高铁无砟轨道精调精测ppt

合集下载

高铁轨道精调课件

高铁轨道精调课件
自动化检测设备
采用自动化检测设备对轨道进行全面、快速、准确的检测,为精 调提供可靠的数据支持。
机器人技术应用
利用机器人技术进行轨道精调作业,减轻人工劳动强度,提高作 业安全性和效率。
行业标准更新与提升
精调标准不断完善
随着高铁技术的不断发展,轨道精调标准也在不 断完善,对精调作业的要求越来越高。
标准化作业流程
的调整和完善。
04 高铁轨道精调注意事项
安全防护措施
01
02
03
04
严格遵守安全操作规程, 确保施工人员人身安全。
设立明显的安全警示标 志,划定安全作业区域。
配备齐全的安全防护设 施,如安全帽、安全带、 防护网等。
定期对施工人员进行安 全教育和培训,提高安 全意识。
质量控制标准
01
02
03
04
调整策略及实施步骤
调整策略
根据测量结果和误差分析,制定 针对性的轨道调整策略,包括调 整量、调整方式和调整顺序等。
实施步骤
按照调整策略,采用专业的调整 工具和设备,对轨道进行精细调 整,确保轨道几何尺寸和平顺性
满足设计要求。
复查验收
在轨道精调完成后,进行复查验 收,检查轨道几何尺寸和平顺性 是否达到设计要求,并进行必要
合理安排施工时间和进度,降低噪音、 振动等对周边居民的影响。
加强施工现场环境管理,保持现场整 洁卫生。
05 高铁轨道精调案例分析
案例一:某高铁线路轨道精调实践
线路概况
介绍某高铁线路的基本情况, 包括线路长度、设计速度、轨
道类型等。
精调方案
详细介绍针对该线路问题制定 的轨道精调方案,包括测量方 案、调整方法、作业流程等。

高铁无砟轨道精调精测64页PPT

高铁无砟轨道精调精测64页PPT
高铁无砟轨道精调精测ห้องสมุดไป่ตู้
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

高铁轨道精调课件课件

高铁轨道精调课件课件

26
中铁十七局集团有限公司
二、轨道精调准备 2.4机具配置
27
中铁十七局集团有限公司
二、轨道精调准备 绝对测量小车
28
中铁十七局集团有限公司
二、轨道精调准备
(1)绝对测量小车: 国外:安博格、天宝; 国内:日月明、南方、普罗米新、。。。
29
中铁十七局集团有限公司
二、轨道精调准备
20
中铁十七局集团有限公司
二、轨道精调准备 2.1组织机构
21
中铁十七局集团有限公司
二、轨道精调准备
2.2工序转换前的验收 为保证轨道精调有序的,高质量的进行,避免
没必要的返工,各工序衔接处必须建立交接验收制 度,并严格执行。 2.2.1道床基础状态检查
(1)轨道板复测,预调整。
(2)相对测量小车: 快速找到病害位置。
30
中铁十七局集团有限公司
二、轨道精调准备
(3)轨距尺:轨距尺要求0级道尺,测量精度 (轨距 ±0.2mm,水平±0.3mm)
利用其自动记录等功能。
31
中铁十七局集团有限公司
二、轨道精调准备
(4)内燃机扳手:扭力矩达到扣件的设计要 求(对于小阻力扣件与常阻力扣件要求是否一 致),能够显示扭力矩,螺栓头与相应轨枕螺 栓配套。
12
中铁十七局集团有限公司
一、概述
(2)高低:指钢轨顶面纵向起伏变化。惯性基准 原理测量,得到高低变化的空间曲线,再计算出 不同波长的弦测值。
(3)轨向:
动检高低示意图
13
动检轨向示意图
中铁十七局集团有限公司
一、概述
(4)轨道质量指数(TQI) 轨道质量指数(TQI)为:200 m 单元区段内高低

高速铁路无砟轨道优秀PPT完整PPT

高速铁路无砟轨道优秀PPT完整PPT
300km/h时,通过总重达 3亿吨后道砟就需全部更换。
砟CR(TSzhⅡǎ)型:板岩式轨石轨、道承煤铺等设重的流碎程的片图。作用,防止铁轨因压力太大而下陷到泥土里。 此外,路砟小碎石还有几个作用:减少噪音、吸热、减 这些力学性质绝然不同的材料承受来自列车车轮的作用力,它们的工作是紧密相关的。
高速铁路轨道结构主要类型:有砟轨道和无砟轨道。
旭普林型无砟轨道
二 无砟轨道的定义、结构及分类
博格板式轨道
二 无砟轨道的定义、结构及分类
国内高速铁路常用的有: ➢ CRTSⅠ、Ⅱ、Ⅲ型板式无砟轨道 ➢ CRTSⅠ、Ⅱ型双块式无砟轨道 ➢ 道岔区轨枕埋入式无砟轨道
高速铁路无砟轨道
主要内容
一 高速铁路轨道技术综述 二 无砟轨道的定义、结构及分类 三 无砟轨道系统设计的关键技术 四 无砟轨道的施工
一 高速铁路轨道技术综述
高速铁路轨道结构和普通铁路轨道结构一样, 由钢轨、轨枕、扣件、道床、道岔等部分组 成。这些力学性质绝然不同的材料承受来自 列车车轮的作用力,它们的工作是紧密相关 的。任何一个轨道零部件的性能、强度和结 构的变化都会影响所有其他零部件的工作条 件,并对列车运行质量产生直接的影响,因此 轨道结构是一个系统,要用系统论的观点和 方法进行研究。
一 高速铁路轨道技术综述
高速铁路轨道结构主要类型:有砟轨道和无砟轨道。
国际上目前比较常见的无砟轨道有:
砟(zhǎ):岩石、煤等的碎片。在铁路上指作路基用 路砟和枕木均起加大受力面、分散火车压力、帮助铁轨承重的作用,防止铁轨因压力太大而下陷到泥土里。
三 无砟轨道系统设计的关键技术
三CR无TS砟Ⅱ轨型道板系式的统轨设道小计铺的设块关流键程石技图术头。传统的铁路轨道通常由两条平行的钢轨 C砟R(TSzhⅠǎ)、:Ⅱ岩型组石双、块成煤式等无,钢的砟碎轨片道轨。 固定放在枕木上,之下为小碎石铺成的路砟。 路砟和枕木均起加大受力面、分散火车压力、帮助铁 根据德国高速铁路的资料,当行车速度为250~300 km/h时,其线路维修费用约为行车速度为160~200 km/h时的2倍;速度为250~

高速铁路无砟轨道测量和调整

高速铁路无砟轨道测量和调整

0
1
2
GRP
试算表
高程 平面
-6
调整前
-4 -5
-3
-2
轨枕号 3 6 9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114
-1
0
1
➢ 沪宁/沪杭长轨精调/道岔精调及联调联试
各工程局/GRP1000×50;上海局/GRP1000×8
➢ 成灌城际长轨精调与联调联试
中铁2局/8局/成都局 / GRP1000×6
➢ 京沪高铁轨道精调及联调联试 各工程局×120
共计300余台GRP1000在中国高铁 建设及运营维护中得到应用!
高速铁路无砟轨道测量和
➢ 长轨精调可分为静态调整和动态调整两个阶段
------王志坚,刘彬
高速铁路无砟轨道测量和 调整
轨道精调:静态调整与动态调整
➢ 静态调整是在联调联试之前根据轨道静态测量 数据对轨道进行全面、系统地分析优化和调整 ,将轨道绝对几何参数和相对几何参数调整到 验标以内,使轨道满足高速联调联试条件;
➢ 轨道动态调整是在联调联试期间根据轨道动态 检测情况对轨道局部缺陷进行修复,针对相对 几何参数进行微调,对轨道线型进一步优化, 使轮轨关系匹配良好,进一步提高高速行车的 安全性、平稳性和乘座舒适度,使轨道平顺性 全面达到高速行车条件。
高速铁路无砟轨道测量和 调整
轨道几何参数测量:平面位置和高程
使用全站仪实测得轨检小车上棱镜的三维坐标,然后结合标定的轨检 小车几何参数、小车的定向参数、水平传感器所测横向倾角及实测轨距, 即可换算出对应里程处的实测平面位置和轨面高程,继而与该里程处的设 计平面位置和轨面高程进行比较,得到其偏差,用于指导轨道调整

高速铁路轨道精调-PPT

高速铁路轨道精调-PPT
3)仪器的校核。
24
Ⅲ. 静态、动态精调方法
3、轨道精调前应做的工作
4)CPⅢ测量网的复合。 5)线路设计平纵断面资料核对。重点复核轨面高程、 中线、坡度、竖曲线、平面曲线、超高等关键参数。 6)调整扣件的准备。 7)扣件系统安装情况的检查。包括:安装的正确性、 扭矩是否达到标准。
25
Ⅲ. 静态、动态精调方法
(5)宜选择阴天、无风、日落2小时、日出前、气候条 件稳定的时段进行;
(6)测距应根据气候条件修正。
27
Ⅲ. 静态、动态精调方法
4、轨道精调方法
(7)一次测量长度不宜大于60m;两站重叠不少于10根轨 枕;横向、高程偏差不应大于2mm,否则应采用线性或函 数方式进行顺接,变化率应小于1mm/10m。 (8)一天测量长度不宜超过600m。
18
Ⅱ. 标 准
项目
轨距(mm)
轨距变化率
水平(mm)
三角坑(水平变化率)
5m/30m
高低(mm)
150m/300m
10m弦线
5m/30m
轨向(mm)
150m/300m
10m弦线
正矢(mm)
20m弦线
6、沪杭线作业标准
验收标准 ±1
1/1500 1
2mm/3m 2 10 2 2 10 2
作业标准 -1~0 1/3000 1
21
Ⅲ. 静态、动态精调方法
1、轨道静态精调的时机
1)轨道精调应在长钢轨铺设、应力放散、锁定形成 无缝线路,焊接接头打磨后开始。 2)道岔精调应在直、侧股与正线、到发线焊联、接 头打磨后进行。
22
Ⅲ. 静态、动态精调方法
2、轨道动态精调的时机
轨道动态精调是在联调联试期间,根据轨道动态检测、 人工添乘情况对轨道个别晃车处所进行几何尺寸调整,以 进一步提高动车的安全性、平稳性和舒适性。

无砟轨道施工测量技术课件

无砟轨道施工测量技术课件

•无砟轨道施工测量技术
•13
第一章高速铁路精密控制测量的基 本术语和一般规定
三、高程控制测量一般规定
高程控制网的技术要求
水准测量等级
每千米高差偶然中 误差M△(mm)
每千米高差全中 误差Mw(mm)
附合路线或环线周长的长度 (km)
二等
≤1.0
≤2.0
≤400
≤750
M
1 4n L
MW
• 2 采用GPS测量时应满足下列要求:
➢ 同一时段观测值的数据剔除率宜小于10%;
➢ 同一基线不同时段重复观测基线较差检核;
➢ 由若干条独立基线边组成的独立环或附合路线各坐 标分量(Wx、Wy、Wz)及全长Ws闭合差的检核。
• 4 CPⅠ控制网平差
➢ 改正数;
➢ 边长相对中误差应小于1/250000;
➢ 改正数较差;
➢ 不同坐标系分段平差;
•无砟轨道施工测量技术
•5
第一章高速铁路精密控制测量的基 本术语和一般规定
二、平面控制测量一般规定
CP0、CPⅠ、CPⅡ控制网GPS测量的精度指标
控制网 CP0 CPI CPII
基线边方向中误差 --
≤1.3″ ≤1.7″
最弱边相对中误差 1/2 000 000 1/170 000 1/100 000
➢ 转换到国家或城市平面坐标系统时,应以联测的国家或城 市平面控制点作为固定点进行CPⅠ控制网的二维约束平差
,计算CPⅠ控制点的国家或城市平面坐标。
•无砟轨道施工测量技术
•23
第四章线路平面控制网(CPⅡ)测量
一、一般地段CPII测量
• 1 布网
CPⅡ控制网沿线路布设,并附合于CPⅠ控制网上。CPⅡ控 制点宜选在距线路中线50~200m范围内、稳定可靠、便于 测量的地方,并按规定埋石。

项目2 高速铁路无砟轨道精测精调《高速铁路线路养护维修》

项目2 高速铁路无砟轨道精测精调《高速铁路线路养护维修》

2.1 高速铁路轨道不平顺修理
3. 波长评价
波长评价能够从“波长变化区域”及“敏感波长”两部分对设备进行补充评价,使得评价体系更 全面、更有可操作性。 1 建立数据库:为了更真实地反应波谱,弃开TQI200m区段采用0.25m单点进行数据建立。 2统计分析:利用数理统计方法剔除异常点并进行期望均值处理,进而找出期望波谱变化区域 及 敏感波长。 3波长评价:利用期望波谱线同下次波谱进行的对比,判断波域及敏感波长,进而结合峰值评 价 、均值评价准确判断病害原因。同时利用敏感波长指导试算模拟调整及现场作业避开敏感波长。
2 “先整体后局部” 可先基于整体曲线图,大致标出期望的线路走线或起伏状态,先整体上分析区间调整量 再局部精调。
3 “先轨向后轨距” 轨向的优化通过调整高轨的平面位置来实现,低轨的平面位置通过轨距及轨距变化率来控制。
2.1 高速铁路轨道不平顺修理
4)“先高低后水平” 高低的优化通过调整低轨(基准轨)的高程来实现,高轨的高程利用超高和超高变化率来控制。
2.1 高速铁路轨道不平顺修理
2.1.2 轨道状态不平顺分析(动、静态结合)
通过对设备进行轨道状态动态不平顺分析,根据生产作业能力进行分级管理,制定年、月、 旬、日维修计划。从宏观上近似准确地判断了病害地点,但实际静态精测情况能否很好吻 合,则需进行静态精密测量验证,动、静态结合分析、验证最终决定精调地点。
04
根据“削峰填谷、平顺性”的原理 进 行模拟调整,并生成模拟调整量表

05
根据扣件系统、轨道类型结合模拟调整 量表制定精调作业指导书。
2.1 高速铁路轨道不平顺修理
2. 轨道精调基本原则
1 明确基准轨 Slabrep报表中,导向轨为“-1”表示右转曲线,平面位置以左轨(高轨)为基准,高程 以右轨(低轨)为基准;导向轨为“1”表示左转曲线,平面位置以右轨(高轨)为基准, 高程以左轨(低轨)为基准。

高速铁路轨道精调课件

高速铁路轨道精调课件

案例二:沪杭高铁轨道精调
精调背景
沪杭高铁连接上海和杭州两大城市,是长三角地区交通网络的重 要组成部分。
精调措施
针对沪杭高铁的曲线段轨道进行精调,优化曲线半径和超高,提高 列车过弯的平稳性和安全性。
精调效果
经过精调后的沪杭高铁曲线段轨道,列车过弯更加平稳,减少了轮 轨磨耗和车辆晃动,提高了旅客的舒适度。
轨道几何尺寸调整
轨距调整
根据设计要求,对轨道 的轨距进行精确调整, 确保列车运行的安全性
和稳定性。
水平调整
调整轨道的水平状态, 确保轨道的平直度和列
车的平稳运行。
超高调整
根据设计要求,对轨道 的超高进行精确调整,
提高列车的舒适度。
方向调整
调整轨道的方向,确保 列车的直线运行和曲线
通过的稳定性。
轨道平顺性调整
提高列车运行平稳性
轨道的平顺性和几何尺寸的准确性直 接影响到列车运行的平稳性,精调能 够显著提升旅客乘坐的舒适度。
精调的历史与发展
历史
轨道精调技术随着高速铁路的发展而不断进步,早期的精调方法较为简单,精度和效率较低。随着科技的进步, 现代的精调技术已经实现了高精度、高效率的目标。
发展
未来,高速铁路轨道精调技术将继续向着智能化、自动化、数字化的方向发展,通过引入人工智能、大数据等先 进技术,进一步提高精调的精度和效率。同时,随着高速铁路网络的不断扩展和完善,轨道精调技术的应用范围 也将不断扩大。
短波不平顺调整
消除轨道短波不平顺,提高列 车运行的平稳性和舒适度。
长波不平顺调整
优化长波不平顺,降低列车的 颠簸和振动。
垂向弹性调整
根据需求调整轨道的垂向弹性 ,提高轨道的减震性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨道调整原则
1) 生成的报表中,导向轨为“-1”表示右 转曲线,平面位置以左轨(高轨)为基 准,高程以右轨(低轨)为基准;导向 轨为“1”表示左转曲线,平面位置以右 轨(高轨)为基准,高程以左轨(低轨) 为基准。
轨道调整原则
2)“先整体后局部”:可首先基于整体曲 线图,大致标出期望的线路走线或起伏 状态,先整体上分析区间调整量,再局 部精调;
调整软件导向轨的值
导向轨的作用
轨道参考轨: • 曲线段:高程参考轨为低轨,平面参考
轨为高轨 • 直线段:与大里程方向曲线参考轨保持
一致
各种线型的导向轨图
三、小车正负方向定义
小车方向与小车前进方向
面对大里程分左右,轨检小车双轮部分在左手边就 是“正方向”,相反则为“负方向”;
轨检小车前进方向:即推小车前进的方向是往大里 程还是小里程走。
2 mm
弦长10 m
2 mm/8a
基线长48a
2 mm/5 m 基线长30 m
10 mm/240a
基线长480a 10 mm/150 m 基线长300 m
2 mm

2 mm

2 mm

2 mm

10 mm

10 mm

10 mm

10 mm

注: 1、表中a为轨枕/扣件间距; 2、站台处的轨面高程不应低于设计值。
轨道精调精测
一、小车的构造与测量原理 二、导向轨的定义 三、小车正负方向定义 四、小车数据意义 五、平顺性的计算原理 六、轨道调整量计算与调整原则 七、小车测量作业流程
一、小车的构造与测量原理
小车硬件
leica圆棱镜
CF-19军用本
电台天线
轨距传感器 水平传感器
绝缘轮
小车硬件
车体部分可 以拆卸,便
小车数据偏差说明
具体偏差定义(以面向大里程方向定义左右): 平面位置:实际位置位于设计位置右侧时,偏差值为正,调整量为负; 轨面高程:实际位置位于设计位置上方时,偏差值为正,调整量为负; 超高(水平):外轨过超高(外轨实测位置大于设计位置)时,偏差值为正;调
整量为负; 轨距:实测轨距大于设计轨距时,偏差值为正,调整量为负。 偏差值=实测-设计 调整量=设计-实测
轨道调整原则
3)“先轨向后轨距”,轨向的优化通过调 整高轨(基准轨)的平面位置来实现, 低轨的平面位置利用轨距及轨距变化率 来控制;
轨道调整原则
4)“先高低后水平”,高低的优化通过 调整低轨(基准轨)的高程来实现,高 轨的高程利用超高和超高变化率来控制;
轨道调整原则
5) 在轨道精调软件中,平顺性指标可通 过对主要参数(平面位置、轨距、高程、 水平)指标曲线图的“削峰填谷”原则 来实现,目的:直线顺直,曲线圆顺。
摘录于《高速铁路工程测量规范》(TB10601-2009)
六、轨道调整量计算与调整原则
轨道调整量计算
通过软件模拟调整,达到平顺性要求,得出调整量
轨道调整原则
测量数据模拟调整前, 必须保证数据的真实、 可靠性。调整原则: “先整体、后局部, 先轨向、后轨距,先 高低、后水平”,优 先保证参考轨的平顺 性,另外一股钢轨通 过轨距和水平控制。
五、平顺性的计算原理
短波平顺性
假定钢轨支承点的间距,或者说轨枕间距为0.625m,采用30m弦 线,按间距5m设置一对检测点,则支承点间距的8倍正好是两检 测点的间距5m。
h(h 2设 5- 计 h 3设 3)- 计 (h 2实 5- 测 h 3实 3) 测 2 mm
长波平顺性
假定钢轨支承点的间距,或者说轨枕间距为0.625m,采用300m弦线,按间 距150m设置一对检测点,则支承点间距的240倍正好是两检测点的间距 150m。
h (h 2设 5- 计 h 2设 65 )- 计 (h 2实 5- 测 h 2实 65 ) 测 1m 0m
10m 弦平顺性
正矢
高速铁路轨道静态平顺度允许偏差
序号 1 2
项目 轨距 轨向
3
高低
4
水平
5 扭曲(基长3m)
6 与设计高程偏差
7 与设计中线偏差
无砟轨道
有砟轨道
允许偏差
检测方法
允许偏差
小车原理-里程
全站仪实测出轨检小车上
棱镜中心的三维坐标后,将该
点投影到设计平曲线上,以投
影点的里程为轨检小车当前检
切线
定位置的里程。
投影点
法线
测量点
设计平曲线
二、导向轨的定义
导向轨定义
1)导向轨定义原则,面向大里程方向定义左右; 2)线路左转,导向轨定义取值为+1,线路右转, 导向轨定义取值为-1; 3)直线段,导向轨的取值参考下一段曲线的转 向,如线路左转,则导向轨取值为+1;
检测方法
±1 mm
相对于1435 mm ±1 mm 相对于1435 mm
1/1500
变化率
1/1500
变化率
2 mm
弦长10 m
2 mm
弦长10 m
2 mm/8a
基线长48a
2 mm/5 m 基线长30 m
10 mm/240a
基线长480a 10 mm/150 m 基线长300 m
2 mm
弦长10 m
调整量
6)具体偏差定义(以面向大里程方向定义左右): 平面位置:实际位置位于设计位置右侧时,偏差值为
小车测量原理-平面及高程
使用全站仪实测得轨检小车上棱镜的三维坐标,然后结合 标定的轨检小车几何参数、小车的定向参数、水平传感器 所测横向倾角及实测轨距,即可换算出对应里程处的实测 平面位置和轨面高程,继而与该里程处的设计平面位置和 轨面高程进行比较,得到其偏差,用于指导轨道调整
中线参考基准:高轨到理论轨距的一半
四、小车数据的意义
小车数据偏差说明
实测高程比设计低0.0651米
红线,设计中线(垂直为虚线) 蓝线,设计中线(垂直为实线)
实测高程比设计 低0.0657米
设计超高
实测超高 同心圆,轨检小车双轮的一边 中线偏差,表示中线在程偏差 超高偏差
中线基准:高轨到理论轨距的一半 高程参考基准:低轨
于运输
小车原理-轨距
轨距指两股钢轨表面以下16mm处内侧之 间的最小距离。轨检小车的横梁长度须事先严格 标定,则轨距可由横梁的固定长度加上轨距传感 器测量的可变长度而得到,进而进行实测轨距与 设计轨距的比较。
小车原理-超高
由轨检小车上搭载的水平传感器测出横向倾角后,结合实 测轨距即可计算得出线路超高,进而进行实测超高与设计超高 的比较。在每次作业前,水平传感器必须校准 。
相关文档
最新文档