214m =时上式不成立, 当214m ≠时,可得2222241m k m -=-, 由3AP PB =,可得0k ≠,所以22222041m k m -=>-,解得112m -<<-或112m <<, 经验证此时2222k m >-成立,即0∆>成立,所以实数m 的取值范围为11(1,)(,1)22--. 30.(2021·山东济宁市·高三二模)己知抛物线()2:20C x py p =>,过点()0,T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A ,B 两点,2l 交抛物线C 于E 、F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12. (1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求OMN 面积的最小值.【答案】(1)2=4x y ;(2)8.【详解】(1)因为()220x py p =>可化为22x y p =,所以x y p '=. 因为当A 点的横坐标为1时,抛物线C 在A 点处的切线斜率为12, 所以112p =,所以2p =, 所以,抛物线C 的标准方程为2=4x y .(2)由(1)知点T 坐标为()0,2,由题意可知,直线1l 和2l 斜率都存在且均不为0,设直线1l 方程为2y kx =+,由224y kx x y=+⎧⎨=⎩联立消去y 并整理得,2480x kx --=, ()2243216320k k ∆=-+=+>, 设()11,A x y ,()22,B x y ,则124x x k +-,128x x ⋅=-, 所以,()21212444y y k x x k +=++=+, 因为M 为AB 中点,所以()22,22M k k +, 因为12l l ⊥,N 为EF 中点,所以222,2N k k ⎛⎫-+ ⎪⎝⎭, 所以,直线MN 的方程为()()()22222221222222k k y k x k k x k k k k⎛⎫+-+ ⎪⎛⎫⎝⎭-+=⋅-=-⋅- ⎪⎝⎭+ 整理得14y k x k ⎛⎫=-+ ⎪⎝⎭, 所以,直线MN 恒过定点()0,4. 所以OMN面积1211424=4()482S k k k k k k ⎛⎫=⨯⨯--=++≥⋅= ⎪⎝⎭, 当且仅当1kk即1k =±时,OMN 面积取得最小值为8.。
2025届高考数学复习:压轴好题专项(三次函数)练习(附答案)
2025届高考数学复习:压轴好题专项(三次函数)练习1.(2024届江苏省镇江市丹阳市高三上学期期初检测)已知函数()()3222f x x mx m x m =-+∈R 在6x =处有极小值. (1)求m 的值;(2)求函数()y f x =在[]0,t 上的最大值.2.(2023河南省新未来3月联考)已知函数()()3211132f x x a x ax =+--. (1)若2a =,求函数()f x 的极值;(2)当1a >时,若对0x ∀≥,()e 0xf x x b ++≥恒成立,求4b a -的最小值.3.(2023届安徽省卓越县中联盟高三上学期第一次联考)已知函数()3223=+f x x ax ,a ∈R .(1)若()f x 在[]1,3-上的值域为[]8,0-,求()f x 在R 上的单调区间;(2)若函数()()()6cos 6sin g x f x x a x x =++-,则当0a ≥时,求()g x 的零点个数.4.(2023届湖南省湘潭市部分学校高三上学期期末联考)已知函数()313f x mx kx =-,其中,m k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)已知函数()2ln g x x x =-(e 是自然对数的底数),若0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,求实数m 的取值范围.5.(2023届北京市第五中学高三下学期3月检测)设函数()()23f x x x x a =-+,R a ∈(1)当9a =-时,求函数()f x 的单调增区间;(2)若函数()f x 在区间()1,2上为减函数,求a 的取值范围;(3)若函数在区间()0,2内存在两个极值点1x ,2x ,且()()()()2121f x f x f x f x ->+,求a 的取值范围. 6.已知函数32()1f x x ax bx =+++(0,a b R >∈)有极值,且导函数()f x '的极值点是()f x 的零点.(1)求b 关于a 的函数关系式,并写出定义域; (2)求证:23b a >;(3)若(),()f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.7.已知()3222,f x x ax a x a =+-+∈R .(1)当a<0时,求函数()y f x =的单调减区间;(2)当0a =时,曲线()y f x =在相异的两点,A B 点处的切线分别为1l 和21,l l 和2l 的交点位于直线2x =上,证明:,A B 两点的横坐标之和小于4.8.(2024届江西省稳派上进教育高三上学期摸底考试)已知函数()321132f x x x ax =++,()1e ln x g x x x x -=+,()f x ',()g x '分别为()f x ,()g x 的导函数,且对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-.(1)求实数a 的取值范围;(2)证明:0x ∀>,有()()'≥g x f x .9.已知函数()331f x x ax =++,[]1,1x ∈-,a R ∈,(1)若函数()f x 在区间[]1,1-上不单调,求a 的取值范围; (2)求()f x 的最大值;(3)若()1f x b +≤对任意[]1,1x ∈-恒成立,求a b +的取值范围.10.已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 11.已知函数.0)0,(,2)(,)()(22<-∞∈=-=a x x a x g a x x x f 且 (1)(i )求函数)()(x g y x f y ==与的图象的交点A 的坐标;(ii )设函数)(),(x g y x f y ==的图象在交点A 处的切线分别为,,21l l 是否存在这样的实数a, 使得21l l ⊥?若存在,请求出a 的值和相应的点A 坐标;若不存在,请说明理由. (2)记[)0,1)(-=在x f y 上最小值为F (a ),求aa F )(的最小值. 12.已知函数32()1f x x ax bx =-+++在1x =时有极小值. (1)当4a =时,求()f x 在0x =处的切线方程;(2)求()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值.13.已知函数()3222312f x x ax a x =+-,其中a ∈R .(1)求函数()f x 的单调区间;(2)设函数()f x 在区间2,2a a ⎡⎤⎣⎦上的最大值为()g a ,证明:()32g a <.14.已知函数()3221f x x ax a x =---,其中0a <.(1)求曲线()y f x =在点()(),a f a 处的切线方程;(2)若存在实数t ,使得不等式()0f x <的解集为(),t -∞,求a 的取值范围.15.已知函数()()33R f x x ax a a =-+∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间[]0,3上的最大值与最小值之差为()g a ,求()g a 的最小值. 16.已知函数3211()()32f x x ax a =-∈R 在[]0,1上的最小值为16-.(1)求a 的值;(2)讨论函数()()2()g x f x x b b =-+∈R 的零点个数.参考答案1.(2024届江苏省镇江市丹阳市高三上学期期初检测)已知函数()()3222f x x mx m x m =-+∈R 在6x =处有极小值. (1)求m 的值;(2)求函数()y f x =在[]0,t 上的最大值.【过程详解】(1)因为()3222f x x mx m x =-+,则()()()22343x mx m f x x m x m =-+'=--,又因为()f x 在6x =处有极小值,则()()()61860f m m '=--=,解得6m =或18m =, (i )当6m =时,则()()()326f x x x -'=-, 当(),2x ∈-∞时,()0f x ¢>,()f x 单调递增, 当()2,6x ∈时,()0f x '<,()f x 单调递减, 当()6,x ∞∈+时,()0f x ¢>,()f x 单调递增, 所以当6x =时,()f x 取得极小值,符合题意; (ii )当18m =时,()()()3618f x x x '=--, 当(),6x ∈-∞时,()0f x ¢>,()f x 单调递增, 当()6,18x ∈时,()0f x '<,()f x 单调递减, 当()18,x ∞∈+时,()0f x ¢>,()f x 单调递增, 所以当6x =时,()f x 取得极大值,不符合题意,舍去 综上所述:6m =.(2)由(1)可知:()321236f x x x x =-+,且()f x 在[)()0,2,6,+∞上单调递增,在()2,6上单调递减,()()8232f f ==,如图所示:又因为[]0,x t ∈,则有:(i )当02t <≤时,则()f x 在[]0,t 上单调递增,所以函数()y f x =在[]0,t 上的最大值为()()32max 1236f x f t t t t ==-+⎡⎤⎣⎦;(ii )当28t <≤时,结合图象可知:函数()y f x =在[]0,t 上的最大值为()()max 232f x f ==⎡⎤⎣⎦; (iii )当8t >时,则()f x 在[)(]0,2,6,t 上单调递增,在()2,6上单调递减,且()()8f t f >,所以函数()y f x =在[]0,t 上的最大值为()()32max 1236f x f t t t t ==-+⎡⎤⎣⎦;综上所述:()(]()(]32max1236,0,28,32,2,8t t t t f x t ∞⎧-+∈⋃+⎪⎡⎤=⎨⎣⎦∈⎪⎩. 2.(2023河南省新未来3月联考)已知函数()()3211132f x x a x ax =+--. (1)若2a =,求函数()f x 的极值;(2)当1a >时,若对0x ∀≥,()e 0xf x x b ++≥恒成立,求4b a -的最小值.【过程详解】(1)若2a =,可得()3211232f x x x x =--, 有()()()2212f x x x x x =--=+-',令()0f x '<,可得12x -<<,令()0f x ¢>,则1x <-或2x >, 故函数()f x 的增区间为(),1-∞-,()2,+∞,减区间为()1,2-, 函数()f x 的极小值为()1023f =-,极大值为()716f -=; (2)令()()()e 0xg x x x x f b =++≥,有()()()()()()()()211e 11e 1e x x xg x a x a x x x a x x x a x '=+--++=+-++=++-,由函数()e x h x x a =+-单调递增及()010h a =-<,()e 0ah a =>,可知存在()0,m a ∈,使得()0h m =,即e m a m =+, 当x >m 时,()0g x '>,当0x m <<时,()0g x '<, 所以函数()g x 的减区间为[)0,m ,增区间为(),m +∞, 可得()()()32min 111e 32mg m m a m am m b g x ==+--++()()32322111111e e e e 32622m m m m m m m m m m b m m m b =+---+++=---+, 由0x ∀≥,()e 0xf x x b ++≥恒成立,有()0g m ≥,可得322111e 622mb m m m ≥++, 有()3221114e 4e 622mm b a m m m m -≥++-+, 可得3221114e 44e 622mm b a m m m m -≥++--, 令()()322111e 44e 0622xx x x x x x x ϕ=++-->, 有()()()2221112e 44e 4e 1222x x x x x x x x x x ϕ⎛⎫'=+++--=+-+ ⎪⎝⎭()()()124e 12x x x =-++, 令()0x ϕ'>,则2x >,令()0x ϕ'<,则02x <<, 所以函数()x ϕ的减区间为()0,2,增区间为()2,+∞, 所以()()222414222e 84e 2e 33x ϕϕ≥=++--=--, 故4b a -的最小值为2142e 3--. 3.(2023届安徽省卓越县中联盟高三上学期第一次联考)已知函数()3223=+f x x ax ,a ∈R .(1)若()f x 在[]1,3-上的值域为[]8,0-,求()f x 在R 上的单调区间;(2)若函数()()()6cos 6sin g x f x x a x x =++-,则当0a ≥时,求()g x 的零点个数.【过程详解】(1)因为()3223=+f x x ax ,所以2()666()f x x ax x x a '=+=+,令()0f x '=,解得0x =或x a =-,当0a ->,即a<0时,令()0f x '<,得0x a <<-;令()0f x '>,得0x <或x a >-;所以()f x 在(),0∞-,(),a -+∞上单调递增,在()0,a -上单调递减,此时0x =是()f x 的极大值点; 当0a -<,即0a >时,令()0f x '<,得0a x -<<;令()0f x '>,得x a <-或0x >;所以()f x 在(),0a -上单调递减,在(),a -∞-,()0,∞+上单调递增,此时0x =是()f x 的极小值点; 当0a =时,()0f x '≥恒成立,则()f x 在[]1,3-上单调递增,此时()32f x x =,易得()12f -=-,()354f =,不满足题意;又(0)0f =,()f x 在[]1,3-上的值域为[8,0]-,所以()f x 在[]1,3-上的最值为(0)0f =,故0x =是()f x 的极大值点, 所以a<0,此时,有()8f a -=-或(1)8f -=-两种情况,都有2a =-,故2a =-满足题意,所以由上述分析可知,()f x 的单调递增区间为(),0∞-和()2,+∞,单调递减区间为()0,2. (2)令()sin t x x x =-,则()1cos 0t x x =-≥', 所以()t x 在R 上单调递增,又()00t =,所以当0x >时,()0t x >,即sin x x >,当0x <时,()0t x <,即sin x x <;因为()()()()326cos 6sin 236cos 6sin g x f x x a x x x ax x a x x =++-=+++-,令()0g x =,则()3211cos sin 032x ax x a x x +++-=,令()()3211cos sin 32h x x ax x a x x =+++-,则()()()sin h x x x x a ='-+, 令()0h x '=,解得0x =或x a =-.①若0a =,则()()sin 0h x x x x =-≥',此时()hx 在R 上单调递增.又()00h =,所以()h x 有且仅有1个零点,即()g x 有且仅有1个零点.②若0a >,0a -<,则当(),x a ∈-∞-时,()0h x '>,当(),0x a ∈-时,()0h x '<,当()0,x ∈+∞时,()0h x '>,故()h x 在(),a -∞-上单调递增,在(),0a -上单调递减,在()0,∞+上单调递增, 则()(0)0h a h a ->=>,故()h x 在(),a -+∞上没有零点,下证3302h a ⎛⎫--< ⎪⎝⎭.当x a <-时,0x a +<.因为cos 1x ≥-,所以()()cos x a x x a +≤-+. 因为sin x x >,所以sin x x -<-, 所以()()32323211111122323232h x x ax x a x x ax x a x ax x <+-+-=+--<+-213632x x ax ⎛⎫=+- ⎪⎝⎭,所以3913310222h a a a ⎛⎫⎛⎫⎛⎫--<-++< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.从而()h x 在33,2a a ⎛⎫--- ⎪⎝⎭上有唯一零点,所以()h x 在(),a -∞-上有唯一零点,在(),a -+∞上没有零点,综上所述,当0a ≥时,()h x 有且仅有1个零点,故()g x 有且仅有1个零点.4.(2023届湖南省湘潭市部分学校高三上学期期末联考)已知函数()313f x mx kx =-,其中,m k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)已知函数()2ln g x x x =-(e 是自然对数的底数),若0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,求实数m 的取值范围.【过程详解】(1)因为1k =,所以()331133f x mx kx mx x =-=-,所以()2f x m x '=-,当0m ≤时,()20f x m x '=-≤,所以()f x 在R 上单调递减;当0m >时,令()0f x '<,得x <或x >;令()0f x ¢>,得x <<所以()f x 在(,-∞和)+∞上单调递减,在(上单调递增;综上:当0m ≤时,()f x 的单调递减区间为R ;当0m >时,()f x 的单调递减区间为(,-∞和)+∞,单调递增区间为(.(2)因为()313f x mx kx =-,所以()2f x m kx '=-,因为0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,所以0k ∀>,方程22ln m kx x x -=-有唯一解,即方程22ln kx x x m +-=有唯一解,令()()22ln 0x kx x x x ϕ=+->,则()222221kx x x kx x xϕ-+'=+-=,对于222y kx x =-+, 当1160k ∆=-≤,即116k ≥时,()0x ϕ'≥,故函数()x ϕ在R 上单调递增, 易知,当x 趋向于0时,ln y x =趋向于无穷小,2y kx x =-趋向于0,故()22ln x kx x x ϕ=+-趋向于无穷小;当x 趋向于无穷大时,ln y x =趋向于无穷大,2y kx x =-趋向于无穷大,故()22ln x kx x x ϕ=+-趋向于无穷大;所以()x ϕ的值域为R ,所以R m ∀∈,()x ϕ与y m =有且只有一个交点,满足题意; 当1160k ∆=->,即1016k <<时,2220kx x -+=有两个实根12,x x ,且12182x x k +=>,12116x x k =>, 若124x x <<,则当10x x <<或2x x >时,()0x ϕ'>,当12x x x <<时,()0x ϕ'<, 所以()x ϕ先增后减再增,存在一个极大值和一个极小值,要使22ln kx x x m +-=有唯一实数根,则m 大于()x ϕ的极大值或小于()x ϕ的极小值,记3x 为极大值点,则304x <<,()233332ln x kx x x m ϕ=+-<恒成立,又233220kx x -+=,即23322kx x =-,则()x ϕ的极大值为()()2333333333112ln 22ln 2ln 122x kx x x x x x x x ϕ=+-=--+=--, 令()()12ln 1042m x x x x =--<<,则()2102m x x '=->,故()m x 在()0,4上单调递增,故()()44ln 23m x m <=-,则()34ln 23x ϕ<-,故4ln 23m ≥-,记4x 为极小值点,则44x >,()244442ln x kx x x m ϕ=+->恒成立,又244220kx x -+=,即24422kx x =-,则()x ϕ的极小值为()44412ln 12x x x ϕ=--, 令()()12ln 142n x x x x =-->,则()2102n x x '=-<, 故()n x 在()4,+∞上单调递减,因为()4M ∀-<-,即4M >,取e 4M x =>,则()11e2ln ee 12e 122MMM M n M =--=--,所以()1e 3e 12M M n M M +=--, 令()()13e 142x h x x x =-->,则()13e 02xh x '=-<,所以()h x 在()4,+∞上单调递减,故()()41412e 102h x h <=-⨯-<,所以()e0Mn M +<,即()e Mn M <-,所以()n x 趋向于无穷小,则()4x ϕ趋向于无穷小,所以不存在R m ∈,使得24442ln kx x x m +->恒成立;若124<<x x ,记5x 为极大值点,则54x >,同理可得()255552ln x kx x x m ϕ=+-<恒成立,因为()n x 在()4,+∞上单调递减,所以()()44ln 23n x n <=-,则()54ln 23x ϕ<-,故4ln 23m ≥-,记6x 为极小值点,则64x >,同理可得不存在R m ∈,使得26662ln kx x x m +->恒成立;综上:要使0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,4ln 23m ≥-,即m 的取值范围为[)4ln 23,-+∞.5.(2023届北京市第五中学高三下学期3月检测)设函数()()23f x x x x a =-+,R a ∈(1)当9a =-时,求函数()f x 的单调增区间;(2)若函数()f x 在区间()1,2上为减函数,求a 的取值范围;(3)若函数在区间()0,2内存在两个极值点1x ,2x ,且()()()()2121f x f x f x f x ->+,求a 的取值范围. 【过程详解】(1)当9a =-时,239()()f x x x x =--,则2()3693(1)(3)f x x x x x ==+'---,由()0f x '>解得:1x <-或3x >,所以函数()f x 的单调增区间是(,1)-∞-,(3,)+∞.(2)函数2())3(f x x a x x =-+,则2()36f x x x a '=-+,因函数()f x 在区间()1,2上为减函数,则(1,2)x ∀∈,()0f x '≤成立,即(1,2)x ∀∈,2236036x x a a x x -+≤⇔≤-+,显然236x x -+在()1,2上单调递减,即(1,2)x ∀∈,2360x x -+>,则0a ≤,所以a 的取值范围是0a ≤.(3)由(2)知,2()36f x x x a '=-+,因函数()f x 在区间()0,2内存在两个极值点1x ,2x ,则()0f x '=在区间()0,2内有两个不等根1x ,2x ,即有(0)(2)0(1)30f f a f a '''==>⎧⎨=-+<⎩,解得0<<3a ,且有12122,3a x x x x +==,不妨令1202x x <<<,则123()())(f x x x x x '=--,当10x x <<或22x x <<时,()0f x '>,当12x x x <<时,()0f x '<,则()f x 在1x 处取得极大值1()f x ,在2x 取得极小值2()f x ,显然,12()()f x f x >, 由1212()()()()f x f x f x f x ->+两边平方得12()()0f x f x ⋅<,而2211112222()()()03)3(x x x a x x x f f x a x -+-+⋅=⋅<,即221122()()330x x a x x a +-+<-,整理得:22212121212121212()3()[()2]93()0x x x x x x a x x x x x x a x x a -+++-+-++<,把12122,3a x x x x +==代入上述不等式并整理得:2409a a -<,解得904a <<,综上得904a <<, 所以实数a 的取值范围是904a <<. 6.已知函数32()1f x x ax bx =+++(0,a b R >∈)有极值,且导函数()f x '的极值点是()f x 的零点. (1)求b 关于a 的函数关系式,并写出定义域; (2)求证:23b a >;(3)若(),()f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【过程详解】(1)因为32()1f x x ax bx =+++所以2()32f x x ax b '=++,令()()g x f x '=,所以()62g x x a =+' 令()0g x '=,解得3ax =- 由于当3a x >-时,()0g x '>,所以()()g x f x '=在3ax >-时为单调递增; 当3a x <-时,()0g x '<,所以()()g x f x '=在3ax <-时为单调递减;所以()f x '的极小值点为3ax =-; 由于导函数()f x '的极值点是原函数()f x 的零点,所以(03a f -=,即33102793a a ab-+-+=,所以2239a b a=+;因为()f x 有极值,所以2()32f x x ax b '=++有两个不等的实根,所以24120a b >﹣,即21093a a>-,解得3a >,所以223(3).9a b a a=+>(2)证明:由(13).a =+>设函数23()9t h t t =+,则22227()9t h t t -'=;当t ⎫∈+∞⎪⎪⎝⎭时,()0h t '>,所以()h t 在t ⎫∈+∞⎪⎪⎝⎭上单调递增;又因为3a >,所以2>>,故(h h >=>因此23b a >.(3)设()f x 的极值点是12,x x ,由(1)知,12122,33a b x x x x +=-=,所以22212469a b x x -+=所以323212111222()()11f x f x x ax bx x ax bx +=+++++++即2222121212121212()()()()()()2f x f x x x x x x x a x x b x x +=++-+++++整理得31242()()20273a abf x f x +=-+=所以函数()f x 的两个极值之和为0,()f x '的极值为2213339a a f b a a ⎛⎫-=-=-'+ ⎪⎝⎭, 设(),'()f x f x 这两个函数的所有极值之和为()a ϕ,所以213(),(3)9a a a a ϕ=-+>,而223()09a a a ϕ'=--<;即()a ϕ在()3,+∞上单调递减,而7(6)2ϕ=-,所以由())a ϕϕ≥(6,即得6a ≤; 因此a 的取值范围为(]3,6.7.已知()3222,f x x ax a x a =+-+∈R .(1)当a<0时,求函数()y f x =的单调减区间;(2)当0a =时,曲线()y f x =在相异的两点,A B 点处的切线分别为1l 和21,l l 和2l 的交点位于直线2x =上,证明:,A B 两点的横坐标之和小于4. 【过程详解】(1)()f x 的定义域为R ,()()()22323f x x ax a x a x a '=+-=-+,0a < ,()0f x '∴<的解集为,3a a ⎛⎫- ⎪⎝⎭,故函数()y f x =的单调减区间为,3a a ⎛⎫- ⎪⎝⎭.(2)证明:当0a =时,()32f x x =+,()23f x x '=,设()()331122,2,,2A x x B x x ++,12x x ≠, 点A 处切线方程为()()3211123y x x x x -+=-,点B 处切线方程为()()3222223y x x x x -+=-,故()()()()23231112223232xx x xx x x x -++=-++,解得()()2212121223x x x x x x x ++=+,故两切线交点的横坐标为()()2212121223x x x x x x +++,由题意()()22121212223xx x x x x ++=+()221212123x x x x x x ∴++=+,结合12x x ≠,()()221212121232x x x x x x x x +⎛⎫∴+-+=< ⎪⎝⎭,解得1204x x <+<.故A ,B 两点的横坐标之和小于4.8.(2024届江西省稳派上进教育高三上学期摸底考试)已知函数()321132f x x x ax =++,()1e ln x g x x x x -=+,()f x ',()g x '分别为()f x ,()g x 的导函数,且对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-.(1)求实数a 的取值范围;(2)证明:0x ∀>,有()()'≥g x f x .【过程详解】(1)因为()321132f x x x ax =++,所以()221124f x x x a x a ⎛⎫'=++=++- ⎪⎝⎭,所以()f x '在区间(]0,1上单调递增, 故()()max 12f x f a ''==+. 因为()1e ln x g x x x x -=+,所以()()111ee ln 11e ln 1x x x g x x x x x ---'=+++=+++.令()()11e ln 1x h x x x -=+++,则()()112e x h x x x-'=++, 又(]0,1x ∈,所以()0h x '>, 故()g x '在区间(]0,1上单调递增, 所以()()max 13g x g ''==.又对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-, 所以()()max max 2f x g x ''≤-, 即232a +≤-,解得1a ≤-, 故实数a 的取值范围为(],1-∞-. (2)令()1e-=-x s x x ,0x >,则()1e 1-'=-x s x .令()0s x '=,解得1x =,则当()0,1x ∈时,()0s x '<,()s x 单调递减; 当()1,x ∈+∞时,()0s x '>,()s x 单调递增,所以()()10s x s ≥=,即1e x x -≥(当且仅当1x =时,等号成立). 令()1ln 1F x x x =+-,则()22111x F x x x x-'=-=. 令()0F x '=,解得1x =,则当()0,1x ∈时,()0F x '<,()F x 单调递减;当()1,x ∈+∞时,()0F x '>,()F x 单调递增,所以()()10F x F ≥=,即1ln 1x x≥-+(当且仅当1x =时,等号成立),故11eln 1x x x x-+≥-+(当且仅当1x =时,等号成立). 又0x >,所以12e ln 1x x x x x x -+≥+-. 因为1a ≤-,所以221x x x x a +-≥++, 故12e ln x x x x x x a -+≥++,即()()'≥g x f x .9.已知函数()331f x x ax =++,[]1,1x ∈-,a R ∈,(1)若函数()f x 在区间[]1,1-上不单调,求a 的取值范围; (2)求()f x 的最大值;(3)若()1f x b +≤对任意[]1,1x ∈-恒成立,求a b +的取值范围. 【过程详解】(1)由题意可知,函数()f x 在()1,1-上有极值点, ()331f x x ax =++ ,则()233f x x a '=+,所以,函数()f x '在()1,0-上递减,在()0,1上递增, 所以,()()1330030f a f a ⎧=+>⎪⎨=<''⎪⎩,可得10a -<<; (2)若1a ≤-时,对任意的[]1,1x ∈-,()0f x '≤,()f x 在[]1,1-上递减,()130f a -=->,()123f a =+,()()()2222112391240f f a a a --=+-=+<⎡⎤⎡⎤⎣⎦⎣⎦, 所以,()()11f f <-,则()()max 13f x f a =-=-; 若0a ≥,对任意的[]1,1x ∈-,()0f x '≥,()f x 在[]1,1-上递增,()13f a -=-,()1230f a =+>,()()()2222112391240f f a a a --=+-=+>⎡⎤⎡⎤⎣⎦⎣⎦,所以,()()11f f >-,则()()max 123f x f a ==+;若10a -<<,由()0f x '>,可得1x -<<1x <;由()0f x '<,可得<<x则()f x 在(1,-上递增,在(上递减,在)上递增;()130f a -=->,(21f =-,21f=,()123f a =+.因为()()3331312f x f x x ax x ax +-=++--+=,所以,函数()f x 关于()0,1对称,())212121f f=-=+≥=,则(){}max a 21,2x 3m a f x -=+,若213a -<≤-,230a +≤,()()()()212321232330a a a --+=-+++=-+>,则(){}max 1m 3ax 22,21f x a -+=-+=; 若2134a -<≤-,230a +>,()()()22123101a --+=≥,则2123a -≥+,则()max 21x f -=;若104a -<<,230a +>,()()()22123101a --+=<+,则2123a -<+,则()max 23f x a =+.综上()max3,1121,14123,4a a f x a a a ⎧⎪-≤-⎪⎪=--<≤-⎨⎪⎪+>-⎪⎩;(3)先考虑必要性,若()1f x b +≤对任意[]1,1x ∈-恒成立, 首先必须满足()()max min 2-≤f x f x .①若1a ≤-,()()()max min 332622f x f x a a a -=--+=--≤,可得23a ≥-,不合乎题意; ②若0a ≥,()()()max min 323622f x f x a a a -=++=+≤,解得0a ≤,此时0a =;③若10a -<<时,(()()4211622f f f f a ⎧-=-≤⎪⎨--=+≤⎪⎩,解得0a ≤,此时0a ≤<.综上0a ≤,此时函数()f x在1,⎡-⎣上单调递增,在(上单调递减,在⎤⎦上单调递增. 若104a -≤≤,由(2)可知,()max 23f x a =+,则()()min 13f x f a =-=-,由()()maxmin11f x bf x b⎧+≤⎪⎨+≥-⎪⎩,则231141231b aa ab aa b++≤⎧⇒-+≤+≤--⎨-+≥-⎩,所以12,2a b⎡⎤+∈--⎢⎥⎣⎦若14a-≤,则()max21f x=-,()min21f x=,由()()maxmin11f x bf x b⎧+≤⎪⎨+≥-⎪⎩,则211211bb⎧-+≤⎪⎨+≥-⎪⎩,则222a ab a--++≤≤令12t⎡⎢⎣,则3232222t t a b t t--≤+≤--,对于函数()3222g t t t=-+-,()()2622310g t t t t t'=-=->对任意的12t⎡∈⎢⎣恒成立,所以,函数()g t在12⎡⎢⎣上单调递增,所以,()min122g t g⎛⎫==-⎪⎝⎭,对于函数()232h t t t=--,()2260h t t t'=--<对任意的12t⎡∈⎢⎣恒成立,所以,函数()h t在区间12⎡⎢⎣上单调递减,则()max1122h t h⎛⎫==-⎪⎝⎭,因此,12,2a b⎡⎤+∈--⎢⎥⎣⎦.综上:12,2a b⎡⎤+∈--⎢⎥⎣⎦.10.已知函数32()3f x x x ax b=-++在1x=-处的切线与x轴平行.(1)求a的值和函数()f x的单调区间;(2)若函数()y f x=的图象与抛物线231532y x x=-+恰有三个不同交点,求b的取值范围.【过程详解】(1)由已知得2()36f x x x a'=-+,∵在1x=-处的切线与x轴平行∴(1)0f'-=,解得9a=-.这时2()3693(1)(3)f x x x x x==+'---由()0f x'>,解得3x>或1x<-;由()0f x'<,解13x-<<.∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-.(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点.∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <;由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-. 依题意得1210b b ⎧->⎪⎨⎪-<⎩,解得112b <<. 故b 的取值范围为1,12⎛⎫⎪⎝⎭.11.已知函数.0)0,(,2)(,)()(22<-∞∈=-=a x x a x g a x x x f 且 (1)(i )求函数)()(x g y x f y ==与的图象的交点A 的坐标;(ii )设函数)(),(x g y x f y ==的图象在交点A 处的切线分别为,,21l l 是否存在这样的实数a, 使得21l l ⊥若存在,请求出a 的值和相应的点A 坐标;若不存在,请说明理由.(2)记[)0,1)(-=在x f y 上最小值为F (a ),求aa F )(的最小值. 【过程详解】(I )(i )设点A 的坐标为022(,2)(),,(2222=++-=-a x a a x x a a x x y x 得由得.2,2;8,2,2,232231121a y a x a y a x a x a x ======时当时且当故函数)(x f y =与)(x g y =图象的交点A 坐标为)2,2(),8,2(33a a a a(ii ),43)(',)('22a ax x x f ax x g +-==若存在a,使得.21l l ⊥则当点A 坐标为,12(')2(',8,2(3-=⋅af ag a a 时又8)243(2)2(')2('4222a a a a a a a f a g -=+-⨯⋅⋅=⋅,则8,0,1844-=<=a a a 故又,此时点A 坐标为)22,28(44--当点A 坐标为,1)2(')2(',)2,2(3-=⋅a f a g a a 时又422210)843()2()2(')2('a a a a a a a f a g =+-⨯⋅⋅=⋅, 则1104-=a ,无解.综上,存在)22,28(,,844214--⊥-=A l l a 此时使得(2)令,2742,3.,30)('322321a x a ax x a x a x a x x f =+-====时当得整理得 )(274,03)(34(32x f y a y a x a x ===--与即直线图象另一交点横坐标.34a x =结合图象可得:(1)若;)1()1()()(,3,132min +-=-==-<-<a f x f a F a a时即 (2)若;274)3()()(,433,31343min a a f x f a F a a ===-<≤-≤-<时即 (3)若.)1()1()()(,043,1342min +-=-==<≤--≥a f x f a F a a 时即综上⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎢⎣⎡--∈⎪⎭⎫⎢⎣⎡---∞∈+-=43,3,2740,43)3,(,)1()(32a a a a a F所以⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎢⎣⎡--∈⎪⎭⎫⎢⎣⎡---∞∈---=43,3,2740,43)3,(,21)(2a a a a a a a F当,1212)1()(21)(,0,43)3,(≥--+-=---=⎪⎭⎫⎢⎣⎡---∞∈a a a a a a F a 时且当43-=a 时取到“=”;当⎪⎭⎫⎢⎣⎡--∈43,3a 时,函数2274)(a a a F =单调递减,此时.121)(>a a F 综上,.121)((min =a a F 12.已知函数32()1f x x ax bx =-+++在1x =时有极小值. (1)当4a =时,求()f x 在0x =处的切线方程;(2)求()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值.【过程详解】 (1)因为函数32()1f x x ax bx =-+++在1x =时有极小值, 故2()32f x x ax b '=-++,(1)320f a b '=-++=,解得:23a b +=. 当4a =时,5b =-,故32()451f x x x x =-+-+,2()385f x x x '=-+-, 则(0)1,(0)5f f '==-,则()f x 在0x =处的切线方程为:15(0)y x -=--,整理得:510x y +-=. 故()f x 在0x =处的切线方程为510x y +-=.(2)由(1)得2()32f x x ax b '=-++,且23a b +=, 故2()3(3)(1)(332)f x x b x b x x a '=-+-+=--+-, 令()0f x '=,解得12231,3a x x -==, 因为32()1f x x ax bx =-+++,所以(1)3f a =-,(3)1519f a -=+,3317(248f a =-+.又函数()f x 在1x =时有极小值,当2313a -<时,23(,3a x -∈-∞或(1,)+∞,()0f x '<,函数()f x 单调递减, 当23(,1)3a x -∈时,()0f x '>,函数()f x 单调递增, 故函数()f x 在11x =有极大值,与题意不符,故12x x <,即2313a ->,即3a >,所以,当(,1)x ∞∈-或23(,)3a -+∞,()0f x '<,函数()f x 单调递减,当23(1,3a x -∈时,()0f x '>,函数()f x 单调递增, 故函数()f x 在2233a x -=有极大值. 当23332a -≥,即154a ≥时,函数()f x 在区间[)3,1-单调递减,在区间31,2⎛⎤⎥⎝⎦单调递增,故在区间33,2⎡⎤-⎢⎥⎣⎦上得最小值为min ()(1)3f x f a ==-, 当233132a -<<,即1534a <<时,函数()f x 在区间[)3,1-和233,32a -⎛⎤⎥⎝⎦单调递减,在区间231,3a -⎛⎫ ⎪⎝⎭单调递增,且3317(248f a =-+,(1)3f a =-, 37(1)(284a f f -=-. 故当732a <≤时,3(1)()02f f -≥,min 3176()()28a f x f -==, 当71524a <<时,3(1)(02f f -<,min ()(1)3f x f a ==-. 综上所述:当732a <≤时,函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值为1768a -, 当72a <时,函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值为3a -. 13.已知函数()3222312f x x ax a x =+-,其中a ∈R .(1)求函数()f x 的单调区间;(2)设函数()f x 在区间2,2a a ⎡⎤⎣⎦上的最大值为()g a ,证明:()32g a <.【过程详解】 (1)因为()3222312f x x ax a x =+-,R x ∈,所以()()()22661262f x x ax a x a x a '=+-=+-.①若0a >,当2a x a -<<时,()0f x '<;当2x a <-或x a >时,()0f x '>.即()f x 在()2,a a -上单调递减,在(),2a -∞-和(),a +∞上单调递增;②若0a =,恒有()0f x '≥.即()f x 在定义域R 上单调递增;③若0a <,当2a x a <<-时,()0f x '<;当x a <或2x a >-时,()0f x '>.即()f x 在(),2a a -上单调递减,在(),a -∞和()2,a -+∞上单调递增;综上,当0a >时,函数()f x 的单调递减区间为()2,a a -,单调递增区间为(),2a -∞-,(),a +∞; 当0a =时,函数()f x 的单调递增区间为(),-∞+∞;当0a <时,函数()f x 的单调递减区间为(),2a a -,单调递增区间为(),a -∞,()2,a -+∞.(2)由题意,有22a a <,∴()0,2a ∈.由(1)知①当12a ≤<时,()f x 在2,2a a ⎡⎤⎣⎦上单调递增.∴()()32432g a f a a ==<.②当01a <<时,()f x 在)2,a a ⎡⎣上单调递减,在(],2a a 上单调递增. 由()324f a a =,01a <<,∴()024f a <<;又()()26544223122312f a a a a a a a =+-=+-.∵01a <<,∴223120a a +-<.∴()20f a <. ∴()()324432g a f a a ==<<.综上,有()32g a <.14.已知函数()3221f x x ax a x =---,其中0a <.(1)求曲线()y f x =在点()(),a f a 处的切线方程;(2)若存在实数t ,使得不等式()0f x <的解集为(),t -∞,求a 的取值范围.【过程详解】由()3221f x x ax a x =---得()2232f x x ax a '=--.(1)所以()0f a ¢=.又因为()31f a a =--.故所求的切线方程为31y a =--.(2)因为()()()22323f x x ax a x a x a =--+=-'令()0f x '=,得13a x =-,2x a =, 此时()f x ',()f x 随x 的变化如下:由题意,要想存在实数t ,使得不等式()0f x <的解集为(),t -∞只需()003f a a f ⎧>⎪⎨⎛⎫-> ⎪⎪⎝⎭⎩或()003f a a f ⎧<⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩ 因为3510327a f a ⎛⎫-=-< ⎪⎝⎭, 所以()310f a a =--<所以a 的取值范围为()1,0-.15.已知函数()()33R f x x ax a a =-+∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间[]0,3上的最大值与最小值之差为()g a ,求()g a 的最小值.【过程详解】 (1)因为()()33f x x ax a a R =-+∈,所以()()22'333f x x a x a =-=-.①当0a ≤时,()'0f x ≥恒成立,()f x 在R 上单调递增;②当0a >时,(),x ∈-∞+∞ 时,()'0f x >;(x ∈时,()'0f x <; 故()f x在(,-∞和)+∞上单调递增,在(上单调递减. (2)由(1)可知:①当0a ≤时,()f x 在[]0,3上单调递增,()()()30279g a f f a =-=-;②3≥,即9a ≥时,()f x 在[]0,3上单调递减,()()()0927g a f f a a =-=-; ③当03<<,即09a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增, 于是()min 2f x f a ==-+,又()0f a =,()3278f a =-.故当0<<3a 时,()2792g a a =-+39a ≤<时,()2g a =综上可得:279,027923()29927,9a a a a g a a a a -≤⎧⎪-+<<⎪=⎨≤<⎪⎪-≥⎩,当0<<3a 时,()2792g a a =-+x 则0x <<,设23()2792h x x x =-+,2()6186(3)0h x x x x x '=-=-<,所以()h x 在上递减,又x ,所以()g a 在(0,3)上递增,所以()g a 在(3),-∞上递减,在(3,)+∞上递增,所以故()g a 的最小值为()3g =16.已知函数3211()()32f x x ax a =-∈R 在[]0,1上的最小值为16-. (1)求a 的值; (2)讨论函数()()2()g x f x x b b =-+∈R 的零点个数.【过程详解】(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=, 当0a …时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增,min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减;[,1]x a ∈时,()0f x '>,()f x 单调递增, 所以333min 111()()326f x f a a a a ==-=-,31166a -=-, 所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '…且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意; 当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >; 综上,1a =.(2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++, 令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+', 所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<;当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以()()11712326h x h =-=+-=-极小,()()11102844323h x h ==-⨯+⨯+=极大, 如图:当76b<-或103b>时,函数()g x有1个零点;当76b=-或103b=时,函数()g x有2个零点;当71063b-<<时,函数()g x有3个零点.。
[高三数学]高考数学压轴题训练题含答案
高考数学综合题系列训练(一)【例1】已知函数241)(+=xx f )(R x ∈ (1)试证函数)(x f 的图象关于点)41,21(对称;(2)若数列}{n a 的通项公式为), ,2 ,1 ,( )(m n N m mnf a n =∈=+,求数列}{n a 的前m 项和m S(3)设数列}{n b 满足: 311=b ,n n n b b b +=+21, 设11111121++++++=n n b b b T ,若(2)中的n S 满足对任意不小于2的正整数n ,n n T S <恒成立, 试求m 的最大值解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)41,21( 的对称点为)y ,x (P .由⎪⎪⎩⎪⎪⎨⎧=+=+412y y 212x x 00 得⎪⎩⎪⎨⎧-=-=.y 21y ,x 1x 00 所以, 点P 的坐标为P )y 21,x 1(00-- .………………(2分) 由点)y ,x (P 000 在函数)x (f 的图象上, 得241y 0x 0+=. ∵,)24(244244241)x 1(f 0000x x x x x 10+=⋅+=+=-- =+-=-24121y 210x 0,)24(2400x x + ∴点P )y 21,x 1(00-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41,21( 对称. ………………(4分) (2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(21)m k 1(f )m k (f -≤≤=-+ ,即,21a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分)由m 1m 321m a a a a a S +++++=- , ……………… ① 得,a a a a a S m 13m 2m 1m m +++++=--- ………………② 由①+②, 得,612m 61221m a 221)1m (S 2m m -=⨯+-=+⨯-= ∴).1m 3(121S m -=………………(8分)(3) ∵,31b 1=)1b (b b b b n n n 2n 1n +=+=+, ………………③ ∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得,1b 1b 1)1b (b 1b 1n n n n 1n +-=+=+即1n n n b 1b 11b 1+-=+.∴1n 1n 11n n 3221n b 13b 1b 1)b 1b 1()b 1b 1()b 1b 1(T +++-=-=-++-+-= .……………(10分) ∵,b b ,0b b b n 1n 2n n 1n >∴>=-++ ∴数列}b {n 是单调递增数列. ∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥. ∵,8152)194(94b ,94)131(31b ,31b 321=+==+==∴.5275b 13T T 12n =-=≥………………(12分) ∴,5275S m <即,5275)1m 3(121<-∴,394639238m =< ∴m 的最大值为6. ……………(14分) 【例2】将圆:O 422=+y x 上各点的纵坐标变为原来的一半(横坐标不变)得到曲线C(1)求曲线C 的方程;(2)设O 为坐标原点, 过点)0 ,3(F 的直线l 与C 交于B A 、两点,N 为线段AB 的中点,延长线段ON 交C 于点E ,求证:ON OE 2=的充要条件是3=AB解:(1)设点),(y x P '',点),(y x M ,由题意⎩⎨⎧='='y y xx 2,又∵422='+'y x ∴14442222=+⇒=+y x y x ,故曲线C 的方程为1422=+y x (2)设点) ,(11y x A , ) ,(22y x B , 点N 的坐标为) ,(00y x当直线l 与x 轴重合时,线段AB 的中点N 就是原点O ,不合题意,舍去;设直线 3:+=my x l ,将直线l 的方程代入方程1422=+y x 整理得:0132)4(22=-++my y m ∴4320+-=m m y ,4343200+=+=m my x ,即点N )43 ,434(22+-+m mm ○1若ON OE 2=, 则点)432 ,438(22+-+m mm E , 由题意得1)4(12)4(4822222=+++m m m , 即032424=--m m ∴ 82=m (42-=m 舍去) ∴2121 y y m AB -+=34)1(44164121222222=++=+++⋅+=m m m m m m ○2若3=AB , 由○1得34)1(422=++m m ,∴82=m ∴点N 的坐标为)66 ,33(±, 射线ON 方程为)0( 22>±=x x y , 由⎪⎩⎪⎨⎧=+>±=44)0( 2222y x x x y 解得⎪⎪⎩⎪⎪⎨⎧±==36332y x ∴点E 的坐标为)36 ,332(±,故2= 综上,2=的充要条件是3=AB【例3】E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小;(3) 求EPF ∠的最大值. 解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221((1)663t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠=【例1】已知焦点在x 轴上的抛物线C 点)2,1(M ,动直线l 过点)0,3(P ,交抛物线于B A 、两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:设抛物线方程为)0(22>=p px y ,将)2,1(M 代入方程得2=p , ∴抛物线方程为x y 42=(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)【例4】已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由;(Ⅲ)对任意正整数n,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-. (14分)2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。
(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。
(2) 证明)(x f 是偶函数。
(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。
当3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。
(1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g(3) 过轨迹E 上一点P 求点P 的坐标及S4.以椭圆222y ax+=1试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6 已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。
(1) 求a 、b 的值;(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;(3) 令()()132++--=tx x x f x g 。
是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→→⋅PN PM 的等比中项。
(1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。
8.已知数列{a n }满足aa aa b a a a a a a a n nn n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;(2)设数列{b n }的前项和为S n ,试比较S n 与87的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.10. )(x f 对任意R x ∈都有.21)1()(=-+x f x f (Ⅰ)求)21(f 和)( )1()1(N n nn f nf ∉-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1()2()1(f nn f n f n f +-+++ ,数列}{n a 是等差数列吗?请给予证明;(Ⅲ)令.1632,,1442232221nS b b b b T a b n n n n n -=++++=-=试比较n T 与n S 的大小.11. :如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA →·OB →=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)12.知函数f (x )=log 3(x 2-2mx +2m 2+9m 2-3)的定义域为R(1)求实数m 的取值集合M ;(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和x 的值.13.设关于x 的方程2x 2-tx-2=0的两根为),(,βαβα<函数f(x)=.142+-x tx (1). 求f()()βαf 和的值。
(2)。
证明:f(x)在[],βα上是增函数。
(3)。
对任意正数x 1、x 2,求证:βααββα-<++-++2)()(21212121x x x x f x x x x f14.已知数列{a n }各项均为正数,S n 为其前n 项的和.对于任意的*n N ∈,都有()241n n S a =+.I 、求数列{}n a 的通项公式.II 、若2n n tS ≥对于任意的*n N ∈恒成立,求实数t 的最大值.15.( 12分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ上,且满足HP ·PM =0,PM =-23MQ , (1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 为等边三角形,求x 0的值.16.(14分)设f 1(x )=x+12,定义f n +1 (x )=f 1[f n (x )],a n =2)0(1)0(+-n n f f ,其中n ∈N *.(1) 求数列{a n }的通项公式;(2)若T 2n =a 1+2a 2+3a 3+…+2na 2n ,Q n =144422+++n n nn ,其中n ∈N *,试比较9T 2n 与Q n 的大小.17. 已知→a =(x,0),→b =(1,y ),(→a +3→b )⊥(→a –3→b ).(I ) 求点P (x ,y )的轨迹C 的方程;(II ) 若直线L :y=kx+m(m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有 |AD|=|BD|,试求m 的取值范围.18.已知函数)(x f 对任意实数p 、q 都满足()()(),f p q f p f q +=⋅1(1).3f =且(1)当n N +∈时,求)(n f 的表达式;(2)设),()(+∈=N n n nf a n 求证:13;4nk k a =<∑(3)设1(1)(),,()nn n k k nf n b n N S b f n +=+=∈=∑试比较11nk kS =∑与6的大小. 19.已知函数),10(log )(≠>=a a x x f a 且若数列:),(),(,221a f a f …,)(42),(*∈+N n n a f n 成等差数列.(1)求数列}{n a 的通项n a ;(2)若}{,10n a a 数列<<的前n 项和为S n ,求n n S ∞→lim ;(3)若)(,2n n n a f a b a ⋅==令,对任意)(,1t fb N n n -*>∈都有,求实数t 的取值范围.20.已知△OFQ 的面积为.,62m FQ OF =⋅且(1)设θ的夹角与求向量FQ OF m ,646<<正切值的取值范围; (2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2)146(,||c m c OF -==, 当||OQ 取得最小值时,求此双曲线的方程.(3)设F 1为(2)中所求双曲线的左焦点,若A 、B 分别为此双曲线渐近线l 1、l 2上的动点,且2|AB|=5|F 1F|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.21、已知函数13)(2++=bx x x f 是偶函数,c x x g +=5)(是奇函数,正数数列{}n a 满足11211=+-+=++)a a a (g )a a (f ,a n n n n n n① 求{}n a 的通项公式;②若{}n a 的前n 项和为n S ,求n n S ∞→lim .22、直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =21.椭圆C 以A 、B 为焦点且经过点D .(1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 21=AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求出直线l 与AB 夹角的范围,若不存在,说明理由. 23、.设函数,241)(+=xx f (1)求证:对一切)1()(,x f x f R x -+∈为定值; (2)记*),()1()1()2()1()0(N n f nn f n f n f f a n ∈+-++++= 求数列}{n a 的通项公式及前n 项和.24. 已知函数)(x f 是定义在R 上的偶函数.当X ≥0时, )(x f =172++-x x x.(I) 求当X<0时, )(x f 的解析式;(II)试确定函数y =)(x f (X ≥0)在[)+∞,1的单调性,并证明你的结论.(III) 若21≥x 且22≥x ,证明:|)(1x f -)(2x f |<2.25、已知抛物线x y 42=的准线与x 轴交于M 点,过M 作直线与抛物线交于A 、B 两点,若线段AB 的垂直平分线与X 轴交于D (X 0,0) ⑴求X 0的取值范围。
⑵△ABD 能否是正三角形?若能求出X 0的值,若不能,说明理由。
26、已知□ABCD ,A (-2,0),B (2,0),且∣AD ∣=2 ⑴求□ABCD 对角线交点E 的轨迹方程。
⑵过A 作直线交以A 、B 为焦点的椭圆于M 、N 两点,且∣MN ∣=238,MN 的中点到Y 轴的距离为34,求椭圆的方程。
⑶与E 点轨迹相切的直线l 交椭圆于P 、Q 两点,求∣PQ ∣的最大值及此时l 的方程。
27.(14分)(理)已知椭圆)1(1222>=+a y ax ,直线l 过点A (-a ,0)和点B (a ,ta )(t >0)交椭圆于M.直线MO 交椭圆于N.(1)用a ,t 表示△AMN 的面积S ; (2)若t ∈[1,2],a 为定值,求S 的最大值.x28.已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,1)成中心对称. (1)求函数f (x )的解析式;(2)若数列{a n }(n ∈N*)满足:a n >0,a 1=1,a n +1= [f (a n )]2,求数列{a n}的通项公式a n ,并证明你的结论.30、已知点集},|),{(n m y y x L ⋅==其中),1,1(),1,2(+=-=b n b x m 点列),(n n n b a P 在L 中,1P 为L 与y 轴的交点,等差数列}{n a 的公差为1,+∈N n 。