初一数学因式分解知识巩固练习题及答案

合集下载

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。

初中数学:因式分解强化练习(含答案)

初中数学:因式分解强化练习(含答案)

因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。

初一数学因式分解试题答案及解析

初一数学因式分解试题答案及解析

初一数学因式分解试题答案及解析1.把多项式ac﹣bc+a2﹣b2分解因式的结果是()A.(a﹣b)(a+b+c)B.(a﹣b)(a+b﹣c)C.(a+b)(a﹣b﹣c)D.(a+b)(a﹣b+c)【答案】A【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2﹣b2正好符合平方差公式,应考虑为一组,ac﹣bc可提公因式,为一组.解:ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).故选A.2.将多项式a2﹣9b2+2a﹣6b分解因式为()A.(a+2)(3b+2)(a﹣3b)B.(a﹣9b)(a+9b)C.(a﹣9b)(a+9b+2)D.(a﹣3b)(a+3b+2)【答案】D【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2﹣9b2+2a﹣6b 可分成前后两组来分解.解:a2﹣9b2+2a﹣6b=a2﹣(3b)2+2(a﹣3b)=(a﹣3b)(a+3b)+2(a﹣3b)=(a﹣3b)(a+3b+2).故选D.3.把ab+a﹣b﹣1分解因式的结果为()A.(a+b)(b+1)B.(a﹣1)(b﹣1)C.(a+1)(b﹣1)D.(a﹣1)(b+1)【答案】D【解析】分别将前两项、后两项分为一组,然后用提取公因式法进行分解.解:ab+a﹣b﹣1=(ab+a)﹣(b+1)=a(b+1)﹣(b+1)=(a﹣1)(b+1).故选D.4.分解因式a2﹣b2+4bc﹣4c2的结果是()A.(a﹣2b+c)(a﹣2b﹣c)B.(a+2b﹣c)(a﹣2b+c)C.(a+b﹣2c)(a﹣b+2c)D.(a+b+2c)(a﹣b+2c)【答案】C【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中后三项正好符合完全平方式的公式,即(a﹣b)2=a2+b2﹣2ab.所以要考虑﹣b2+4bc﹣4c2为一组.然后再分解.解:a2﹣b2+4bc﹣4c2=a2﹣b2+4bc﹣4c2=a2﹣(b2﹣4bc+4c2)=a2﹣(b﹣2c)2=(a﹣b+2c)(a+b﹣2c).故选C.5.分解因式a2﹣2a+1﹣b2正确的是()A.(a﹣1)2﹣b2B.a(a﹣2)﹣(b+1)(b﹣1)C.(a+b﹣1)(a﹣b﹣1)D.(a+b)(a﹣b)﹣2a+1【答案】C【解析】多项式前三项利用完全平方公式分解,再利用平方差公式分解即可得到结果.解:原式=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).故选C.6.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A.(x+y+3)(x﹣y﹣1)B.(x+y﹣1)(x﹣y+3)C.(x+y﹣3)(x﹣y+1)D.(x+y+1)(x﹣y﹣3)【答案】D【解析】先把x2﹣y2﹣2x﹣4y﹣3转化为(x2﹣2x+1)﹣(y2+4y+4),因为前三项、后三项符合完全平方公式,然后根据平方差公式进一步分解.解:x2﹣y2﹣2x﹣4y﹣3=(x2﹣2x+1)﹣(y2+4y+4)=(x﹣1)2﹣(y+2)2=[(x﹣1)+(y+2)][(x﹣1)﹣(y+2)]=(x+y+1)(x﹣y﹣3).故选D.7.多项式中,不含(x﹣1)因式的是()A.x3﹣x2+1﹣xB.x+y﹣xy﹣x2C.x2﹣2x﹣y2+xD.(x2+3x)﹣(2x+2)【答案】C【解析】把能分解的选项分解因式,利用排除法即可求解.解:A、x3﹣x2+1﹣x=(x﹣1)2(x+1),故不合题意;B、x+y﹣xy﹣x2=﹣(x﹣1)(x+y),故不合题意;C、不能分解,符合题意;D、(x2+3x)﹣(2x+2)=x2+x﹣2=(x+2)(x﹣1),故不合题意.故选C.8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A.正数B.负数C.非负数D.非正数【答案】C【解析】解此题时可把多项式m3﹣m2﹣m+1分解因式,根据分解的结果即可判断.解:多项式m3﹣m2﹣m+1=(m3﹣m2)﹣(m﹣1)=m2(m﹣1)﹣(m﹣1)=(m﹣1)(m2﹣1)=(m﹣1)2(m+1),∵m>﹣1,∴(m﹣1)2≥0,m+1>0,∴m3﹣m2﹣m+1=(m﹣1)2(m+1)≥0,故选C.9.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)【答案】B【解析】把第一、三项为一组,利用平方差公式分解因式,二四项为一组,整理后再利用提公因式法分解因式即可.解:原式=4x2﹣2x﹣y2﹣y=(4x2﹣y2)﹣(2x+y)=(2x﹣y)(2x+y)﹣(2x+y)=(2x+y)(2x﹣y﹣1).故选B.10.下列多项式已经进行了分组,能接下去分解因式的有()(1)(m3+m2﹣m)﹣1;(2)﹣4b2+(9a2﹣6ac+c2);(3)(5x2+6y)+(15x+2xy);(4)(x2﹣y2)+(mx+my)A.1个B.2个C.3个D.4个【答案】D【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.解:(1)(m3+m2﹣m)﹣1去括号再合并,提公因式即可;(2)﹣4b2+(9a2﹣6ac+c2)可用完全平方公式和平方差公式分解;(3)(5x2+6y)+(15x+2xy)先去括号,再提取公因式,能继续分解因式;(4)(x2﹣y2)+(mx+my)用平方差公式和提公因式法继续分解因式.故选D.11.下列多项式中,不能用分组分解法分解因式的是()A.5x+mx+5y+myB.5x+mx+3y+myC.5x﹣mx+5y﹣myD.5x﹣mx+10y﹣2my【答案】B【解析】利用分组分解可把A、C、D分解因式,但B分组无公因式,所以不能用分组分解法分解因式.解:5x+mx+5y+my=(5x+5y)+(mx+my)=5(x+y)+m(x+y)=(x+y)(5+m);5x﹣mx+5y﹣my=(5x+5y)﹣(mx+my)=5(x+y)﹣m(x+y)=(x+y)(5﹣m)=﹣(x+y)(m﹣5);5x﹣mx+10y﹣2my=(5x+10y)﹣(mx+2my)=5(x+2y)﹣m(x+y)=5(x+2y)(5﹣m)=﹣5(x+2y)(m﹣5).故选B.12.把多项式ax2﹣ax﹣2a分解因式,下列结果正确的是()A.a(x﹣2)(x+1)B.a(x+2)(x﹣1)C.a(x﹣1)2D.(ax﹣2)(ax+1)【答案】A【解析】先提取公因式a,再根据十字相乘法的分解方法分解即可.解:ax2﹣ax﹣2a=a(x2﹣x﹣2)=a(x﹣2)(x+1).故选A.13.把二次三项式x2﹣3x+4分解因式,结果是()A.(x+)(x+2)B.(x﹣)(x﹣2)C.(x+)2D.(x﹣)2【答案】B【解析】利用十字相乘法分解即可.解:x2﹣3x+4=(x﹣)(x﹣2).故选B14.分解因式x2﹣5x﹣6的结果为()A.(x﹣6)(x+1)B.(x﹣6)(x﹣1)C.(x+6)(x﹣1)D.(x+6)(x+1)【答案】A【解析】因为﹣6×1=﹣6(常数项),﹣6+1=﹣5(一次项系数),所以利用十字相乘法分解因式即可.解:x2﹣5x﹣6=(x﹣6)(x+1).故选A.15.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4B.5C.6D.8【答案】C【解析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.16.对x2﹣xy﹣156y2分解因式正确的是()A.(x﹣12y)(x﹣13y)B.(x+12y)(x﹣13y)C.(x﹣12y)(x+13y)D.(x+12y)(x+13y)【答案】B【解析】将原式看做关于x的二次三项式,利用十字相乘法解答即可.解:∵﹣156y2可分解为12y,﹣13y,∴x2﹣xy﹣156y2=(x+12y)(x﹣13y).故选B.17.将多项式x2+3x+2分解因式,正确的结果是()A.(x+1)(x+2)B.(x﹣1)(x+2)C.(x+1)(x﹣2)D.(x﹣1)(x﹣2)【答案】A【解析】根据十字相乘法的分解方法分解即可.解:x2+3x+2=(x+1)(x+2).故选A.18.把多项式x2﹣x﹣2分解因式得.【答案】(x﹣2)(x+1)【解析】可根据二次三项式的因式分解法对原式进行分解,把﹣2分为1×(﹣2),﹣1为1+(﹣2),利用十字相乘法即可求得.解:x2﹣x﹣2=(x﹣2)(x+1).故答案为:(x﹣2)(x+1).19.把二次三项式2x2+4x﹣6分解因式,其结果是.【答案】2(x+3)(x﹣1)【解析】首先要提取公因式2,然后利用十字相乘法分解因式.解:2x2+4x﹣6=2(x2+2x﹣3)=2(x+3)(x﹣1).故答案为:2(x+3)(x﹣1).20.要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.【答案】±1,±5【解析】把﹣6分解成两个因数的积,m等于这两个因数的和.解:∵﹣6=2×(﹣3)=(﹣2)×3=1×(﹣6)=(﹣1)×6,∴m=2+(﹣3)=﹣1,m=﹣2+3=1,m=1+(﹣6)=﹣5,m=(﹣1)+6=5,故本题答案为:±1,±5.。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将以下各式分解因式2﹣6pq 〔 2〕 2x 2〔 1〕 3p +8x+82.将以下各式分解因式33 2 2.〔 1〕 x y ﹣ xy 〔 2〕 3a ﹣ 6a b+3ab3.分解因式2〔y ﹣ x 〕 2 2 2 2 2〔1〕 a 〔 x ﹣ y 〕 +16 〔 2〕〔 x +y 〕﹣ 4x y4.分解因式:〔1〕 2x 2﹣x 2 〔 3〕 6xy 2 ﹣ 9x 2 3 〔 4〕 4+12〔 x ﹣ y 〕+9 〔 x ﹣y 〕 2〔2〕 16x ﹣ 1 y ﹣ y5.因式分解:2﹣ 8a 〔 2〕4x 3 2 2〔1〕 2am +4x y+xy6.将以下各式分解因式:32 2 2 2 2〔1〕 3x ﹣ 12x 〔 2〕〔 x +y 〕﹣ 4x y22 3 2 27.因式分解:〔 1〕 x y ﹣ 2xy +y 〔2〕〔 x+2y 〕﹣ y8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕〔2〕〔x ﹣ 1〕〔x ﹣ 3〕+1229.分解因式:a ﹣ 4a+4﹣ b2210.分解因式:a ﹣ b ﹣2a+111.把以下各式分解因式:424 2 2〔1〕 x ﹣ 7x +1 〔 2〕 x +x +2ax+1 ﹣ a2 2 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔4〕 x +2x +3x +2x+112.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4 ; 5;〔 2〕2a b +2a c +2b c ﹣ a ﹣ b ﹣ c 〔3〕 x +x+132 ﹣ 9; 43 2〔4〕 x +5x +3x 〔 5〕2a ﹣ a ﹣ 6a ﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕 3p 2﹣ 6pq ; 〔 2〕 2x 2+8x+8分析:〔 1〕提取公因式 3p 整理即可;〔 2〕先提取公因式 2,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 3p 2﹣6pq=3p 〔 p ﹣ 2q 〕,222.〔 2〕 2x +8x+8 , =2〔x +4x+4 〕, =2〔 x+2〕2.将以下各式分解因式33 2 2.〔1〕 x y ﹣xy〔 2〕3a ﹣ 6a b+3ab分析:〔 1〕首先提取公因式xy ,再利用平方差公式进展二次分解即可;〔 2〕首先提取公因式3a ,再利用完全平方公式进展二次分解即可.解答: 解:〔 1〕原式 =xy 〔 x 2﹣1〕 =xy 〔 x+1 〕〔 x ﹣ 1〕;〔 2〕原式 =3a 〔 a 2﹣ 2ab+b 2〕 =3a 〔a ﹣ b 〕2.3.分解因式〔1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕;〔 2〕〔 x 2 +y 2〕2﹣4x 2y 2.分析:〔 1〕先提取公因式〔x ﹣ y 〕,再利用平方差公式继续分解;〔 2〕先利用平方差公式,再利用完全平方公式继续分解.解答: 解:〔 1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕,=〔 x ﹣ y 〕〔 a 2﹣ 16〕, =〔 x ﹣ y 〕〔 a+4〕〔 a ﹣ 4〕;22222222222〔 2〕〔 x +y 〕﹣ 4x y , =〔 x +2xy+y 〕〔 x ﹣2xy+y 〕,=〔x+y 〕〔x ﹣ y 〕 .4.分解因式:〔1〕2x 2﹣x ; 〔 2〕16x 2 ﹣ 1; 2 2 3 2〔 3〕6xy ﹣ 9x y ﹣y ; 〔 4〕4+12〔 x ﹣y 〕+9〔 x ﹣ y 〕.分析:〔 1〕直接提取公因式x 即可;( 2〕利用平方差公式进展因式分解;( 3〕先提取公因式﹣ y ,再对余下的多项式利用完全平方公式继续分解;( 4〕把〔 x ﹣ y 〕看作整体,利用完全平方公式分解因式即可.解答: 解:〔 1〕 2x 2﹣x=x 〔 2x ﹣1〕;( 2〕 16x 2﹣ 1=〔 4x+1〕〔 4x ﹣1〕;〔 3〕 2 2 32 22;6xy ﹣ 9x y ﹣ y , =﹣ y 〔 9x ﹣ 6xy+y 〕, =﹣ y 〔 3x﹣ y 〕〔 4〕 4+12〔 x ﹣ y 〕 +9〔 x ﹣ y 〕2, =[2+3 〔 x ﹣ y 〕 ]2, =〔 3x ﹣ 3y+2〕2.5.因式分解:2﹣ 8a ;〔 322〔1〕 2am2〕 4x +4x y+xy分析:〔 1〕先提公因式2a ,再对余下的多项式利用平方差公式继续分解;( 2〕先提公因式 x ,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 2am 2﹣ 8a=2a 〔 m 2﹣ 4〕 =2a 〔m+2〕〔 m ﹣ 2〕;( 2〕 4x 3+4x 2y+xy 2,=x 〔 4x 2+4xy+y 2〕, =x 〔2x+y 〕2.6.将以下各式分解因式:〔1〕 3x ﹣ 12x 3〔 2〕〔 x 2 +y 2〕2﹣ 4x 2 y 2.分析:〔 1〕先提公因式 3x ,再利用平方差公式继续分解因式;〔 2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答: 解:〔 1〕 3x ﹣12x 3 =3x 〔 1﹣ 4x 2〕 =3x 〔 1+2x 〕〔 1﹣ 2x 〕;22 2 2 2 2 2 2 2﹣ 2xy 2 2.〔 2〕〔 x +y 〕 ﹣ 4x y =〔 x +y +2xy 〕〔 x +y 〕 =〔x+y 〕 〔 x ﹣ y 〕7.因式分解:22 3 ; 2 2〔1〕 x y ﹣2xy +y 〔 2〕〔 x+2y 〕﹣ y .分析:〔 1〕先提取公因式y ,再对余下的多项式利用完全平方式继续分解因式;〔 2〕符合平方差公式的构造特点,利用平方差公式进展因式分解即可.223222解答: 解:〔 1〕 x y ﹣ 2xy +y =y 〔 x ﹣ 2xy+y 〕 =y 〔x ﹣ y 〕 ;8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕;〔 2〕〔x ﹣ 1〕〔 x ﹣ 3〕 +1.分析:〔 1〕提取公因式n 〔 m ﹣ 2〕即可;( 2〕根据多项式的乘法把 〔 x ﹣ 1〕〔 x ﹣ 3〕展开,再利用完全平方公式进展因式分解.解答:解:〔 1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣ m 〕 =n 2〔 m ﹣ 2〕 +n 〔 m ﹣ 2〕 =n 〔 m ﹣ 2〕〔n+1 〕;( 2〕〔 x ﹣ 1〕〔 x ﹣ 3〕 +1=x 2﹣ 4x+4= 〔 x ﹣2〕2.229.分解因式:a ﹣4a+4﹣ b.分析: 此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有 a 的二次项 a 2,a 的一次项﹣ 4a ,常数项 4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进展分解.222222解答: 解: a ﹣ 4a+4﹣ b =〔 a ﹣ 4a+4〕﹣ b =〔 a ﹣ 2〕 ﹣ b =〔 a ﹣ 2+b 〕〔 a ﹣ 2﹣ b 〕.22 ﹣ 2a+110.分解因式: a ﹣ b分析: 当被分解的式子是四项时,应考虑运用分组分解法进展分解.此题中有 a 的二次项,a 的一次项,有常数项.所以要考虑2为一组.a ﹣2a+12 2 22 2 2解答: 解: a ﹣ b ﹣ 2a+1=〔 a ﹣ 2a+1〕﹣ b =〔 a ﹣ 1〕 ﹣ b =〔 a ﹣ 1+b 〕〔 a ﹣ 1﹣ b 〕.11.把以下各式分解因式:42;422〔1〕 x ﹣ 7x +1〔 2〕 x +x +2ax+1 ﹣ a22 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔 4〕x +2x +3x +2x+1分析:〔 1〕首先把﹣ 7x 2变为 +2x 2﹣ 9x 2,然后多项式变为 x 4﹣ 2x 2 +1﹣ 9x 2,接着利用完全平方公式和平方差公式分解因式即可求解;〔 2〕首先把多项式变为42 22x +2x +1 ﹣ x +2ax ﹣ a ,然后利用公式法分解因式即可解;〔 3〕首先把﹣ 2x 2〔1﹣ y 2〕变为﹣ 2x 2〔 1﹣ y 〕〔 1﹣y 〕,然后利用完全平方公式分解因式即可求解;4 32 3 22〔 4〕首先把多项式变为x +x +x ++x+x +x+x +x+1 ,然后三个一组提取公因式,接着提取公因式即可求解.4 2 4 2 ﹣ 9x 2 22 ﹣〔 3x 〕 2 2 2 解答: 解:〔 1〕 x ﹣ 7x +1=x +2x +1 =〔x +1〕 =〔 x +3x+1 〕〔x ﹣ 3x+1 〕;4 24 2 2 2 22 2 〔 2〕 x +x +2ax+1﹣ a=x+2x +1﹣ x +2ax ﹣ a =〔 x +1〕﹣〔 x ﹣ a 〕 =〔x +1+x﹣ a 〕〔 x 2﹣ x+a 〕;+12 ﹣ 2x 2〔1﹣ y242221+y 〕 +x 4〔 3〕〔 1+y 〕 〕 +x 〔 1﹣ y 〕 =〔 1+y 〕﹣2x 〔 1﹣y 〕〔〔 1﹣ y 〕 22 2222〔 1=〔 1+y 〕 ﹣ 2x 〔 1﹣ y 〕〔1+y 〕 +[x 〔1﹣ y 〕 ]=[ 〔1+y 〕﹣ x22 22﹣ y 〕 ]=〔 1+y ﹣x +x y 〕3 2 22 2243243 2( 4〕 x +2x +3x +2x+1=x +x +x ++x +x +x+x +x+1=x 〔 x +x+1 〕 +x 〔x +x+1 〕+x 2+x+1= 〔 x 2+x+1 〕2.12.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4;〔 2〕 2a b +2a c +2b c ﹣a ﹣ b ﹣ c5 ;3 2﹣ 9;〔3〕 x +x+1 〔 4〕x +5x +3x( 5〕 2a 4﹣ a 3﹣6a 2﹣ a+2.分析:〔 1〕需把﹣ 31x 拆项为﹣ x ﹣ 30x ,再分组分解;2 2 2 2 2 2 ,再按公式法因式分解;〔 2〕把 2ab 拆项成 4a b ﹣2ab 5 522〔 3〕把 x +x+1 添项为 x ﹣ x+x +x+1 ,再分组以及公式法因式分解;32322﹣ 9〕,再提取公因式因〔 4〕把 x +5x +3x ﹣ 9 拆项成〔 x ﹣x 〕 +〔 6x ﹣ 6x 〕 +〔 9x 式分解;〔 5〕先分组因式分解,再用拆项法把因式分解彻底.解答: 解:〔 1〕4x 3﹣31x+15=4x 3﹣ x ﹣ 30x+15=x 〔 2x+1 〕〔2x ﹣ 1〕﹣ 15〔 2x ﹣1〕 =〔 2x ﹣ 1〕( 2x 2+1﹣ 15〕=〔 2x ﹣ 1〕〔 2x ﹣5〕〔 x+3 〕;2 2 2 2 2 2 4 4 4 2 2 4 4 4 2 2 2 2 2 2〔 2〕2a b +2a c +2b c﹣a﹣ b ﹣ c =4a b ﹣〔 a +b +c +2a b﹣2a c ﹣ 2bc 〕=2 222222 2222〔 2ab 〕 ﹣〔 a +b ﹣ c 〕 = 〔2ab+a +b ﹣ c 〕〔 2ab ﹣ a ﹣b +c 〕 =〔a+b+c 〕 〔 a+b ﹣c 〕〔 c+a ﹣b 〕〔 c ﹣ a+b 〕;5 5 22 2 322 2〔 3〕 x +x+1=x ﹣ x+x +x+1=x 〔 x﹣ 1〕 +〔 x +x+1 〕 =x 〔 x ﹣ 1〕〔x +x+1 〕+2232〔 x +x+1 〕 =〔 x +x+1 〕〔 x ﹣ x +1〕;3232 2﹣6x 〕+〔9x2〔 4〕x +5x +3x ﹣ 9=〔 x ﹣ x 〕+〔 6x ﹣ 9〕=x 〔 x ﹣ 1〕+6x 〔 x ﹣ 1〕+9〔x ﹣ 1〕=〔 x ﹣ 1〕〔 x+3 〕2;〔 5〕2a 4﹣ a 3﹣ 6a 2﹣ a+2=a 3〔2a ﹣ 1〕﹣〔2a ﹣ 1〕〔 3a+2〕=〔 2a ﹣1〕〔 a 3﹣ 3a ﹣ 2〕3 2 2 2〔 a+1〕﹣ a 〔 a+1〕﹣ 2=〔2a ﹣ 1〕〔 a +a ﹣ a ﹣ a ﹣ 2a ﹣2〕 =〔 2a ﹣ 1〕 [a ( a+1〕 ]= 〔 2a ﹣ 1〕〔 a+1〕〔a2﹣ a ﹣ 2〕=〔 a+1〕2〔a ﹣ 2〕〔 2a ﹣ 1〕.。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

整式的乘除与因式分解全章复习与巩固要点一、幂的运算1. 同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2. 幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3. 积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4 .同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5. 零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁要点二、整式的乘法和除法1. 单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2. 单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4. 单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式要点三、乘法公式1. 平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解题目及答案100道题

因式分解题目及答案100道题

因式分解题目及答案100道题题目1:若x^2+12x+27=0,则x的值是多少?答案:x=-3或x=9题目2:若a^2-35a+154=0,则a的值是多少?答案:a=9或a=17题目3:若2x^2-8x+5=0,则x的值是多少?答案:x=1或x=2.5题目4:若6x^2+17x+6=0,则x的值是多少?答案:x=-1或x=-3题目5:若4x^2+14x+7=0,则x的值是多少?答案:x=-1或x=-7/2题目6:若2x^2+13x+14=0,则x的值是多少?答案:x=-7或x=-2题目7:若6x^2+19x+8=0,则x的值是多少?答案:x=-1或x=-4/3题目8:若3x^2-13x-14=0,则x的值是多少?答案:x=2或x=7题目9:若4x^2-12x-21=0,则x的值是多少?答案:x=3或x=7/2题目10:若5x^2+35x+50=0,则x的值是多少?答案:x=-5或x=-10题目11:若3x^2-17x-18=0,则x的值是多少?答案:x=3或x=6题目12:若2x^2+14x+15=0,则x的值是多少?答案:x=-5或x=-3题目13:若4x^2-8x-30=0,则x的值是多少?答案:x=3或x=7/2题目14:若5x^2+20x+15=0,则x的值是多少?答案:x=-3或x=-3题目15:若x^2+15x+56=0,则x的值是多少?答案:x=-8或x=7题目16:若x^2+20x+100=0,则x的值是多少?答案:x=-10或x=-10题目17:若2x^2+18x+72=0,则x的值是多少?答案:x=-6或x=-8题目18:若3x^2+19x+90=0,则x的值是多少?答案:x=-3或x=-10题目19:若x^2+10x+24=0,则x的值是多少?答案:x=-4或x=-6题目20:若4x^2-16x-64=0,则x的值是多少?答案:x=4或x=8题目21:若7x^2+49x+56=0,则x的值是多少?答案:x=-7或x=-8题目22:若x^2-13x+36=0,则x的值是多少?答案:x=6或x=9题目23:若2x^2-23x+72=0,则x的值是多少?答案:x=6或x=12题目24:若5x^2+25x+50=0,则x的值是多少?答案:x=-5或x=-10题目25:若x^2+18x+81=0,则x的值是多少?答案:x=-9或x=-9题目26:若4x^2+20x+45=0,则x的值是多少?答案:x=-5或x=-5/2题目27:若3x^2+21x+66=0,则x的值是多少?答案:x=-3或x=-11题目28:若x^2-17x+60=0,则x的值是多少?答案:x=9或x=15题目29:若2x^2+15x+39=0,则x的值是多少?答案:x=-3或x=-9/2题目30:若4x^2-19x-72=0,则x的值是多少?答案:x=4或x=9题目31:若7x^2+35x+60=0,则x的值是多少?答案:x=-5或x=-8题目32:若x^2+12x+36=0,则x的值是多少?答案:x=-6或x=-6题目33:若2x^2-11x+30=0,则x的值是多少?答案:x=5或x=6题目34:若5x^2+20x+25=0,则x的值是多少?答案:x=-1或x=-5题目35:若x^2+18x+45=0,则x的值是多少?答案:x=-9或x=-5题目36:若3x^2+15x+54=0,则x的值是多少?答案:x=-3或x=-6题目37:若4x^2-24x-72=0,则x的值是多少?答案:x=6或x=9题目38:若x^2+21x+84=0,则x的值是多少?答案:x=-7或x=-12题目39:若2x^2+13x+30=0,则x的值是多少?答案:x=-5或x=-6题目40:若7x^2+28x+56=0,则x的值是多少?答案:x=-4或x=-8题目41:若5x^2-18x+45=0,则x的值是多少?答案:x=3或x=9题目42:若x^2-17x+80=0,则x的值是多少?答案:x=8或x=10题目43:若4x^2+24x+64=0,则x的值是多少?答案:x=-4或x=-8题目44:若3x^2-14x+36=0,则x的值是多少?答案:x=6或x=12题目45:若x^2+11x+30=0,则x的值是多少?答案:x=-5或x=-6题目46:若2x^2+19x+90=0,则x的值是多少?答案:x=-9或x=-10题目47:若6x^2-27x-90=0,则x的值是多少?答案:x=3或x=15题目48:若x^2+15x+54=0,则x的值是多少?答案:x=-6或x=-9题目49:若4x^2-21x-60=0,则x的值是多少?答案:x=3或x=15题目50:若5x^2+30x+75=0,则x的值是多少?答案:x=-5或x=-15题目51:若2x^2-12x-45=0,则x的值是多少?答案:x=5或x=15题目52:若x^2+20x+100=0,则x的值是多少?答案:x=-10或x=-20题目53:若3x^2-15x-60=0,则x的值是多少?答案:x=4或x=20题目54:若4x^2+18x+45=0,则x的值是多少?答案:x=-3或x=-9题目55:若5x^2-25x+90=0,则x的值是多少?答案:x=3或x=18题目56:若x^2+17x+72=0,则x的值是多少?答案:x=-8或x=-12题目57:若2x^2+11x+24=0,则x的值是多少?答案:x=-4或x=-6题目58:若3x^2-18x+54=0,则x的值是多少?答案:x=3或x=9题目59:若4x^2+21x-70=0,则x的值是多少?答案:x=-3或x=7题目60:若5x^2-30x+105=0,则x的值是多少?答案:x=3或x=21题目61:若x^2+19x+90=0,则x的值是多少?答案:x=-10或x=-9题目62:若2x^2-13x-42=0,则x的值是多少?答案:x=6或x=14题目63:若3x^2+22x+105=0,则x的值是多少?答案:x=-5或x=-15题目64:若4x^2-23x-72=0,则x的值是多少?答案:x=6或x=12题目65:若5x^2+25x+90=0,则x的值是多少?答案:x=-3或x=-18题目66:若x^2-20x-100=0,则x的值是多少?答案:x=10或x=20题目67:若2x^2+13x+36=0,则x的值是多少?答案:x=-6或x=-9题目68:若3x^2-16x-48=0,则x的值是多少?答案:x=4或x=12题目69:若4x^2+17x+45=0,则x的值是多少?答案:x=-3或x=-9题目70:若5x^2-28x+105=0,则x的值是多少?答案:x=5或x=21题目71:若x^2+18x+87=0,则x的值是多少?答案:x=-9或x=-11题目72:若2x^2-14x-45=0,则x的值是多少?答案:x=5或x=15题目73:若3x^2+20x+105=0,则x的值是多少?答案:x=-5或x=-17题目74:若4x^2-22x-84=0,则x的值是多少?答案:x=7或x=12题目75:若5x^2+24x+95=0,则x的值是多少?答案:x=-4或x=-19题目76:若x^2-21x-98=0,则x的值是多少?答案:x=7或x=14题目77:若2x^2+14x+35=0,则x的值是多少?答案:x=-7或x=-5题目78:若3x^2-17x-54=0,则x的值是多少?答案:x=3或x=9题目79:若4x^2+18x+63=0,则x的值是多少?答案:x=-3或x=-9题目80:若5x^2-26x+99=0,则x的值是多少?答案:x=4或x=19题目81:若x^2+20x+90=0,则x的值是多少?答案:x=-10或x=-9题目82:若2x^2-16x-48=0,则x的值是多少?答案:x=4或x=12题目83:若3x^2+18x+63=0,则x的值是多少?答案:x=-3或x=-9题目84:若4x^2-20x-80=0,则x的值是多少?答案:x=5或x=16题目85:若5x^2+22x+85=0,则x的值是多少?答案:x=-4或x=-17题目86:若x^2-22x-97=0,则x的值是多少?答案:x=7或x=13题目87:若2x^2+12x+25=0,则x的值是多少?答案:x=-5或x=-6题目88:若3x^2-15x-42=0,则x的值是多少?答案:x=3或x=14题目89:若4x^2+16x+48=0,则x的值是多少?答案:x=-4或x=-12题目90:若5x^2-24x+93=0,则x的值是多少?答案:x=3或x=19题目91:若x^2+18x+75=0,则x的值是多少?答案:x=-9或x=-8题目92:若2x^2-14x-35=0,则x的值是多少?答案:x=5或x=7题目93:若3x^2+17x+54=0,则x的值是多少?答案:x=-5或x=-9题目94:若4x^2-20x+82=0,则x的值是多少?答案:x=4或x=13题目95:若5x^2+26x-99=0,则x的值是多少?答案:x=-4或x=-19题目96:若x^2-20x+90=0,则x的值是多少?答案:x=9或x=10题目97:若2x^2+16x-48=0,则x的值是多少?答案:x=-6或x=-8题目98:若3x^2-18x+63=0,则x的值是多少?答案:x=3或x=9题目99:若4x^2+20x-80=0,则x的值是多少?答案:x=-5或x=-16题目100:若5x^2-22x-85=0,则x的值是多少?答案:x=4或x=17。

七年级因式分解50道题及答案和过程

七年级因式分解50道题及答案和过程

七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。

因式分解100题试题附答案精选全文完整版

因式分解100题试题附答案精选全文完整版

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

初中数学因式分解专题训练及答案解析

初中数学因式分解专题训练及答案解析

七年级下数学因式分解专题训练一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)22.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣33.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+46.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)27.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y28.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.412.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.913.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=_________.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是_________.16.因式分解:ax2y+axy2=_________.17.计算:9xy•(﹣x2y)=_________;分解因式:2x(a﹣2)+3y(2﹣a)=_________.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为_________.19.因式分解:(2x+1)2﹣x2=_________.20.分解因式:a3﹣ab2=_________.21.分解因式:a3﹣10a2+25a=_________.22.因式分解:9x2﹣y2﹣4y﹣4=_________.23.在实数范围内分解因式:x2+x﹣1=_________.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为_________.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:_________(写出一个即可).三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).28.在实数范围内分解因式:.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.七年级下数学因式分解专题训练参考答案与试题解析一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)2考点:因式分解的意义.分析:根据公式特点判断,然后利用排除法求解.解答:解:A、是平方差公式,正确;B、是完全平方公式,正确;C、是提公因式法,正确;D、两平方项同号,因而不能分解,错误;故选D.点评:本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.2.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣3考点:因式分解的意义.分析:根据因式分解与整式的乘法互为逆运算,把(x+1)(x+2)利用乘法公式展开即可求解.解答:解:∵(x+1)(x+2)=x2+2x+x+2=x2+3x+2,∴c=2.故选A.点评:本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.3.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)考点:因式分解的意义.分析:要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3﹣x=x(x2﹣1)没有分解完.解答:解:A、分解不彻底还可以继续分解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),B、C、D正确.故选A.点评:因式分解要彻底,直至分解到不能再分解为止.4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,错误;C、提公因式法,正确;D、右边不是积的形式,错误;故选C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+4考点:因式分解的意义.分析:根据多项式特点结合公式特征判断.解答:解:A、不能提公因式也不能运用公式,故本选项错误;B、同号不能运用平方差公式,故本选项错误;C、不符合完全平方公式,应该是x2+2xy+y2,故本选项错误;D、符合完全平方公式,正确;故选D.点评:本题主要考查了公式法分解因式的公式结构特点的记忆,熟记公式是解题的关键.6.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.7.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y2考点:因式分解-运用公式法.分析:能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍.解答:解:A、x2﹣xy只能提公因式分解因式,故选项错误;B、x2+xy只能提公因式分解因式,故选项错误;C、x2﹣y2能用平方差公式进行因式分解,故选项正确;D、x2+y2不能继续分解因式,故选项错误.故选C.点评:本题考查用公式法进行因式分解.能用公式法进行因式分解的式子的特点需识记.8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式分解即可.解答:解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选A.点评:本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)考点:因式分解-十字相乘法等;因式分解的意义;因式分解-分组分解法.分析:根据公式法分解因式特点判断,然后利用排除法求解.解答:解:A、x2﹣y2=(x+y)(x﹣y),是平方差公式,正确;B、x2+y2,两平方项同号,不能运用平方差公式,错误;C、x2﹣xy+xz﹣yz=(x﹣y)(x+z),是分组分解法,正确;D、x2﹣3x﹣10=(x+2)(x﹣5),是十字相乘法,正确.故选B.点评:本题考查了公式法、分组分解法、十字相乘法分解因式,熟练掌握分解因式各种方法的特点对分解因式十分重要.10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4考点:因式分解的应用.专题:新定义.分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解答:解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选B.点评:本题考查题目信息获取能力,解决本题的关键是理解此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).12.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.9考点:因式分解的应用.分析:根据乘方的性质,提取公因式(﹣8)2005,整理即可得到是7的倍数,所以能被7整除.解答:解:(﹣8)2006+(﹣8)2005,=(﹣8)(﹣8)2005+(﹣8)2005,=(﹣8+1)(﹣8)2005,=﹣7×(﹣8)2005=7×82005.所以能被7整除.故选C.点评:本题考查提公因式法分解因式,关键在于提取公因式,然后再对所剩的因数进行计算.13.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8考点:因式分解的应用.专题:整体思想.分析:由x2+x﹣1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x﹣1=0得x2+x=1,∴x3+2x2﹣7=x3+x2+x2﹣7,=x(x2+x)+x2﹣7,=x+x2﹣7,=1﹣7,=﹣6.故选C.点评:本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.考点:公因式.分析:分别将多项式ax2﹣4a与多项式x2﹣4x+4进行因式分解,再寻找他们的公因式.解答:解:∵ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2),x2﹣4x+4=(x﹣2)2,∴多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.点评:本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.16.因式分解:ax2y+axy2=axy(x+y).考点:因式分解-提公因式法.分析:确定公因式为axy,然后提取公因式即可.解答:解:ax2y+axy2=axy(x+y).点评:本题考查了提公因式法分解因式,准确找出公因式是解题的关键.17.计算:9xy•(﹣x2y)=﹣3x3y2;分解因式:2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y).考点:因式分解-提公因式法;单项式乘多项式.专题:因式分解.分析:(1)根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,计算即可.(2)直接提取公因式(a﹣2)即可.解答:解:9xy•(﹣x2y)=﹣×9•x2•x•y•y=﹣3x3y2,2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y),故答案分别为:﹣3x3y2,(a﹣2)(2x﹣3y).点评:(1)本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.(2)本题考查了提公因式法分解因式,解答此题的关键把(a﹣y)看作一个整体,利用整体思想进行因式分解.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为(2x+5y)(2x﹣5y).考点:因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据绝对值非负数,平方数非负数的性质列式求出m、n的值分别是4和25,然后代入多项式,再利用平方差公式进行因式分解即可.解答:解:|m﹣4|+(﹣5)2=0∴m﹣4=0,﹣5=0,解得:m=4,n=25,∴mx2﹣ny2,=4x2﹣25y2,=(2x+5y)(2x﹣5y).点评:本题主要考查利用平方差公式分解因式,根据非负数的性质求出m、n的值是解题的关键.19.因式分解:(2x+1)2﹣x2=(3x+1)(x+1).考点:因式分解-运用公式法.分析:直接运用平方差公式分解因式,两项平方的差等于这两项的和与这两项的差的积.解答:解:(2x+1)2﹣x2,=(2x+1+x)(2x+1﹣x),=(3x+1)(x+1).点评:本题主要考查平方差公式分解因式,熟记公式结构是解题的关键,本题难点在于把(2x+1)看作一个整体.20.分解因式:a3﹣ab2=a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).21.分解因式:a3﹣10a2+25a=a(a﹣5)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续分解.解答:解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.22.因式分解:9x2﹣y2﹣4y﹣4=(3x+y+2)(3x﹣y﹣2).考点:因式分解-分组分解法.分析:此题可用分组分解法进行分解,可以将后三项分为一组,即可写成平方差的形式,利用平方差公式分解因式.解答:解:9x2﹣y2﹣4y﹣4,=9x2﹣(y2+4y+4),=9x2﹣(y+2)2,=(3x+y+2)(3x﹣y﹣2).点评:本题考查了分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.23.在实数范围内分解因式:x2+x﹣1=(x++)(x+).考点:实数范围内分解因式;因式分解-运用公式法.分析:本题考查对一个多项式进行因式分解的能力,当要求在实数范围内进行分解时,分解的结果一般要分到出现无理数为止,而且对于不能直接看出采用什么方法进行因式分解的多项式,则需进行变形整理,一般可以在保证式子不变的前提下添加一些项,如本题,因为有x2+x,所以可考虑配成完全平方式,再继续分解.解答:解:x2+x+﹣1=(x+)2﹣=(x+)2﹣()2=[(x+)+][(x+)﹣]=(x++)(x+).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.同时还要结合式子特点进行适当的变形,以便能够分解.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为2.考点:因式分解的应用.分析:先根据题意把P=3xy﹣8x+1,Q=x﹣2xy﹣2分别代入3P﹣2Q=7中,再合并同类项,然后提取公因式,即可求出y的值.解答:解:∵P=3xy﹣8x+1,Q=x﹣2xy﹣2,∴3P﹣2Q=3(3xy﹣8x+1)﹣2(x﹣2xy﹣2)=7恒成立,∴9xy﹣24x+3﹣2x+4xy+4=7,13xy﹣26x=0,13x(y﹣2)=0,∵x≠0,∴y﹣2=0,∴y=2;故答案为:2.点评:此题考查了因式分解的应用,解题的关键是把要求的式子进行整理,然后提取公因式,是一道基础题.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).考点:因式分解的应用.专题:开放型.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)考点:因式分解-提公因式法.分析:先对前两项提取公因式(a﹣b)(a+b),整理后又可以继续提取公因式2b,然后整理即可.解答:解:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2),=(a﹣b)(a+b)(a+b﹣a+b)+2b(a2+b2),=2b(a2﹣b2)+2b(a2+b2),=2b(a2﹣b2+a2﹣b2),=4a2b.点评:本题考查了平方差公式,提公因式法分解因式,对部分项提取公因式后再次出现公因式是解题的关键,运用因式分解法求解比利用整式的混合运算求解更加简便.27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式(y2﹣1),再对余下的多项式利用完全平方公式继续分解,对公因式利用平方差公式分解因式.解答:解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1),=(y2﹣1)(x2+2x+1),=(y2﹣1)(x+1)2,=(y+1)(y﹣1)(x+1)2.点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后需要对公因式和剩余项进行二次因式分解,分解因式一定要彻底.28.在实数范围内分解因式:.考点:实数范围内分解因式.分析:将原式化为(x2﹣2)+(x+)进行分解即可,前半部分可用平方差公式.解答:解:原式=(x2﹣2)+(x+)=(x+)(x﹣)+(x+)=(x+)(x﹣+1).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]考点:因式分解的应用.专题:规律型.分析:本题要根据规律进行求解,我们发现式子的前两项可写成(1﹣a),那么(1﹣a)﹣a (1﹣a)用提取公因式法可得出(1﹣a)(1﹣a)=(1﹣a)2,再和下一项进行计算就是(1﹣a)2﹣a(1﹣a)2=(1﹣a)3,根据此规律,我们可得出原式=(1﹣a)2001﹣[(1﹣a)2001﹣3]=3.解答:解:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2000﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2001﹣[(1﹣a)2001﹣3],=3.点评:本题考查了提公因式法的应用,解题的关键是运用提取公因式法来找出式子的规律,从而求出答案.30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.考点:因式分解的应用;列代数式.专题:规律型.分析:(1)第2所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金)÷n;第3所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金﹣第2所民办学校得到的奖金)÷n;(2)由(1)得k所民办学校所得到的奖金为a k=总资金÷n×(1﹣)n;(3)用a k表示出a k+1进行比较即可.解答:解:(1)因为第1所学校得奖金a1=,所以第2所学校得奖金a2=(b﹣)=(1﹣)所以第3所学校得奖金a3===(2)由上可归纳得到a k=(3)因为a k=,a k+1=,所以a k+1=(1﹣)a k<a k结果说明完成业绩好的学校,获得的奖金就多.点评:这是一道渗透新课程理念的好题.它以奖金发放为背景,以列代数式、因式分解、代数式的大小比较等相关知识为载体,考查了学生数感、符号感、数学建模能力、观察分析、归纳推理等能力.本题得分率较低,究其原因主要有:一是部份学生不能将文字语言转换成符号语言,二是部份学生不能在代数式的整理变形过程中总结发现规律.解决本题的关键一是充分理解题意,二要表示第k所民办学校所得到的奖金,就要在第2所、第3所民办学校得到的奖金(代数式)上发现规律,三要提高对代数式变形的技能.。

初中数学 因式分解 练习题(含答案)

初中数学  因式分解  练习题(含答案)

因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档