解析几何中的最值问题.
解析几何中最值问题的常用方法
分 :zxy y x , 族 丢 平 的 析 =一, = — 作 与 ×行 令 34则 孚 z 一
平行线 。 注意到当直线 与椭 圆相切时 , 线在 Y轴上的截距 一 直 有最值 , z有最值。 即 (x 4 — = 3 一 v. 0 Z
由 I 得
分 : 最 值即 的 大 , 看 析求 小 ,求 最 值而 } 作
两点 A(、)l 10的斜率。 xyB一 ,) 故等价于在椭圆上找一个点 A, 使
它与 B连线斜率最大。 解析 : A 设 B方程为 y k + ) =【 1 x
f= 【 1 y kx ) +
的能力 , 中学数学复 习中不可忽视的问题。下面我结合具体 是
时 ,距离 之和有 最小值 。本题 中点 A B在 l 、 的异筒 ,易得
变式 : 已知圆 C ( 4 + 24 圆 D的圆心 D在 Y轴上且 : + 】 y= , X 与圆 C相 外切 , D与 Y轴交于 A、 圆 B点 , P为 ( 3 0)当 点 一, , 点 D在 Y轴上移动时, _ P 求/A B的最大值 。 _ 答案 : ctn at a
3  ̄2 a 4 = a+ s + s 0,由方程有实数根得△ =Is - x3X4 ≥0, 2) 4 Z S
即s 1 ≥ 2或 S ( )从 而 得 a 一 I= 6 ≤O 舍 , = 4b一 。
当 I HP l P A B取得最大值时, P的坐标是— 点
—
。
提示 : 当点 A B I 、 在 同侧时 , 距寓之差有最大值 ; l 在 异侧
甘肃省张掖市实验 中学
王希明
【 要】 摘 解析几何中的最值问题是历届高考的热点, 如何利用合理的数学方法解决这类问题, 提高学生分析问题和解决问
解析几何中最值问题的求法
=T t _A - X 3 + X 2 c s0 了 ) 当 0 - I 即(- ) 2 / 一 一 / 。 / 2 / o (+, f - x y \ 1 、
,
解 :设 与直 线 3- 3 1 = x 2, 6 O斜 率 相 同 且 与 椭 圆 7Z4 : 8 _ x+  ̄ 2
三 、 用 不 等 式 。 其 是 均 值 不 等 式 求最 值 利 尤
J  ̄AAMB的 面 积 的 最 小值 是 0 -  ̄ 4
。
≥ , 当x0 l = , P 普。 o・ = 时,AJ 即J J 一 . . P A
所 以 距 点 A 最 近 的 点 P的 坐 标 为 ( , )即最 短 距 离 为 。 00,
二、 利用 三 角 函数 , 其 是 正 、 弦 函数 的 有 界 性 。 最 值 尤 余 求
相切的直线z 的方程为3-y£ , x2 : 则由{ +o 7 x
得 l 6+ x
j 2 t 一 y+ =U
例3 知椭圆c 筝+ 1 曰 椭圆中 已 : 孚= , 是过 A 心的 任意弦, f
是 线 段 A 的 垂 直 平 分 线 . 是 与椭 圆 的 交 点 .求 △AMB 的 面 积 的最 小 值 解 : 设 线 段 AB所 在 直 线 的 斜 率 存 在 且 不 为 零 . A 所 假 设 B 在 的 直线 方 程 为 y k ( ≠0 , x ,A , =xk ) A( ^ ) Y
6 £ 2= , 缸十2 8 0 由判 别 式 △= 624 1 ( — 8 = . f± , 直线 3 t x 6t 2 )0 得 = 8 故 - 2 的方 程 为 3 一 忙 8 0 又 - 直 线 3 - y 6 0与 直 线 Z3 - ’ 2 =。 , - x 2 一1 - - :x 2, 一
第八课解析几何中的最值定值对称问题
二轮复习之八解析几何中的最值、定值、对称问题一、最值问题 (1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。
练习:若(,0)A a ,P 为双曲线221169x y -=上一点,若P 为双曲线左顶点时,AP 长度最小,则_____________∈a(2)不等式法例2、已知:21,F F 是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 是椭圆上任一点。
证明:(1)当P 为椭圆短轴端点时,三角形21F PF 面积最大。
(2)当P 为椭圆短轴端点时,21F PF ∠最大。
练习:设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是(3)几何法例题:函数8x 4x 73x 6x y 22+-+++=的最小值为____________。
练习:函数1)4x (25)4x (y 22++-+-=的最大值为M ,最小值为N ,则M -N=_________ 二、定值问题例题:如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹。
练习:在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.三、对称问题 (1)代入法对称例题:已知双曲线C :1222=-y x ,点M (0,1),设P 是双曲线上的点,Q 是点P 关于原点的对称点,记t =的范围求t ,∙练习:曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.(2)解析法对称例题:已知椭圆方程为13422=+y x ,试确定实数m 的取值范围,使得椭圆上有不同的两点关于直线m x y +=4对称。
解析几何最值问题常用求解策略
在评 价过 程 中要 重 视 对 数 学 学 习 过 程 的评 价 .既 要 关 注 学生 知识 与技 能 的理 解 和 掌 握 ,又 要 关 注 他 们 情 感 与 态 度 的 形成 和发 展 : 要 关 注 学 生 学 习数 学 的结 果 , 要 关 注他 们 在 既 又 数学 学 习 过程 中 的 变化 和 发 展 。 多 元 性 的 评 价 包 括 参 与 数 学 活 动 的程 度 、 自信 心 、 作 交 流 的 意 识 、 立 思 考 的 习 惯 、 学 合 独 数 思考 发展 水 平 , 等 。 如 , 否积 极 主 动 地 参 与 学 习 活 动 , 等 例 是 是 否有 学 好 数 学 的信 心 , 否 乐 于 与 他 人 合 作 , 否 愿 意 与 同伴 是 是 交 流 各 自的想 法 .是 否 能够 通 过 独 立 思 考 获 得 解 决 问题 的思 路 , 否 能 找 到 有 效 解 决 问 题 的方 法 , 否 能 够 使 用 数 学 语 言 是 是 有 条 理 地 表 达 自己 的思 考 过 程 .是 否 有 反 思 自 己思 考 过 程 的 意识 , 等 。 等 四 、 展 性 评 价在 数 学教 学 中 的反 思 发 ( ) 展 性 评 价 不 应 是 无 原 则 的表 扬 . 应 是 师 生 在 民 一 发 而 主 气 氛 中 的沟 通 。 些 教 师 经 常 引用 一 理 学 上 的 “ 森 塔 尔 效 应 ” 说 明赞 t L , 罗 来 扬 在 教 育 中 的重 要 性 ,坚 持 认 为 在评 价 时 只 能 表 扬 .不 能 批 评 , 能尽量发现“ 只 闪光 点 ” 不 能 指 出 缺 点 与 不 足 。 这 些 无 原 , 则 的评 价 可 能 会 导 致 学 生 出现 基 础 知 识 不 牢 固 、 念 不 清 晰 、 概 努 力 方 向 不 明 确 等 问题 , 可 能 使 学 生 是 非 不 分 、 恶 不 明 。 也 善 评 价 没 有 起 到 激 励 与 促 进 学 生 发 展 的作 用 ,相 反 却 阻 碍 了学 生 的 发 展 , 价 活 动 的信 度 与 效 度 更 无 从 谈 起 。 展 性 评 价 注 评 发 重 评 价 过 程 中 被 评 价 者 对 评 价 信 息 的建 构 ,鼓 励 被 评 价 者 参 与 评 价 。 倡 自我 评 价 与 他 人 评 价 相结 合 , 在 客 观 上 隐 含 了 提 这 评 价 双 方 平 等 交 流 的 基 本 要 求 。评 价 者 与 被 评 价 者 在 民 主 的 气 氛 中沟 通思 想 、 成共 识 . 展 性 评 价 中 师生 双方 的 参 与 和 达 发 互 动 过 程 实 质 上 就 是 人 际 沟 通 的 过程 。 ( ) 展 性 评 价 不 应 是 多 种 评 价 方 式 、 价 主 体 的 简单 二 发 评 相加 。 评 价 的多 元 性 是 发 展 性 评 价 的一 个 整 体 特 征 ,它 不 意 味 着 每 一 个 具 体 评 价 活 动 都 要 使 用 所 有 的方 法 、调 动 所 有 的主 体。 而且 , 价 的 多 元 方 法 与 多元 主体 的使 用 都 应 当 以保 障评 评 价 结 果 的 信 度 和 效 度 为 前 提 , 价 者 对 评 价 目的 的理 解 、 评 评 对 价 标 准 的 把 握 、 评 价 方 法 的 熟 悉 程 度 等 , 会 影 响 到 评 价 的 对 都
高中数学解析几何中求最值的方法
一、利用圆锥曲线的定义圆锥曲线的定义,是曲线上的动点本质属性的反映。
研究圆锥曲线的最值,利用圆锥曲线的定义,可使问题简化。
例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。
解析:如图所示,由双曲线定义2可知,,所以|MF|=2|MP|。
令,即。
此问题转化为折线AMP的最短问题。
显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。
二、利用几何图形的对称性对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题。
例2、已知点A(2,1),在直线和上分别求B点和C 点,使△ABC的周长最小。
分析:轴对称的几何性质以及两点间的距离以直线段为最短。
解析:先找A(2,1)关于直线、的对称点分别记为和,如图所示,若在、上分别任取点和,则△ABC周长=周长。
故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。
三、利用参数的几何意义利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题。
例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。
分析:若直接利用两点的距离公式,难度较大,通过椭圆定义转化后,利用几何性质可解决问题。
解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是,最小值是。
四、利用代数性质将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,可使问题简单化。
例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。
浅谈高考解析几何中的最值问题
/
图4
转化 为 l A I l F I +4的 P + P 最 小 值 ,再 由 图 2 可 知 l 十 l A I 最 小 值 就 PF 1 的 P
是点 A 到右 焦点 的距离 .
图2
的 距 离 等 于 I B 1 求 椭 圆 上 点 到 点 M 的 距 离 的 最 . M
l Fl P 的最小值 转化 为 I Q l l P 1 + 的最 小 值 , 由 P P 再 图 1知 I PQI I 的最小 值是 点 Q到 准线 的距离 . + I PP
析 由抛物 线定 义知 I Fl 于 点 P 到 准线 的距 P 等 离 I ,P + I FI l QI I P l PP l 1 QI — + ≥3 P P P
一
/ 】 6 - 战
—
。
√2
P
\
图 1
1 6 时 ; 一 ,) ) 一 , 一 A 譬; 当 d (
2 )当 6 一 时 , 一 一 d ; A( ,一 ) .
义 l — I P l 把 I + I , l PF P PQ
M F J B5
—
1 AI P 的最小值 为 多少 ?
思 维 导 引 根 据 双 曲 线
。
A /
的定 义 I l l +4 PF — PF l ,
把 1 + f 的 最 小 值 PF l PA l
为椭 圆 上 , 于 z轴 的上 方 , 位 且 P A上 P 若 M 为 椭 圆长 F,
P( y , z,) 则 一 ( + 6 y z , ),i 一 ( z一4 ,
), APIF _ P,所 以( z+6 ( -4 + 一d ) - ) .
解析几何中最值问题的常用解法
又P (,2 ,由直线 两点方 程得 : 3 )
, .
Y一2
一
一
3
‘。. x 2 o一 2
0—3
设, P 0交 于 点 (t ),代入上 式 得 轴 ,O
一
解: ( )过点P Ⅳ I 作P 垂直直线y一 = 三于点N。依题意得
玉兰
X o一3
2x 0—2
最值 时 ,一 定要 关注 等号 成立 的 条件及 等 号是 否 能够取 得 ,而利
用均 值 不等 式求 最值 ,l 必须 关 注三 个条 件 “ 正、 二定 、三 相 轴 所成 夹 ,角 0 作为 一个 参变 量 ,此 时可 考虑 用 曲线 的参 数方 贝 0 一 应
等 ” ,所 谓 一正 , 即正值 ,这 是运 用 此方 法 的前提 条件 ,在 解题 程 来表 达流动 点 。
出章节 专 门讲授 ,可是 它却 与 中学数 学 中众 多 的知识 和方 法 紧密
解:1 .解 ()己 1 知双曲线实半轴。 4 ,虚半轴6 2 ; - √ ,半 =
相 关 。譬如 : 二次 函数 、不 等式 、 函数 的有 界性 等有 关知 识和 方 z 法 的利 用 。所 以 ,这类 最大 值和 最 小值 问题 就在 高考 数学 的考 查 轴6 中 占有 了 比较重 要 的地位 。再有 ,最 大值 和最 小 值 问题 的另一 个 显 著特 点 是它广 泛 的应 用性 和实 用性 。很 多 实 际问题 的解 决可 以 归 结 为一个 数学 上 的最大 值 或最 小值 问题 的求 解 。所 以这 类实 际 问题 的求解 ,将 有利 于 学生 把实 际 问题抽 象成 数 学 问题 的训练 , = , .所求 的椭 圆方 程为 2 ・ . X
解析几何中最值问题的九种解题策略
解析几何中最值问题的九种解题策略(广东省封开县江口中学 526500) 黎伟初解析几何中涉及最值问题常有求夹角、面积、距离最值或与之相关的一些问题;求直线与圆锥曲线(圆)中几何元素的最值或与之相关的一些问题。
这些问题的处理有九种解题策略。
一.代数策略 解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。
是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科。
因此在处理解析几何中最值问题时,若目标与条件具有明确的互动函数关系时,不妨可考虑建立目标函数,通过函数的单调性、均值不等式、判别式、二次函数的图象等知识点来解决。
1.二次函数法 利用二次函数求最值要注意自变量的 取值范围及对称轴位置,当对称轴位置不确定时,必须进行分类讨论。
例1.若椭圆14922=+y x 上点P 到定 点A (a ,0)(0<a <3)的距离最短是1 ,则实数a 的值是 分析:设椭圆上一点P (3cos θ,2sin θ),()()220sin 2cos 3)(-+-==θθθa f PA ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2254453cos 5a a θ① 当350≤<a 时,因为1530≤<a ,所以 当a 53cos =θ时, 有f (θ)= 1544)53(arccos 2=-=a a f ,得)(35215)(215舍或舍>=-=a a 。
② 当335<<a 时,因为59531<<a ,所以当cos θ=1时,)0()(min min f f =θ1544)531(522=-+-=a a ,得a =2 或a = 4(舍), 综上得a = 2. 2.单调性 若所构造的函数在指定区间上具有单调性时,求最值可用单调性解决,但要注意自变量的取值范围。
例2.已知圆C :(x + 4)2 + y 2= 4, 圆D 的圆心D 在y 轴上且与圆C 相外切,圆D 与y 轴交于A 、B 点,点P 为(–3,0),当点D 在y 轴上移动时,求∠APB 的最大值。
解析几何中的最值问题
的最值。 求: S = x − 2y 的最值。
解:
Y
由 S = x −2y 得
y= 1x− 1S 2 2
O
− 1 s 为直线在 轴上的截距。 为直线在y轴上的截距 轴上的截距。 2 取最小时,S 取最大值。 当 − 1 s 取最小时 取最大值。 2
此时,直线与圆相切。 此时,直线与圆相切。 .
设右准线为 L , 则 L 的方程是 x =
又设 P 到 L 的距离为 PB ,则
4 3
L
B
PF =e PB
P
A
F
PF 2 即 PB = = PF e 3
B1 P1
2 ∴ PA + PF = PA + PB 3 当且仅当 A、P、B共线时, + PB 最小。 共线时, PA 最小。
X=
4 3
4 8 此 小 为 − = 最 值 4 3 3
小 结
代数方法讨论几何问题是解析几何的特点和手段 讨论几何问题是解析几何的特点和手段。 1 用代数方法讨论几何问题是解析几何的特点和手段。 对于解析几何中的极值问题的解决 首先应注意函数方法 参数法)的运用, 函数方法( 首先应注意函数方法(参数法)的运用, 将所求对象表示成某个变量的函数, 将所求对象表示成某个变量的函数, 利用代数方法来解决。 利用代数方法来解决。
X
圆心(1、-2)到直线的距离等于 5 圆心( 、 )
− 1s 2
1 + 2 − S 2 2 = 5 4
5
⇒
S最小值 = 0
S最大值 = 10
例4、已知:实数 x、y 满足 (x − 1) + (y + 2) = 5 。 、已知: 、
高中数学解题方法系列:解析几何中常见的最值求法
高中数学解题方法系列:解析几何中常见的最值求法最值问题是数学高考的热点,也是解析几何综合问题的重要内容之一。
圆锥曲线的最值问题几乎是高考的必考点,它融解析几何、函数、不等式等知识为一体,是综合试题考查的核心,对解题者有着相当高的能力要求,但其解法仍然有章可循,有法可依。
解析几何求最值常见类型之一是直接根据题意,利用几何关系或代数特征的几何意义求最值。
另一种类型是先根据条件列出所求目标的函数关系式,转化为前一类型或根据函数关系式的特征选用函数法、不等式法等求出它的最值。
本文从几个例子介绍解析几何最值问题的几种常见类型和方法。
一、结合“几何意义”求最值(一)两线段距离的最值问题这是圆锥曲线最值问题的基本方法,根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等问题来解。
例如:已知点F1,F2是双曲线的左右焦点,点A(1,4),P是双曲线右支上动点,则│PF1│+│PA│的最小值是多少。
解析:根据双曲线的定义,建立点A,P与两焦点之间的关系,发现两点之间线段最短。
即│PF1│+│PA│=│PF1│-│PF2│+│PA│+│PF2│=2a+│PA│+│PF2│≥4+│AF2│=9。
(二)特定代数式的最值问题因为一些数学概念如斜率、截距、两点距离等有特别的代数结构特征,可以根据这些表达式特征把所求的最值转化为平面上两点之间的距离、直线的截距或直线的斜率等问题来解。
例如:已知实数x,y满足方程x2-6x+y2+6=0。
求①的最大值;②y-x最小值;③x2+(y+2)2的最小值。
解析:①因为的几何意义是圆x2-6x+y2+6=0上的点(x,y)与定点(-1,0)连线的斜率,由数形结合算得最大值为。
②令y-x=b的几何意义是与圆x2-6x+y2+6=0有交点的平行直线系y=x+b在y轴上的截距,数形结合算得最小值为-3-。
③x2+(y+2)2的几何意义是圆x2-6x+y2+6=0上的点到定点(0,-2)的距离,数形结合算得最小值是-。
高中数学期末备考:解析几何03圆中最值问题含解析
3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。
解析几何中的一些最值问题
OCCUPATION2011 7162解析几何中的一些最值问题文/王海滔最值问题遍及中学数学的代数、三角、立体几何及解析几何等学科内的各个分支,在生产实践当中广泛应用,解析几何中的最值问题也是历届各类考试的热点。
如何利用相关的数学方法,运用数形结合的思想解决这类问题,来提高学生分析问题和解决问题的能力,为进一步学好高等数学中的最值问题打下基础,是中学数学复习中不可忽视的问题。
下面,笔者结合具体的例子,对解析几何中的最值问题介绍几种解答方法。
一、利用对称性求最值(动点在直线上)动点在直线上求最值,解决的办法是把折线问题转化成直线问题,利用平面内两点间直线段最短的公理,或利用两点间距离公式求出线段长的最值。
【例1】已知点P 在x 轴上运动,A (-2,2),B (1,3)(1)则│P A │+│PB │的最小值为多少?分析:作出A 点关于x 轴的对称点A'(-2,2),那么│P A │+│PB │=│P A'│+│PB │,利用三角形两边之和大于第三边,可得:│P A'│+│PB │≥│A'B │,当且仅当A',P ,B 三点共线时取得最小值│A'B(2)则│PB │-│P A 分析:此题不用找对称点,利用三角形两边之差小于第三边,只要延长BA 交x 轴于P ,│PB │-│PA │此时得到的最大值为│BA小结:当动点在直线上时,(1)求线段长之和的最小值时,若定点是异侧,则两定点距离即为最小值。
若是同侧,作对称点即可解决。
(2)求线段长之差的最大值时,若定点是同侧,则两定点距离即为最大值。
若是异侧,就利用对称性,转化到同侧,也可解决。
二、利用圆锥曲线的定义求最值(动点在圆锥曲线上)动点在圆锥曲线上求最值,解决方法是先利用圆锥曲线定义对所求的问题进行转化,再利用平面内两点间直线段最短的公理,或利用点到直线的距离为垂线段最短,求出最值。
【例2】已知F 是抛物线y 2=4x 的焦点,A (4,2),点P 是该抛物线上的一个动点,试求│PF │+│P A │的最小值为______。
立体几何解析几何最值问题
立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。
在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。
在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。
解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。
解析几何中最值问题的解决方法通常是通过求导来进行。
我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。
这种方法在求解平面最值问题时非常有效。
而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。
解决这类问题可以利用几何性质和定理来进行推导和求解。
比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。
具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。
例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。
2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。
例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。
3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。
例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。
总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。
解析几何中的最值问题
x6 是动点(x, y)与 定点(6,12)两点连 线的斜率
x y 36 (x 0)
2 2
y
P(6,12)
o
A(0,6)
x
解法小结:数形结合法
y 12 1 、 已知实数x, y满足 x 36 y 0, 则 3 x6 6 4 的最大值为 _______, 2 x y的最大值为 ________ 。
x
x y 例3.设实数x,y满足 1 16 9 12 2 , 则3x 4 y的最大值是 ______
12 2 . 最小值是 _______
2
2
y
O
x
解1 :换元法。 设x 4 cos , y 3 sin , 则
知识迁移
若将椭圆换成 双曲线、抛物线 又如何进行换元 呢?
3x 4 y 12(cos sin )
方法:数形结合法
Q1
| AF 1 | 16
7,
.
Y
.
F
O
. .
A
| QF | 。
X
F1
总结规律:延长线段AF1(F1为另一焦点)与 椭圆的交点Q就是所求的点。AQ过另一焦点F1!
Q
例3备
知识迁移
x2 y2 1的右焦点,P是其上一点,定点B(2,1). 变 F是 25 9 17 式 5 | PB | | PQ | 4 题 则 | PB | | PF | 的最小值 _______; 4 37 10 37 最大值 10 | PB | | PF | 的最小值 ________, _______
几何法、换元法
3 表示点P (cos , sin )与A( ,2)连线斜率的一半. 2 3 2 2 即圆x y 1上点与A( ,2)连线斜率的一半. 2 y A 3 设切线方程y 2 k ( x ), 2 圆心O(0,0)到切线的距离等于半径1 可解得 k 12 2 21 , k 12 2 21 O 5 5 x
解析几何最值问题的解法
解析几何最值问题的解法上海市松江一中 陆珲解析几何的最值问题是高中数学的难点和重点,也是数学竞赛和高考的常见题型。
由于高中解析集合研究的都是二次曲线,所以通常情况下,解此类问题的方法和解函数中的求最值问题方法类似,常用下面几种方法:1、化为二次函数,求二次函数的最值;2、化为一元二次方程,利用△;3、利用不等式;4、利用函数的单调性和有界性;5、利用几何法。
在解此类问题时,以上方法也可能会混合运用。
同时,恰当利用解析几何中二次曲线定义和性质,或利用参数方程,或建立适当的坐标系,也可以简化问题,方便解题。
例题1:如图已知P 点在圆22(4)1x y +-=上移动,Q 点在椭圆2219x y +=上移动,求||PQ 的最大值。
[分析:如图先让Q 点在椭圆上固定,显然PQ 通过圆心1O 时||PQ 最大,因此要||PQ 的最大值,只要求1||OQ 的最大值。
]解:设Q 点坐标(,)x y ,则2221||(4)OQ x y =+- ①,因Q 点在椭圆上,故2219x y += ②把②代入①得222211||9(1)(4)8()272O Q y y y =-+-=-++Q 点在椭圆上移动,11y ∴-≤≤ 12y ∴=-时,1min ||OQ =min ||1PQ ∴=说明:此解法就是典型的运用化为二次函数,通过求二次函数的最值来解决问题。
但是在利用二次函数求最值时,不能机械地套用最值在顶点处取得的模式,首先要求出定义域,然后再看顶点是否在定义域内,若在,则可套用,若不在,则要按二次函数在其定义域内的单调性来判定。
例题2:如图,定长为3的线段AB 的两端在抛物线2y x =上移动,且线段中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。
[分析:点M 到y 轴的最短距离,即求点M 横坐标的最小值。
] 解法一:化为一元二次方程,利用△设1122(,),(,),(,)A x y B x y M x y 则121221122222121222()()9x x x y y y y x y x x x y y ⎧+=⎪+=⎪⎪=⎨⎪=⎪⎪-+-=⎩ ③④代入⑤,整理得221212()()19y y y y ⎡⎤-++=⎣⎦,即222121212(2)()19y y y y y y ⎡⎤+-++=⎣⎦ ⑥由①③④得2212122y y x x x +=+= ⑦21212()22y y y y x +-=②代入上式得212242y y y x =- ⑧②⑦⑧代入⑥并整理得4216(416)940y x y x +-+-= ⑨y R ∈ ,∴△2(416)64(94)0x x =---≥,即(45)(47)0x x -+≥① ② ③ ④ ⑤5470,4x x +>∴≥ ,将54x =代入⑨得2y =±所以AB 中点M 到y 轴的最短距离是54,相应的点M 的坐标为5(,42或5(,)42- 说明:此类解法是学生比较容易掌握的方法,解题时将未知的元素都进行适当的假设,并通过已知条件找出它们与解题目标的关系并化为一元二次方程,利用△计算。
解析几何中的最值问题的求解
解析几何中的最值问题的求解摘要:解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求.因此,这类最值问题成为了数学高考中的热点和难点.关键词:解析几何圆锥曲线函数不等式1 利用二次函数二函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数、三角函数等,但要特别注意函数自变量的取值范围。
例如:已知P点在圆上移动,Q点在椭圆上移动,试求|PQ|的最大值。
本题中P、Q两个都是动点,不易看出P、Q在什么位置时|PQ|最大?所以先让Q点固定,当PQ通过圆心O时|PQ|此时最大,因此要求|PQ|的最大值,转化为先要求出的最大值.本题还可以应用椭圆的参数方程求解,设Q点坐标为,则可表示为θ的函数,即==,而,所以当且仅当时,的最大值27,即的最大值为,解法更简洁.2 利用圆锥曲线的定义利用圆锥曲线的定义求最值是比较常见的方法,深刻理解两个定义结合三角形相关结论进行线段间的转化是解题的关键。
例如:已知椭圆, A(4,0),B(2,2)是椭圆内的两点,P是椭圆上任一点,求:(1)求|的最小值和最大值.(2)求的最小值.本题中(1)设C为椭圆的左焦点, 由椭圆的第一定义,知|PA|=2a-|PC|∴|PA|+|PB|=2a-|PC|+|PB|=10+(|PB| -|PC|)根据三角形的性质:两边之差的绝对值小于第三边,当P运动到与B、C成一条直线时,取得最大和最小值.即-|BC|≤|PB| -|PC|≤|BC|.当P到P′位置时,|PB| -|PC|=|BC|,|PA|+|PB|有最大值,最大值为10+|BC|=;当P到P”位置时,|PB| -|PC|=-|BC|,|PA|+|PB|有最小值,最小值为10-|BC|=.另外(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的(如图1)。
高考数学常见解析几何中的一些最值问题
关于最值——常见解析几何中的一些最值问题摘要:有关解析几何中的最值问题,在中学数学中较为常见,相对高中数学的其他分科如代数、立体几何、三角中的最值问题,它亦占据了相当的比重,以下将从具体的实例出发,分析并介绍几种比较典型的解题方法,找出一般的解题程序与技巧。
关键词:最值;函数解析式;二次函数;自变量;已知量引言:中学数学的最值问题遍及代数、三角、立体几何及解析几何各学科中,在生产实践当中也有广泛的应用,也是历届各类考试的热点。
学习如何利用一定的数学方法来解决这类问题,能够提高分析问题和解决问题的能力,也是进一步为学习高等数学中的最值问题打下基础。
下面将针对解析几何中的最值问题,作出几种具体分类讨论:一、利用二次函数的知识求最值关于二次函数: y=ax 2+bx+c (a≠0),x ∈R当x=-ab 2时,y=a b ac 442-为最值。
当a>0时,有y min当a<0时,有y max但通常二次函数有相应的定义域,自变量x 的具体取值X 围有所不同,讨论最值的方式也有所不同。
主要有两种情况:1、x ∈R ,当a>0,则有y min =ab ac 442- 当a<0,则有y max =ab ac 442- 2、当x 定义在闭区间,即x ∈[a ,b](a,b 为常数),则应当看对称轴x=-ab 2 是否在此区间,如果x 在此区间,则函数同时有最大值与最小值,如果x 不在此区间,则函数的最大值与最小值必定分别取在该区间两个端点上(具体由函数单调性决定)。
当x 定义在一个含参数的闭区间即∈x [t, t+a](t 为参数,a 为常数)时,需要对参数进行讨论。
例1.1 已知二次函数y=x 2-x 2sec α+αα2cos 22sin 2+(α为参数,cos α≠0) ①求证此抛物线系的顶点轨迹为双曲线。
②求抛物线y=x 2+2x+6到上述双曲线的渐近线的最短距离。
分析:由于该二次函数y 的定义域为R ,所以这道题应归结于上述类别1。
专题05 解析几何中的最值问题-高考数学二轮复习之大题 (原卷版)
第五篇 解析几何专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P 332),O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14.(1)求椭圆C 的标准方程;(2)若3OM AOB 面积的最大值.变式1-1.已知椭圆221221x y C a b +=:的焦距为2,且过点(2P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点.(1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>615⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率2e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.变式2-1.已知曲线C 上任意一点(),P x y 2222(3)(3)2x y x y ++-+=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.变式2-2.已知椭圆2222:1(0)x y C a b a b+=>>过点(0,1)P ,椭圆上的任意一点到焦点距离的最小值为23.(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4.(1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2.(1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F 是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程;(2)求△ABP 面积的最大值.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上. (1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ;②求MAB △面积的最小值.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点.(1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值.练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程; (2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.8.已知抛物线()2:20C y px p =>的焦点为F ,A ,B 是该抛物线上不重合的两个动点,O 为坐标原点,当A 点的横坐标为4时,3cos 5OFA ∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.。
解析几何最值问题
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中的最值问题
解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。
解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。
本文通过实例,就这类问题的解法归纳如下:
一、 转化法
例1、 点Q 在椭圆
22
147
x y +=上,则点Q 到直线32160x y --=的距
离的最大值为 ( )
A
B
C
D
分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。
解:设椭圆的切线方程为
3
2
y x b
=+,与
22
147
x y +=消去y 得
224370x bx b ++-=由∆=01272=+-b 可得4(4)b b ==-舍去,与
32160x y --=平行且距离远的切线方程为3280x y -+=
所以所求最大值为d =
=
,故选C 二 、配方法
例2、 在椭圆
22
221x y a b
+=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。
解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与
22
221x y a b
+=消去
y 得: 22b S x a
=⋅=
可知当x a =
时,max 2S ab =
三、 基本不等式法
例3、 设21,F F 是椭圆14
22
=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF •的最大值是 解:
124PF PF +=
由12PF PF +≥得
44
)(2
2121=+≤
•PF PF PF PF
即21PF PF •的最大值是4 。
四、 利用圆锥曲线的统一定义
例4 、设点A (-,P
为椭圆22
11612
x y +=的右焦点,点
M 在椭
圆上,当取2AM PM +最小值时,点M 的坐标为 ( )
A
(-
B (-
C
D
解:由已知得椭圆的离心率为1
2
e =
,
过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得
2MN PM =
2AM PM AM MN ∴+=+
当点M 运动到过A 垂直于L 的直线上时, AM
MN +的值最小,此时点M
的坐标为,故选
C
五、 利用平面几何知识
例5 、平面上有两点(1,0),(1,0)A B -,在圆22
(3)(4)4x y -+-=上取一点
P ,求使22
AP BP +取最小值时点P 的坐标。
解:知PAB ∆中,PO 为中线,由平面几何知识得:
2
2
2
2
2
2222AP
BP
OP
OB
OP
+=+=+
故当OP 最小时,22
AP BP +也同时达到最小。
点O 与圆心(3,4)的连线与圆的交点的坐标为所求点P 的坐标。
由43
y x =
和22(3)(4)4x y -+-=,结合题意得
95
x =
,125
y
=
,点P
的坐标为912(,)5
5。
六 、参数法
例6 、已知椭圆
E :22
(1)143
x y -+=,F 为其右焦点,直线L 过坐标
原点且与椭圆E 交于A ,B 两点,连接FA ,FB ,求FA FB •的最大值。
解:22
4,31a b c ==∴=,左焦点即为坐标原点。
由椭圆定义知24OA FA OB FB a +=+==
(2)(2)164FA FB a OA a OB AB OA OB ∴•=--=-+•
设直线L 的参数方程为cos x t θ=和sin y t θ=(t 为参数) 代入椭圆方程,整理得
2(3sin )6cos 90t t θθ+-•-=
由t 的几何意义知:
212
3sin A B AB t t θ
=-=
=+
2
3925
164163sin 4
A B A B FA FB t t t t θ∴•=--+•=-
≤+ 即FA FB •的最大值为25
4。