江西省高考数学试卷理科答案与解析

合集下载

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)1. 已知集合,,则( )A. B. C. D.2. 若复数z满足为虚数单位,则下列说法正确的是( )A. z的虚部为B.C. D. z在复平面内对应的点在第二象限3. 若,是第三象限的角,则( )A. 2B.C.D.4. 天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2023年是癸卯年,请问:在100年后的2123年为( )A. 壬午年B. 癸未年C. 己亥年D. 戊戌年5. 已知双曲线C:的左、右焦点分别为、,点P在双曲线C的右支上,且,双曲线C的一条渐近线方程为,则k的最小值为( )A. B. C. D.6. 中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕年,中国空间站将正式进入运营阶段.假设空间站要安排甲、乙等6名航天员开展实验,三舱中每个舱至少一人至多三人,则不同的安排方法有( )A. 450种B. 72种C. 90种D. 360种7. 已知椭圆的一个焦点为F,点P是椭圆C上的一个动点,的最小值为,且存在点P,使得点O为坐标原点为正三角形,则椭圆C的焦距为.( )A. 2B.C.D. 48. 关于曲线C:,下列说法正确的是( )A. 曲线C可能经过点B. 若,过原点与曲线C相切的直线有两条C. 若,曲线C表示两条直线D. 若,则直线被曲线C截得弦长等于9. 已知函数,则下列说法中正确的是( )A. 是偶函数B. 的图像关于直线对称C. 的值域为D. 在上有5个零点10. 如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n项和为,设,将数列中的整数项依次取出组成新的数列记为,则的值为( )A. 5052B. 5057C. 5058D. 506311.在直四棱柱中中,,,P为中点,点Q满足,下列结论正确的是( )A. 若,则四面体的体积为定值B. 若平面,则AQ的最小值为C. 若的外心为M,则为定值2D. 若,则点Q的轨迹长度为12. 已知,,,,则( )A. B. C. D.13.已知非零向量,满足,,则向量,的夹角是______ .14. 已知,则______ .15. 已知实数a,b满足,,,则的最小值为______ .16. 已知设函数若关于x的不等式恒成立,则a的取值范围为______ .17.已知中,内角A、B、C的对边分别为a、b、c,BD为的角平分线.求证:AD::CB;若且,求的面积.18. 如图,在梯形ABCD中,,,四边形ACFE为矩形,且平面ABCD,求证:平面BCF;点M在线段含端点上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.19. 某企业对生产设备进行优化升级,升级后的设备控制系统由个相同的元件组成,每个元件正常工作的概率均为,各元件之间相互独立.当控制系统有不少于k个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为例如:表示控制系统由3个元件组成时设备正常运行的概率;表示控制系统由5个元件组成时设备正常运行的概率若,当时,求控制系统中正常工作的元件个数X的分布列和数学期望,并求;已知设备升级前,单位时间的产量为a件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出现了高端产品,每件产品成为高端产品的概率为,每件高端产品的利润是2元.记设备升级后单位时间内的利润为单位:元请用表示;设备升级后,在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润.20. 过坐标原点O作圆C:的两条切线,设切点为P,Q,直线PQ恰为抛物线E:的准线.求抛物线E的标准方程;设点T是圆C的动点,抛物线E上四点A,B,M,N满足:,,设AB中点为证明:TD垂直于y轴;设面积为S,求S的最大值.21. 已知函数讨论函数的单调性;若函数存在两个极值点,,且恒成立,求实数k的最小值.22. 以直角坐标系的原点O为极点,以x轴正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为为参数,,曲线C的极坐标方程为求曲线C的直角坐标方程;设直线l与曲线C相交于A,B两点,当变化时,求的最小值.23. 已知a,b,c均为正实数,且证明:;答案和解析1.【答案】B【解析】解:由题意可知,集合,或,,故选:利用集合的交集的概念及运算求解即可.本题考查集合的交集的概念及运算,属于基础题.2.【答案】B【解析】解:,,的虚部为,故选项A错误,,故选项B正确,,故选项C错误,z在复平面内对应的点为,在第一象限,故选项D错误,故选:先利用复数的除法运算法则求出z,再结合复数虚部的定义,复数模长的定义,以及共轭复数的定义逐个判断各个选项即可.本题主要考查了复数的四则运算,考查了复数的模长,以及共轭复数的概念,属于基础题.3.【答案】C【解析】解:由,是第三象限的角,可得,故选:将表达式式中的正切化成正余弦,由,求出,即可得到结论.本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力,还要注意条件中的角与待求式中角的差别,注意转化思想的应用.4.【答案】B【解析】解:由题意可知,天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于,余数为0,故100年后天干为癸,由于…4,余数为4,故100年后地支为未,综上,100年后的2123年为癸未年.故选:根据题意,天干和地支的年份分别是以10和12为公差的等差数列,根据等差数列的性质即可求解.本题考查逻辑推理,等差数列的简单应用,属于基础题.5.【答案】B【解析】解:因为,且,所以,,因为,所以,即,由题得双曲线的渐近线方程为,即,又因为双曲线C的一条渐近线方程为,所以,因为所以所以所以k的最小值为,故选:由及得出和,根据求出e 的范围,再根据,求出k的范围,即可求出k的最小值.本题考查双曲线的几何性质,化归转化思想,属中档题.6.【答案】A【解析】解:由题知,6名航天员安排三舱,三舱中每个舱至少一人至多三人,可分两种情况考虑:第一种,分人数为的三组,共有种;第二种,分人数为的三组,共有种;所以不同的安排方法共有种.故选:利用分组和分配的求法求得6名航天员的安排方案,再利用分类加法计数原理即可求得.本题主要考查排列、组合及简单计数问题,属于基础题.7.【答案】D【解析】【分析】本题考查椭圆的性质及正三角形的性质,属于中档题.由椭圆的性质可得的值,再由点O为坐标原点为正三角形可得P点的坐标,将P 的坐标代入可得a,b,c之间的关系,再由椭圆中a,b,c之间的关系求出c的值,进而求出焦距的值.【解答】解:由椭圆的定义可得,①要使点O为坐标原点为正三角形,则存在,,即,将P代入椭圆的方程,②又,③由①②③可得:,即,可得焦距故选8.【答案】B【解析】解:将点代入曲线C:可得,整理得,即,显然此方程无解,即曲线C一定不过点,A 错误;时,易得曲线C是圆心为,半径为的圆,此时原点和圆心之间的距离为,,故原点在圆外,过原点有两条直线与曲线C相切,B正确;时,曲线C:,则,解得,则曲线C表示一个点,C错误;时,曲线C:,圆心在直线上,则直线被曲线C截得弦长即为圆的直径等于2,D错误.故选:直接将点代入曲线C方程,由方程无解即可判断A选项;先由原点到圆心的距离判断出原点在圆外即可判断B选项;代入曲线C解出即可判断C选项;先求出圆心在直线上结合直径即可判断D选项.本题考查了曲线与方程,属于中档题.9.【答案】C【解析】解:函数的定义域为,因为,所以,,所以,所以不是偶函数,A错误;当时,,当时,,若函数的图像关于直线对称,则,又,,矛盾,所以函数的图像不关于直线对称,B错误;时,的值域是,时,的值域是,C正确;时,,有无数个零点,函数在上有无数个零点,D错误.故选:根据偶函数的定义判断A,对给定函数式按及两段化简,结合对称的性质利用反证法判断B,再结合正弦函数的性质,判断C,本题主要考查了函数的奇偶性,对称性的判断,还考查了函数值域及零点个数的求解,属于中档题.10.【答案】B【解析】解:根据杨辉三角的性质,,所以,由题意得:数列的整数项为2,3,7,8,12,13,,其规律为各项之间以,,,,,,,单调递增,因此,数列的奇数项是以5为公差,2为首项的等差数列,偶数项是以5为首项,3为首项的等差数列;即,所以故选:直接利用杨辉三角的性质和对数的运算求出数列的奇数项是以5为公差,2为首项的等差数列,偶数项是以5为首项,3为首项的等差数列,进一步求出结果.本题考查的知识要点:杨辉三角的性质,等差数列的性质,主要考查学生的理解能力和计算能力,属于基础题和易错题.11.【答案】ABD【解析】解:在直四棱柱中中,,,P为中点,点Q满足,,对于A,因为,所以Q,C,三点共线,所以点Q在,因为,平面,平面,所以平面,所以点Q到平面的距离为定值,因为的面积为定值,所以四面体的体积为定值,所以A正确;对于B,取,DC的中点分别为M,N,连接AM,MN,AN,则,因为平面,平面,所以平面,因为,,所以,因为平面,平面,平面,因为,MN,平面AMN,所以平面॥平面,因为平面AMN ,所以AQ平面,所以当时,AQ最小,因为,,所以,,所以,所以Q,M重合,所以AQ的最小值为,所以B正确;对于C,若的外心为M,过M作于H,因为,所以,所以C错误,对于D,过作于点O,因为则可得平面,平面,所以,因为,,平面,所以平面,在,上取点,,使得,则,所以若,则Q在以O为圆心,2为半径的圆弧上运动,因为,所以,则圆弧等于,所以D正确,故选:对于A,由,可得Q,C,三点共线,可得点Q在,而由直四棱柱的性质可得平面,所以点Q到平面的距离为定值,而的面积为定值,从而可进行判断;对于B,取,DC的中点分别为M,N,连接AM,MN,AN,由面面平行的判定定理可得平面平面AMN,从而可得平面,进而可求得AQ的最小值;对于C,由三角形外心的性质和向量数量积的性质可判断;对于D,在,上取点,,使得,可得点Q的轨迹为圆弧,从而可进行判断.本题考查了立体几何的综合运用,属于中档题.12.【答案】D【解析】解:对于A,,,,令,则,所以在单调递减,在上单调递增,且,故,令,,则,所以在上单调递减,且,,,,,,即,故A错误;对于B,,,,令,则,所以在单调递增,在上单调递减,且,故,令,,所以在上单调递减,且,,,,,,即,故B错误;对于C,,,,又在单调递增,,,故C错误;对于D,由C可知,,,又在单调递减,,故D正确.故选:先构造函数,通过函数的单调性确定a,b的大致范围,再构造,通过函数的单调性确定d与的大小关系,进而得到A选项;先构造函数,通过函数的单调性确定c,d的大致范围,再构,通过函数的单调性确定d与的大小关系,进而可知B选项错误;通过,得到,进而可得与d的大小关系,进而可知C选项错误;D与C选项同样的方法即可判断.本题主要考查利用导数研究函数的单调性,考查逻辑推理能力,属于中档题.13.【答案】【解析】解:已知非零向量,满足,又,则,即,则,又,则,则向量,的夹角是,故答案为:由平面向量数量积的运算,结合平面向量夹角的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量夹角的运算,属基础题.14.【答案】132【解析】解:,…,故答案为:由,继而根据展开式的特点求出答案.本题主要考查二项式定理的应用,属于基础题.15.【答案】2025【解析】解:,因为,所以,,,故,由基本不等式得:,当且仅当,即时,等号成立,故,即的最小值为故答案为:先对式子变形得到,由基本不等式求出,从而求出的最小值.本题主要考查了利用基本不等式求最值,属于中档题.16.【答案】【解析】解:当时,,即或,即,当时恒成立,故成立;当时,时,递减,可得,故恒成立;当时,,当时,递增;当时,递减.①当时,在递增,可得,恒成立;②当时,在处取得最小值,当时,,则恒成立;当时,,则不恒成立;故时,则恒成立;当时,在递增,可得,即,此时,,所以;时,递增,,故恒成立.综上可得,a的取值范围是故答案为:对a讨论,分,,,考虑和时,的单调性,求得最值,解不等式,求并集可得所求范围.本题考查分段函数的运用,以及函数恒成立问题解法,考查分类讨论思想和转化思想、运算能力和推理能力,属于难题.17.【答案】解:证明:由题意可得,因为BD为的角平分线,则,在中,,则,同理可得,因此;设,则,因为,即,因为,则,则,,即,可得,,所以,,【解析】结合正弦定理以及角平分线性质即可得到结论,设,则,利用,求出,进而求解结论.本题主要考查正弦定理以及诱导公式在解三角形中的应用,属于基础题目.18.【答案】解:在梯形ABCD中,,,又,,…分…分平面ABCD,平面ABCD,,…分而,平面…分,平面…分由可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示建立空间直角坐标系,令,则,,,,…分,,设为平面MAB的一个法向量,由得取,则,…分是平面FCB的一个法向量,,当时,有最小值,…分点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为【解析】在梯形ABCD中,通过,求出,通过证明,证明,推出平面BCF,即可证明平面由可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示建立空间直角坐标系,求出平面MAB的一个法向量,求出平面FCB的一个法向量,通过向量的数量积,推出平面MAB 与平面FCB所成二面角,然后求解二面角的余弦值.本题考查平面向量的数量积的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.19.【答案】解:因为,所以控制系统中正常工作的元件个数X的可能取值为0,1,2,3;因为每个元件的工作相互独立,且正常工作的概率均为,所以,所以,,,,所以控制系统中正常工作的元件个数X的分布列为:X0123P控制系统中正常工作的元件个数X的数学期望为:,;升级改造后单位时间内产量的分布列为:产量4a0设备运行概率所以升级改造后单位时间内产量的期望为;产品类型高端产品一般产品产量单位:件利润单位:元21设备升级后单位时间内的利润为,即;因为控制系统中元件总数为奇数,若增加2个元件,则第一类:原系统中至少有个元件正常工作,其概率为;第二类:原系统中恰好有k个元件正常工作,新增2个元件中至少有1个正常工作,其概率为;第三类:原系统中有个元件正常工作,新增2个元件全部正常工作,其概率为;所以,则,所以当时,,单调递增,即增加元件个数设备正常工作的概率变大,当时,,即增加元件个数设备正常工作的概率没有变大,又因为,所以当时,设备可以通过增加控制系统中元件的个数来提高利润;当时,设备不可以通过增加控制系统中元件的个数来提高利润.【解析】由题意可知,利用二项分布求解即可求得期望,根据互斥事件的和事件的概率公式求解;先写出升级改造后单位时间内产量的分布列congestion求出设备升级后单位时间内的利润,即为;分类讨论求出与的关系,做差比较大小即可得出结论.本题考查二项分布的概率及期望的求解,离散型随机变量的分布列及概率的最值问题,化归转化思想,属难题.20.【答案】解:设直线PQ与x轴交于S,则,由圆的方程知:圆心,半径,为圆C的切线,,又,∽,,即,解得:,抛物线E的标准方程为:设,,,证明:由知:M为TA中点,且在抛物线E上,即,又,,整理可得:;由知:N为TB中点,且在抛物线E上,同理可得:;,是方程的两根,,,点的纵坐标为,直线TD的斜率为0,即TD垂直于y轴.,,,在圆C上,,,则当时,,【解析】设直线PQ与x轴交于S,由三角形相似关系可得,由此可构造方程求得p的值,从而得到抛物线方程;根据共线向量可知M,N为TA,TB中点,结合点在抛物线上可确定,为方程的两根,由此可得韦达定理的结论;根据D点纵坐标可知TD斜率为零,由此可得结论;由,代入韦达定理,结合点T在圆C上,可化简得到,根据二次函数最值的求法可求得结果.本题考查了抛物线的方程、直线与抛物线的综合问题,考查了圆锥曲线中的最值求解,属于中档题.21.【答案】解:函数的定义域为,则,,令,则,当,即时,恒成立,则,所以在上单调递增,当,即或时,①当时,是开口向上且过的抛物线,对称轴为,函数的两个零点为和,所以在上,单调递增,在上,单调递减,在上,单调递增,②当时,是开口向上且过的抛物线,对称轴为,在上恒成立,所以,单调递增,综上所述,当时,函数在上单调递增,当时,函数在,上单调递增,在上单调递减.由知当时,有两个极值点,,则,是方程,是方程的两个根,所以,,所以,所以恒成立转化为恒成立,令,不等式转化为,所以,所以,即,令,则不等式化为,因为,所以当时,,单调递增,所以,即,令,,所以在上,单调递增,在上,单调递减,所以,所以,即时,实数k取得最小值,所以实数k的最小值为【解析】求导得,,令,则,分两种情况:当,当,分析的符号,的符号,进而可得的单调性.由知当时,有两个极值点,,则,是方程,是方程的两个根,由韦达定理可得,,则,则恒成立转化为恒成立,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.22.【答案】解:曲线C的极坐标方程为,根据,转换为直角坐标方程为;把直线l的参数方程为为参数,,代入方程;得到,整理得,,故,当时,最小值为【解析】直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】证明:因为a,b,c都为正实数,且,,,,当且仅当时,取等号,所以,可得,当且仅当时“=”成立,所以由题意得,当且仅当时取等号,,当且仅当时取等号,,当且仅当时取等号,由①+②+③,得,当且仅当时等号成立.又,当且仅当时等号成立.所以【解析】利用重要不等式结合已知条件,推出结果即可.通过,当且仅当时取等号,,当且仅当时取等号,,当且仅当时取等号,累加,转化求解证明即可.本题考查不等式的证明,综合法的应用,考查转化思想以及计算能力,是中档题.。

高考理科数学江西卷试题与答案word解析版

高考理科数学江西卷试题与答案word解析版
(2)求平面BCP与平面DCP的夹角的余弦值.
20.(2013江西,理20)(本小题满分13分)如图,椭圆C: (a>b>0)经过点P ,离心率e= ,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.
20XX年普通高等学校夏季招题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2013江西,理1)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=( ).
A.-2i B.2i C.-4i D.4i
A.S1<S2<S3 B.S2<S1<S3
C.S2<S3<S1 D.S3<S2<S1
7.(2013江西,理7)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为( ).
A.S=2*i-2B.S=2*i-1
C.S=2*iD.S=2*i+4
8.(2013江西,理8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( ).
A.8 B.9 C.10 D.11
9.(2013江西,理9)过点( ,0)引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于( ).
A. B. C. D.
10.(2013江西,理10)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧 的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图像大致是( ).

2020年普通高等学校招生全国统一考试数学卷(江西.理)含答案

2020年普通高等学校招生全国统一考试数学卷(江西.理)含答案

2020年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( ) A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4 B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C D.直线AH 和1BB 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能111B10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项: 第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为.14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩ ≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范11y围,使OM ON =0,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n n a a a a n n ++++<<+-+.(1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B11.B 12.B 二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()18f x >+得,当102x <<时,解得142x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭.(2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,02y =,所以点P 的坐标为022x π⎛-⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++ 0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =,所以~(30.3)B ξ,, 故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC =⇒=+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为BH =1sin 2BH BCH BC ==∠,故30BCH =∠, 即:所求二面角的大小为30.(3)因为BH =,所以11A 2222211121(12)233222B AAC C AA C C V S BH -==+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量. 因为0OC n =,OC ⊄平面111A B C ,所以OC ∥平面111A B C .(2)(012)AB =--,,,(101)BC =,,, 设()m x y z =,,是平面ABC 的一个法向量,则 则0AB m =,0BC m =得:20y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,. 显然,(110)l =,,为平面11AAC C 的一个法向量.则cos 22m l m l m l===⨯,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.1x方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即211111012λλλλλ-±-=⇒+-=⇒=-,因为01λ<<,所以12λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以12λ=;②当12x x ≠时,221102202211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭ 220001(1)21x x x λλ==+---.所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<, 解得:1223λ<<.由①②知1223λ<≤. 22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k k a k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.。

普通高等学校招生全国统一考试数学理试题(江西卷,含答案)

普通高等学校招生全国统一考试数学理试题(江西卷,含答案)

普通高等学校招生全国统一考试数学理试题(江西卷,含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。

满分150分,考试时间120分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。

3.考试结束,务必将试卷和答题卡一并上交。

参考公式: 锥体体积公式V=13Sh ,其中S 为底面积,h 为高。

第I 卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C.3 D.2 2.下列函数中,与函数定义域相同的函数为 A .y=1sin xB.y=1nx xC.y=xe xD. sin x x3.若函数f(x)= 21,1lg ,1x x x x ⎧+≤⎨>⎩,则f(f(10)=A.lg101B.bC.1D.04.若tan θ+1tan θ=4,则sin2θ= A .15 B. 14 C. 13 D. 125.下列命题中,假命题为A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,n n n n n N C C C ∈+++都是偶数6.观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=A .28B .76C .123D .1997.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222PA PB PC+=A .2B .4C .5D .108.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A .50,0B .30,20C .20,30D .0,50 9.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为A .n m <B .n m >C .n m =D .不能确定10.如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为2012年普通高等学校招生全国统一考试(江西卷) 理科数学第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

2021年江西省高考理科数学真题及参考答案

2021年江西省高考理科数学真题及参考答案

2021年江西省高考理科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.设()()i z z z z 6432+=-++,则=z ()A .i 21-B .i 21+C .i +1D .i-12.已知集合{}Z n n s s S ∈+==,12,{}Z n n t t T ∈+==,14,则=T S ()A .φB .SC .TD .Z3.已知命题p :1sin ,<∈∃x R x ;命题q :1,≥∈∀xe R x ,则下列命题中为真命题的是()A .qp ∧B .q p ∧⌝C .qp ⌝∧D .()q p ∧⌝4.设函数()xxx f +-=11,则下列函数中为奇函数的是()A .()11--x fB .()11+-x f C .()11-+x f D .()11++x f 5.在正方体1111D C B A ABCD -中,P 为11D B 的中点,则直线PB 与1AD 所成的角为()A .2πB .3πC .4πD .6π6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者.则不同的分配方案共有()A .60种B .120种C .240种D .480种7.把函数()x f y =图象上所有点的横坐标缩短到原来的21倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数⎪⎭⎫ ⎝⎛-=4sin πx y 的图象,则()=x f ()A .⎪⎭⎫ ⎝⎛-1272sin πx B .⎪⎭⎫⎝⎛+122sin πx C .⎪⎭⎫ ⎝⎛+122sin πx D .⎪⎭⎫ ⎝⎛-1272sin πx 8.在区间()1,0与()21,中各随机取1个数,则两数之和大于47的概率为()A .97B .3223C .329D .929.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题时测量海岛的高.如图,点G H E ,,在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,成为“表高”,EG 成为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”.则海岛的高=AB ()A .表高表目距的差表距表高+⨯B .表高表目距的差表距表高-⨯C .表距表目距的差表距表高+⨯D .表距表目距的差表距表高-⨯10.设0≠a ,若a x =为函数()()()b x a x a x f --=2的极大值点,则()A .b a <B .b a >C .2a ab <D .2a ab >11.设B 是椭圆C :()012222>>=+b a b y a x 的上顶点,若C 上的任意一点P 都满足b PB 2≤,则C 的离心率的取值范围是()A .⎪⎪⎭⎫⎢⎣⎡122,B .⎪⎭⎫⎢⎣⎡121,C .⎦⎤⎝⎛220,D .⎥⎦⎤ ⎝⎛21.012.设01.1ln 2=a ,02.1ln =b ,104.1-=c ,则()A .c b a <<B .a c b <<C .c a b <<D .ba c <<二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线C :()0122>=-m y m x 的一条渐近线为03=+my x ,则C 的焦距为.14.已知向量()3,1=a,()4,3=b ,若()b b a ⊥-λ,则=λ.15.记ABC ∆的内角C B A ,,的对边分别为c b a ,,,面积为3,︒=60B ,ac c a 322=+,则=b.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号一次为.(写出符合要求的一组答案即可)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别为x ,y ,样本方差分别为21s ,22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果1022221s s x y +≥-,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高.)18.(12分)如图,四棱锥ABCD P -的底面是矩形,⊥PD 底面ABCD ,1==DC PD ,M 为BC 的中点,且AM PB ⊥.(1)求BC ;(2)求二面角B PM A --的正弦值.旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.519.(12分)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212=+nn b S .(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.20.(12分)设函数()()x a x f -=ln ,已知0=x 是函数()x xf y =的极值点.(1)求a ;(2)设函数()()()x xf x f x x g +=,证明:()1<x g .21.(12分)已知抛物线C :()022>=p py x 的焦点为F ,且F 与圆M :()1422=++y x 上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,PB P A ,是C 的两条切线,B A ,是切点,求P AB ∆面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,☉C 的圆心为()12,C ,半径为1.(1)写出☉C 的一个参数方程;(2)过点()14,F 作☉C 的两条切线,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.【选修4-5:不等式选讲】(10分)已知函数()3++-=x a x x f .(1)当1=a 时,求不等式()6≥x f 的解集;(2)若()a x f ->,求a 的取值范围.参考答案一、选择题1.C 解析:设bi a z +=,则bi a z -=,∴()()i bi a z z z z 646432+=+=-++,∴1,1==b a ,∴i z +=1.2.C 解析:当Z k k n ∈=,2时,{}Z k k s s S ∈+==,14;当Z k k n ∈+=,12时,{}Z k k s s S ∈+==,34;∴S T ⊂,∴=T S T .3.A 解析:p 真,q 真,∴选A 4.B解析:()xx f ++-=121关于()11--,中心对称,向右1个单位,向上1个单位后关于()0,0中心对称,∴()11+-=x f y 为奇函数.5.D解析:如图,1PBC ∠为直线PB 与1AD 所成的角的平面角.易知11BC A ∆为正三角形,又P 为11C A 的中点,∴61π=∠PBC .6.C 解析:所求分配方案数为2404425=A C .7.B解析:逆向:⎪⎭⎫ ⎝⎛+=−−−−−−→−⎪⎭⎫ ⎝⎛+=−−→−⎪⎭⎫ ⎝⎛-=1221sin 12sin 4sin 23ππππx y x y x y 倍横坐标变为原来的左移.8.B解析:由题意记()1,0∈x ,()2,1∈y ,题目即求47>+y x 的概率,如下图所示,故322314343211112111=⨯⨯-=⨯⋅-⨯==AN AM S S P ABCD正阴.9.A解析:连接DF 交AB 于M ,则BM AM AB +=.记βα=∠=∠BFM BDM ,,则DF MD MF MBMB =-=-αβtan tan .而EHEDGC FG ==αβtan ,tan .∴ED EH GC MB ED EH FG GC MB MB MB MB -⋅=⎪⎭⎫⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-=-αβαβtan 1tan 1tan tan 故=-⋅=EH GC DFED MB 表目距的差表距表高⨯,∴高=AB 表高表目距的差表距表高+⨯.10.D解析:若0>a ,其图象如图(1),此时,b a <<0;若0<a ,其图象如图(2),此时,0<<a b .综上,2a ab >.11.C 解析:由题意,点()b B ,0.设()00,y x P ,则1220220=+b y a x ,∴⎪⎪⎭⎫⎝⎛-=2202201b y a x .故()2202022202022022220221b a by y b c b by y b y a b y x PB ++--=+-+⎪⎪⎭⎫ ⎝⎛-=-+=,[]b b y ,0-∈.由题意,当b y -=0时,2PB 最大,则b cb -≤-23,∴22c b ≥,∴222c c a ≥-,∴22≤=a c e ,即⎥⎦⎤ ⎝⎛∈22,0e .12.B解析:设()()1211ln ++-+=x x x f ,则()02.0f c b =-.易得()()()xx x x x x x f 211121212211+++-+=+-+='.当0≥x 时,()x x x 21112+≥+=+,故()0≤'x f .∴()x f 在[)∞+,0上单调递减,∴()()0002.0=<f f ,故c b <.再设()()1411ln 2++-+=x x x g ,则()01.0g c a =-,易得()()()xx x x x x x g 4111412412412+++-+⋅=+-+=',当20<≤x 时,x x x x +=++≥+121412,∴()0≥'x g ,故()x g 在[)2,0上单调递增,∴()()0001.0=>g g ,故c a >,综上,b c a >>.二、填空题13.4解析:易知双曲线渐近线方程为x aby ±=,由题意得1,22==b m a ,且一条渐近线方程为x my 3-=,则有0=m (舍去),3=m ,故焦距为42=c .14.53解析:由题意得()0=⋅-b b a λ,即02515=-λ,解得53=λ.15.22解析:343sin 21===∆ac B ac S ABC ,∴4=ac .由余弦定理,823222==-=-+=ac ac ac ac c a b ,∴22=b .16.②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面P AC ⊥平面ABC ,2==PC P A ,5==BC BA ,2=AC .俯视图为⑤;侧视图为③,如图(2),P A ⊥平面ABC ,1=P A ,5==AB AC ,2=BC ,俯视图为④.三、解答题17.解:(1)()0.107.92.101.100.108.99.92.100.103.108.9101=+++++++++=x()3.105.104.105.106.103.101.100.101.104.101.10101=+++++++++=y ,()()()()2222210.100.1020.109.90.108.920.107.9[101-⨯+-+-⨯+-⨯=s ()()()036.0]0.103.100.102.1020.101.10222=-+-⨯+-+,()()()()2222223.104.1023.103.103.101.1033.100.10[101-⨯+-+-⨯+-⨯=s ()()04.0]3.106.103.105.10222=-+-⨯+.(2)由(1)中数据得3.0=-x y ,0304.00076.021022221==+s s .则0304.009.03.0>=显然>-x y 1022221s s +,∴可判断新设备生产产品的该项指标的均值较旧设备有显著提高.18.解:(1)∵⊥PD 底面ABCD ,且矩形ABCD 中,DC AD ⊥,∴以DP DC DA ,,分别为z y x ,,轴正方向,D 为原点建立空间直角坐标系xyz D -.设t BC =,()()()1000,1,20,1,0,0,,,,,,P t M t B t A ⎪⎭⎫⎝⎛∴()1,1,-=t PB ,⎪⎭⎫⎝⎛-=0,1,2t AM .∵AM PB ⊥,∴0122=+-=⋅t AM PB ,∴2=t ,∴2=BC .(2)设平面APM 的一个法向量为()z y x m ,,=,由于()10,2,-=AP ,则⎪⎩⎪⎨⎧=+-=⋅=+-=⋅02202y x AM m z AP m ,令2=x ,得()2,1,2=m.设平面PMB 的一个法向量为()c b a n ,,= ,则⎪⎩⎪⎨⎧=-+=⋅==⋅0202c b a PB n a CB n ,令1=b ,得()1,1,0=n.∴14143273,cos =⨯=⋅=nm n m n m,∴二面角B PM A --的正弦值为14143.19.解:(1)∵n b 为数列{}n S 的前n 项积,∴()21≥=-n b b S n nn 又∵212=+nn b S ,∴2121=+-n n n b b b ,即n n b b 2221=+-,∴()2211≥=--n b b n n ,∵212=+nn b S ,当1=n 时,可得231=b .故{}n b 是以23为首项,12为公差的等差数列.(2)由(1)知()()22121123+=⨯-+=n n b n ,则2222=++n S n ,∴12++=n n S n .当1=b 时,2311==S a .2≥n 时,()111121+-=+-++=-=-n n n n n n S S a n n n .故()⎪⎪⎩⎪⎪⎨⎧≥+-==2111,23n n n n a n ,.20.解:(1)()[]()()x f x x f x x xf '+'='.当0=x 时,()[]()0ln 0==='a f x xf ,∴1=a .(2)由()()x x f -=1ln ,得1<x .当10<<x 时,()()01ln <-=x x f ,()0<x xf ;当0<x 时,()()01ln >-=x x f ,()0<x xf .故即证()()x xf x f x >+,()()01ln 1ln >---+x x x x .令t x =-1(0>t 且1≠t ),t x -=1,即证()0ln 1ln 1>--+-t t t t .令()()t t t t t f ln 1ln 1--+-=,则()()t t t t t t t t t t f ln 1ln 111ln 111=--++-=⎥⎦⎤⎢⎣⎡-+--+-='.∴()t f 在()1,0上单调递减,在()∞+,1上单调递增.故()()01=>f t f ,得证.21.解:(1)焦点⎪⎭⎫ ⎝⎛20p F ,到()1422=++y x 的最短距离为432=+p,∴2=p .(2)抛物线241x y =.设()()()002211,,,y x P y x B y x A ,,,则()1121111121412121y x x x x x y x x x y l P A -=-=+-=:,2221y x x y l PB -=:,且15802020---=y y x .PB P A l l ,都过点()00,y x P ,则⎪⎪⎩⎪⎪⎨⎧-=-=202010102121y x x y y x x y ,故:y x x y l AB -=0021:,即0021y x x y -=.联立⎪⎩⎪⎨⎧=-=y x y x x y 421200得042002=+-y x x x ,∴020164y x -=∆.∴02020020204416441y x x y x x AB -⋅+=-⋅+=,4420020+-=→x y x d AB P ,∴()()230202320020020151221421442121---=-=-⋅-=⋅=→∆y y y x y x y x d AB S AB P P AB而[]3,50--∈y .故当50-=y 时,P AB S ∆达到最大,最大值为520.11(二)选考题22.解:(1)∵☉C 的圆心为()12,C ,半径为1,故☉C 的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,(θ为参数).(2)设切线()14+-=x k y ,即014=+--k y kx ,故1114122=++--k k k ,即212k k +=,∴2214k k +=,解得33±=k .故直线方程为()1433+-=x y ,()1433+--=x y .故两条切线的极坐标方程为1334cos 33sin +-=θθρ或1334cos 33sin ++=θθρ.23.解:(1)当1=a 时,()31++-=x x x f ,即求631≥++-x x 的解集.当1≥x 时,622≥+x ,得2≥x ;当13<<-x 时,64≥,此时没有x 满足条件;当3-≤x 时,622≥--x ,解得4-≤x .综上,解集为(][)∞+-∞-,,24 .(2)()a x f ->min ,而由绝对值的几何意义,即求x 到a 和3-距离的最小值.当x 在a 和3-之间时最小,此时()x f 最小值为3+a ,即a a ->+3.3-≥a 时,032>++a ,得23->a ;当3-<a 时,a a ->--3,此时a 不存在.综上,23->a .。

江西省高考数学试卷(理科)答案与解析

江西省高考数学试卷(理科)答案与解析

2010年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•江西)已知(x+i)(1﹣i)=y,则实数x,y分别为()A.x=﹣1,y=1 B.x=﹣1,y=2 C.x=1,y=1 D.x=1,y=2【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,利用复数相等求出x、y即可.【解答】解:考查复数的乘法运算.可采用展开计算的方法,得(x﹣i2)+(1﹣x)i=y,没有虚部,即,解得:x=1,y=2.故选D.【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.2.(5分)(2010•江西)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1} B.{x|x≥0} C.{x|0≤x≤1} D.∅【考点】交集及其运算.【分析】考查集合的性质与交集以及绝对值不等式运算.常见的解法为计算出集合A、B的最简单形式再运算.【解答】解:由题得:A={x|﹣1≤x≤1},B={y|y≥0},∴A∩B={x|0≤x≤1}.故选C.【点评】在应试中可采用特值检验完成.3.(5分)(2010•江西)不等式||>的解集是()A.(0,2)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,0)∪(0,+∞)【考点】绝对值不等式.【专题】计算题;转化思想.【分析】首先题目求不等式||>的解集,考虑到分析不等式||>含义,即的绝对值大于其本身,故可以得到的值必为负数.解得即可得到答案.【解答】解:分析不等式||>,故的值必为负数.即,解得0<x<2.故选A.【点评】此题主要考查绝对值不等式的化简问题,分析不等式||>的含义是解题的关键,题目计算量小,属于基础题型.4.(5分)(2010•江西)…=()A.B.C.2 D.不存在【考点】极限及其运算;等比数列的前n项和.【专题】计算题.【分析】先求和,由…,得,由此可得…的值.【解答】解:…=,故选B.【点评】考查等比数列求和与极限知识,解题时注意培养计算能力.5.(5分)(2010•江西)等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=()A.26B.29C.212D.215【考点】导数的运算;等比数列的性质.【专题】计算题.【分析】对函数进行求导发现f′(0)在含有x项均取0,再利用等比数列的性质求解即可.【解答】解:考虑到求导中f′(0),含有x项均取0,得:f′(0)=a1a2a3…a8=(a1a8)4=212.故选:C.【点评】本题考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法.6.(5分)(2010•江西)展开式中不含x4项的系数的和为()A.﹣1 B.0 C.1 D.2【考点】二项式定理.【专题】计算题.【分析】采用赋值法,令x=1得:系数和为1,减去x4项系数C8820(﹣1)8=1即为所求【解答】解:中,令x=1得展开式的各项系数和为1的展开式的通项为=令得含x4项的系数为C8820(﹣1)8=1故展开式中不含x4项的系数的和为1﹣1=0故选项为B【点评】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反.7.(5分)(2010•江西)E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=()A.B.C.D.【考点】余弦定理.【专题】计算题.【分析】约定AB=6,AC=BC=,先在△AEC中用余弦定理求得EC,进而在△ECF中利用余弦定理求得cosECF,进而用同角三角函数基本关系求得答案.【解答】解:约定AB=6,AC=BC=,由余弦定理可知cos45°==;解得CE=CF=,再由余弦定理得cos∠ECF==,∴【点评】考查三角函数的计算、解析化应用意识.8.(5分)(2010•江西)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0]B.C.[﹣]D.[﹣,0]【考点】直线与圆的位置关系;点到直线的距离公式;直线和圆的方程的应用.【专题】压轴题.【分析】先求圆心坐标和半径,求出最大弦心距,利用圆心到直线的距离不大于最大弦心距,求出k的范围.【解答】解:解法1:圆心的坐标为(3,2),且圆与x轴相切.当,弦心距最大,由点到直线距离公式得解得k∈;故选A.解法2:数形结合,如图由垂径定理得夹在两直线之间即可,不取+∞,排除B,考虑区间不对称,排除C,利用斜率估值,故选A.【点评】考查直线与圆的位置关系、点到直线距离公式,重点考查数形结合的运用.解法2是一种间接解法,选择题中常用.9.(5分)(2010•江西)给出下列三个命题:①函数与是同一函数;②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(2x)与的图象也关于直线y=x对称;③若奇函数f(x)对定义域内任意x都有f(x)=f(2﹣x),则f(x)为周期函数.其中真命题是()A.①②B.①③C.②③D.②【考点】判断两个函数是否为同一函数;函数的周期性;反函数.【专题】函数的性质及应用.【分析】根据函数的三要素可得①不正确;根据互为反函数的两个函数的图象特征可得②正确;根据奇函数的定义、周期函数的定义可得f(x)是周期为4的周期函数,可得③正确,从而得出结论.【解答】解:对于函数=ln=ln,要求tan∈R,而函数则要求tan>0,故①中2个函数解析式不同,即对应关系不同,而且定义域也不同,故不是同一个函数,故排除A.若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(x)与函数y=g(x)互为反函数,故函数y=f(2x)与也互为反函数,故它们的图象也关于直线y=x对称,故②正确.验证③,f(﹣x)=f[2﹣(﹣x)]=f(2+x),又通过奇函数得f(﹣x)=﹣f(x),∴f(x+2)=﹣f(x),∴f(4+x)=f(x),所以f(x)是周期为4的周期函数,故选:C.【点评】本题考查相同函数、函数对称性的判断、周期性知识,考虑定义域不同,属于基础题.10.(5分)(2010•江西)过正方体ABCD﹣A1B1C1D1的顶点A作直线L,使L与棱AB,AD,AA1所成的角都相等,这样的直线L可以作()A.1条B.2条C.3条D.4条【考点】异面直线及其所成的角.【专题】分类讨论.【分析】直线与直线的所成角为锐角或直角所以要对过点A的直线进行分类,分两类第一类:通过点A位于三条棱之间,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,进行讨论即可.【解答】解:第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条.故选D.【点评】本题主要考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力,属于基础题.11.(5分)(2010•江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为P1和P2.则()A.P1=P2B.P1<P2C.P1>P2D.以上三种情况都有可能【考点】二项分布与n次独立重复试验的模型;等可能事件的概率.【专题】计算题;压轴题.【分析】每箱中抽到劣币的可能性都相等,故可用独立重复试验求解,又因为事件“发现至少一枚劣币”的对立事件是“没有劣币”,概率好求.方法一概率为1﹣0.9910;方法二概率为1﹣()5,做差比较大小即可.【解答】解:方案一:此方案下,每箱中的劣币被选中的概率为,没有发现劣币的概率是0.99,故至少发现一枚劣币的总概率为1﹣0.9910;方案二:此方案下,每箱的劣币被选中的概率为,总事件的概率为1﹣()5,作差得P1﹣P2=()5﹣0.9910,由计算器算得P1﹣P2<0∴P1<P2.故选B【点评】本题考查独立重复试验的概率和对立事件的概率问题,以及利用概率知识解决问题的能力.12.(5分)(2010•江西)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图象大致为()A.B.C.D.【考点】函数的图象.【专题】压轴题;创新题型.【分析】本题利用逐一排除的方法进行判断,结合选项根据最初零时刻和最后终点时刻没有变化,导数取零,以及总面积一直保持增加,没有负的改变量,考虑到导数的意义,判断此时面积改变为突变,产生中断进行判定即可.【解答】解:最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A.故选A.【点评】本题考查函数图象、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2010•江西)已知向量,满足||=1,||=2,与的夹角为60°,则|﹣|=.【考点】向量的模.【专题】计算题;数形结合.【分析】根据题意和根据向量的减法几何意义画出图形,再由余弦定理求出||的长度.【解答】解:如图,由余弦定理得:||===故答案为:.【点评】本题考查的知识点有向量的夹角、向量的模长公式、向量三角形法则和余弦定理等,注意根据向量的减法几何意义画出图形,结合图形解答.14.(4分)(2010•江西)将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有90种(用数字作答).【考点】排列、组合的实际应用.【专题】计算题.【分析】根据分组分配问题的思路,先将5人分成3组,计算可得其分组情况,进而将其分配到三个不同场馆,由排列公式可得其情况种数,由分步计数原理计算可得答案.【解答】解:根据题意,首先将5人分成3组,由分组公式可得,共有=15种不同分组方法,进而将其分配到三个不同场馆,有A33=6种情况,由分步计数原理可得,不同的分配方案有15×6=90种,故答案为90.【点评】本题考查排列组合里分组分配问题,注意一般分析顺序为先分组,再分配.15.(4分)(2010•江西)点A(x0,y0)在双曲线的右支上,若点A到右焦点的距离等于2x0,则x0=2.【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】由题设条件先求出a,b,由此能求出x0的值.【解答】解:a=2.c=6,∴右焦点F(6,0)把A(x0,y0)代入双曲线,得y02=8x02﹣32,∴|AF|=∴.故答案为:2.【点评】本题考查圆锥曲线的基本概念和第二定义的转化,解题时要注意公式的合理运用.16.(4分)(2010•江西)如图,在三棱锥O﹣ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为S3<S2<S1.【考点】棱锥的结构特征.【专题】计算题;压轴题;转化思想.【分析】设OA=a、OB=b、OC=c,取BC的中点D并连结OD、AD,由三角形中线的性质与锥体体积公式,可得截面OAD就是将三棱锥O﹣ABC的体积分成两等分的截面三角形,结合题意得S△OAD=S1.根据OA、OB、OC两两垂直,在Rt△OBC中算出中线OD=,从而算出Rt△AOD的面积S1=.同理求出S2=,S3=.最后根据a>b>c>0比较三个表达式的大小,即可得到S1>S2>S3.【解答】解:设OA=a,OB=b,OC=c,则a>b>c>0.取BC的中点D,连结OD、AD,∵OD是△BCD的BC边上的中线,∴S△OBD=S△OCD=S△OBC,因此V A﹣OBD=V A﹣OCD=V A﹣OBC,即截面OAD将三棱锥O﹣ABC的体积分成两等分,可得S△OAD=S1,∵OA、OB、OC两两垂直,∴OA⊥OB,OB⊥OC且OA⊥OC,∵OB、OC是平面OBC内的相交直线,∴OA⊥平面OBC,结合OD⊂平面OBC,得OA⊥OD.∵Rt△OBC中,OB=b且OC=c,∴斜边BC=,得OD=BC=.因此S△OAD=OA•OD=,即S1=.同理可得S2=,S3=.∵a>b>c>0,∴a2b2+a2c2>a2b2+b2c2>b2c2+a2c2,可得>>,即S1>S2>S3.故答案为:S1>S2>S3【点评】本题给出过同一个顶点三条棱两两垂直的三棱锥,经过这三条棱分别作将三棱锥分成两等分的截面,比较三个截面的大小.着重考查了线面垂直的判定与性质、锥体的体积公式、勾股定理与解直角三角形和不等式的性质等知识,属于中档题.三、解答题(共6小题,满分74分)17.(12分)(2010•江西)已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.【考点】弦切互化;同角三角函数间的基本关系.【专题】综合题.【分析】(1)把m=0代入到f(x)中,然后分别利用同角三角函数间的基本关系、二倍角的正弦、余弦函数公式以及特殊角的三角函数值把f(x)化为一个角的正弦函数,利用x的范围求出此正弦函数角的范围,根据角的范围,利用正弦函数的图象即可得到f(x)的值域;(2)把f(x)的解析式利用二倍角的正弦、余弦函数公式及积化和差公式化简得到关于sin2x 和cos2x的式子,把x换成α,根据tanα的值,利用同角三角函数间的基本关系以及二倍角的正弦函数公式化简求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=中得到关于m的方程,求出m的值即可.【解答】解:(1)当m=0时,=,由已知,得sin(2x﹣)∈[﹣,1],从而得:f(x)的值域为.(2)因为=sin2x+sinxcosx+=+﹣=所以=①当tanα=2,得:,,代入①式,解得m=﹣2.【点评】考查三角函数的化简、三角函数的图象和性质、已知三角函数值求值问题.依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中档题.18.(12分)(2010•江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止.令ξ表示走出迷宫所需的时间.(1)求ξ的分布列;(2)求ξ的数学期望.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题.【分析】(1)若首次到达1号通道,则ξ的取值为1;若首次到达2号通道,再次到达1号通道,则ξ的取值为3;若首次到达2号通道,再次到达3号通道,最后到达1号通道,则ξ的取值为6;同理若首次到达3号通道时,ξ的取值可为4或6,分别求出对应概率即可.(2)利用期望公式代入即可.【解答】解:(1)必须要走到1号门才能走出,ξ(2)可能的取值为1,3,4,6,,,,分布列为:ξ 1 3 4 6P(2)小时.【点评】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查.19.(12分)(2010•江西)设函数f(x)=lnx+ln(2﹣x)+ax(a>0).(1)当a=1时,求f(x)的单调区间.(2)若f(x)在(0,1]上的最大值为,求a的值.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(1)已知a=1,f′(x)=﹣+1,求解f(x)的单调区间,只需令f′(x)>0解出单调增区间,令f′(x)<0解出单调减区间.(2)区间(0,1]上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定量a的值.【解答】解:对函数求导得:,定义域为(0,2)(1)当a=1时,f′(x)=﹣+1,当f′(x)>0,即0<x<时,f(x)为增函数;当f′(x)<0,<x<2时,f(x)为减函数.所以f(x)的单调增区间为(0,),单调减区间为(,2)(2)函数f(x)=lnx+ln(2﹣x)+ax(a>0).因为a>0,x∈(0,1],所以>0,所以函数为单调增函数,(0,1]为单调递增区间.最大值在右端点取到.所以a=.【点评】考查利用导数研究函数的单调性,利用导数处理函数最值等知识.20.(12分)(2010•江西)如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】计算题.【分析】(1)取CD中点O,连OB,OM,延长AM、BO相交于E,根据线面所成角的定义可知∠AEB就是AM与平面BCD所成的角,在三角形AEB中求出此角即可;(2)CE是平面ACM与平面BCD的交线,作BF⊥EC于F,连AF,根据二面角的平面角的定义可知∠AFB就是二面角A﹣EC﹣B的平面角,在三角形AFB中求出此角的正弦值,从而求出二面角的正弦值.【解答】解:(1)取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD.又平面MCD⊥平面BCD,则MO⊥平面BCD,所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E,则∠AEB就是AM与平面BCD所成的角.OB=MO=,MO∥AB,则,,所以,故∠AEB=45°.(2)CE是平面ACM与平面BCD的交线.由(1)知,O是BE的中点,则BCED是菱形.作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A﹣EC﹣B的平面角,设为θ.因为∠BCE=120°,所以∠BCF=60°..所以,所求二面角的正弦值是.【点评】本题主要考查了考查立体图形的空间感、线面角、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力.21.(12分)(2010•江西)设椭圆C2:=1(a>b>0),抛物线C2:x2+by=b2.(1)若C2经过C1的两个焦点,求C1的离心率;(2)设A(0,b),,又M、N为C1与C2不在y轴上的两个交点,若△AMN 的垂心为,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.【考点】椭圆的简单性质;圆锥曲线的综合.【专题】计算题;综合题;压轴题;数形结合;方程思想.【分析】(1)由已知椭圆焦点(c,0)在抛物线上,可得:c2=b2,由a2=b2+c2,求得C1的离心率;(2)由题设可知M、N关于y轴对称,设M(﹣x1,y1),N(x1,y1)(x1>0),由△AMN 的垂心为B,根据三角形的垂心是三条高线的交点,可知,再根据三角形的重心坐标公式求得△QMN的重心,代入抛物线C2:x2+by=b2,即可求得椭圆C和抛物线C2的方程.【解答】解:(1)由已知椭圆焦点(c,0)在抛物线上,可得:c2=b2,由.(2)由题设可知M、N关于y轴对称,设M(﹣x1,y1),N(x1,y1)(x1>0),由△AMN 的垂心为B,有.由点N(x1,y1)在抛物线上,x12+by1=b2,解得:故,得△QMN重心坐标.由重心在抛物线上得:,,又因为M、N在椭圆上得:,椭圆方程为,抛物线方程为x2+2y=4.【点评】此题是个中档题.考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程.考查抛物线的定义和简单的几何性质,特别是问题(2)的设问形式,增加了题目的难度,同时考查了三角的垂心和重心有关性质和公式,综合性强.22.(14分)(2010•江西)证明以下命题:(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.(2)存在无穷多个互不相似的三角形△n,其边长a n,b n,c n为正整数且a n2,b n2,c n2成等差数列.【考点】等比关系的确定;等差关系的确定.【专题】证明题;压轴题.【分析】(1)要证a2,b2,c2成等差数列,考虑到结构即要证a2+c2=2b2,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立.类似勾股数进行拼凑.(2)结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷.【解答】解(1)考虑到结构特征,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立.(2)证明:当a n2,b n2,c n2成等差数列,则b n2﹣a n2=c n2﹣b n2,分解得:(b n+a n)(b n﹣a n)=(c n+b n)(c n﹣b n)选取关于n的一个多项式,4n(n2﹣1)做两种途径的分解4n(n2﹣1)=(2n﹣2)(2n2+2n)=(2n2﹣2n)(2n+2)4n(n2﹣1)对比目标式,构造,由第一问结论得,等差数列成立,考察三角形边长关系,可构成三角形的三边.下证互不相似.任取正整数m,n,若△m,△n相似:则三边对应成比例,由比例的性质得:,与约定不同的值矛盾,故互不相似.【点评】作为压轴题,考查数学综合分析问题的能力以及创新能力.考查学生对等比关系和等差关系确定的能力.。

2022年江西省高考试卷(数学理)全解全析

2022年江西省高考试卷(数学理)全解全析

2022年江西省高考试卷(数学理)全解全析数 学(理 科)全解全析参考公式:假如事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2假如事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式假如事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是( )A .2+iB .-2+iC .2-iD .-2-i【标准答案】 C 【试题分析】22424122(1)2i i i i i i++==+=-+,故选C 。

【高考考点】复数的运算。

【易错提醒】2i =-1是学生容易出错的地点,易不记得负号。

【备考提示】复数是高考经常显现的试题之一,一样显现在选择题或填空题,难度可不能太大。

2.1lim 231--→x x x x ( )A .等于0B .等于lC .等于3D .不存在【标准答案】 B【试题分析】32211limlim 11x x x x x x →→-==-,故选B 。

【高考考点】极限。

【易错提醒】未将分子分解因式,直截了当将x =1代入分母,不存在,错选(D )。

【备考提示】极限也是高考中经常显现的试题之一,有时也会在解答题中显现。

3.若tan(4π一α)=3,则cot α等于 A .-2 B .-21 C .21D .2【标准答案】 A【试题分析】tan(4π一α)=31tan 13tan cot 21tan 2αααα-⇒=⇒=-⇒=-+,故选A 。

【高考考点】三角函数,两角差的正切公式。

【易错提醒】两角差的正切公式与两角和的正切公式混淆。

2023年江西省九所重点中学高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省九所重点中学高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省九所重点中学高考数学第二次联考试卷(理科)1. 已知集合,,则( )A. B. C. D.2. 已知复数z满足,( )A. B. C. D.3. 《周髀算经》中“侧影探日行”一文有记载:“即取竹空,径一寸,长八尺,捕影而视之,空正掩目,而日应空之孔.”意谓:“取竹空这一望筒,当望筒直径d是一寸,筒长l 是八尺时注:一尺等于十寸,从筒中搜捕太阳的边缘观察,则筒的内孔正好覆盖太阳,而太阳的外缘恰好填满竹管的内孔.”如图所示,O为竹空底面圆心,则太阳角的正切值为( )A. B. C. D.4. 已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为在对错误的数据进行更正后,重新求得样本的平均数为,方差为,则( )A. B. C. D.5. 已知抛物线C:的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点.若,则抛物线C的方程是( )A. B. C. D.6. 已知圆C:上的点均满足,则r的最大值为( )A. B. C. D.7. 一袋中有大小相同的3个白球和4个红球,现从中任意取出3个球,记事件A:“3个球中至少有一个白球”,事件B:“3个球中至少有一个红球”,事件C:“3个球中有红球也有白球”,下列结论不正确的是( )A. 事件A与事件B不为互斥事件B. 事件A与事件C不是相互独立事件C. D.8.中,已知的面积为,设D是BC边的中点,且的面积为,则等于( )A. 2B. 4C.D.9. 将边长为4的正方形纸片折成一个三棱锥,使三棱锥的四个面刚好可以组成该正方形纸片,若三棱锥的各顶点都在同一球面上,则该球的表面积为( )A. B. C. D.10. 已知函数在区间上单调,且在区间内恰好取得一次最大值2,记的最小正周期为T,则当取最大值时,的值为( )A. 1B.C.D.11. 已知双曲线C:,若直线l:与双曲线C交于不同的两点P,Q,且P,Q与构成的三角形中有,则t的取值范围是( )A. B.C. D.12. 已知函数,,的定义域均为R,为的导函数.若为偶函数,且,则以下命题错误的是( )A. B. 关于直线对称C. D.13. 在的展开式中,常数项为______请用数字作答14. 定义:,其中为向量与的夹角,若,,,则等于______ .15. 已知某圆锥的侧面积等于底面面积的4倍,直线l是底面所在平面内的一条直线,则该直线l与母线所成的角的余弦值的取值范围为______ .16. 已知函数的导函数满足:,且,当时,恒成立,则实数a的取值范围是______ .17. 已知数列和满足,且满足,,求数列,的通项公式;设数列的前n项和为,求当时,正整数n的最小值.18. 基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,校考过程中笔试通过后才能进入面试环节年有3500名学生报考某试点高校,若报考该试点高校的学生的笔试成绩,且笔试成绩高于70分的学生进入面试环节.从报考该试点高校的学生中随机抽取10人,求这10人中至少有一人进入面试的概率;现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为、、、设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.附:若,则,,,19. 如图,在几何体ABCDE中,,,已知平面平面ACD,平面平面BCE,平面ABC,证明:平面ACD;若,设M为棱BE上的点,且满足,求当几何体ABCDE的体积取最大值时AM与CD所成角的余弦值.20. 设椭圆E的方程为,点O为坐标原点,点A,B的坐标分别为,,点M在线段AB上,满足,直线OM的斜率为求椭圆的方程;若动直线l与椭圆E交于P,Q两点,且恒有,是否存在一个以原点O为圆心的定圆C,使得动直线l始终与定圆C相切?若存在,求圆C的方程,若不存在,请说明理由.21. 已知函数,,其中a为实数,e为自然对数底数,….已知函数,,求实数a取值的集合;已知函数有两个不同极值点、①求实数a的取值范围;②证明:22. 在平面直角坐标系xoy中,圆O的方程为,圆E以为圆心且与圆O 外切.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.求圆E的参数方程与极坐标方程.若射线与圆O交于点A,与圆E交于点B,C,且,求直线BC的斜率.23. 已知正数a,b,c满足求证:若正数m,n满足,求证:答案和解析1.【答案】B【解析】解:集合,,故选:求出集合P,Q,利用交集定义求出本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:,则,故,所以故选:根据已知条件,结合复数的四则运算,以及复数模公式,即可求解.本题主要考查复数的四则运算,以及复数模公式,属于基础题.3.【答案】A【解析】解:如图所示,设,则,所以故选:可设,先根据条件求出,然后利用二倍角公式求出结果.本题考查解三角形知识、三角恒等变换的方法在实际问题中的应用,属于基础题.4.【答案】B【解析】解:设收集的48个准确数据为,,⋯,所以,所以,所以,又,故选:根据数据总和不变,则平均数不变,再结合方差公式,即可求解.本题主要考查方差公式的应用,属于基础题.5.【答案】C【解析】解:过点M作,垂足为点D,点是抛物线C上一点,,①,由题意可得,,,,,解得②,由①②,解得舍去或故抛物线C的方程为过点M作,垂足为点D,由已知可得,由,可得,求解可得抛物线C的方程.本题考查求抛物线的方程,考查转化思想,考查运算求解能力,属中档题.6.【答案】A【解析】解:圆心到直线:的距离,点到直线:的距离,,的最大值为故选:求得圆心C到两直线的距离,可求r的最大值.本题考查直线与圆的位置关系,考查点到直线的距离,属基础题.7.【答案】D【解析】解:根据题意,取出的3个球的可能情况为:3个红球;1个红球2个白球;2个红球1个白球;3个白球.故事件A包含:1个红球2个白球;2个红球1个白球;3个白球,且;事件B包含:1个红球2个白球;2个红球1个白球;3个红球,且;事件C包含:1个红球2个白球;2个红球1个白球,且所以,,,因为,则事件A与事件B不为互斥事件,A选项正确;,故事件A与事件C不是相互独立事件,B正确;,故D错误;,故C正确;根据题意,取出的3个球的可能情况为:3个红球;1个红球2个白球;2个红球1个白球;3个白球,进而依次分析事件A、事件B、事件C,及其概率,再讨论各选项即可得答案.本题考查条件概率,互斥事件,独立事件,属于中档题.8.【答案】A【解析】解:的面积为,,在中,由余弦定理得,,即,当且时,则,此时,不符合题意,,解得,将代入,解得,是BC边的中点,,,故选:利用三角形的面积公式和余弦定理可得,当时不符合题意,则,求出A,利用向量的线性运算可得,即可得出答案.本题考查平面向量数量积的性质和余弦定理,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.9.【答案】C【解析】解:在边长为4的正方形ABCD中,设E、F分别为AB、BC的中点,、、分别沿DE、EF、FD折起,使A,B、C三点重合于点,满足题意,如下图所示:翻折前,,,翻折后,则由,,,将三棱锥补成长方体,其中,,设三棱锥的外接球的半径为R,则,,故该三棱锥的外接球的表面积为故选:作出三棱锥的直观图,将三棱锥补成长方体,可计算出该三棱锥的外接球的半径,结合球体的表面积公式可求得结果.本题考查了三棱锥的外接球的表面积计算,属于中档题.10.【答案】C【解析】解:,函数在区间上单调,且在区间内恰好取得一次最大值2,,解可得,则当取最大值时,的最小正周期,则故选:先结合和差角,辅助角公式对已知函数进行化简,由题意可知,解不等式可求的范围,进而即可求解.本题主要考查了三角函数的图象与性质的应用,解题中要注意性质的灵活应用,属于基础题.11.【答案】B【解析】解:联立直线与双曲线C:,可得,则,即,且,①设,,可得,由P,Q与构成的三角形中有,可得为等腰三角形,且,设PQ的中点为N,则,又PQ的中点N的坐标为,直线MN的斜率为,所以,化为,②,③由①②③解得或,故选:联立直线l的方程与双曲线的方程,运用判别式大于0,结合中点坐标公式求得线段PQ的中点N的坐标,再由题意可得为等腰三角形,由,结合两直线垂直的条件可得k,t的方程,即可得到所求取值范围.本题考查双曲线的方程和性质,以及直线和双曲线的位置关系,考查方程思想和运算能力,属于中档题.12.【答案】C【解析】解:由,,可得,则与为常数,令,则,,则,故关于直线对称,故B正确;为偶函数,,,则为奇函数,故,即,则是以4为周期的周期函数,由,令,则,可得,故,故A正确;由,令,则,即,令,则,即,故,则,由,得,则,由于无法得出的值,故C错误;,故D正确.故选:由已知等式可得,继而得到,即可判断B;由为偶函数可得为奇函数,继而得到是以4为周期的周期函数,即可判断本题考查函数的奇偶性、单调性、周期性以及函数图象的对称性,考查函数的导函数的应用,考查逻辑思维能力与推理论证能力,属难题.13.【答案】60【解析】【分析】考察了二项式定理的应用,考查了学生的运算能力,属于基础题.求出展开式的通项,然后令x的指数为0,进而可以求解.【解答】解:二项式的展开式的通项为,,1,2,,6,令,解得,所以展开式的常数项为,故答案为:14.【答案】6【解析】解:由题意得,,故答案为:根据向量数量积的定义,即可求解.本题考查向量数量积的概念,化归转化思想,属基础题.15.【答案】【解析】解:已知圆锥的侧面积等于底面面积的4倍,设圆锥底面圆半径为r,母线长为,则,解得,直线l与母线所成的最小角为母线与圆锥底面所成角,即;当直线l为DE时,且满足,又底面圆O,底面圆O,所以,,所以平面OAC,平面OAC,所以,即直线l与母线AC垂直,直线l与母线所成的角最大,余弦值为所以直线与与母线所成的角的余弦值的取值范围为故答案为:直线l与母线所成的最小角为母线与圆锥底面所成角,当直线l与一条母线垂直时所成的角最大,即可得解.本题考查了直线与平面所成的角以及异面直线所成的角的问题,属于中档题.16.【答案】【解析】解:设,则,故,则,又因为,即,所以,,所以当时,恒成立,即当时,恒成立,即当时,恒成立,构造,则,令得:,当得:,当得:,故在处取的极小值,也是最小值,所以,即,故,故,实数a的取值范围为故答案为:先构造函数,利用,最终求得,即当时,恒成立,参变分离后使用切线放缩,最后求得a的取值范围.本题考查利用导数研究函数的最值和极值,属于难题.17.【答案】解:已知数列和满足,,,则,,又满足,数列为等比数列,又,,;由可得,又,,又,,即正整数n的最小值为【解析】由题意可知数列为等比数列,结合已知条件求出数列和的通项公式即可;由可得,然后结合等差数列及等比数列的求和公式求解即可.本题考查了等比数列通项公式的求法,重点考查了分组求和及公式法求和,属基础题.18.【答案】解:由题意可知,,则,所以,从报考该试点高校的学生中随机抽取10人,这10人中至少有一人进入面试的概率为由题意可知,随机变量X的可能取值有0、1、2、3、4,则,,,,,所以,随机变量X的分布列如下表所示:X01234P故【解析】计算出试点高校每名学生进入面试的概率,再利用对立事件的概率公式可求得所求事件的概率;分析可知随机变量X的可能取值有0、1、2、3、4,计算出随机变量X在不同取值下的概率,可得出随机变量X的分布列,进一步可求得的值.本题主要考查离散型随机变量的分布列和期望,属于中档题.19.【答案】证明:过点D作,与AC交于点O,平面平面ACD,且两平面的交线为AC,由面面垂直的性质定理可得平面ABC,又平面ABC,,又且,由线面垂直的判断定理可得平面解:过点E作交BC与点N,连接ON,平面平面BCE,且两平面的交线为BC,平面ABC,又平面ABC,,E到平面ABC的距离相等,且,平面ACD,,,,又,令,则,则,当时,,单调递增,当时,,单调递减,据此可知当,即时取得最大值,如图所示,以点O为原点建立空间直角坐标系,则,,,,,因为M为棱BE上的点,且满足,所以,,,设AM与CD所成角为,则,即当几何体ABCDE体积最大时,AM与CD所成角的余弦值为【解析】由题意通过面面垂直的性质得到平面ABC,然后结合线面平行可得,进而根据线面垂直的判定定理即可证明平面ACD;过点E作交BC与点N,连接ON,据此可得四边形ODEN为平行四边形,然后把多面体ABCDE分为两个三棱锥求体积,令,把求体积的最大值转化为求关于x的函数的最大值,利用导数研究其最值,然后以点O为原点建立空间直角坐标系,通过向量法求AM与CD所成角的正切值.本题主要考查线面垂直的证明,锥体体积的相关计算,利用导数求最值的方法,线面角的计算,空间想象能力的培养等知识,属于中等题.20.【答案】解:设点M的坐标为,点M在线段AB上,满足,,,故,,,,解得,椭圆的方程的方程为;当直线斜率不存在时,直线l的方程为,,,此时,当直线l的斜率存在时,设直线l的方程为,设,,原点O到直线l的距离为d,,整理得,由,可得,,,,,,,恒成立,恒成立,,,定圆的方程为当时,存在定圆C与直线l相切,其方程为【解析】设点M的坐标为,由已知可得,,结合已知可得,求解即可;当直线斜率不存在时,直线l的方程为,当直线l的斜率存在时,设直线l的方程为,设,,联立方程可得,,进而由,可求解.本题考查求椭圆的方程,考查求圆的方程,考查运算求解能力,属中档题.21.【答案】解:由,得,当时,为增函数,因为,所以当时,,不合题意;当时,当时,,单调递减,当时,,单调递增,,要使,只需,令,则,当时,,单调递增,当时,,单调递减,,则由,得,,故实数a的取值的集合为;①由已知,,函数有两个不同极值点、有两个零点,若时,则在R上单调递增,在R上至多一个零点,与已知矛盾,舍去,当时,由,得,令,,当时,,单调递增,当时,,单调递减,,,当,,,,故实数a的取值范围;②证明:设由①得,,,,取对数得,令,,则,即,令,则,,在上单调递减,在上单调递增,令,则,在上单调递增,又,时,,即,,,在,上单调递增,,,即,故成立.【解析】求出函数的导数,分类讨论可得函数的单调区间,进而分析可得答案;由已知得有两个零点,分类讨论,结合构造函数可证不等式成立.本题考查导数的综合应用,考查构造函数证明不等式,属难题.22.【答案】解:因为圆E以为圆心且与圆O外切,所以其半径为所以圆E的普通方程为圆E的参数方程为为参数,由,得由,得圆E的极坐标方程为由题意得,所以把代入,得,则,是的两个根,所以,解得,所以,所以,所以直线BC的斜率为【解析】根据直角坐标方程和参数方程与极坐标方程的转化关系即可;根据极坐标方程的几何意义,求出直线BC的倾斜角即可.本题主要考查参数方程,极坐标方程与普通方程的互化,考查极坐标的几何意义,考查运算求解能力,属于中档题.23.【答案】证明:因为a,b,c为正数,所以当且仅当时,取等号,同理可得当且仅当时取等号,当且仅当时取等号,因为正数a,b,c满足,所以当且仅当时取等号;因为正数a,b,c满足,所以,因为正数m,n满足,所以当且仅当时取等号【解析】首先根据题意得到,再利用不等式的性质即可证明;首先根据三个正数均值不等式得到,再根据证明即可.本题考查了不等式的性质和正数均值不等式,属于中档题.。

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。

江西省高考数学试卷理科答案与解析

江西省高考数学试卷理科答案与解析

2008年江西省高考数学试卷理科参考答案与试题解析一、选择题共12小题,每小题5分,满分60分1.5分2008 江西在复平面内,复数z=sin2+icos2对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限考点复数的代数表示法及其几何意义.分析由复数的几何意义作出相应判断.解答解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.点评本题考查的是复数的几何意义,属于基础题.2.5分2008 江西定义集合运算:AB={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合AB的所有元素之和为A.0 B.2 C.3 D.6考点集合的确定性、互异性、无序性.分析根据题意,结合题目的新运算法则,可得集合AB中的元素可能的情况;再由集合元素的互异性,可得集合AB,进而可得答案.解答解:根据题意,设A={1,2},B={0,2},则集合AB中的元素可能为:0、2、0、4,又有集合元素的互异性,则AB={0,2,4},其所有元素之和为6;故选D.点评解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.5分2008 江西若函数y=fx的值域是,则函数的值域是A.B.C.D.考点基本不等式在最值问题中的应用.分析先换元,转化成积定和的值域,利用基本不等式.解答解:令t=fx,则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B点评做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.5分2008 江西=A.B.0 C. D.不存在考点极限及其运算.专题计算题.分析把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.解答解:==,故选A.点评本题考查池函数的极限,解题时要注意计算能力的培养.5.5分2008 江西在数列{a n}中,a1=2,a n+1=a n+ln1+,则a n=A.2+lnn B.2+n﹣1lnn C.2+nlnn D.1+n+lnn考点数列的概念及简单表示法.专题点列、递归数列与数学归纳法.分析把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答解:∵,,…∴=故选:A.点评数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.5分2008 江西函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是A.B.C.D.考点正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.专题压轴题;分类讨论.分析本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.解答解:函数,分段画出函数图象如D图示,故选D.点评准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.5分2008 江西已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是A.0,1 B.0,C.0,D.,1考点椭圆的应用.专题计算题.分析由=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.解答解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.点评本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.5分2008 江西展开式中的常数项为A.1 B.46 C.4245 D.4246考点二项式定理的应用.专题计算题.分析利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.解答解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D点评本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.5分2008 江西若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.考点基本不等式.分析本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.解答解:又∵a1b1+a2b2﹣a1b2+a2b1=a1﹣a2b1﹣a1﹣a2b2=a2﹣a1b2﹣b1>0∴a1b1+a2b2>a1b2+a2b1而1=a1+a2b1+b2=a1b1+a2b1+a1b2+a2b2<2a1b1+a2b2∴解法二:取,,,即可.故选A点评本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.5分2008 江西连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为A.1个B.2个C.3个D.4个考点球面距离及相关计算.专题计算题;综合题.分析根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.解答解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.点评本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.5分2008 江西电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为A.B.C.D.考点等可能事件的概率.专题计算题;压轴题.分析本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.解答解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C点评本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.5分2008 江西已知函数fx=2mx2﹣24﹣mx+1,gx=mx,若对于任一实数x,fx与gx至少有一个为正数,则实数m的取值范围是A.0,2 B.0,8 C.2,8 D.﹣∞,0考点一元二次不等式的应用.专题压轴题.分析当m≤0时,显然不成立;当m>0时,因为f0=1>0,所以仅对对称轴进行讨论即可.解答解:当m≤0时,当x接近+∞时,函数fx=2mx2﹣24﹣mx+1与gx=mx均为负值,显然不成立当x=0时,因f0=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=44﹣m2﹣8m=4m﹣8m﹣2<0即可,即4<m<8则0<m<8故选B.点评本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题共4小题,每小题4分,满分16分13.4分2008 江西直角坐标平面上三点A1,2、B3,﹣2、C9,7,若E、F为线段BC的三等分点,则= 22 .考点平面向量数量积的运算.分析本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.解答解:根据三等分点的坐标公式,得E5,1,F7,4;=4,﹣1,=6,2=4×6﹣2=22,故答案为:22点评看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.4分2008 江西不等式的解集为﹣∞,﹣3∪0,1.考点指数函数的单调性与特殊点;其他不等式的解法.专题计算题.分析≤0x∈﹣∞,﹣3∪0,1解答解:∵,∴,∴,∴∴x∈﹣∞,﹣3∪0,1答案:﹣∞,﹣3∪0,1.点评本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.4分2008 江西过抛物线x2=2pyp>0的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点点A在y轴左侧,则= .考点抛物线的简单性质.专题计算题;压轴题.分析作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣2,整理后两边同除以x B2得关于的一元二次方程,求得的值,进而求得.解答解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A x B=﹣p2,∴x A x B=﹣p2=﹣2=﹣x A2+x B2+2x A x B∴3x A2+3x B2+10x A x B=0两边同除以x B2x B2≠0得32+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣﹣=.故答案为:点评本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.4分2008 江西如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P图2有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD 写出所有真命题的代号.考点棱柱的结构特征.专题综合题;压轴题;探究型.分析设出图1的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.解答解:设图1水的高度h2几何体的高为h1图2中水的体积为b2h1﹣b2h2=b2h1﹣h2,所以b2h2=b2h1﹣h2,所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD点评本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题共6小题,满分74分17.12分2008 江西在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.考点三角形中的几何计算.专题计算题.分析由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sinB﹣C=0,进而求得B,最后由正弦定理即可求得b,c.解答解:由得∴∴∴,又C∈0,π∴,或由2sinBcosC=sinA得2sinBcosC=sinB+C即sinB﹣C=0∴由正弦定理得点评本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.12分2008 江西某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.若实施方案二,预计当年可以使柑桔产量达到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.实施每种方案,第二年与第一年相互独立.令ξi i=1,2表示方案实施两年后柑桔产量达到灾前产量的倍数.1.写出ξ1、ξ2的分布列;2.实施哪种方案,两年后柑桔产量超过灾前产量的概率更大3.不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大考点离散型随机变量及其分布列;离散型随机变量的期望与方差.专题计算题;应用题.分析1根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.2根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.3根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.解答解:1ξ1的所有取值为、、、、ξ2的所有取值为、、、、,ξ1、ξ2的分布列分别为:2令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,PA=+=,PB=+=∴方案二两年后柑桔产量超过灾前产量的概率更大3令ηi表示方案i所带来的效益,则∴Eη1=,Eη2=∴方案一所带来的平均效益更大.点评本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.12分2008 江西数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.1求a n,b n;2求证.考点数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.专题证明题;综合题.分析1设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+n﹣1d,b n=q n﹣1,依题意有,由此可导出a n与b n.2S n=3+5+…+2n+1=nn+2,所以,然后用裂项求和法进行求解.解答解:1设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+n﹣1d,b n=q n﹣1依题意有①由6+dq=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2n﹣1=2n+1,b n=8n﹣12S n=3+5+…+2n+1=nn+2∴==.点评本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.20.12分2008 江西如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.1求证:B1C1⊥平面OAH;2求二面角O﹣A1B1﹣C1的大小.考点直线与平面垂直的判定;与二面角有关的立体几何综合题.专题计算题;证明题;综合题.分析1要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;2作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.解答解:1证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.2作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:1以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH2由已知,设B10,0,z则由与共线得:存在λ∈R有得同理:C10,3,0,∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为3由2知,,B0,0,2,平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.点评本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.12分2008 江西设点Px0,y0在直线x=my≠±m,0<m<1上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.1求证:三点A、M、B共线.2过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.考点直线与圆锥曲线的综合问题.专题计算题;综合题;压轴题;数形结合;转化思想.分析1先根据题意设Ax1,y1,Bx2,y2,将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点Ax1,y1,Bx2,y2都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.2设重心Gx,y,欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程.解答证明:1设Ax1,y1,Bx2,y2,由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=kx﹣x1由得1﹣k2x2﹣2ky1﹣kx1x﹣y1﹣kx12﹣1=0从而△=4k2y1﹣kx12+41﹣k2y1﹣kx12+41﹣k2=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又Pm,y0在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点Ax1,y1,Bx2,y2都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线2垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心Gx,y所以解得由x12﹣y12=1可得即为重心G所在曲线方程点评本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.14分2008 江西已知函数fx=++,x∈0,+∞1当a=8时,求fx的单调区间;2对任意正数a,证明:1<fx<2.考点利用导数研究函数的单调性;不等式的证明.专题函数的性质及应用;不等式的解法及应用.分析1把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.2令,则abx=8①,②,将fx解析式进行放缩,使用基本不等式,可证fx>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将fx解析式进行放缩,可证fx<2;当a+b<7③,将fx解析式进行放缩,再使用基本不等式证明fx<2,结论得证.解答解:1当a=8时,,求得,于是当x∈0,1时,f'x≥0;而当x∈1,+∞时,f'x≤0.即fx在0,1中单调递增,而在1,+∞中单调递减.2对任意给定的a>0,x>0,由,若令,则abx=8①,且②.一先证fx>1:因为,,,又由,得a+b+x≥6.所以==.二再证fx<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.ⅰ当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.ⅱ当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>1+a1+b,即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得fx<2.综上所述,对任何正数a,x,皆有1<fx<2.点评本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.。

2022年江西省高考数学试卷理科真题及参考答案

2022年江西省高考数学试卷理科真题及参考答案

2022年江西省高考数学理科真题及参考答案注意事项1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}5,432,1,,=U ,集合M 满足{}3,1=M C U ,则()A.M∈2 B.M∈3 C.M∉4 D.M∉52.若i z 21-=,且0=++b z a z ,其中a ,b 为实数,则()A.2,1-==b a B.2,1=-=b a C.2,1==b a D.2,1-=-=b a3.已知向量a ,b 1=3=3=-,则=⋅b a ()A.2- B.1- C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111a b +=,212111a a b ++=,32131111a a a b +++=,……,以此类推,其中() 2,1=∈*k Na k .则()A.51b b < B.83b b < C.26b b < D.74b b <5.设F 为抛物线x y C 4:2=的焦点,点A 在C 上,点()0,3B ,若BF AF =,则=AB ()A.2B.22 C.3D.236.执行右图的程序框图,输出的=n ()A.3B.4C.5D.67.在正方体1111D C B A ABCD -,E ,F 分别为AB ,BC 的中点,则()A.平面EF B 1⊥平面1BDDB.平面EF B 1⊥平面BD A 1C.平面EF B 1∥平面AC A 1D.平面EF B 1∥平面DC A 118.已知等比数列{}n a 的前3项和为168,4252=-a a ,则=6a ()A.14B.12C.6D.39.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.31B.21 C.33 D.2210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1p ,2p ,3p ,且0123>>>p p p .记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大D.该棋手在第二盘与丙比赛,p 最大11.双曲线C 的两个焦点1F ,2F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且53cos 21=∠NF F ,则C 的离心率为()A.25 B.23 C.213 D.21712.已知函数()x f ,()x g 的定义域为R ,且()()52=-+x g x f ,()()74=--x f x g .若()x g y =的图象关于直线2=x 对称,()42=g ,则()=∑=221k k f ()A.21-B.22-C.23-D.24-二、填空题:本题共4小题,每小题5分,共20分。

2021年江西高考理科数学试题及答案[1]

2021年江西高考理科数学试题及答案[1]

2021年江西高考理科数学试题及答案[1]2021年普通高等学校招生全国统一考试(江西卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

满分150分,考试时间120分钟。

考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。

3.考试结束,务必将试卷和答题卡一并上交。

参考公式:锥体体积公式V=1Sh,其中S为底面积,h为高。

3第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={-1,1},B={0,2},则集合{z��z=x+y,x∈A,y∈B}中的元素的个数为 A.5 B.4 C.3 D.22.下列函数中,与函数y=1定义域相同的函数为 xB.y=A.y=1sinx1nxxC.y=xexD.sinxxx2 1,x 1,,则f(f(10)= 3.若函数f(x)=lgx,x 1A.lg101B.2C.1D.04.若tan +1=4,则sin2 = tan 11A. B.54C.13D.1 25.下列命题中,假命题为 A.存在四边相等的四边形不是正方形.B.Z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数 C.若x,y∈R,且x+y>2,则x,y至少有一个大于1.D.对于任意n∈N,Cn0+Cn1…+Cnn都是偶数6.观察下列各式:a+b=1 ,a2²+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10= A.28 B.76 C.123 D.199感谢您的阅读,祝您生活愉快。

2020年高考理科数学江西卷(word版含答案)

2020年高考理科数学江西卷(word版含答案)

普通高等学校招生全国统一考试(江西卷)理科数学本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3页至4页。

全卷满分150分,考试时间120分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案的标号。

第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写,若在试题卷上作答,答题无效。

3.考试结束,监考员将试题卷和答题卡一并收回。

参考公式:样本数据()()1122x y x y +++,…,()n n x y +的线性关系数()()ni ix x y y r --=∑ 锥体体积公式V=13Sh 其中 ,n n x x x y y y x y n n 1212++++== 其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若12i z i+=,则复数z -= A. 2i -- B. 2i -+ C. 2i - D. 2i +2.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= A.{}10x x -≤< B..{}01x x <≤C. {}02x x ≤≤D. {}01x x ≤≤3.若()f x =,则()f x 的定义域为A. 1,02⎛⎫- ⎪⎝⎭B. 1,02⎛⎤- ⎥⎝⎦C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()0,+∞ 4.若()224ln f x x x x =--则()f x >0的解集为A .()0,+∞ B. ()()1,02,-⋃+∞C. ()2,+∞D. ()1,0-5.已知数列 ∣n a ∣的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( )A.1B.9C.10D.556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数 ( )A. 2r < 1r <0B. 0<2r < 1rC. 2r <0<1rD. 2r =1r7、观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为( _A 、3125B 、5625C 、0625D 、81258、已知是三个相互平行的平面,平面之间的距离为,平面之前的距离为,直线与分别相交于.那么“”是“”的( )A 、充分不需要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件9. 若曲线:+—2x=0与曲线:y(y+mx -m)=0有四个不同的交点,则实数m 的取值范围是 ( )A. (—,)B. (—,0)∪(0,)123,,ααα12,αα1d 23,a α2d l 123,,ααα123,,P P P 123,,P P P 12d d =1C x 2y 2C 233333333C. [—,]D.( -∞, -)∪(,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008?江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】由复数的几何意义作出相应判断.【解答】解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.【点评】本题考查的是复数的几何意义,属于基础题.2.(5分)(2008?江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6【考点】集合的确定性、互异性、无序性.【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.(5分)(2008?江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.【考点】基本不等式在最值问题中的应用.【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B【点评】做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.(5分)(2008?江西)=()A.B.0 C. D.不存在【考点】极限及其运算.【专题】计算题.【分析】把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.【解答】解:==,故选A.【点评】本题考查池函数的极限,解题时要注意计算能力的培养.5.(5分)(2008?江西)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn【考点】数列的概念及简单表示法.【专题】点列、递归数列与数学归纳法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.【点评】数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n ﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.(5分)(2008?江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.【考点】正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.【专题】压轴题;分类讨论.【分析】本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.【解答】解:函数,分段画出函数图象如D图示,故选D.【点评】准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.(5分)(2008?江西)已知F1、F2是椭圆的两个焦点,满足?=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)【考点】椭圆的应用.【专题】计算题.【分析】由?=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵?=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.(5分)(2008?江西)展开式中的常数项为()A.1 B.46 C.4245 D.4246【考点】二项式定理的应用.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.【解答】解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D【点评】本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.(5分)(2008?江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.【考点】基本不等式.【分析】本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.【解答】解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A【点评】本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.(5分)(2008?江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【考点】球面距离及相关计算.【专题】计算题;综合题.【分析】根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.【解答】解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.【点评】本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.(5分)(2008?江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.【考点】等可能事件的概率.【专题】计算题;压轴题.【分析】本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.【解答】解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C【点评】本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.(5分)(2008?江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f (x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【考点】一元二次不等式的应用.【专题】压轴题.【分析】当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.【点评】本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008?江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则= 22 .【考点】平面向量数量积的运算.【分析】本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.【解答】解:根据三等分点的坐标公式,得E(5,1),F(7,4);=(4,﹣1),=(6,2)=4×6﹣2=22,故答案为:22【点评】看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.(4分)(2008?江西)不等式的解集为(﹣∞,﹣3]∪(0,1] .【考点】指数函数的单调性与特殊点;其他不等式的解法.【专题】计算题.【分析】≤0?x∈(﹣∞,﹣3]∪(0,1]【解答】解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].【点评】本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.(4分)(2008?江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则= .【考点】抛物线的简单性质.【专题】计算题;压轴题.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣()2,整理后两边同除以x B2得关于的一元二次方程,求得的值,进而求得.【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A?x B=﹣p2,∴x A x B=﹣p2=﹣()2=﹣(x A2+x B2+2x A x B)∴3x A2+3x B2+10x A x B=0两边同除以x B2(x B2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣(﹣)=.故答案为:【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.(4分)(2008?江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD (写出所有真命题的代号).【考点】棱柱的结构特征.【专题】综合题;压轴题;探究型.【分析】设出图(1)的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.【解答】解:设图(1)水的高度h2几何体的高为h1图(2)中水的体积为b2h1﹣b2h2=b2(h1﹣h2),所以b2h2=b2(h1﹣h2),所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD【点评】本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题(共6小题,满分74分)17.(12分)(2008?江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.【考点】三角形中的几何计算.【专题】计算题.【分析】由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sin(B﹣C)=0,进而求得B,最后由正弦定理即可求得b,c.【解答】解:由得∴∴∴,又C∈(0,π)∴,或由2sinBcosC=sinA得2sinBcosC=sin(B+C)即sin(B﹣C)=0∴由正弦定理得【点评】本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.(12分)(2008?江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.若实施方案二,预计当年可以使柑桔产量达到灾前的倍、倍、倍的概率分别是、、;第二年可以使柑桔产量为上一年产量的倍、倍的概率分别是、.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;应用题.【分析】(1)根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.(2)根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.(3)根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.【解答】解:(1)ξ1的所有取值为、、、、ξ2的所有取值为、、、、,ξ1、ξ2的分布列分别为:(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,P(A)=+=,P(B)=+=∴方案二两年后柑桔产量超过灾前产量的概率更大(3)令ηi表示方案i所带来的效益,则∴Eη1=,Eη2=∴方案一所带来的平均效益更大.【点评】本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.(12分)(2008?江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求a n,b n;(2)求证.【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.【专题】证明题;综合题.【分析】(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1,依题意有,由此可导出a n与b n.(2)S n=3+5+…+(2n+1)=n(n+2),所以,然后用裂项求和法进行求解.【解答】解:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1依题意有①由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2(n﹣1)=2n+1,b n=8n﹣1(2)S n=3+5+…+(2n+1)=n(n+2)∴==.【点评】本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.(2008?江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、20.(12分)F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.【考点】直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(1)要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;(2)作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.【解答】解:(1)证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.(2)作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:(1)以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH(2)由已知,设B1(0,0,z)则由与共线得:存在λ∈R有得同理:C1(0,3,0),∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为(3)由(2)知,,B(0,0,2),平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12分)(2008?江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.【考点】直线与圆锥曲线的综合问题.【专题】计算题;综合题;压轴题;数形结合;转化思想.【分析】(1)先根据题意设A(x1,y1),B(x2,y2),将切线PA的方程代入双曲线的方程,消去y 得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.(2)设重心G(x,y),欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A 在双曲线上即可得重心G所在曲线方程.【解答】证明:(1)设A(x1,y1),B(x2,y2),由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=k(x﹣x1)由得(1﹣k2)x2﹣2k(y1﹣kx1)x﹣(y1﹣kx1)2﹣1=0从而△=4k2(y1﹣kx1)2+4(1﹣k2)(y1﹣kx1)2+4(1﹣k2)=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又P(m,y0)在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线(2)垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心G(x,y)所以解得由x12﹣y12=1可得即为重心G所在曲线方程【点评】本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.(14分)(2008?江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.【考点】利用导数研究函数的单调性;不等式的证明.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.(2)令,则abx=8①,②,将f(x)解析式进行放缩,使用基本不等式,可证f(x)>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将f(x)解析式进行放缩,可证f(x)<2;当a+b<7③,将f(x)解析式进行放缩,再使用基本不等式证明f(x)<2,结论得证.【解答】解:(1)当a=8时,,求得,于是当x∈(0,1]时,f'(x)≥0;而当x∈[1,+∞)时,f'(x)≤0.即f(x)在(0,1]中单调递增,而在[1,+∞)中单调递减.(2)对任意给定的a>0,x>0,由,若令,则abx=8①,且②.(一)先证f(x)>1:因为,,,又由,得a+b+x≥6.所以==.(二)再证f(x)<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.(ⅰ)当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.(ⅱ)当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>(1+a)(1+b),即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得f(x)<2.综上所述,对任何正数a,x,皆有1<f(x)<2.【点评】本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.。

相关文档
最新文档