行测数量关系:行程问题解题技巧
行程问题解题技巧 让你快速解决的方法
行程问题解题技巧让你快速解决的方法行程问题解题技巧学会用正反比例这类行程问题很简单比例思想是考生在做题过程中常常会用到的一种思想,也是行测数量关系局部的重点考察内容,比例问题的难度属于中等偏上,相对于列方程求解这类常规方法而言,假如能巧用正反比,在行程问题中可以到达事半功倍的效果。
下面通过两个例题带大家体会如何利用正反比巧解行程问题。
例1.一战斗机从甲机场匀速开往乙机场,假如速度进步25%,可比原定时间提早12分钟到达;假如以原定速度飞行600千米后,再将速度进步1/3,可以提早5分钟到达。
那么甲乙两机场的间隔是多少千米?A、750B、800C、900D、1000【答案】C。
解析:第一次提速前后速度比4:5,那么时间比为5:4,差了一份,相差12分钟,那么原速走完全程需要1小时,即60分钟。
第二次提速前后速度比为3:4,那么时间比为4:3,差5分钟,即原来的速度走完后面的路程需要20分钟;可得原速走600千米需要60-20=40分钟,那么原速为600千米÷40分钟=15千米/分钟,那么全程为15千米/分钟×60分钟=900千米,应选择C选项。
列方程求解是解决数量关系问题的常规思路,但是在行程问题中列方程那么比拟繁琐,而比例法的好处在于摆脱方程的束缚,利用正反比,可到达快速求解的目的。
例2.一个小学生从家到学校,先用每分钟50米的速度走了2分钟,假如这样走下去,他上课就要迟到8分钟:后来他改用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的间隔是多少米?A、1200B、3200C、4000D、5600【答案】:C。
解析:V1=50,前2分钟走了100米,改变速度后V2=60,因为后一段路程两者走的间隔相等,路程一定的时候,速度和时间成反比。
因为V1:V2=5:6,在速度提升之后,t1:t2=6:5,从慢8分钟到快5分钟,增加了13分钟,1个比例点对应13分钟。
假如以50米/分钟的速度来走剩下的路程,应该走6个比例点,需要13×6=78分钟。
2020泉州事业单位行测数量关系答题技巧:行程问题的基本模型
2020泉州事业单位行测数量关系答题技巧:行程问题的基本模型
泉州中公事业单位为各位考生带来更多泉州事业单位咨询,更多精彩内容尽在泉州事业单位招聘考试网!
目前2019年的各个类别的考试已经基本结束了,2020年开始了,也意味着新一轮的考试例如福建省事业单位考试、福建省考等即将陆续开始了,特别是个别市区已经发布了事业单位公告,所以各位考生们也应该开始进入我们新一年的备考中。
在备考前期还是需要多夯实基础,所以对于考试中的各个方向的各个考点还是需要详细掌握的,今天中公教育专家就跟大家一起来分享一下我们考试中比较常见的考点行程的基本模型。
一、基本数量关系
公式:路程=速度×时间(S=V×T)
三、经典例题
【例1】甲乙两人相距若干米,且已知甲的速度为60m/s,乙的速度为
50m/s,若两人同时相向而行经过3分钟可相遇;若两人同时同向而行,且甲在乙后。
求甲多长时间可以追上乙?
A.27
B.33
C.36
D.35
以上就是行程问题中比较常见的两种模型,也是我们在学习行程问题时必须要掌握的两个基础模型。
目前所讲授的题目整体来看还是比较简单的,但是对于一些相遇模型和追及模型的变式,还是需要各位考生通过多做一些题目以帮助更好的掌握。
并且在掌握好这两个基本模型之后,大家也可以进一步的去多了解行程问题的其他一些模型,例如多次相遇问题、牛吃草模型、流水行船模型等。
数量关系之行程问题答题技巧
数量关系之行程问题答题技巧资料来源:中政行测在线备考平台行程问题的重点在于三个量:路程、速度、时间,考来考去总是这三个点,那命题人如何增加难度呢?一是改变考查形式,比如直接求速度变成间接求解,二是增加因素,比如流水对船速的影响、车身长对路程的影响,等等。
但归根究底还是考一个公式:路程=速度*时间,命题就围绕这个公式展开,一般都是已知一个或多个运动过程,每个运动过程包含三个量:路程、速度、时间,与此同时,不同的运动过程间这三个量必然存在某个共通点,比如路程相同,或者相同时间。
因此,行程问题的基本解题思路就是:分析题干中的每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然。
1、行程问题之相遇问题答题技巧相遇问题是行程问题的一种考查形式,指两人(或两车等)从两地出发相向而行的行程问题,是研究“速度”、“相遇时间”和“两地距离”三者之间的数量关系的应用题。
三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点。
很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含的已知条件。
尤其,近年来考题难度有所增加,单一的相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案。
2、行程问题之追击问题答题技巧追及问题指的是两人(物)在行进过程中同向而行,快行者从后面追上慢行者的行程问题。
它考虑的是两人(物)在相同时间内所行的路程差。
命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中的“同时同地出发型”,这里要注意一点,它的路程差是一个隐含的已知条件,与追上次数有关。
第一次追上,路程差是一个周长,第N次追上,路程差是n个周长,做题时如果不明白这一点,很难理清思路。
行测数量关系技巧:正反比法解行程问题
行测数量关系技巧:正反比法解行程问题行测数量关系技巧:正反比法解行程问题在行测数量关系中,行程问题是很重要的一局部,对于这一局部的题目,根据题干信息找等量关系就可以列出方程,从而解决题干的问题。
但是在解决行程问题的过程中,有的题目列出等量关系去解方程会相比照拟费事,对于一些计算才能不是很好的同学来讲无疑是一件头疼的事情,因此,在行程问题中,我们可以通过正反比的方法来解决。
要理解正反比,首先要知道正反比代表的是什么。
正比指的是假设两个数相除为定值,那么这两个数成正比;反比指的是假设两个数相乘为定值,那么这两个数成反比。
理解了正反比的概念之后,我们来看一下使用正反比的方法来解决两道题目。
例1、经技术改良,A、B两城间列车的运行速度由150千米/小时提升到250千米/小时,行车时间因此缩短了48分钟,那么A、B两城间的间隔为:A.300千米B.291千米C.310千米D.320千米【答案】A。
解析:题目所说列车的速度发生了变化,时间也随之发生了变化,但在这个过程中,A、B两城间的间隔没有发生变化,即路程一定,我们路程=速度×时间(s=vt),两数相乘为定值,因此,速度和时间成反比的关系,由此我们可以得到提速前和提速后的速度与时间之间的关系。
原来:如今V 150 : 250(3 : 5)t 5 : 3由题干信息可得,时间因此缩短了48分钟,由时间关系可知,如今的时间比原来的时间少2份,2份对应48分钟,因此1份时间对应24分钟,原来时间占5份,即为24×5=120分钟=2小时。
所求路程=速度×时间=150×2=300千米,选择A选项。
例2、某____从驻地乘车赶往训练基地,假如将车速进步1/9,就可比预定的时间提早20分钟赶到;假如将车速进步1/3,可比预定的时间提早多少分钟赶到?A.30B.40C.50D.60【答案】C。
解析:题干中车速发生变化,时间也随之发生变化,保持不变的是驻地到训练基地之间的间隔,也就是路程保持一定,因此速度和时间成反比的关系,当车速进步1/9时,原来和第一次发生变化时的速度和时间的关系如下:原来:第一次V 9 : 10t 10 : 9由题干信息可得,时间提早20分钟,由时间关系可知,第一次变化与原来相比时间少1份,即1份对应20分钟,那么原来的时间为10×20=200分钟。
公务员行测数量关系速算公式归纳
公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
行程问题的解题技巧和方法
行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。
解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。
例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。
2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。
因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。
3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。
当我们知道任意两项,都可以通过公式求出另一项。
因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。
4. 求平均速度
有些题目中,物体在行程中可能有多个速度。
此时,我们可以求出平均速度来解决问题。
平均速度的公式是:平均速度=总路程÷总时间。
在求解平均速度时,我们需要注意速度的单位应该统一。
总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。
公务员考试行测技巧:数量关系之行程问题汇总
公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。
不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。
行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。
3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。
行程问题公考万能解题口诀
行程问题公考万能解题口诀行程问题啊,说白了就是考咱们的数学思维和速度感,特别是在公考的时候,简直就是必考的“常客”了。
看似简单,其实有点儿“套路”,如果不掌握个诀窍,真有可能被绕进去。
别怕,今天我就给大家来一套行程问题的“万能解题口诀”,帮你一招搞定,简单又高效,保证你考试不掉链子。
首先呢,行程问题大致就是考你如何算出“时间、速度和路程”之间的关系。
三者的关系呀,可以用一个经典的公式来表示,那就是:路程=速度×时间。
没错,就是这么简单的公式,三者之间就像铁三角,缺一不可。
听着容易,做起来可得看清楚题意。
别急,先稳住,接下来告诉你怎么把它拆开来用。
行程问题最常见的两种类型,第一种是“单一行程”,就是说你一个人出发,走一路,到达一个目的地。
你只需要知道你的速度和时间,直接套公式就行。
比如说,某人开车从A地到B地,开了3个小时,平均速度是60公里/小时,那你算一下,总共走了多少路?答案就很简单了,路程=速度×时间=60×3=180公里。
是不是简单?对吧,考场上遇到这种,基本就是几秒钟的事儿,大家心里有数了就行。
但是,如果题目稍微复杂点,开始给你两个人或者两种交通工具,哎呀,麻烦就大了。
不过别怕,给你个诀窍,先记住:“相遇”问题和“追及”问题是行程问题的两大主角。
这些题目出现时,不要慌,照着套路走。
举个例子,假如有两个小伙子,一个骑车从A地出发,另一个骑车从B地出发,两个人相向而行,问题是他们什么时候相遇,路程是多少。
哎呀,这个就需要注意一下啦。
相遇问题嘛,得想象一下,两个小伙子从不同地方出发,最终碰面。
这里有个小诀窍,速度加起来,时间嘛,再按照公式算。
别忘了,两个小伙伴的速度加起来就等于他们两个人“合力”的速度,时间就等于“合力速度”下两人相遇所需的时间。
比如说,A从A地出发,B从B地出发,A骑车的速度是10公里/小时,B骑车的速度是15公里/小时,两人相向而行,问多久会碰面?好啦,这时候你就可以先求出他们的“合力速度”,就是10+15=25公里/小时。
公务员行测考试数量关系:行程问题详解
行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。
专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。
一、行程问题知识要点(一)行程问题中的三量行程问题研究的是物体运动中速度、时间、路程三者之间的关系。
这三个量之间的基本关系式如下:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。
(二)行程问题中的比例关系时间相等,路程比=速度比;速度相等,路程比=时间比;路程一定,速度与时间成反比。
二、行程问题的主要题型(一)平均速度问题平均速度问题公式:(二)相遇问题1.相遇问题的特征(1)两人(物体)从不同地点出发作相向运动;(2)在一定时间内,两人(物体)相遇。
与基本的行程问题相比,专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。
一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。
2.相遇问题公式公式中的相遇路程指同时出发的两人所走的路程之和。
如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。
(三)追及问题1.追及问题的特征(1)两个运动物体同地不同时(或同时不同地)出发做同向运动。
后面的比前面的速度快。
(2)在一定时间内,后面的追上前面的。
与相遇问题类似,专家建议考生可通过线段图来理清追及问题的运动关系。
2.追及问题公式在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。
由此得出追及问题的公式:(四)多次相遇问题相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。
多次相遇问题重要结论:1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。
巧解行程问题--正反比例
巧解行程问题--正反比例在各地公职类、事业单位的行测考试中行程问题几乎是数学运算部分的必考题型,很多考生在遇到该类型题目时都会感到无从下手。
但是,行程问题真的有那么复杂吗?其实不然。
接下来中公教育专家给大家详细讲解数量关系中行程问题的解题方法,让大家在最短的时间内得出答案并得分。
行程问题虽然考察的知识点较多,但是核心公式只有一个,即“路程=速度×时间”。
我们可以得出该公式中存在的正反比的关系,即:1、时间一定,路程与速度成正比;2、速度一定,路程与时间成正比;3、路程一定,速度与时间成反比。
各位考生只要牢记这三个简单且熟知的正反比关系就可以轻松拿下大部分的普通类行程问题。
下面,我们通过下面几个题目为大家详细分析如何应用正反比例解决行程问题。
例1.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以15千米/时的速度行进,上午 11 时到。
如果希望中午 12 时到,那么应以怎样的速度行进?A.11 千米/时B.12 千米/时C.12.5千米/时D.13.5千米/时【答案】B。
解析:在通过两次不同的速度进行行走的过程中,存在路程=速度×时间的关系,且路程保持一定可以采用正反比进行解题。
第一次和第二次的速度之比为10:15=2:3,进而时间之比为3:2,第一次比第二次多1份,多2小时,故知1份对应2小时,进而知第一次的时间3份为6小时,总路程为6×10=60千米,第三次中午12点到,用时6-1=5小时,故速度为60÷5=12千米/时,故选B。
例2.某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高19,就可比预定的时间提前20分钟赶到;如果将车速提高13,可比预定的时间提前多少分钟赶到?A.30B.40C.50D.60【答案】选C。
解析:由于两次提速后与提速前均存在路程=速度×时间的关系,且所走路程相同,因此可以采用正反比进行解题。
山东公务员考试行测数量关系行程问题解答技巧.doc
2019山东公务员考试行测数量关系行程问
题解答技巧
在历年的山东公务员考试中,行测方程问题是考生相对来说都比较熟悉的一部分内容,而且大部分考生也喜欢用方程法去解题。
华图教育老师认为,普通的等量构造法涉及程序比较复杂,这就导致解题时间较长,在实际考试过程中没有时间去做。
而比较构造就能够避过中间的设、列阶段,直接进入解方程,大大的节省了解题时间,提高做题效率。
一、什么是比较构造法
对同一事件有两种或两种以上不同方案,比较方案间的异同,建立方案间的联系,构造关系式,这就是比较构造法。
二、一般解题步骤
1、列出方案
2、比较方案间差别与联系
3、构造关系式
4、求解
三、应用
例题:水果店运来的西瓜个数是哈密瓜个数的4倍,如果每天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后还剩下70个西瓜。
该店共运来西瓜和哈密瓜共多少个?
解答:两种方案对比如下:
比较售卖方案和进货方案,因为每天卖出36个哈密瓜,哈密瓜全部卖完,而剩余了70个西瓜,假设每天进36个哈密瓜,因为西瓜的进货量是哈密瓜的4倍,所以每天进144个西瓜,每天剩余西瓜数为14个,共剩余70个,可得售卖天数为70/14=5天。
所以,该店共运来西瓜和哈密瓜共(144+36) 5=900个。
华图教育老师认为,其实比较构造法并不难。
考生要多应用这种方法,尽量不去列方程,用思考代替计算,可以大大降低计算量,提高做题速度,提高正确率。
公务员考试行测数量关系:如何利用正反比巧解行程问题
A.89 B.90 C.91 D.92
【中公解析】:选A。速度比等于相同时间内的路程比,甲、乙速度比为110:(110-11)=10:9,同理乙、丙速度比也为10:9。设甲的速度为1,则乙的速度为0.9,丙的速度为0.9×0.9=0.81。甲跑110米时,丙跑110×0.81=89.1米,近似为89米。
对于众多考生来说,行测数量中的行程问题基本上是属于年年必考类的题型,但是这种题型有时简单有时复杂,所以接下来中公教育专家给大家介绍一种关于行程问题可以巧解的方法——正反比方法。
一、行程问题中基本公式
S=VT(路程=速度×时间)
二、行程问题中正反比
存在S=VT时且3个未知数有其中一个量处于不变时
当S不变时,V与T成反比
例:有两个山村之间的公路都是上坡和下坡,没有平坦路。农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?
A.45 B.48 C.50 D.24
【中,根据S=VT,当S一定时,VT成反比。上坡的速度:下坡速度=20:30=2:3,则上坡时间:下坡时间=3:2,5份对应4小时,1份是0.8时间,上坡对应3×0.8=2.4小时,全程是2.4×20=48千米。
公务员考试行测数量关系:如何利用正反比巧解行程问题
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
行测——行程问题解题原理及方法
公务员考试数量关系之行程问题解题原理及方法两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程追及(或领先的)路程÷时间=速度差追及(或领先的)路程÷速度差=时间对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。
分析复杂的行程问题时,最好画线段图帮助思考理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。
(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的At+bt=s t=s/a+b s甲=a*t=a*s/a+b S乙=b*t=b*s/a+b【例1】甲、乙两人分别从A、B两地同时出发,相向而行。
如果两人都按原定速度行进,那么4小时相遇;现在两人都比原计划每小时少走1千米,那么5小时相遇。
A、B两地相距多少千米?【分析】可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走1千米)仍然走4小时,那么他们不能相遇,而是相隔一段路。
这段路的长度是多少呢?就是两人4小时一共比原来少行的路。
由于以现在的速度行走,他们5小时相遇,换句话说,再行1小时,他们恰好共同行完这段相隔的路。
这样,就能求出他们现在的速度和了。
【解】相隔路程:1×4×2行完相隔路程所需时间:(5-4)速度和4×2/(5-4)全程=40(千米)这道题属于相遇问题,它的基本关系式是:速度和×时间=(相隔的)路程。
但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上面的关系式。
不过,当出现“不同时出发”或“没有相遇(而是还相隔一段路)”的情况时,应该通过转化条件,然后应用上面的关系式。
公务员行测数量关系十大知识要点
数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
行政职业能力测试——数量关系题型总结 (2)行程问题
行政职业能力测试——数量关系题型总结行程问题一、基本类型(1)基本公式:路程=时间X速度(S=V x T)(2)相遇追及问题。
相遇距离S=(v1+v2)X 相遇时间T追及距离S=(v1+v2)X追击时间T(3)环形运动问题环形周长S=(v1+v2)X反向运动时间T环形周长S=(v1-v2)X 同乡运动时间T(4)多次相遇问题同起点单边型多次相遇问题路程和2nS=(v1+v2)X t两边出发两边型多次相遇问题路程和(2n-1)S=(v1+v2)X t(注意:n为相遇次数,代求量。
S一般已知,同起点的第一次相遇发生在速度快的一方到达目的地后折返相遇)(5)流水行船问题顺流S= (v船+v水)*顺流时间t逆流S= (v船—v水)*逆流时间t(6)等距离平均速度V=(2V往V返)/(V往+V返)二、解题方法:方程法、图示法、赋值法、比例法。
(1)基本行程问题1、匀速运动型,常用方法:方程法&比例法破题点:关于时间、路程、速度的等量关系。
2、变速运动型:(整个过程速度不完全相同,每段的运动量是匀速的)破题点:找到题干中相等的量总路程=分段路程之和总时间=分段时间之和3、间歇运动型:(有一段或多段时间物体是静止的,即没有运动)需要注意的实际运动时间是什么破题点:路程=实际运动的时间*速度可带入选项排除法解题!(2)相遇追及问题1、单次直线型相遇;甲乙同时从A、B两点分别出发。
相遇时,其距离S,也就是AB两地之间的距离S=甲乙的速度和乘以时间。
2、单次直线型追击:甲乙都从A出发,速度慢的一方先出发,速度快的后出发,然后追上,则等量关系为:在速度快的一方出发时,速度慢的一方已经先出发走了S,S=速度差乘以速度快的一方走的时间,也就是速度快的一方追赶用的时间。
3、多次直线型相遇两地距离S=(v1+v2)X t除以(2n-1),n为相遇次数即:相遇次数n=S除以(v1+v2)X t4、环形相遇问题:甲乙从同一点同时出发,环形周长S=(v1+v2)X t若甲乙有相隔距离,则用周长减去相隔距离若不是同时出发,则时间一般考虑后出发的,先出发的一方时间另行计算出先出发的距离。
省公务员考测技巧比例法解决行程问题
2021年**公务员考测技巧:比例法解决行程问题 2021年**公务员考测技巧:比例法解决行程问题2021—12-2811:45:47 公务员文章来源:行测考试数量关系行程部分,是考生在备考中遇到的难点之一,主要原因就是方法使用的不恰当,一味采用方程的思想来解决问题会严重的影响我们的解题速度,接下来给大家分享一些比例的思想。
如何快速的运用比例的思想迅速的解决掉行程问题也是我们成功的一个关键。
希望能帮助到备战2021年**公务员考试的考生们!在行程问题中有三个量,分别是路程(s)、速度(v)、时间(t)。
三者间正反比关系情况如下:(1)s一定时,v和t成反比。
比如当s一定时,v1:v2=2:3,则t1:t2=3:2;(2)v一定时,s和t成正比。
比如当v一定时,t1:t2=2:3,则s1:s2=2:3;(3)t一定时,s和v成正比.比如当t一定时,v1:v2=2:3,则s1:s2=2:3.需要注意的是出现三者反比时,如当s一定时v1:v2:v3=1:2:3,则t1:t2:t3=3:2:1是不是等于3:2:1呢可能很多人都觉得是的,但是实际上不对。
也就是说反比并不是反过来写的意思,而是指两个数的积一定,这两个数成反比.在这个比例中,把v1 t1、v2 t2、v3 t3的乘积并不相等,所以他们的反比一定不是3:2:1。
那么,应该是多少呢我们可以设路程是1、2、3的公倍数6,分别用路程除以速度就是时间,61=6、62=3、63=2,所以t1:t2:t3=6:3:2。
我们知道怎么找正反比之后,怎么应用到题目中去呢接下来我们重点来讲一讲正反比的应用。
【例题】狗追兔子,开始追时狗与兔子相距20米。
狗跑了45米后,与兔子还相距8米,狗还需要跑多远才能追上兔子A.25米 B。
30米C。
35米D.40米【答案】B【解析】狗跑了45米,这是兔子在狗前方8米处,也就是距离狗的起点53米,兔子在起点20米处开始跑,那么兔子跑了33米,在相同的时间下狗和兔子跑的路程笔试45:33,也就是15:11,说明狗和兔子的速度笔试15:11,要追8米的路程根据正反比关系可以得到,当狗跑30米的时候兔子刚跑22米,狗刚好追上兔子。
行测备考:比例法帮你解决行测中行程问题
行测备考:比例法帮你解决行测中行程问题行测备考:比例法帮你解决行测中行程问题随着省考面试的完毕,我们下半年即将迎来大多数人参加的国家公务员考试,其中在公考中行测数量里面的行程问题一直是令很多人头疼的问题,今天就带大家来看看工程问题有没有快速好解的方法技巧。
工程问题主要研究的问题是路程〔S〕、速度〔V〕和时间〔T〕三者之间的关系:S=VT,但是假如不提早理解一些方法,在遇到局部比拟复杂一点的题型还是会消耗太长的时间和精力,所以我们需要给大家介绍一种比拟简单实用的可以解决行程问题的方法——比例法,我们先来看两道例题。
例1.小王早上上班从家到公司用了40分钟,晚上下班回家因为着急做饭,加快速度30分钟到家,求小王上班和下班速度只比为多少?A.4/3B.2/3C.3/4D.1/2【答案】C。
解析:这道题目是典型的行程问题,对于小王而言,上班和下班走的都是同一段路,即总路程S一样,那么早上上班的速度为:S/40;下班速度为:S/30;此时上下班速度之比进展约分发现总路程S可以约去,得到结果3/4。
即选C。
根据以上的这道例题可以得知对于同一段路程而言,时间之比和速度之比成反比,即同一路程中,时间之比为4/3,速度之比,那么为3/4,那我们能得出在以后行程问题中,假设路程〔S〕为定值,速度〔V〕和时间〔T〕成反比〔比例相反〕。
例2.百米赛跑小明跑到终点时,小红间隔终点还有十米,求小明和小红的速度比?A.10/9B.11/10C.12/11D.6/5【答案】A。
解析:此题与上道题目不同,两者的时间一样,并且一样时间小明和小红分别的路程,那么小明速度为:100/t;小红速度为:90/t;那么小明小红速度之比约去一样时间t,速度之比为10/9,即选A。
根据以上的这道例题可以得知对于同一时间而言,路程之比和速度之比成正比,即同一时间,路程之比为10/9速度之比也为10/9,那我们能得出在以后行程问题中,假设时间〔T〕为定值,路程〔S〕和速度〔V〕成正比〔比例一样〕。
行测行程问题解题方法
行测行程问题解题方法
行测中的行程问题通常都是与时间、距离、速度等相关的运动问题,常见类型有相向出发、相遇、交错等。
针对这些问题,以下是一些解题方法:
1. 画图法
在解题时可以根据题目要求,绘制出相应的图形,以便更好地理解和解决问题。
比如相向而行问题,可以画出两人相向而行的图形,标上相对速度,根据两人之间的距离和时间来计算出两人相遇的时间点;而对于相遇问题,则需要画出两人的运动轨迹,通过交点来确定两人相遇的时间和位置。
2. 路程、速度、时间图
在解题时可以采用路程、速度、时间图的方法,将三者之间的关系用图形表现出来。
比如相向出发问题,可以将两人行程的路程距离、速度和时间用图表来表示,将两者之间的距离表示为一条线段,两人相遇的点为交点,从而计算出两人相遇的时间。
交错问题也可以用同样的方法解决。
3. 解方程法
对于一些比较复杂的行程问题,可以采用解方程的方法来求解。
首先需要根据问题中所给的条件列方程,然后化简、代入、消元,在数学上求解出问题的答案。
这种方法需要一定的数学基础和运算能力,但对于一些比较复杂的问题,是一种有效的解题方法。
综上所述,行测中的行程问题需要注意细节问题,例如要注意两人相遇的时间点还是距离、速度在题目中是否有单位等。
无论采用哪种方法解答,都需要对题目中所给出的条件进行仔细分析,清晰表达,逐步推导出正确的答案。
同时,练习过程中建议多做一些类似题目,加强理解和运算能力,提高解题效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行测数量关系:行程问题解题技巧
行程问题在行测数量关系的考试当中还是比较常见的,那么什么是行程问题呢,顾名思义就是研究跟行程有关的问题,更加确切的说是研究路程速度还有时间他们三者之间的关系,可以用一个公式来表示,路程=速度×时间,也就是s=vt。
中公教育相信大家对这个公式也不陌生,在小学的数学课堂当中肯定也接触过。
那么在数量关系当中我们碰到了行程问题要了解一些什么又如何去较快解决这类问题呢。
主要是要掌握一些基本的只是在掌握基本知识的基础上配合一些方法来较快地解决我们的行程问题。
第一、就是要掌握我们的基本公式s=vt。
1、小张将带领三位专家到当地B单位调研,距离B单位1.44千米处设有地铁站出口。
调研工作于上午9点开始,他们需要提前10分钟到达B单位,则小张应通知专家最晚几点一起从地铁口出发,步行前往B单位?(假设小张和专家的步行速度均为1.2米/秒)
A.8点26分
B.8点30分
C.8点36分
D.8点40分
【答案】B。
中公解析:根据s=vt我们发现我们要求时间,已知地铁口跟单位路程是1440米,小张跟专家的速度也知道均为1.2米每秒,从地铁口步行到B 单位需要1440÷1.2=1200 秒=20 分钟,又需要提前10 分钟到达B 单位,则最晚需要在8 点30 分从地铁口出发,选择B。
这是对s=vt公式的基本应用,相信大家也能够掌握。
第二、我们要掌握的就是关于s=vt,他们三者之间的正反比关系
当s一定时,vt乘积为定值,那么v越大t就越小,vt之间成反比。
当v一定时,s与t的商为定值,那么s变大t也变大,st之间成正比。
当t一定时,s与v的商为定值,那么s变大v也变大,sv之间成正比。
我们可以用正反比来进行求解。
2、甲乙两辆车从A 地驶往90 公里外的B 地,两车的速度比为5∶6。
甲车于上午10 点半出发,乙车于10 点40 分出发,最终乙车比甲车早2 分钟到达B 地。
问两车的时速相差多少千米/小时?
A.10
B.12
C.12.5
D.15
【答案】D。
中公解析:根据题意,我们发现路程时不变的,所以速度与时间成反比,甲乙两车的速度比为5∶6,因此两车从A 到B 所用的时间比为6∶5,乙比甲晚出发10 分钟,且比甲早2 分钟到达,因此全程乙比甲快了12 分钟,即一份时间为12 分钟,因此全程乙用时12×5=60 分钟=1 小时,乙的速度为90 千米/小时,因此两车速度之差为15千米/小时。
中公教育希望大家掌握这两种方法并多加练习,掌握好行程问题。