[数学]专题一 函数、导数与不等式

合集下载

2005—2012年湖北高考试题分解 专题一 函数 导数 不等式(教师版)

2005—2012年湖北高考试题分解  专题一  函数 导数 不等式(教师版)

专题一 函数、导数、不等式(2005-2012湖北高考理科试题汇编)2005年高考试题(理科)4. 函数|ln ||1|x y e x =--的图像大致是 B6.在y =2x,x=log 2x ,y =x 2,y =cos 2x 这四个数中,当0<x 1<x 2<1时,使)(221x x +>2)()(21x f x f +恒成立的函数的个数是 BA.0B.1C.2D.3 9.若0<x <2π,则2x 与3sin x 的大小关系:D A.2x >3sin x B.2x <3sin x C.2x =3sin x D.与x 的取值有关16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费____________元. 500 17.(本小题满分12分)已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 取值范围. 17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用函数的性质分析和解决问题的能力.解法1:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t , 则f ′(x )=-3 x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f ′(x )≥0. ∴f ′(x ) ≥0⇔t ≥3x 2-2x ,由于g (x )的图象是对称轴为x =31,开口向上的抛物线,故要使t≥5时,f ′(x )在(-1,1)上成立⇔t ≥g(-1),即t ≥5.而当t ≥5时,f ′(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增函数. 故t 的取值范围是t ≥5.解法2:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx+t , f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f ′(x )≥0. ∵f ′(x )的图象是开口向下的抛物线,∴当且仅当f ′(1)=t -1≥0,且f ′(-1)=t -5≥0时,f ′(x )在(-1,1)上满足f ′(x ) >0,即f (x )在(-1,1)上是增函数. 故t 的取值范围是t ≥5.2006年高考试题(理科) 4.设2()lg2x f x x+=-,则2()()2x f f x+的定义域为 ( B )A .(4,0)(0,4)-B .(4,1)(1,4)--C .(2,1)(1,2)--D .(4,2)(2,4)-- 10.关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ( A )①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3 17.(本小题满分13分)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

高考数学专题一 微专题12 隐零点问题

高考数学专题一 微专题12 隐零点问题
的取值范围;
f(x)=12x2-x+asin x,则 f′(x)=x-1+acos x, ∴f′(π)=π-1-a=π-2,∴a=1, 令φ(x)=x-1+cos x,则φ′(x)=1-sin x≥0恒成立, ∴φ(x)是增函数,当x>0时,φ(x)>φ(0)=0,即f′(x)>0恒成立, ∴f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=0, ∵λ≤f(x)恒成立,∴λ≤f(x)min=0, ∴λ的取值范围是(-∞,0].
当a=1时,f(x)+g(x)=bx+ln x-xex,
由题意 b≤ex-lnxx-1x在(0,+∞)上恒成立,
令 h(x)=ex-lnxx-1x,

1-ln h′(x)=ex- x2
x+x12=x2ex+x2 ln
x ,
令 u(x)=x2ex+ln x,则 u′(x)=(x2+2x)ex+1x>0,所以 u(x)在(0,+∞)
专题一 函数与导数
微专题12
隐零点问题
考情分析
隐零点问题是指一个函数的零点存在但无法直接求解出来.在 函数、不等式与导数的综合题目中常会遇到隐零点问题,一般 对函数的零点设而不求,借助整体代换和过渡,再结合题目条 件,利用函数的性质巧妙求解.一般难度较大.
思维导图
内容索引
典型例题
热点突破
PART ONE
当 x0∈e12,+∞时,h(x0)min=h(e)=-e, 综上,当x0∈(0,+∞)时,h(x0)min=h(e)=-e, 得b≥-e. 故b的取值范围是[-e,+∞).
考点三 与三角函数有关的“隐零点”问题
典例3 (2023·东北师大附中模拟)已知f(x)=12x2-x+asin x. (1)若在x=π处的切线的斜率是π-2,求当λ≤f(x)在[0,+∞)恒成立时的λ

2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

新高考数学大一轮复习专题:第5讲 基本不等式的综合问题利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.例1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x >0,y >0,1x +2y +1=2,则2x +y 的最小值为________. 答案 (1)233 (2)324(3)3 解析 (1)由(x +y )2=xy +1,得(x +y )2≤⎝ ⎛⎭⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33时取等号), 故x +y 的最大值为233. (2)x ·1+y 2=2x ·1+y 22 ≤2·x 2+1+y 222=2·x 2+y 22+122=324⎝ ⎛⎭⎪⎫当且仅当x =32,y =22时取等号, 故x ·1+y 2的最大值为324. (3)∵2x +(y +1)=12⎝ ⎛⎭⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.例2 记max{a ,b }为a ,b 两数的最大值,则当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y的最小值为________.答案 10解析 方法一 由题意知t ≥x 2,t ≥25y x -y , ∴2t ≥x 2+25y x -y, 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25y x -y >0, ∴t 2≥x 2·25y x -y , 又∵x 2·25yx -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =aa -1>0,解得a >1.同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥21a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴所求最小值为6.2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭⎪⎫12<x <52 的最大值是________.答案 2 2解析 y 2=(2x -1+5-2x )2=4+22x -15-2x ≤4+(2x -1)+(5-2x )=8,又y >0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为________. 答案 4解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b=a +b2+8a +b ≥2a +b 2·8a +b=4, 当且仅当a +b2=8a +b, 即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 4.设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 答案 -2解析12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥-14+2b 4|a |·|a |b =34,当且仅当b 4|a |=|a |b 且a <0,即a =-2,b =4时取等号.故当a =-2时,12|a |+|a |b取得最小值.。

高三数学专题之函数

高三数学专题之函数

数学专题之函数、导数、不等式1. 设函数)(,121)(x g xxx f 若+-=的图象与)1(1+=-x f y 的图象关于直线x y =对称;那么)2(g 值等于 B(A )-1 (B )-2 (C )54- (D )52-2. 一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:CA .0a <B .0a >C .1a <-D .1a >3. 已知23)1(3)(2+⋅+-=x x k x f ;当∈x R 时;)(x f 恒为正值;则k 的取值范围是 ( B ))(A )1,(--∞ )(B )122,(--∞ )(C )122,1(-- )(D )122,122(---4. 方程1+=ax x 有一个负根且无正根;则a 的取值范围是 ( D ))(A 1->a )(B 1=a )(C a ≤1 )(D a ≥15.x x 42--≤a x -+134的解集是]0,4[-;则a 的取值范围是 ( A ))(A ]5,(--∞ )(B ⎪⎭⎫⎢⎣⎡+∞,35 )(C ⎪⎭⎫⎢⎣⎡+∞--∞,35]5,( )(D )0,(-∞6. 已知映射f :A →B ;其中A=B=R ;对应法则为f :x →y=x 2+2x+3;若对实数k ∈B ;在集合A中不存在原象;则k 的取值范围是BA 、(-∞;0)B 、(-∞;2)C 、(2;+∞)D 、(3;+∞) 7. 已知函数f(x)是定义在R 上的奇函数;且f(x)=-f(x+2);当0≤x ≤1时;2)(xx f =;那么使21)(-=x f 成立的x 的值为DA 、2n (n ∈Z )B 、2n -1(n ∈Z )C 、4n+1(n ∈Z )D 、4n -1(n ∈Z ) 8. 若不等式21--+x x >a 在R x ∈上有解,则a 的取值范围是( B ) A . ()3,3- B . ()3,∞- C . (]3,3- D .()3,-∞-9. 已知)12(+=x f y 是偶函数;则函数)2(x f y =的图象的对称轴是( D ) A .1=x B .2=x C .21-=x D .21=x 10. 已知函数()()y f x x R =∈满足(1)()f x f x +=-且x ∈[-1;1]时;()f x x =;则方程()||f x 5log ||x =解的个数是C :A .4 B. 6 C.8 D. 1011. 已知多项式16x 4+32x 3+24x 2+8x+1能被5整除;则满足条件的最小自然数x 的值为( C ) A. 7 B. 4 C. 2 D. 112. 一个棱锥被平行于底面的截面截成一个小棱锥和一个棱台(用一个平行于棱锥底面的平面去截棱锥;底面和截面之间的部分叫棱台);若小棱锥的体积为y ;棱台的体积为x ;则y 关于x 的函数图象大致形状为(C )。

专题一 第5讲 导数与不等式的证明

专题一 第5讲 导数与不等式的证明
设 h(x)=x-1-ln x,则 h′(x)=1-1x=0⇒x=1,
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.

g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

专题一函数与导数、方程与不等式(一)

专题一函数与导数、方程与不等式(一)
的问题 上.
例 2 ( 2 0 1 2 年 “北 约 ”试 题 )试 求
√ +1 l 一6、 / / +2+ √ +2 7 —1 0 ̄ / +2
— 1的 实 数 根 的 个数 .
解 析 求 解 本 题 的关 键 在 于 通 过 配
例 1 ( 2 0 1 2年 复 旦 大 学 千 分 考 试 题 )
( 1 ) p 厂 ( ) < 0 ;
( 2 )方 程 _ 厂 ( z ) = = = 0 在( O , 1 ) 内一 定有 解. 解 析 ( 1 )由

( 1 ) < 0即 可 .
下 面用 反证 法 : 假 设 ( 0 ) ≥ 0且 厂 ( 1 ) ≥ 0 , 则有 ( 1 ) 厂 ( 0 ) 一r ≥0 , ( 2 ) ,( 1 ) 一P+q +r ≥
若 +z 一1 —0 , 且I z l 一1 , 求 复 数 z的 值 .
方, 褪 掉 二 重 根 号 :√ +1 1 —6 ̄ / z +2一
+2 ) 一6、 解 析 因式分 解 +z 一1 一 + 。 一 √(
( 一 + 1 ) = = = ( z 一z +1 ) ( + 。 一1 ) 一0 .
1 1例 4设 二 次 函 数 厂 ( ) 一 z + g + ,
且 + + 一 0 , 已知 > 0 , 求证 :
② 若 户 < 0 , 则- 厂 ( ) > o , 而 已 知
>o , 则o < <1 , 此 时要证 方 程 . 厂 ( 5 6 ) 一o m — r 1 在( 0 , 1 ) 内一 定 有 解 , 只 要 证 f( 0 ) < 0或

3 l +
f l —1 .
由 。 +z 一1 —0 , 先 将 其 中 的 1代 换 为

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

高考数学导数与不等式 导数方法证明不等式

高考数学导数与不等式 导数方法证明不等式
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数,若直接构造函数求导,难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.提示:在构造函数证明不等式时,常会用到一些放缩技巧:(1)舍去一些正项(或负项);(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子(或分母);(4)构造基本不等式(通常结合代换法,注意对指数的变换).
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.

专题1:集合、常用逻辑用语、不等式、函数与导数(文)

专题1:集合、常用逻辑用语、不等式、函数与导数(文)

专题一:集合、常用逻辑用语、不等式、函数与导数一、选择题1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知()x f 是定义在R 上的奇函数,若()x f 的最小正周期为3,f (1)>0,f (2)=231m m -+,则m 的取值范围是 ( )(A )3(,)2-∞ (B )3(,1)(1,)2-∞ (C )3(1,)2- (D )3(,1)(,)2-∞-+∞ 3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 ( ) A.()sin f x x = B.()1f x x =-+ C.()1()2x x f x a a -=+ D.2()ln 2xf x x-=+ 4.下列结论:①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方; ③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0.④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是 ( )A .1B . 2C . 3D . 45.已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A .1B .21 C .22 D .41 6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 ( )A .4x y --3=0B .450x y +-=C .430x y -+=D .430x y ++= 7.已知a 是使表达式2x +1>42-x 成立的最小整数,则方程1-|2x -1|=a x -1实数根的个数为 ( ) A .0 B .1 C .2 D .38.已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-xB .42+xC .2)4(+xD . 2)4(-x9.条件:2p a ≥-;条件:q 函数()3f x ax =+在区间[-1,2]上存在零点0x ,则p ⌝是q 的 ( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件10.已知命题p :(,0),23x x x ∃∈-∞<;命题q :(0,),tan sin 2x x x π∀∈>,则下列命题为真命题的是( )A. p ∧qB. p ∨(﹁q)C. (﹁p)∧qD. p ∧(﹁q) 11.设Q P ,为两个非空实数集合,定义集合⎭⎬⎫⎩⎨⎧∈∈-=⊕Q y P x y x Q P ,,2.{}5,2,0=P {}7,4,2=Q ,Q P ⊕中元素的个数是 ( )A .3B .4C .5D .612.函数)(x f 在定义域R 内可导,若)1()1(x f x f +=-,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设)0(f a =,)21(f b =,)3(f c =,则( )A .c b a <<B .a c b <<C .a b c <<D .b a c <<二、填空题13.设函数⎩⎨⎧+∞∈-∞∈=-),1(log )1,(2)(81x x x x f x ,则满足41)(=x f 的x 值是 .14.函数y =x 2(x >0)的图像在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,k N *∈其中,若a 1=16,则a 1+a 3+a 5的值是_____ __.15.在平面直角坐标系中,若不等式组 (a 为常数)所表示的平面区域的面积等于2,则a的值为___ __.16.已知偶函数()()y f x x R =∈在区间[1,0]-上单调递增,且满足(1)(1)0f x f x -++=,给出下列判断: (1)f (5)=0; (2)f (x )在[1,2]上减函数;(3)()x f 的图像关与直线1x =对称; (4)函数()x f 在0x =处取得最大值; (5)函数()y f x =没有最小值, 其中正确的序号是 . 三、解答题17.命题P :对数)572(log 2-+-t t a (a >0,a ≠1)有意义;Q :关于实数t 的不等式2(3)(2)0t a t a -+++<. (1)若命题P 为真,求实数t 的取值范围;(2)若命题P 是命题Q 的充分不必要条件,求实数a 的取值范围.18.已知函数()x f =ln x -ax(a ∈R). (1)当a ∈[-e ,-1]时,试讨论f (x )在[1,e ]上的单调性; (2)若()x f < x 在[1,+∞)上恒成立,试求a 的取值范围.19.已知函数()2x cf x ax b+=+为奇函数,()()13f f <,且不等式()302f x ≤≤的解集是[][]2,12,4--⋃.(1)求证:0)2(=f ; (2)求,,a b c 的值;(3)是否存在实数m 使不等式()232sin 2f m θ-+<-+对一切R θ∈成立?若存在,求出m 的取值范围;若不存在,请说明理由.20.已知函数()x f =3213x ax b -+在x = -2处有极值. (Ⅰ)求函数()x f 的单调区间;(Ⅱ)若函数()x f 在区间[-3,3]上有且仅有一个零点,求b 的取值范围.21.已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈(Ⅰ)讨论1=a 时, ()x f 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+; (Ⅲ)是否存在实数a ,使()x f 的最小值是3,若存在,求出a 的值;若不存在,说明理由.参考答案1.B. 2.C 3.D 4.C 5.B 6.A 7.C 8.D 9.A 10.C 11.B 12.D13. 3 14. 2115. 3 16.(1)(2)(4)17.解析:(1)由对数式有意义得,512t <<. (2)命题P 是命题q 的充分不必要条件 ∴512t <<是不等式2(3)(2)0t a t a -+++<解集的真子集.法一:因方程2(3)(2)0t a t a -+++=两根为1,2a +故只需522a +> 解得:12a >.法二:令2()(3)(2)f t t a t a =-+++,因5(1)0,()02f f =<故只需 解得:12a >. 18.【解析】(1)f(x)的定义域为(0,+∞),2221(),0a x af x x x x x+'=+=>显然 当-e≤a≤-1时,1≤-a≤e ,令f′(x)=0得x=-a ,于是当1≤x≤-a 时,f′(x)≤0, ∴f(x)在[1,-a ]上为减函数; 当-a≤x≤e 时,f′(x)≥0, ∴f(x)在[-a,e ]上为增函数.综上可知,当-e≤a≤-1时f(x)在[1,-a ]上为减函数,在[-a,e ]上为增函数. (2)由f(x)<x 得lnx-ax<x . ∵x≥1, ∴a>xlnx-x 2. 令g(x)=xlnx-x 2,要使a>xlnx-x 2在[1,+∞)上恒成立,只需a>g(x)max , g′(x)=lnx -2x+1,令φ(x)=lnx -2x+1,则φ′(x)=1x-2,∵x≥1,∴φ′(x)<0,∴φ(x)在[1,+∞)上单调递减, ∴φ(x)≤φ(1)=-1<0,因此g′(x)<0,故g(x)在[1,+∞)上单调递减,则g(x)≤g(1)=-1, ∴a 的取值范围是(-1,+∞). 19.解答:(1)⎩⎨⎧≤-≥0)2(0)2(f f ,)(x f 是奇函数得0)2(=f . (2)4,0,2-===c b a . (3)m 不存在.20.解析:(Ⅰ)2()2f x x ax '=- 由题意知: (2)440f a '-=+=,得a=-1, ∴2()2f x x x '=+,令()0f x '>,得x<-2或x>0, 令()0f x '<,得-2<x<0, ∴f(x)的单调递增区间是(-∞,-2)和(0,+∞),单调递减区间是(-2,0). (Ⅱ)由(Ⅰ)知,f(x)=3213x x b ++,f(-2)=43b +为函数f(x)极大值,f(0)=b 为极小值. ∵函数f(x)在区间[-3,3]上有且仅有一个零点,∴(3)0(0)0f f -≤⎧⎨>⎩或(3)0(2)0f f ≥⎧⎨-<⎩或(3)0(3)0f f ->⎧⎨<⎩或(2)0(3)0f f -=⎧⎨<⎩或(3)0(0)0f f ->⎧⎨=⎩,即180403b b +≥⎧⎪⎨+<⎪⎩ , ∴4183b -≤<-,即b 的取值范围是4[18,)3--. 21.解析:(Ⅰ) x x x f ln )(-=,xx x x f 111)(-=-='∴当10<<x 时,/()0f x <,此时()f x 单调递减 当e x <<1时,/()0f x >,此时()f x 单调递增∴()f x 的极小值为1)1(=f ……4分(Ⅱ) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1, ∴ 0)(>x f ,min ()1f x =令21ln 21)()(+=+=x x x g x h ,xxx h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+ (Ⅲ)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-x ax 1-=① 当0≤a 时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去),所以, 此时)(x f 无最小值. ②当e a<<10时,)(x f 在)1,0(a 上单调递减,在],1(e a 上单调递增 3ln 1)1()(min =+==a af x f ,2e a =,满足条件.③ 当e a ≥1时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=(舍去),所以,此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.。

2011届新课标高中总复习(第2轮浙江专用)第4课时 函数的综合利用

2011届新课标高中总复习(第2轮浙江专用)第4课时 函数的综合利用

( *)
此时f ( x) = x 3 − ax + a − 1 = ( x − 1)( x 2 + x + 1 − a )经过点A (1, 0 ),
+ ( 2 )因为存在x0 ∈ (0, ∞),使f ( x0 ) > x0 ⋅ e x
3 即x0 − ax0 + a > x0 ⋅ e x0 + a,
① λ + 2 = 2m 由a = 2b,得 2 λ - cos 2 α = m + 2sin α ② λ 2 由①知,λ = 2m - 2,所以 = 2 - . m m 下面求自变量m的取值范围. 由②得(2m - 2) 2 - m = cos 2 α + 2sin α = -(sin α -1) 2 + 2. 2 因为 sin α ∈ [ -1,1],所以 - 2 ≤ 4m - 9m + 4 ≤ 2. 2 因为4m - 9m + 4 ≥ -2恒成立, 1 λ 2 由4m - 9m + 4 ≤ 2,得 ≤ m ≤ 2,所以 ∈ [ -6,1]. 4 m
π
π
m 【例2】向量a = (λ + 2,λ - cos α ),b = (m, + sin α ), 2
2 2
其中λ,m ∈ R.若a = 2b,求
λ
m
的取值范围.
利用向量关系得到λ、m、α的两个关系式, λ 所求 即可用m表示,充分应用关系式隐含的字母 m 范围(此处主要考虑sinα、cosα的值域),求出m的取 值范围即可.
1.消元是构造函数的常用方法; 2.注意挖掘等式中隐含的取值范围.
【变式训练】(2010 北京卷)已知函数 (1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切 线方程; (2)求f(x)的单调区间.

2015专题一 集合、常用逻辑用语、函数与导数、不等式(第三讲)

2015专题一 集合、常用逻辑用语、函数与导数、不等式(第三讲)
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
2.抽象函数的周期性与对称性 (1)函数的周期性 ①若函数 f(x)满足 f(x+a)=f(x-a) ,则 f(x)为周期函数,
2a 是它的一个周期.
②设 f(x)是 R 上的 偶函数 , 且图象关于直线 x=a(a≠0)对称 , 则 f(x)是周期函数,
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
(3)[2014· 四川高考]设f(x)是定义在R上的周期为2的函数,当 x∈[-1,1)时,f(x)= ________.
f(-x)=-f(x)
成立,则 f(x)为奇函数(都有 f(-x)=f(x)

立,则 f(x)为偶函数). (3)周期性 周期函数 f(x)的最小正周期 T 必须满足下列两个条件: ①当 x 取定义域内的每一个值时,都有 f(x+T)=f(x) ; ②T 是
不为零的最小正数.
专题一 第二讲
第 6页
金版教程 · 大二轮复习 · 数学 · 理
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
专题一
集合、常用逻辑用语、函数 与导数、不等式
专题一 第二讲
第 1页
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
第二讲
函数的图象与性质(选择、填空题 型)
专题一 第二讲
第12页
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
[解析] x>1,故选C.
要使函数有意义,需满足x2-x>0,解得x<0或

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

新高考数学大一轮复习专题:第4讲 不等式[考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d.2.不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I . (2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法.例1 (1)若p >1,0<m <n <1,则下列不等式正确的是( ) A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <mnC .m -p<n -pD .log m p >log n p答案 D解析 方法一 设m =14,n =12,p =2,逐个代入可知D 正确.方法二 对于选项A ,因为0<m <n <1,所以0<m n<1,又p >1,所以0<⎝ ⎛⎭⎪⎫m n p <1,故A 不正确;对于选项B ,p -m p -n -m n =p -m n -m p -n n p -n =p n -m n p -n >0,所以p -m p -n >mn,故B 不正确;对于选项C ,由于函数y =x -p在(0,+∞)上为减函数,且0<m <n <1,所以m -p>n -p,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0<m <n <1时,log m p >log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( ) A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)答案 A解析 由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0, 则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0, 即(x +3)(x -2)>0,解得x <-3或x >2, 所以不等式的解集为(-∞,-3)∪(2,+∞).易错提醒 求解含参不等式ax 2+bx +c <0恒成立问题的易错点 (1)对参数进行讨论时分类不完整,易忽略a =0时的情况. (2)不会通过转换把参数作为主元进行求解. (3)不考虑a 的符号.跟踪演练 1 (1)已知函数f (x )=⎩⎪⎨⎪⎧3,x <12,1x ,x ≥12,则不等式x 2f (x )+x -2≤0的解集是________________. 答案 {x |-1≤x ≤1} 解析 由x 2f (x )+x -2≤0,得 ⎩⎪⎨⎪⎧x <12,3x 2+x -2≤0或⎩⎪⎨⎪⎧x ≥12,x 2·1x+x -2≤0,即⎩⎪⎨⎪⎧x <12,-1≤x ≤23或⎩⎪⎨⎪⎧x ≥12,x ≤1,∴-1≤x <12或12≤x ≤1,∴原不等式的解集为{x |-1≤x ≤1}.(2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a 2-4=0时,解得a =2或a =-2,当a =2时,不等式可化为4x -1≥0,解集不是空集,不符合题意;当a =-2时,不等式可化为-1≥0,此式不成立,解集为空集. 当a 2-4≠0时,要使不等式的解集为空集,则有⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65. 考点二 基本不等式 核心提炼基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag x+Bg (x )(AB >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.例2 (1)下列不等式的证明过程正确的是( ) A .若a ,b ∈R ,则b a +a b ≥2b a ·a b =2 B .若a <0,则a +4a≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b D .若a ∈R ,则2a+2-a≥22a ·2-a=2 答案 D解析 由于b a ,a b的符号不确定,故选项A 错误;∵a <0,∴a +4a=-⎣⎢⎡⎦⎥⎤-a +⎝⎛⎭⎪⎫-4a≤-2-a ·⎝ ⎛⎭⎪⎫-4a=-4(当且仅当a =-2时,等号成立),故B 错误;由于lg a ,lg b 的符号不确定,故选项C 错误;∵2a>0,2-a>0,∴2a +2-a ≥22a ·2-a=2(当且仅当a =0时,等号成立),故选项D 正确.(2)(2019·天津)设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.答案 4 3解析x +12y +1xy=2xy +2y +x +1xy=2xy +6xy=2xy +6xy.由x +2y =5得5≥22xy ,即xy ≤524,即xy ≤258,当且仅当x =2y =52时等号成立.所以2xy +6xy≥22xy ·6xy=43,当且仅当2xy =6xy,即xy =3时取等号,结合xy ≤258可知,xy 可以取到3,故x +12y +1xy的最小值为4 3.易错提醒 运用基本不等式时,一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指“正数”;“二定”是指应用基本不等式求最值时,和或积为定值;“三相等”是指满足等号成立的条件.若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.跟踪演练2 (1)(2020·北京市中国人民大学附属中学模拟)已知a >0,b >0,且a -b =1,则2a +1b的最小值为________.答案 22+2解析 ∵a >0,b >0,由a -b =1,得a =1+b ,∴2a +1b =2+2b +1b≥2+22b ·1b=2+22,当且仅当b =22时,等号成立,∴2a +1b的最小值为22+2. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y45y2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝ ⎛⎭⎪⎫t ≤-45舍去.故x 2+y 2的最小值为45.专题强化练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( ) A .{x |-1<x <3} B .{x |1<x <3} C .{x |x <-1或x >3} D .{x |x <1或x >3}答案 D解析 不等式即(x -3)(x -1)>0,由二次不等式的解法大于分两边可得不等式的解集为{x |x <1或x >3}.2.下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a >b ,c <d ,则a c >b dC .若a >b ,c >d ,则a -c >b -dD .若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误. 当a =1,b =0,c =-2,d =-1时,a c <b d,故B 选项错误. 当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误. 由不等式的性质知D 正确.3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f (x )<0的解集为{x |x <-2或x >3},则f (10x)>0的解集为( ) A .{x |x <-2或x >lg3} B .{x |-2<x <lg3} C .{x |x >lg3} D .{x |x <lg3}答案 D解析 一元二次不等式f (x )<0的解集为{x |x <-2或x >3}, 则f (x )>0的解集为{x |-2<x <3},则f (10x)>0可化为-2<10x<3,解得x <lg3, 所以所求不等式的解集为{x |x <lg3}.4.若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b 2a答案 B解析 由题意得a >1,0<b <1, ∴b2a <1,log 2(a +b )>log 22ab =1, 12a b+>a +1b >a +b ⇒a +1b>log 2(a +b ).5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 6.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112答案 B解析 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4.故选B.7.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4B .5C .6D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2a +1b +2-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.8.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c取得最大值时,3a +1b-12c的最大值为( ) A .3B.94C .1D .0答案 C解析 由正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,得a 2c -2ab c +9b 2c =1≥4ab c, 当且仅当a 2c =9b 2c ,即a =3b 时,ab c 取最大值14,又因为a 2-2ab +9b 2-c =0, 所以此时c =12b 2,所以3a +1b -12c =1b ⎝ ⎛⎭⎪⎫2-1b ≤⎝ ⎛⎭⎪⎫1b +2-1b 24=1,当且仅当b =1时等号成立.故最大值为1. 二、多项选择题9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f (a )+f (b )],则下列关系式中正确的是( )A .q =rB .p <qC .p =rD .p >q 答案 BC解析 r =12(ln a +ln b )=p =ln ab ,p =ln ab <q =ln a +b 2.10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .6B .7C .8D .9 答案 ABC解析 方法一 设y =x 2-6x +a ,则其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a 可以为6,7,8.方法二 分离常数,得a ≤-x 2+6x ,函数y =-x 2+6x 的图象及直线y =a ,如图所示,由图易知5<a ≤8.11.(2020·威海模拟)若a ,b 为正实数,则a >b 的充要条件为( ) A.1a >1bB .ln a >ln bC .a ln a <b ln bD .a -b <e a-e b答案 BD解析 对于A ,因为a >b >0,所以1a <1b,故A 错误;对于B ,因为y =ln x 在(0,+∞)上为增函数,所以a >b >0⇔ln a >ln b ,故B 正确;对于C ,设f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )=0,得x =1e ,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以a >b >0不能推出a ln a <b ln b ,故C 错误;对于D ,设g (x )=x-e x(x >0),则g ′(x )=1-e x.因为x >0,所以e x>1,所以g ′(x )<0,g (x )在(0,+∞)上单调递减,所以当a >b >0时,g (a )<g (b ),即a -e a<b -e b,即a -b <e a-e b,充分性成立;当a >0,b >0,且a -b <e a -e b 时,易证得a >b ,必要性成立,故D 正确.12.(2020·新高考全国Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b>12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b=22a -1=12×22a, 因为a >0,所以22a>1,即2a -b>12,故B 正确; 对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确. 三、填空题13.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a ;②log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a ;③a1+a<11aa+;④a1+a>a 1+1a.其中正确的是________.(填序号)答案 ②④解析 由于0<a <1,所以函数f (x )=log a x 和g (x )=a x在定义域上都是单调递减函数,而且1+a <1+1a,所以②④是正确的.14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m >0恒成立,则实数m 的取值范围是________. 答案 (1,+∞)解析 ∵x ∈(0,+∞),mx 2-(m +1)x +m >0恒成立, ∴m (x 2-x +1)>x 恒成立,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴m >xx 2-x +1恒成立,当x ∈(0,+∞)时,xx 2-x +1=1x +1x-1≤121-1=1, 当且仅当x =1x,即x =1时取“=”.∴m >1.15.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-1,12解析 由f (x )=x 3-2x +e x-1e x ,得f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1ex =-f (x ),又x ∈R ,所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x·1ex=3x 2≥0,当且仅当x =0时“=”成立, 所以f (x )在R 上单调递增, 因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,即2a 2+a -1≤0,解得-1≤a ≤12.16.已知实数x ,y 满足x >1,y >0且x +4y +1x -1+1y =11,则1x -1+1y的最大值为________. 答案 9 解析 ∵x +4y +1x -1+1y=11, ∴(x -1)+4y =10-⎝ ⎛⎭⎪⎫1x -1+1y ,又⎝⎛⎭⎪⎫1x -1+1y [(x -1)+4y ]=5+x -1y +4y x -1≥5+24=9, 当且仅当x -1y =4y x -1,即2y =x -1>0时等号成立, ∴⎝⎛⎭⎪⎫1x -1+1y ⎣⎢⎡⎦⎥⎤10-⎝ ⎛⎭⎪⎫1x -1+1y ≥9, 令t =1x -1+1y,则t (10-t )≥9,即t2-10t+9≤0,∴1≤t≤9,∴1x-1+1y的最大值为9.11。

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

2015专题一 集合、常用逻辑用语、函数与导数、不等式(第四讲)

2015专题一 集合、常用逻辑用语、函数与导数、不等式(第四讲)
a+b 2 (4)ab≤ 2 (a,b∈R);
(5)
a2+b2 a+b 2ab 2 ≥ 2 ≥ ab≥a+b(a>0,b>0); (a+b)2(a,b∈R,当 a=b 时等号成立).
专题一 第四讲
第 9页
(6)2(a2+b2) ≥
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
专题一 第四讲
第12页
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
热点一 不等式的解法
不等式的求解尤其是一元二次不等式的求解是高考 重点考查的知识点之一,既可数列、平面向 量、解析几何、导数等内容综合在解答题中进行考查.
易错提醒 (1)利用基本不等式求最值时,一定要注意基本不等式的适 用条件,否则容易出错. (2)解决线性规划问题时,一定要注意最优解必须在可行域 内,否则达不到最值.
专题一 第四讲
第11页
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
R热点探究悟道
(3)a>b >0 ⇒an>bn(n∈N,n≥1). n n >0 (4)a>b ⇒ a> b(n∈N,n≥2).
专题一 第四讲
第 8页
金版教程 · 大二轮复习 · 数学 · 理
主干知识整合 热点探究悟道 建模规范答题 专题知能提升
3.六个重要的不等式 (1)|a|≥0,a2≥0(a∈R); (2)a2+b2 ≥2ab (a,b∈R); a+b ≥ ab (3) (a>0,b>0); 2
专题一 第四讲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形结合,考查方程根的分布(如2007 年广东试题);另一方面可以
与导数相结合,考查方程解的情况.如本题:若对任意x1∈[0,2], 总存在x2∈[0,2],使f(x1)=g(x2)的本质就是函数f(x)的值域是函数
g(x)值域的子集.
【互动探究】 1.已知函数 f(x)=(2-a)(x-1)-2lnx.
1 (2)因为 f(x)<0 在区间0,2上恒成立不可能, 1 故要使函数 f(x)在区间0,2上无零点, 1 只要对任意的 x∈0,2,f(x)>0 恒成立, 1 2lnx 即对 x∈0,2,a>2- 恒成立. x-1 1 2lnx 令 l(x)=2- ,x∈0,2, x-1 2 2 xx-1-2lnx 2lnx+x -2 则 l′(x)=- = 2 2 , x-1 x-1
查内容来看,函数与导数这部分内容在高考中的考查可以说是全 方位的,它不仅有对基础知识、基本技能的考查,更有对数学思
想、数学本质的考查;从考查的内容来看,它不仅有对函数知识
内部的显性考查,更有对与其他主干知识(数列、不等式、解析几 何)相结合的隐性考查.
2010 年广东高考没有考函数、导数和数列,批评声音不断, 2011 年终于回归常态,预计 2012 年高考,对函数的概念与性质只 会加强,不会削弱.备考时要特别注意三次函数、指数函数与对
2 4 1-x 解析:(1)方法一:对函数 f(x)求导,f′(x)=3· 2 2. x +1
令 f′(x)=0,得 x=1 或 x=-1. 当 x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增; 当 x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减. 2 8 又 f(0)=0,f(1)=3,f(2)=15, ∴当
数函数(以 e 为底)的综合题.主要题型:(1)利用导数研究函数的单
调性、极值与最值问题;(2)考查以函数为载体的实际应用题,主 要是首先建立所求量的目标函数,再利用导数进行求解;(3)灵活 应用函数图象与性质等.
题型一
函数、方程与导数
4x 例 1:已知函数 f(x)= 2 ,x∈[0,2]. 3x +3 (1)求 f(x)的值域; 1 (2)设 a≠0, 函数 g(x)=3ax3-a2x, x∈[0,2]. 若对任意 x1∈[0,2], 总存在 x2∈[0,2],使 f(x1)-g(x2)=0.求实数 a 的取值范围.
1 2 再令 m(x)=2lnx+x-2,x∈0,2,
2 2 -21-x 则 m′(x)=-x2+x= <0, x2 故
1 m(x)在 0,2上为减函数, 1 m(x)>m2=2-2ln2>0, 1 l(x)在0,2上为增函数,
可使用 20 年的隔热层,每厘米厚的隔热层建造成本为 6 万元.该
2 x∈[0,2]时,f(x)的值域是0,3.
方法二:当 x=0 时,f(x)=0, 4 1 4 1 2 当 x∈(0,2]时,f(x)>0,且 f(x)=3· 1≤3· = , 1 3 x+x 2 x· x 1 当且仅当 x= x,即 x=1 时,等号成立. 2 ∴当 x∈[0,2]时,f(x)的值域是0,3. (2)设函数 g(x)在[0,2]上的值域是 A. ∵对任意 x1∈[0,2],总存在 x2∈[0,2], 2 使 f(x1)-g(x2)=0,∴0,3⊆A. 对函数 g(x)求导,g′(x)=ax2-a2.
ⅱ)当 x∈(0,2), a≥2 时,即 a≥4,g′(x)<0, ∴函数在(0,2)上单调递减, 8 ∵g(0)=0,g(2)=3a-2a2<0, ∴当 a≥4
2 时,不满足0,3⊆A. 1 的取值范围是3,1.
综上,实数 a
函数与方程是高考的重要题型之一.一方面可以数
于是
从而,l′(x)>0,于是
所以
1 l(x)<l2=2-4ln2,
故要使 a>2-
2lnx 恒成立,只要 a∈[2-4ln2,+∞), x-1
1 f(x)在0,2上无零点,
综上所述,若函数
则 a 的最小值为 2-4ln2.
题型二 函数、导数与不等式 例2:为了进一步实现节能,在夏季降温和冬季供暖时减少能 源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造
(1)当 a=1 时,求 f(x)的单调区间;
(2)若函数
1 f(x)在0,2上无零点,求
a 的最小值.
2 解:(1)当 a=1 时,f(x)=x-1-2lnx,则 f′(x)=1- x ,由 f′(x)>0,得 x>2,由 f′(x)<0,得 0<x<2. 故 f(x)单调减区间为(0,2],单调增区间为[2,+∞).
专题一
函数、导数与不等式
函数是高中数学的核心内容,是数学的基本工具之一,是历 年高考的必考内容之一.自从导数走进高考试题中,就和函数形 影不离,随着高考命题改革的深入,高考对导数考查的广度和深 度也在逐年增加,已由解决问题的辅助工具上升为解决问题必不
可少的工具.从最近几年全国及各省市新课程数学高考试卷的考
①当 a<0 时,g′(x)<0, ∴函数 g(x)在(0,2)上单调递减. 8 ∵g(0)=0,g(2)=3a-2a2<0, ∴当 a<0
2 时,不满足0,ቤተ መጻሕፍቲ ባይዱ⊆A.
②当 a>0 时,g′(x)=a(x- a)(x+ a). 令 g′(x)=0,得 x= a或 x=- a(舍去).
ⅰ)当 x∈[0,2],0< a<2 时,列表: x g′(x) g(x) 0 0 (0, a) - a 0 2 2 -3a a ( a,2) + 2 8 2 a - 2 a 3
∵g(0)=0,g(
2 a)<0,且∵0,3⊆A,
8 2 2 ∴g(2)=3a-2a ≥3. 1 解得3≤a≤1.
相关文档
最新文档