高二下学期期末考试理科数学模拟试题6
高二(下)期末数学试卷(理科)(共2套,含参考答案)
高二(下)期末数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数的共轭复数为()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣2i2.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(?U A)∩B=()A.(0,1]B.[﹣1,1]C.(1,2]D.(﹣∞,﹣1]∪[1,2]3.设等差数列{a n}的前n项和为S n,若a1=﹣11,a3+a7=﹣6,则当S n取最小值时,n等于()A.9 B.8 C.7 D.64.若,则sin(π+2α)=()A.B.C.D.<0”是“﹣1<x<0”的()5.“xA.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知x,y满足线性约束条件:,则目标函数z=y﹣3x的取值范围是()A.B.(﹣3,﹣1)C.D.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192 里B.96 里C.48 里D.24 里8.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移个单位长度,得到图象的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=sin(x+)D.y=sin(x+)9.在△ABC中,若,且=2,则A=()A.B.C. D.10.已知命题p:?x∈R,x+≥2;命题q:?x0∈[0,],使sin x0+cos x0=,则下列命题中为真命题的是()A.p∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q11.已知函数f(x)=x+,g(x)=2x+a,若?x1∈[,1],?x2∈[2,3],使得f(x1)≥g (x2),则实数a的取值范围是()A.(﹣∞,1]B.[1,+∞)C.(﹣∞,2]D.[2,+∞)12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.3二、填空题:本题共4小题,每小题5分,共20分.13.函数的最小正周期为.14.设函数f(x)=,则函数f(x)的值域是.15.△ABC中,若b=2,A=120°,三角形的面积,则三角形外接圆的半径为.16.若函数f(x)=﹣x3+x2+2ax在[,+∞)上存在单调递增区间,则a的取值范围是.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是,圆C的极坐标方程是ρ=4sinθ.(Ⅰ)求l与C交点的极坐标;(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是(t 为参数),求a,b的值.18.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.19.已知数列{a n}满足a1=﹣1,na n+1=S n+n(n+1)(n∈N*),S n是数列{a n}的前n项和.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.20.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.1500.1000.0500.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.82821.在直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且AA'=2.(1)试在棱CC'上确定一点M,使A'M⊥平面AB'D';(2)当点M在棱CC'中点时,求直线AB'与平面A'BM所成角的正弦值.22.设f(x)=e x﹣2ax﹣1.(Ⅰ)讨论函数f(x)的极值;(Ⅱ)当x≥0时,e x≥ax2+x+1,求a的取值范围.高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数的共轭复数为()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】根据两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,求出复数,可得它的共轭复数.【解答】解:复数==2﹣i,故它的共轭复数为2+i,故选:A.2.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(?U A)∩B=()A.(0,1]B.[﹣1,1]C.(1,2]D.(﹣∞,﹣1]∪[1,2]【考点】1H:交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,根据全集U=R,求出A的补集,找出A补集与B的交集即可.【解答】解:集合A={x||x|≤1}=[﹣1,1],B={x|log2x≤1}=(0,2],∵全集U=R,∴?U A=(﹣∞,﹣1)∪(1,+∞)∴(?U A)∩B=(1,2],故选:C3.设等差数列{a n}的前n项和为S n,若a1=﹣11,a3+a7=﹣6,则当S n取最小值时,n等于()A.9 B.8 C.7 D.6【考点】89:等比数列的前n项和;84:等差数列的通项公式.【分析】根据等差数列的性质化简a3+a7=﹣6,得到a5的值,然后根据a1的值,利用等差数列的通项公式即可求出公差d的值,根据a1和d的值写出等差数列的通项公式,进而写出等差数列的前n项和公式S n,配方后即可得到Sn取最小值时n的值.【解答】解:由等差数列的性质可得a3+a7=2a5=﹣6,解得a5=﹣3.又a1=﹣11,设公差为d,所以,a5=a1+4d=﹣11+4d=﹣3,解得d=2.则a n=﹣11+2(n﹣1)=2n﹣13,所以S n==n2﹣12n=(n﹣6)2﹣36,所以当n=6时,S n取最小值.故选D.4.若,则sin(π+2α)=()A.B.C.D.【考点】GS:二倍角的正弦.【分析】利用两角差的正弦函数公式化简已知等式,得:(cosα﹣sinα)=,两边平方后,利用二倍角公式可求sin2α的值,进而利用诱导公式化简所求即可得解.【解答】解:∵,可得:(cosα﹣sinα)=,∴两边平方可得:1﹣2sinαcosα=,解得:sin2α=,﹣.∴sin(π+2α)=﹣sin2α=故选:A.<0”是“﹣1<x<0”的()5.“xA.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由﹣1<x<0?x<0;反之不成立.即可判断出关系.【解答】解:由﹣1<x<0?x<0;反之不成立.∴“x<0”是“﹣1<x<0”的必要不充分条件.故选:B.6.已知x,y满足线性约束条件:,则目标函数z=y﹣3x的取值范围是()A.B.(﹣3,﹣1)C.D.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z=y﹣3x得y=3x+z,作出不等式组,对应的平面区域如图,平移直线y=3x+z,由图象可知当直线y=3x+z,过点B时,直线y=3x+z的截距最小,此时z最小,由,解得,即B(1,0).代入目标函数z=y﹣3x,得z=0﹣3=﹣3,∴目标函数z=x﹣2y的最小值是﹣3.当直线y=3x+z,过点A时,直线y=3x+z的截距最大,此时z最大,由,解得A(,).代入目标函数z=y﹣3x,得z==,∴目标函数z=y﹣3x的最大值是.目标函数z=y﹣3x的取值范围是(﹣3,]故选:C.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192 里B.96 里C.48 里D.24 里【考点】8B:数列的应用.【分析】由题意得:每天行走的路程成等比数列{a n}、且公比为,由条件和等比数列的前项和公式求出a1,由等比数列的通项公式求出答案即可.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96里,∴第二天走了96里,故选:B.8.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移个单位长度,得到图象的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=sin(x+) D.y=sin(x+)【考点】HJ:函数y=Asin(ωx+φ)的图象变换;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用函数y=Asin(ωx+φ)的图象变换规律即可求得答案.【解答】解:∵函数y=sinx(x∈R),图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin x,图象上所有点向左平行移动个单位长度,得到y=sin(x+)=sin(x+),x∈R.故选:C.9.在△ABC中,若,且=2,则A=()A.B.C. D.【考点】HP:正弦定理.【分析】由已知及正弦定理可得c=2b,结合a2﹣b2=bc,可得a2=7b2,由余弦定理可求cosA=,结合范围A∈(0,π),即可求得A的值.【解答】解:∵在△ABC中,==2,由正弦定理可得:=2,即:c=2 b,∵=b(a×+b×),∴整理可得:a2﹣b2=bc,∴a2﹣b2=b×2,解得:a2=7b2,∴由余弦定理可得:cosA===,∵A∈(0,π),∴A=.故选:A.10.已知命题p:?x∈R,x+≥2;命题q:?x0∈[0,],使sin x0+cos x0=,则下列命题中为真命题的是()A.p∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q【考点】2K:命题的真假判断与应用.【分析】判断两个命题的真假,然后利用复合命题的真假判断选项即可.【解答】解:对于命题p:当x≤0时,x+≥2不成立,∴命题p是假命题,则¬p是真命题;对于命题q:sinx+cosx=sin(x+)∈[1,],则q是真命题,所以(¬p)∧q.故选:D.11.已知函数f(x)=x+,g(x)=2x+a,若?x1∈[,1],?x2∈[2,3],使得f(x1)≥g (x2),则实数a的取值范围是()A.(﹣∞,1]B.[1,+∞)C.(﹣∞,2]D.[2,+∞)【考点】3R:函数恒成立问题.【分析】首先将问题转化为在所给定义域上f(x)的最小值不小于g(x)的最小值,然后分别利用函数的单调性求得最值,最后求解不等式即可求得最终结果.【解答】解:满足题意时应有:f(x)在的最小值不小于g(x)在x2∈[2,3]的最小值,由对勾函数的性质可知函数在区间上单调递减,f(x)在的最小值为f(1)=5,当x2∈[2,3]时,g(x)=2x+a为增函数,g(x)在x2∈[2,3]的最小值为g(2)=a+4,据此可得:5?a+4,解得:a?1,实数a的取值范围是(﹣∞,1],故选:A.12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.3【考点】7F:基本不等式.【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.二、填空题:本题共4小题,每小题5分,共20分.13.函数的最小正周期为π.【考点】H1:三角函数的周期性及其求法.【分析】直接利用三角函数的周期公式求解即可.【解答】解:函数的最小正周期为:=π.故答案为:π.14.设函数f(x)=,则函数f(x)的值域是(0,1)∪[﹣3,+∞).【考点】34:函数的值域.【分析】可根据不等式的性质,根据x的范围,可以分别求出和﹣x﹣2的范围,从而求出f (x)的值域.【解答】解:①x>1时,f(x)=;∴;即0<f(x)<1;②x≤1时,f(x)=﹣x﹣2;∴﹣x≥﹣1;∴﹣x﹣2≥﹣3;即f(x)≥﹣3;∴函数f(x)的值域为(0,1)∪[﹣3,+∞).故答案为:(0,1)∪[﹣3,+∞).15.△ABC中,若b=2,A=120°,三角形的面积,则三角形外接圆的半径为2.【考点】HP:正弦定理.【分析】利用三角形面积计算公式、正弦定理可得a,再利用正弦定理即可得出.【解答】解:=sin120°,解得c=2.∴a2=22+22﹣2×2×2×cos120°=12,解得a=2,∴2R===4,解得R=2.故答案为:2.16.若函数f(x)=﹣x3+x2+2ax在[,+∞)上存在单调递增区间,则a的取值范围是.【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,利用导函数值大于0,转化为a的表达式,求出最值即可得到a的范围.【解答】解:函数f(x)=﹣x3+x2+2ax,f′(x)=﹣x2+x+2a=﹣(x﹣)2++2a.当x∈[,+∞)时,f′(x)的最大值为f′()=2a+,令2a+>0,解得a,所以a的取值范围是.故答案为:.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是,圆C的极坐标方程是ρ=4sinθ.(Ⅰ)求l与C交点的极坐标;(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是(t为参数),求a,b的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)列出关于θ符方程,通过三角函数求解θ,即可求l与C交点的极坐标;(Ⅱ)直线PQ的参数方程是消去参数t,得到普通方程,利用第一问的结果,即可求a,b的值.2θ.所以cosθ=0或tanθ=1,【解答】解:(Ⅰ)ρ=4sinθ代入,得sinθcosθ=cos取,.再由ρ=4sinθ得ρ=4,或.所以l与C交点的极坐标是,或.…(Ⅱ)参数方程化为普通方程得.由(Ⅰ)得P,Q的直角坐标分别是(0,2),(1,3),代入解得a=﹣1,b=2.…18.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.【考点】GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法.【分析】(1)运用两角和差公式和二倍角公式,化简整理,再由周期公式和正弦函数的单调增区间,即可得到;(2)由x的范围,可得2x﹣的范围,再由正弦函数的图象和性质,即可得到值域.【解答】解:(1)f(x)=2sinxsin(x+)=2sinx(sinx+cosx)=sin2x+sinxcosx=+sin2x=+sin(2x﹣)则函数f(x)的最小正周期T==π,由2k≤2kπ+,k∈Z,解得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)当x∈[0,]时,2x﹣∈[﹣,],sin(2x﹣)∈[﹣,1],则f(x)的值域为[0,1+].19.已知数列{a n}满足a1=﹣1,na n+1=S n+n(n+1)(n∈N*),S n是数列{a n}的前n项和.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.【考点】8E:数列的求和.【分析】(1)na n+1=S n+n(n+1)(n∈N*),n≥2时,(n﹣1)a n=S n﹣1+n(n﹣1),相减可得:a n+1﹣a n=2,又a1=﹣1,利用等差数列的通项公式即可得出.(2)b n==,利用错位相减法即可得出.【解答】解:(1)na n+1=S n+n(n+1)(n∈N*),n≥2时,(n﹣1)a n=S n﹣1+n(n﹣1),∴na n+1﹣(n﹣1)a n=a n+2n,化为:a n+1﹣a n=2,又a1=﹣1,∴数列{a n}是等差数列,公差为2,首项为﹣1.∴a n=﹣1+2(n﹣1)=2n﹣3.(2)b n==,∴数列{b n}的前n项和T n=﹣+++…+,=++…++,∴=﹣+﹣=﹣2×﹣,可得:T n=﹣.20.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.1500.1000.0500.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828【考点】CH:离散型随机变量的期望与方差;BL:独立性检验;CG:离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X0123P.…21.在直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且AA'=2.(1)试在棱CC'上确定一点M,使A'M⊥平面AB'D';(2)当点M在棱CC'中点时,求直线AB'与平面A'BM所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(1)取AC边中点为O,则OB⊥AC,连接OD',建立以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴的空间直角坐标系,利用向量法能求出当CM=时,A'M⊥平面AB'D'.(2)当点M在棱CC'中点时,M(0,1,),求出平面A′BM的一个法向量,利用向量法能求出直线AB'与平面A'BM所成角的正弦值.【解答】解:(1)取AC边中点为O,∵底面ABC是边长为2的正三角形,∴OB⊥AC,连接OD',∵D'是边A'C'的中点,∴OD'⊥AC,OD'⊥OB,建立以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴如图所示的空间直角坐标系…则有O(0,0,0),A(0,﹣1,0),B(,0,0),C(0,1,0),B'(,0,2),A'(0,﹣1,2),D'(0,0,2),C'(0,1,2),设M(0,1,t),则=(0,2,t﹣2),=(0,1,2),=(,1,2)…若A'M⊥平面AB'D',则有A'M⊥AD',A'M⊥AB',∴,解得t=,即当CM=时,A'M⊥平面AB'D'.…(2)当点M在棱CC'中点时,M(0,1,),∴=(﹣),=(0,2,﹣),设平面A′BM的一个法向量=(x,y,z),∴,令z=,得=(),…设直线AB'与平面A'BM所成角为θ,则sinθ==.∴直线AB'与平面A'BM所成角的正弦值为.…22.设f(x)=e x﹣2ax﹣1.(Ⅰ)讨论函数f(x)的极值;(Ⅱ)当x≥0时,e x≥ax2+x+1,求a的取值范围.【考点】6D:利用导数研究函数的极值;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,通过a与0的大小讨论函数的单调性得到函数的极值.(Ⅱ)方法1设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1=f(x).通过,时,通过函数的单调性,函数的最值,求解a的取值范围.(Ⅱ)方法2,由(Ⅰ)当时,推出e x≥1+x.(Ⅱ)设g(x)=e x﹣ax2﹣x﹣1,利用函数的单调性求解a的取值范围.【解答】解:(Ⅰ)f'(x)=e x﹣2a,若a≤0,则f'(x)>0,f(x)在g(x)上单调递增,没有极值.…若a>0,令f'(x)=0,x=ln2a,列表x(﹣∞,ln2a)ln2a(ln2a,+∞)f'(x)﹣0+f(x)↘f(2a)↗所以当x=ln2a时,f(x)有极小值f(2a)=2a﹣2aln2a﹣1,没有极大值.…(Ⅱ)方法1设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1=f(x).从而当2a≤1,即时,f'(x)>0(x≥0),g'(x)≥g'(0)=0,g(x)在[0,+∞)单调递增,于是当x≥0时,g(x)≥g(0)=0.…当时,若x∈(0,ln2a),则f'(x)<0,g'(x)<g'(0)=0,g(x)在(0,ln2a)单调递减,于是当x∈(0,ln2a)时,g(x)<g(0)=0.综合得a的取值范围为.…(Ⅱ)方法2由(Ⅰ)当时,f(x)≥f(2)=0,得e x≥1+x.(Ⅱ)设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1≥x(1﹣2a).从而当2a≤1,即时,g'(x)≥0(x≥0),而g'(0)=0,于是当x≥0时,g(x)≥0.…由e x>1+x(x≠0)可得,e﹣x>1﹣x,即x>1﹣e﹣x(x≠0),从而当时,g'(x)<e x﹣2a(1﹣e﹣x)﹣1=e x(e x﹣1)(e x﹣2a).故当x∈(0,ln2a)时,g'(x)<0,而g(0)=0,于是当x∈(0,ln2a)时,g(x)<g(0)=0.综合得a的取值范围为.…高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]2.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A.¬p:?x∈A,2x∈B B.¬p:?x?A,2x∈BC.¬p:?x∈A,2x?B D.¬p:?x?A,2x?B3.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6]5.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b6.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.7.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3 B.y=e﹣x C.y=﹣x2+1 D.y=lg|x|8.,,则t1,t2,t3的大小关系为()A.t2<t1<t3B.t1<t2<t3C.t2<t3<t1D.t3<t2<t19.已知函数y=f(x)+x+1是奇函数,且f(2)=3,则f(﹣2)=()A.﹣7 B.0 C.﹣3 D.﹣510.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)11.已知函数f(x)=满足对任意的实数x1≠x2都有<0成立,则实数a的取值范围为()A.(﹣∞,2)B.(﹣∞,] C.(﹣∞,2]D.[,2)12.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)﹣log3|x|的零点个数是()A.2 B.3 C.4 D.6二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.已知集合A={x|x2=4},B={x|ax=2}.若B?A,则实数a的取值集合是.14.函数y=|﹣x2+2x+3|的单调减区间为.15.函数f(x)=为奇函数,则a=.16.=.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,则函数f(x)的解析式为.18.已知集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,求实数a的取值范围.19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值范围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.20.已知函数f(x)=x3﹣4x+m,(m∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在[0,3]上的最值.21.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.22.已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【考点】1E:交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A.¬p:?x∈A,2x∈B B.¬p:?x?A,2x∈B C.¬p:?x∈A,2x?B D.¬p:?x?A,2x?B【考点】2J:命题的否定;2I:特称命题.【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:?x∈A,2x∈B 的否定是:¬p:?x∈A,2x?B.故选C.3.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断.【解答】解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0的必要不充分条件.所以“(2x﹣1)x=0”是“x=0”故选B4.函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6]【考点】33:函数的定义域及其求法.【分析】根据函数成立的条件进行求解即可.【解答】解:要使函数有意义,则,即,>0等价为①即,即x>3,②,即,此时2<x<3,即2<x<3或x>3,∵﹣4≤x≤4,∴解得3<x≤4且2<x<3,即函数的定义域为(2,3)∪(3,4],故选:C5.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b【考点】4H:对数的运算性质.【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:D.6.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.【考点】3O:函数的图象.【分析】∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.【解答】解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A7.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3 B.y=e﹣x C.y=﹣x2+1 D.y=lg|x|【考点】3K:函数奇偶性的判断;3E:函数单调性的判断与证明.【分析】根据偶函数的定义判断各个选项中的函数是否为偶函数,再看函数是否在区间(0,+∞)上单调递减,从而得出结论.【解答】解:y=x3为奇函数;y=e﹣x为非奇非偶函数;y=﹣x2+1符合条件,y=lg|x|在定义域(0,+∞)上为增函数.故选C.8.,,则t1,t2,t3的大小关系为()A.t2<t1<t3B.t1<t2<t3C.t2<t3<t1D.t3<t2<t1【考点】67:定积分.【分析】利用微积分基本定理即可得出大小关系.【解答】解:t1=dx==,==ln2,==e2﹣e.∴t2<t1<t3,故选:A.9.已知函数y=f(x)+x+1是奇函数,且f(2)=3,则f(﹣2)=()A.﹣7 B.0 C.﹣3 D.﹣5【考点】3L:函数奇偶性的性质.【分析】由题意利用奇函数的性质求得f(﹣2)的值.【解答】解:函数y=f(x)+x+1是奇函数,∴f(﹣2)﹣2+1=﹣[f(2)+2+1],又f(2)=3,∴f(﹣2)﹣2+1=﹣[3+2+1],求得f(﹣2)=﹣5,故选:D.10.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【考点】HA:余弦函数的单调性.【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D11.已知函数f(x)=满足对任意的实数x1≠x2都有<0成立,则实数a的取值范围为()A.(﹣∞,2)B.(﹣∞,] C.(﹣∞,2]D.[,2)【考点】5B:分段函数的应用.【分析】由已知可得函数f(x)在R上为减函数,则分段函数的每一段均为减函数,且在分界点左段函数不小于右段函数的值,进而得到实数a的取值范围.【解答】解:若对任意的实数x1≠x2都有<0成立,则函数f(x)在R上为减函数,∵函数f(x)=,故,解得:a∈(﹣∞,],故选:B.12.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)﹣log3|x|的零点个数是()A.2 B.3 C.4 D.6【考点】3L:函数奇偶性的性质;52:函数零点的判定定理;54:根的存在性及根的个数判断.【分析】在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,这两个函数图象的交点个数即为所求.【解答】解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=x,故当x∈[﹣1,0]时,f(x)=﹣x.函数y=f(x)﹣log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,故选:C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.已知集合A={x|x2=4},B={x|ax=2}.若B?A,则实数a的取值集合是{﹣1,0,1} .【考点】18:集合的包含关系判断及应用.【分析】由题意推导出B=?或B={﹣2}或B={2},由此能求出实数a的取值集合.【解答】解:∵集合A={x|x2=4}={﹣2,2},B={x|ax=2},当a=0时,B=?,当a≠0时,B={},∵B?A,∴B=?或B={﹣2}或B={2},当B=?时,a=0;当B={﹣2}时,a=﹣1;当B={2}时,a=1.∴实数a的取值集合是{﹣1,0,1}.故答案为:{﹣1,0,1}.14.函数y=|﹣x2+2x+3|的单调减区间为(﹣∞,﹣1]和[1,3] .【考点】3W:二次函数的性质.【分析】根据题意化简函数y,画出函数y的图象,根据函数图象容易得出y的单调减区间.【解答】解:令﹣x2+2x+3=0,得x2﹣2x﹣3=0,解得x=﹣1或x=3;∴函数y=f(x)=|﹣x2+2x+3|=|x2﹣2x﹣3|=,画出函数y的图象如图所示,根据函数y的图象知y的单调减区间是(﹣∞,﹣1]和[1,3].故答案为:(﹣∞,﹣1]和[1,3].15.函数f(x)=为奇函数,则a=﹣1.【考点】3L:函数奇偶性的性质.【分析】由题意可得f(﹣x)=﹣f(x),由此求得a的值.【解答】解:∵函数f(x)=为奇函数,故有f(﹣x)===﹣f(x)=﹣,即(x﹣1)(x﹣a)=(x+1)(x+a),即x2﹣(a+1)x+a=x2+(a+1)x+a,∴a+1=0,∴a=﹣1,故答案为:﹣1.16.=.【考点】67:定积分.【分析】根据的几何意义求出其值即可.【解答】解:由题意得:的几何意义是以(0,0)为圆心,以3为半径的圆的面积的,而S圆=9π,故=,故答案为:.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,则函数f(x)的解析式为f(x)=x2﹣1,(x≥1).【考点】36:函数解析式的求解及常用方法.【分析】换元法:令+1=t,可得=t﹣1,代入已知化简可得f(t),进而可得f(x)【解答】解:令+1=t,t≥1,可得=t﹣1,代入已知解析式可得f(t)=(t﹣1)2+2(t﹣1),化简可得f(t)=t2﹣1,t≥1故可得所求函数的解析式为:f(x)=x2﹣1,(x≥1)故答案为:f(x)=x2﹣1,(x≥1)18.已知集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,求实数a的取值范围.【考点】1E:交集及其运算.【分析】根据题意,对集合A分2种情况讨论:①、若A=?,则﹣a﹣2≥a+2,②、若A≠?,则有,分别求出a的取值范围,综合即可得答案.【解答】解:根据题意,集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,分2种情况讨论:①、若A=?,则﹣a﹣2≥a+2,解可得a≤﹣2,此时A∩B=?成立,②、若A≠?,则有,解可得﹣2<a≤0,综合可得:a≤0.19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值范围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.【考点】2E:复合命题的真假.【分析】(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,可得﹣2≥m2﹣3m,解得m范围.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.可得m≤1.由p且q为假,p或q为真,可得p与q必然一真一假,即可得出.【解答】解:(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,∴﹣2≥m2﹣3m,解得1≤m≤2.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.∴m≤1.∵p且q为假,p或q为真,∴p与q必然一真一假,∴或,解得1<m≤2或m<1.∴m的取值范围是(﹣∞,1)∪(1,2].20.已知函数f(x)=x3﹣4x+m,(m∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在[0,3]上的最值.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的导数,求出函数的极大值和极小值,从而求出函数的最值即可.【解答】解:(Ⅰ)f′(x)=x2﹣4=(x﹣2)(x+2)由f′(x)>0得x>2,或x<﹣2由f′(x)<0得﹣2<x<2所以,f(x)在(﹣∞,﹣2)递增,在(﹣2,2)递减,在(2,+∞)递增;(Ⅱ)由f′(x)=0得x=2或x=﹣2,∴f(x)的极小值是f(2)=﹣+m,f(x)的极大值是f(﹣2)=+m;又∵f(0)=m,f(3)=﹣3+m∴f(x)在[0,3]的最大值为f(0)=m,故最小值是f(2)=﹣+m.21.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】3N:奇偶性与单调性的综合.【分析】(1)根据函数奇偶性的性质建立条件关系即可.(2)利用数形结合,以及函数奇偶性和单调性的关系进行判断即可.【解答】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1<a﹣2≤1∴1<a≤322.已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∴g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.。
—学年度第二学期苏教版本高中高二数学理科期末模拟试卷试题包括答案.doc
13-14 学年度第二学期期末模拟试题高二数学理科一、填空题:1.将 M 点的极坐标 ( 4 2 , 3) 化为直角坐标为;.42. 若 a ∈ R ,且3 ai为纯虚数,则 a 的值为 _________;1 i3. 用反证法证明命题: “三角形的内角中至少有一个不大于 60 度”时,反设是 ____________;1: 4.x sin cos ( 为参数 ) 化为普通方程式为 _________________ 。
4. 曲线 Cy 1 sin 25. 某机械零件由 2 道工序组成,第一道工序的废品率为 a ,第二道工序的废品率为 b ,假设这两道工序出废品是彼此无关的,那么产品的合格率为 ___________; 6.甲乙两队进行排球比赛 , 采用五局三胜制 ,已知每局比赛中甲胜的概率为2, 乙胜的概率为13乙队获胜的概率为 _________;,则在甲队以 2:0 领先的情况下 ,37. 下列命题中正确的个数是. xKb (1) .过点( a ,π )且垂直于极轴的直线的极坐标方程为 ρ =- acos(2) .过点( a ,)且平行于极轴的直线的极坐标方程为 ρ =a2sin(3) .两圆 ρ =cos θ 与 ρ =sin θ 的圆心距为228、用数学归纳法证明“( n 1)(n 2) (nn) 2n 1 2(2n 1) ”( n N )时,从“ n k 到 n k 1”时,左边应增添的式子 ____________A . 2k 1B . 2(2k1)2k 12k 2C .1D .1kk9. 有 6 名学生,其中有 3 名会唱歌, 2 名会跳舞; 1 名既会唱歌也会跳舞;现从中选出 2 名会唱歌的,1 名会跳舞的去参加文艺演出,则共有选法_________种;10. 若 对 于 任 意 的 实 数, 有 x 3a a( x2)a ( x2a ( x3的 值 为x2)2), 则 a2123________;11. 在十进制中 2004 4 100 0 1010 102 2 103 ,那么在 5 进制中数码 2004 折合成十进制为 ______________;X 4a912. 已知某一随机变量 X 的概率分布列如下,且E(X)=6.3,P 0.5 0.1b则 a 的值为 ______; V(X)= ______;1 513. 已知x2 的展开式中的常数项为T ,f ( x)是以 T 为周期的偶函数,且当x [0,1]5x3时, f ( x) x ,若在区间 [ 1,3] 内,函数 g (x) f (x) kx k 有4个零点,则实数k 的取值范围是 ___________;14.若函数式f (n)表示n21(n N * ) 的各位上的数字之和,如 142 1 197,1 9 7 17 所以 f (14) 17 ,记f1( n)f (n), f 2 (n) f [ f1( n)], , f k 1 (n) f [ f k (n)], k N *,则f2010(17)二、解答题:15.(14 分)已知( x 1)n的展开式中前三项的系数成等差数列.2设 ( x 1)n a0 a1 x a2 x2 a n x n.2( 1)求a5的值;( 2)求a a a a ( 1)n a 的值;0 1 2 3 n( 3)求( 0,1,2, ) 的最大值.a i i n16.( 14 分)已知曲线C1 x 4 cost,( t 为参数), C2x 8cos ,:3 sin t, :3sin ,y y(为参数) . ( 1)将C1,C2的方程化为普通方程;( 2 )若C1上的点P 对应的参数为t,Q为C2上的动点,求PQ 中点M到直线2C3 : x 2 y 70距离的最小值.17.( 14 分)曲线C1的极坐标方程是cos, C2的极坐标方程为 1 cos,点A的极坐标是 (2,0) .(1)求曲线C1上的动点P到点A距离的最大值;(2)求C2在它所在的平面内绕点 A 旋转一周而形成图形的面积.18( 16 分)某国际旅行社现有翻译11 人,其中有 5 人只会英语, 4 人只会日语,另 2 人既会英语有会日语,现从这11 人中选 4 人当英语翻译,再从其余人从 4 人当日语翻译,共有多少种不同的安排方法?19、 (16 分) 已知 A 1, A 2 , A 3 , , A 10 等 10 所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为 1. 新课 标第 一 网2( 1)如果该同学 10 所高校的考试都参加,试求恰有 2 所通过的概率;( 2)假设该同学参加每所高校考试所需的费用均为a 元,该同学决定按 A 1 , A 2 , A 3 , , A 10 顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用的分布列及数学期望 .20. (16 分 ) 已知 m , n 为正整数,(1) 证明:当 x1 时, (1 x)m ≥ 1 mx ;( 2)对于 n ≥ 6 ,已知 (11 ) n 1, 求证 : (1m ) n( 1) m , m 1,2, , n ;n32n 32( 3)求出满足等式 3n4n (n 2)n( n3) n 的所有正整数 n .新 | 课 | 标 | 第 | 一 | 网13-14 学年度第二学期期末模拟试题高二数学理科参考答案一、填空题:1. 1. (4, 4)2. 33.y x 2 (| x |2 ) ; 4. 假设三内角都大于 60 度5. (1 a)(1 b)6.17. 3 个;8.2(2k1) ;9. 15;10. - 627(0 , 111.25412.7; 5.6113.)14.84二、解答题:15. 解:(1)由题设,得C n 0 1 C n 2 2 1 C 1n , 即 n29n 8 0 ,解得 n = 8, n = 1(舍)4 2C 8r x 8 r 1r7Tr 1,令 8 r 5r 3 a 524( 2)在等式的两边取 x1,得 a 0a 1 a 2 a 3a 81新- 课 - 标 - 第 - 一-网2561 C 8r≥1C 8r 1, 1≥1,12( r( 3)设第 r +1 的系数最大,则 2r2r8 r1)解得 r = 2 或 r = 3.1 1即r≥r 1.1 ≥ 1.r C 8 r 1 C 8222r9 1所以 a i 系数最大值为 7 .16. 解:(1) C : (x 4)2( y 3) 2 1,C: x 2y 21. ,,,,,,,6 分12649( 2)当 t时, P( 4,4), Q(8cos ,3sin ) ,故 M ( 2 4cos , 23sin ) ,22C 3 为直线 x 2 y 70 , M 到C 3的距离 d5| 4cos3sin13| ,5所以 d 取得最小值8 5. ,,,,,,,14 分517.解: (1)方程cos 表示圆心在 ( 1,0) ,半径为 1的圆 ,所以 P 到点 A 距离的最大值为 222(2)设 P( , ) 是曲线 C 上的任意一点,则| OP |1 cos,由余弦定理,得| AP |2| OP|2|OA |22| OP | |OA |cos(1 cos ) 22 24(1 cos )cos163(cos1)233当cos1 时, | AP | 有最大值为16。
{高中试卷}高二数学(理)第二学期期末联考模拟试卷[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:1221()ni i i n i i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,填空题(第l 题~第14题,共14题)、解答题(第15题~第20题,共6题) 两部分.本试卷考试时间为120分钟,满分160分.考试结束后,请将所有试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题卡上.3.请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符.4.作答试题必须用书写黑色字迹的0.5毫米的签字笔写在答题卡上的指定位置,在其它位置作 答一律无效.5.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.高二数学(理)第二学期期末联考模拟试卷参考公式:2、ˆˆ,a b 的计算公式: ,3、卡方值计算公式:22()()()()()n ad bc a b c d a c b d χ-=++++.一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上. 1、(1)i i -=2、曲线2y x =在(1,1)处的切线方程是3、若用反证法证明“若a b >,则33a b >”,假设内容应是 4、对于函数21y x =+,当x 增加x ∆时,y 增加了5、若复数3i +和23i +对应的点分别为P 和Q ,则向量PQ 对应的复数为6、函数32()23125f x x x x =--+在区间[0,3]上的最大值和最小值是7、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,a b b c ++23,4c d d +. 例如明文1,2,3,4对应加密文5,7,18,16,当接受方收到密文14,9,23,28时,则解密 得明文为 8、将2n 个正数21,2,3,,n 填入n n ⨯方格中,使每行、每列、每条对角线上的数的和相等,这个正方形就叫n 阶幻方. 记()f n 为n 阶幻方对角线的和,如图就是一个3阶幻方, 可知(3)15f =,那么(4)f = 9、质点的运动方程是21(S S t =的单位为,m t 的单位为)s , 则质点在3t s =时的瞬时速度为.10、若12(),44,2f z z z i z i ==+=-+,则12()f z z -的值为.11、平面几何中有结论“周长一定的所有矩形中,正方形的面积最大”,类比到空间可得 的结论是.12、实验测得五组(,)x y 的值(3,2),(5,3),(6,3),(7,4),(9,5)是线性相关的,则y 与x 之间 的线性回归方程是.13、已知数列{}n a 的通项公式*21()(1)n a n N n =∈+,记12()(1)(1)(1)n f n a a a =---,通过计算(1),(2),(3)f f f 的值,推测出()f n =. 14、(1+3x )6(1+41x)10展开式中的常数项为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出字说明、证明过程或演算步骤. 15、(本题14分)(1)求函数3sin xy e x x =+的导数;(2)已知函数2ln y x ax bx =++在1x =和2x =处有极值,求实数,a b 的值.16、(本题14分)已知复数(1)z m m mi =++,当实数m 取什么值时,复数z 是:(1)虚数;(2)纯虚数;(3)复平面内第二、四象限角平分线上的点对应的复数.17、(本题14分)考取驾照是一个非常严格的过程,有的人并不能够一次性通过,需要补考.现在有一张某驾校学员第一次考试结果汇总表,由于保管不善,只残留了如下数据(见下表):(1)完成此表;(2)根据此表判断:是否可以认为性别与考试是否合格有关?如果可以,请问有多大 把握;如果不可以,试说明理由.18、(本题16分)从5名女生和2名男生中任选3人参加英语演讲比赛,设随机变量X 表示所选3 人中男生的人数. (1)求X 的分布列; (2)求X 的数学期望()E X ;(3)求“所选3人中男生人数1X ≥”的概率. 19、(本题16分)已知曲线C 1:⎩⎨⎧==θθsin ,cos y x (θ为参数),曲线C 2:⎪⎪⎩⎪⎪⎨⎧=-=.22,222y t x (t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 21,C .写出C 21,C 的参数方程. C 21C 与公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由.20、(本题16分) 已知),0,1()1(1)(2>-≠++=a a x ax bx x f 且16(1)log 2f =,(2)1f -=.(1)求函数)(x f 的表达式;(2)已知数列}{n x 的项满足))(1())2(1))(1(1(n f f f x n ---= ,试求4321,,,x x x x ; (3)猜想}{n x 的通项,并用数学归纳法证明.江苏省泰州市20XX ~20XX 年度第二学期期末联考模拟试卷参考答案1、1i +2、210x y --=3、33a b <或33a b = 4、2x ∆ 5、12i -+ 6、5,15-7、7,6,1,4 8、34 9、2/27m s -10、53i + 11、表面积一定的长方体中,正方体体积最大 12、ˆˆ0.40.5yx =+13、*2()22n n N n +∈+ 14、424615、解:(1)3sin cos xy e x x x '=++; (2)21(ln )2y x ax bx ax b x''=++=++,∵12|0,|0x x y y ==''==, ∴11204134022a b a a b b ⎧++==⎧⎪⎪⎪⇒⎨⎨++=⎪⎪=-⎩⎪⎩.16、解:(1)当0m =时,z 为实数;(2)由题意得(1)010m m m m +=⎧⇒=-⎨≠⎩,当1m =-时,z 是纯虚数;(3)由题意得2m m m +=-,解之得0m =或2m =-.17、解:(1)(2)假设0H :性别与考试是否合格无关,22105(45203010) 6.10975305550χ⨯-⨯=≈⨯⨯⨯.若0H 成立,2( 5.204)0.025P χ≥=,∵26.109 5.204χ=≥, ∴有97.5%的把握认为性别与考试是否合格有关.18、解:(1)32537()(0,1,2)r r C C P x r r C -===, (2)6()7E x =; (3)415(1)777P x ≥=+=.19、【试题解析】:(I ) C 1是圆 ,C 2是直线,C 1的普通方程是221x y +=,C 2的普通方程是0x y -=. 因为圆心C 1到直线0x y -+=的距离是1, 所以C 1与C 2只有一个公共点.(2) 压缩后的参数方程分别为C 1:cos ()1sin 2x y θθθ=⎧⎪⎨=⎪⎩为参数,曲线C 2:()x t y ⎧⎪⎪⎨⎪⎪⎩为参数. 化为普通方程为1'C :2241x y +=,2'C:122y x =+.联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2'C 与椭圆1'C 仍然只有一个公共点,和C 1与C 2的公共点的个数相同.20解:(1)由题意得:1(1),(2)14f f =-=即2211(1)4,211(21)b a b a +⎧=⎪+⎪⎨-+⎪=⎪-+⎩解之得:10a b =⎧⎨=⎩所以21()(1)f x x =+. (2)1131(1)144x f =-=-=;211382(1(1))(1(2))(1)(1)49493x f f =--=--=⋅=; 3212155(1(1))(1(2))(1(3))(1)3163168x f f f =---=⋅-=⋅=;45243(1(1))(1(2))(1(3))(1(4))8255x f f f f =----=⋅=.(1) 猜想:22(1)n n x n +=+证明:①当1n =时,13123,42(11)4x +==+所以等式成立 ②假设(1n k k =≥且)k N ∈时,等式成立.即22(1)n n x n +=+.则当1n k =+时,122212(1)(3)(1(1))(1)2(1)(11)2(1)(2)32(2)n n n n n n a a f n n n n n n n +++++=-+=⋅-=++++++=+所以,对一切正整数n ,有22(1)n n x n +=+。
高二数学下学期期末考试理科试题含答案
第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。
高二下学期期末模拟考试数学(理科)
输入x 图1否是结束输出y x=y|y-x|<1?y=12x-1开始高二下学期期末模拟考试数学(理科)第Ⅰ卷一、选择题:(1)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则=B A Y(A ){1,2} (B ){0,1,2} (C ){}22≤≤-x x (D ){}20≤≤x x (2)已知i 是虚数单位,若复数()()z i a i a R =-+∈的实部与虚部相等,则z 的共轭复数z = (A )1i -+ (B )1i + (C )1i - (D )1i --(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的 (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为 (A )429-(B )229-(C )229 (D )429(5)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )3737 (B )1313(C )14 (D )17(6)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )32- (D )1- (7)已知向量(3,1),(sin 2,cos 2)a b x x ==rr,()f x a b =⋅r r,则函数()f x 的最小正周期为(A )π (B )2π (C )2π(D )4π (8)在区间[]m ,1-上随机选取一个数x ,若1≤x 的概率为52,则 实数m 的值为图2俯视图侧视图主视图2544(A )32(B )2 (C )4 (D )5 (9)某几何体的三视图如图2所示,则该几何体的表面积是(A )90(B )92 (C )98 (D )104(10)在同一平面直角坐标系中,函数()y g x =的图象与ln y x =的图象关于直线y x =对称,而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若2()f m e -=,则m 的值是(A )e -(B )2(C )-2(D )1e(11)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为(A )[2,2]- (B )[0,22] (C )[22,22]- (D )[2,2]- (12) 已知函数()f x =3221ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )(2,)+∞ (B )46(0,9 (C )469∞(-,-) (D )6+9∞()(13)6(2x x-展开式中常数项是 . (14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)某次数学竞赛后,小军、小民和小乐分列前三名.老师猜测:“小军第一名,小民不是第一名,小乐不是第三名”.结果老师只猜对一个,由此推断:前三名依次为 . (16)在△ABC 中,角,,A B C 的对边分别为,,a b c ,已知B 是A 、C 的等差中项,且2b =,则△ABC 面积的最大值为 .三、解答题:(17)已知等差数列{}n a 满足141,7a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)求数列{}n b 的前n 项和n S .DC 1B 1CBA(18)如图,已知四棱锥11A CBB C -的底面为矩形,D 为1AC的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 13(1)求BD 的长;(2)求B 1D 与平面ABB 1所成角的正弦值.(19)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租X 型车的概率;(2)已知该地区X 型车每小时的租金为1元,Y 型车每小时的租金为1.2元,设ξ为从体验小组内随机抽取3人得到的每小时租金之和,求ξ的数学期望.lC图4oyxBAF 2F 1(20)(本小题满分12分)已知如图4,圆C 、椭圆()2222:10x y E a b a b+=>>均经过点M (2,圆C 的圆心为5,02⎛⎫⎪⎝⎭,椭圆E 的两焦点分别为()()122,0,2,0F F -.(Ⅰ)分别求圆C 和椭圆E 的标准方程;(Ⅱ)过1F 作直线l 与圆C 交于A 、B 两点,试探究22F A F B ⋅是否为定值?若是定值,求出该定值;若不是,说明理由.(21)(本小题满分12分)已知函数2()2xx f x e x -=+. (Ⅰ)确定函数()f x 的单调性;(Ⅱ)证明:函数221()2x e x g x x--=在(0,)+∞上存在最小值.(22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程.参考答案及评分说明一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBADCACBBCD部分解析:(9)依题意知,该几何体是底面为直角梯形的直棱柱,故其表面积为(254+42+44+245=92+⨯⨯⨯⨯⨯).(10)由题知(),()xxg x e f x e -==则2m e e =,2m =.(11)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得2222a -≤≤.(12)当0a =时,函数2()21f x x =-+有两个零点,不符合题意,故0a ≠,2'()34(34)f x ax x x ax =-=-,令'()0f x =得0x =或43x a=,由题意知,0a >,且4()03f a >,解得69a >. 二、填空题:题号 13 14 1516答案60-2小民、小乐、小军3(16)由2,,B A C A B C π=+++=得3B =,由余弦定得2222cos 4b a c ac B =+-=,即224a c ac +-=,又222a c ac +≥(当且仅当a c =时等号成立)得4ac ≤,所以13sin 324ABC S ac B ac ∆==≤即△ABC 3.三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,7a a ==EABCB 1C 1D∴公差4123a a d -==,----------------------------------------------------1分 ∴1(1)21n a a n d n =+-=-,-------------------------------------3分 ∵12b a ==3,25b a ==9,∴11222,6,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,--------------------------------------5分∴1111()23n n n n b a b a q ---=-=⋅,∴12123n n b n -=-+⋅;------------------------------------------------------------7分 (Ⅱ)由12123n n b n -=-+⋅得21(132-1)2(1333)n n S n -=++++++++L L -------------------------------------------9分(121)2(31)231n n n +--=+- 231n n =+-.---------------------------------------------------------------------------------12分(18)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE ,--------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------------------------------------------------- ---- --------2分又∵DE ⊂平面1CDB ,AB ⊄平面1CDB , ∴AB//平面CDB 1;------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥,又∵1BC CC ⊥,1AC CC C =I , ∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,---------------------------------------------------------------------------------6分z y EAB CB 1C 1D在Rt BCD ∆,∵BC=1,221111122CD AC AC C C ==+=, ∴2BD =-----------------------------------------------------------------------------------8分【注:以上加灰色底纹的条件不写不扣分!】 (2)依题意知AC 、BC 、CC 1两两互相垂直, 以C 为原点,CB 所在的直线为x 轴、CC 1为y 轴建立 空间直角坐标系如图示,易得1,0,0B (),13B ,,,1(03(001)C A ,,,,,31(0)2D ,,,故131(1)2B D =-u u u u r,,,(1,0,1)AB =-u u ur ,13,0)BB =u u u r ,----------------------------------------9分设平面1ABB 的一个法向量为(,,)m a b c =u r,由1,m AB m BB ⊥⊥u r u u u r u r u u u r 得0,30.a c b -=⎧⎪=令1c =得(1,0,1)m =u r ,-------------------------------10分设1B D 与平面1ABB 所成的角为θ,则sin 11=θ1112||422-+==⋅, 即1B D 与平面1ABB 所成的角的正弦值为14.---------------------------------------------------12分 【其它解法请参照给分,如先用体积法求出点D 到平面ABB 1的距离42=h ,(10分)再用公式DB h1sin =θ算1B D 与平面1ABB 所成角的正弦值(12分)】 (19) 解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为715=320+15⨯,--2分高二学生的人数为:720=420+15⨯;--------------------------------------------------------------4分(Ⅱ)(1)解法1:所求的概率213434372235C C C P C +==.-----------------------------------7分【解法2:所求概率1234333722135C C C P C +=-=.-------------------------------------------------7分 (2)从小组内随机抽取3人, 得到的ξ的可能取值为:3,3.2,3.4,3.6.(元)--------------8分因34374(3)35C P C ξ===,21433718( 3.2)35C C P C ξ===, 12433712( 3.4)35C C P C ξ===,33371( 3.6)35C P C ξ===,----------------------------------10分 故ξ的数学期望.41812193 3.2 3.4 3.633535353535E ξ=⨯+⨯+⨯+⨯=(元)-----------------------12分 (20)解:(Ⅰ)依题意知圆C 的半径2532222r ⎛⎫=-+= ⎪⎝⎭,----------------------------1分∴圆C 的标准方程为:225924x y ⎛⎫-+= ⎪⎝⎭;------------------------------------------------2分∵椭圆2222:1x y E a b+=过点M (2,且焦点为()2,0-、()2,0,由椭圆的定义得:||||221MF MF a +=, 即()()22222222242a =++-+=----------------------------------------------------------4分 ∴28a =,2244b a =-=, ∴椭圆E 的方程为:22184x y +=-----------------------------------------------------------------------------6分 【其它解法请参照给分】(Ⅱ)显然直线l 的斜率存在,设为k ,则l 的方程为()2y k x =+,由()22259.24y k x x y ⎧=+⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩,消去y 得:()()()2222145410k x kx k ++-++=,-------------------------------------------------------8分显然0∆>有解,设()11,A x y 、()22,B x y ,则124x x =,----------------------------------------------------------9分()()222222112222F A F B x y x y ⎡⎤⎡⎤⋅=-+-+⎣⎦⎣⎦()()222211229595224242x x x x ⎡⎤⎡⎤⎛⎫⎛⎫=-+---+--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦122x x =.故22F A F B ⋅为定值,其值为2.-------------------------------------------------------- ----------12分 (21)解:(Ⅰ)函数()f x 的定义域为(,2)(2,)-∞--+∞U ,-----------------------------1分222[(2)](2)(2)'()(2)(2)x x x xe x e x x e x ef x x x +-+--==++0≥,-------------------------------4分∴函数()f x 在(,2)-∞-和(2,)-+∞上单调递增;---------------------------------------------5分(Ⅱ)2433(2)1[](2)2(21)4(21)2(2)222'()42x x x x x e x e x x e x x e x x g x x x x -++-----+++===3(2)1[()]2x f x x +=+,---------------------------------------------------------------8分由(Ⅰ)知()f x 在),0(+∞单调递增;∴1()2f x +在),0(+∞上也单调递增; ∵11(0)022f +=-<,11(2)022f +=>,-----------------------------------------------------10分 ∴存在)2,0(0∈x ,有021)(0=+x f , 当∈x 0(0,)x 时,1()2f x +<0,得'()0g x <, 当),(0+∞∈x x 时,1()2f x +>0,得'()0g x >, --------------------------------------------11分 ∴()g x 在0(0,)x 上递减,在),(0+∞x 上递增, 故函数()g x 在(0,)+∞上存在最小值,min 0()()g x g x =.--------------------------------------------12分选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==---------------------------2分•代入221x y +=中得2216''1x y +=,-------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);-----------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,-------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------7分 ∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14, 故线段P 1 P 2的中垂线的方程为111()248y x +=+--------------------------------------------------------8分 即832150x y --=,将cos ,sin x y ρθρθ==代入得 其极坐标方程为8cos 32sin 150ρθρθ--=---------------------------------------------------------10分。
2020年高二数学下学期期末模拟试卷及答案(六)(理科)
2020年高二数学下学期期末模拟试卷及答案(六)(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下面几种规律过程是演绎推理的是 A .在数列{}n a 中,111111,()(2)2n n n a a a n a --==+≥,由此归纳数列{}n a 的通项公式 B .由平面三角形的性质,推测空间四面体性质C .两条直线平行,同旁内角互补,如果,A B ∠∠试两条平行直线的同旁内角,则0180A B ∠+∠=D .某校高二共10个班,1班51人,2班52人,3班52人,由此推测各奔都超过50人2、设(1)()2i x yi ++=,其中i 为虚数单位,,x y 是实数,则2x yi += A .1 B .2 C .3 D .53、盒子有10值螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为 A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的 D .至多有2只是坏的4、随机变量ξ服从正态分布2(40,)N σ,若(30)0.2P ξ<=,则(3050)P ξ<<= A .0.8 B .0.6 C .0.4 D .0.25、由曲线,x x y e y e -==以及1x =所围成的图形的面积等于 A .2 B .22e - C .12e- D .12e e+-6、若1(3)n x x-展开式中各项系数的和为32,则该展开式中含3x 的项的系数为A .-5B .5C .405-D .4057、以平面直角坐标系的原点为极点,x 正半轴为极轴,建立极坐标系,两种坐标系中,取相同的长度单位,已知直线的参数方程是1(3x t t y t =+⎧⎨=-⎩为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被C 截得的弦长为 A .14 B .214 C .2 D .228、 将三颗骰子各投掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率(|)P A B 等于 A .6091 B .12 C .518 D .912169、设函数()sin()1(0)6f x wx w π=+->的导数()f x '的最大值为3,则()f x 的图象的一条对称轴的方程是A .9x π= B .6x π= C .3x π= D .2x π=10、假设每一架飞机的引擎在飞行中出现故障的概率为1p -,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也坑成功飞行,要使4引擎飞机比2引擎飞机更安全,则p 的取值范围是A .2(,1)3B .1(,1)3C .2(0,)3D .1(0,)311、有六人排成一排,齐总甲只能在排头或排尾,乙丙两人必须相邻,则满足要求的排法有A .34种B .48种C .96种D .144种12、(考生注意:请在(1)(2)两题中,任选一题作答,若多做,则按(1)题计分)(1)已知直线l 的极坐标方程为2sin()24πρθ-=,点A 的极坐标为7(22,)4π,则点到直线l 的距离为A .522 B .22 C .322D .2 (2)关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围为 A .(,1)(3,)-∞+∞U B .(1,3) C .(,3)(1,)-∞--+∞U D .(3,1)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
高二下学期理数期末考试试卷第6套真题
高二下学期理数期末考试试卷一、单选题1. 在平面直角坐标系中,曲线和的参数方程分别为(t为参数)和(为参数),则曲线与的交点个数为()A . 3B . 2C . 1D . 02. 把曲线C1:(θ为参数)上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到的曲线C2为()A . 12x2+4y2=1B .C .D . 3x2+4y2=43. 点M的直角坐标是,则点M的极坐标为()A .B .C .D .4. 圆ρ=r与圆ρ=-2rsin(θ+ )(r>0)的公共弦所在直线的方程为()A . 2ρ(sin θ+cos θ)=rB . 2ρ(sin θ+cos θ)=-rC . ρ(sin θ+cos θ)=rD . ρ(sin θ+cos θ)=-r5. 5名上海世博会形象大使到香港、澳门、台湾进行世博会宣传,每个地方至少去一名形象大使,则不同的分派方法共有()种.A . 25B . 50C . 150D . 3006. 已知集合P={x,y,z},Q={1,2,3},映射f:P→Q中满足f(y)=2的映射的个数共有()A . 2B . 4C . 6D . 97. 某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:① ;②26-7;③,其中正确的结论是()A . 仅有①B . 仅有②C . ②与③D . 仅有③8. 的展开式中各项系数的和为2,则该展开式中常数项为()A . -20B . -10C . 10D . 209. 在线性回归模型y=bx+a+e中,下列说法正确的是()A . y=bx+a+e是一次函数B . 因变量y是由自变量x唯一确定的C . 因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生D . 随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生.10. 对变量x,y有观测数据(xi,yi)(i=1,2,3,4,5),得表1;对变量u,v有观测数据(ui,vi)(i=1,2,3,4,5),得表2.由这两个表可以判断()表1:x12345y2.93.33.64.45.1表2:u12345v2520211513A . 变量x与y正相关,u与v正相关B . 变量x与y负相关,u与v正相关C . 变量x与y负相关,u与v负相关D . 变量x与y正相关,u与v负相关11. 若回归直线y=a+bx,b<0,则x与y之间的相关系数()A . r=0B . r=lC . 0<r<1D . -1<r<012. 设随机变量ξ服从正态分布N(μ,7),若P(ξ<2)=P(ξ>4),则与Dξ的值分别为()A .B .C . μ=3,Dξ=7D .二、填空题13. 已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f(x)在x= ________ 时达到最高点.14. 从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是________ .15. 设随机变量ξ的分布列为P(ξ=k)= ,k=1,2,3,c为常数,则P(0.5<ξ<2.5)=________.16. 若随机变量ξ~B(16,),若变量η=5ξ-1,则Dη= ________ .三、解答题17. 已知(x+ )n展开式的二项式系数之和为256(1)求n;(2)若展开式中常数项为,求m的值;(3)若展开式中系数最大项只有第6项和第7项,求m的值.18. 某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.19. 某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:完成以下问题:(Ⅰ)补全频率分布直方图并求n,a,p的值;(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X).20. 为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:常喝不常喝总计肥胖218总计30已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为.(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?独立性检验临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8416.6357.87910.828参考公式:,其中n=a+b+c+d .21. 在直角坐标系xOy中,已知点P(,1),直线l的参数方程为(t为参数)若以O为极点,以Ox为极轴,选择相同的单位长度建立极坐标系,则曲线C的极坐标方程为ρ= cos(θ- )(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求点P到A,B两点的距离之积.22. 已知直线C1 (t为参数),C2 (θ为参数),(Ⅰ)当α= 时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.。
2021年高二下学期数学(理)期末考试模拟试卷6
2021年高二下学期数学(理)期末考试模拟试卷6一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(14·山东)已知a,b∈R,i是虚数单位,若a-i与2+b i互为共轭复数,则(a+b i)2=.3+4i2.已知三点不共线,为平面外任一点,若由确定的一点与三点共面,则3.已知向量为平面的法向量,点为平面内一定点,为平面内任一点,则满足的关系是.4.(14·四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有种.2165.(14·重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是1206.(13四川)从这五个数中,每次取出两个不同的数分别为,共可得到的不同值的个数是7.如图,从处沿街道走到处,则路程最短的不同的走法共有种.8.(09浙江理)观察下列等式:,,,,……………………………………由以上等式推测到一个一般的结论:对于,9.已知数列满足通过计算可猜想= ,10.(14·陕西)已知f(x)=x1+x,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f xx(x)的表达式为________.x1+2014x11.(08重庆)若的展开式中前三项的系数成等差数列,则展开式中项的系数为.解:因为的展开式中前三项的系数、、成等差数列,所以,即,解得:或(舍)。
令可得,,所以的系数为,12.(09湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人中至少有一人达标的概率是. 0.9613.设随机变量Z的分布列为若则14.随机变量的概率分布如下表,则的方差为二.解答题:(本大题共6道题,计90分.解答应写出必要的文字说明.证明过程或演算步骤)15. (12江苏)已知矩阵的逆矩阵,求矩阵的特征值.解:∵,∴.∵,∴。
高二理科数学下学期期末考试
1 1
(k 1) 0 成立
k1
由①②可知,对 n 3, f (n) (1 1 ) n n 0 成立 n
……………… 10 分
x 19.解:( 1) l 的参数方程 y
高二数学理期末测试(二)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共 钟.
150 分,考试时间 120 分
第Ⅰ 卷 (选择题 共 60 分)
一. 选择题(本大题共 12 个小题,每小题 5 分,共 60 分 .在每个小题的四个选项中,只有 一项是符合题目要求的 .)
(1 3i )2
1.复数
( 4)当 变化时,求弦 BC 的中点的轨迹方程.
20.(本小题满分 9 分)设在一个盒子中,放有标号分别为 1, 2,3 的三张卡片,现从这个
盒 子 中 , 有 放 回 地 先 后 抽 得 两 张 卡 片 , 标 号 分 别 记 为 x, y , 设 随 机 变 量 x 2 y x.
( 1)写出 x, y 的可能取值,并求随机变量
∵ lg(| x 3| | x 7 |) a 解集为 R .∴ a 1………………………… 8 分
1
17
18.解:( 1) f (1) 1, f (2) , f (3)
2
27
( 2)猜想: n 3, f ( n) (1 1 ) n n 0 n
证明:①当 n 3 时, f (3)
17 0 成立 27
②假设当 n k (n 3, n N * ) 时猜想正确,即 f k
装箱分配给这 3 台卡车运送,则不同的分配方案的种数为
()
A . 168
B .84
C. 56
D. 42
第Ⅱ 卷(非选择题满分 90)
2021年高二(下)期末数学模拟试卷(理科)含解析
2021年高二(下)期末数学模拟试卷(理科)含解析一、填空题(每题5分,共70分)M)1.已知集合U=R,集合M={y|y=2x,x∈R},集合N={x|y=lg(3﹣x)},则(∁U∩N=.2.若1+2ai=(1﹣bi)i,其中a、b∈R,i是虚数单位,则|a+bi|= .3.某学校高中三个年级的学生人数分别为:高一 950人,髙二 1000人,高三1050人.现要调查该校学生的视力状况,考虑采用分层抽样的方法,抽取容量为60的样本,则应从高三年级中抽取的人数为.4.某国际体操比赛,我国将派5名正式运动员和3名替补运动员参加,最终将有3人上场比赛,其中甲、乙两名替补运动员均不上场比赛的概率是(结果用最简分数表示).5.以椭圆的焦点为顶点,顶点为焦点的双曲线方程为.6.执行如图所示的程序框图,若输出的b的值为31,则图中判断框内①处应填的整数为.7.在直角坐标系中,不等式组表示平面区域面积是4,则常数a的值.8.(文科)已知函数f(x)=a+是奇函数,则实数a的值为.9.“”是“不等式2x2﹣5x﹣3<0成立”的条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).10.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是.11.在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为.12.在△ABC中,若BC⊥AC,AC=b,BC=a,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S﹣ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S﹣ABC的外接球半径R=.13.已知椭圆C:+=1(a>b>0)和圆O:x2+y2=,若C上存在点P,使得过点P引圆O 的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率取值范围是.14.已知函数,将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和为.二、解答题(共6大题,共90分)15.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2, (6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.16.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:(1)EF=BC;(2)平面EFD⊥平面ABC.17.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点.(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.18.如图,储油灌的表面积S为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.(1)试用半径r表示出储油灌的容积V,并写出r的范围.(2)当圆柱高h与半径r的比为多少时,储油灌的容积V最大?19.已知椭圆的焦距为4,设右焦点为F1,离心率为e.(1)若,求椭圆的方程;(2)设A、B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若,求e的取值范围.20.已知函数.(I)判断函数f(x)的单调性;(Ⅱ)若y=xf(x)+的图象总在直线y=a的上方,求实数a的取值范围;(Ⅲ)若函数f(x)与的图象有公共点,且在公共点处的切线相同,求实数m的值.江苏省南京市江宁高级中学xx学年高二(下)期末数学模拟试卷(理科)参考答案与试题解析一、填空题(每题5分,共70分)1.已知集合U=R,集合M={y|y=2x,x∈R},集合N={x|y=lg(3﹣x)},则(∁U M)∩N=(﹣∞,0].考点:交、并、补集的混合运算.专题:集合.分析:求出集合的等价条件,根据集合的基本运算进行求解即可.解答:解:M={y|y=2x,x∈R}={y|y>0},N={x|y=lg(3﹣x)}={x|3﹣x>0}={x|x<3}则∁U M={y|y≤0}.则(∁U M)∩N={y|y≤0}.故答案为:(﹣∞,0]点评:本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.2.若1+2ai=(1﹣bi)i,其中a、b∈R,i是虚数单位,则|a+bi|=.考点:复数求模.专题:数系的扩充和复数.分析:首先由已知复数相等得到a,b,然后求模.解答:解:因为1+2ai=(1﹣bi)i=b+i,所以b=1,a=,所以|a+bi|=|+i|=;故答案为:.点评:本题考查了两个复数相等以及求复数的模;属于基础题.3.某学校高中三个年级的学生人数分别为:高一950人,髙二1000人,高三1050人.现要调查该校学生的视力状况,考虑采用分层抽样的方法,抽取容量为60的样本,则应从高三年级中抽取的人数为21.考点:分层抽样方法.专题:概率与统计.分析:先求出每个个体被抽到的概率,再用高三的总人数乘以此概率,即得所求.解答:解:每个个体被抽到的概率等于=,则应从高三年级中抽取的人数为1050×=21,故答案为21.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.4.某国际体操比赛,我国将派5名正式运动员和3名替补运动员参加,最终将有3人上场比赛,其中甲、乙两名替补运动员均不上场比赛的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用组合的方法求出有3人上场比赛的所有方法和甲、乙两名替补运动员均不上场比赛的方法,利用古典概型的概率公式求出概率.解答:解:有3人上场比赛的所有方法有C83=56有C63=20由古典概型的概率公式得甲、乙两名替补运动员均不上场比赛的概率是=.故答案为:.点评:求一个事件的概率,关键是先判断出事件的概率模型,然后选择合适的概率公式进行计算.5.以椭圆的焦点为顶点,顶点为焦点的双曲线方程为.考点:双曲线的标准方程;椭圆的简单性质.专题:计算题.分析:先根据椭圆的标准方程求出椭圆的顶点和焦点,从而得到双曲线的焦点和顶点,进而得到双曲线方程.解答:解:椭圆的顶点为(﹣2,0)和(2,0),焦点为(﹣1,0)和(1,0).∴双曲线的焦点坐标是(﹣2,0)和(2,0),顶点为(﹣1,0)和(1,0).∴双曲线的a=1,c=2⇒b=.∴双曲线方程为.故答案为:.点评:本题考查双曲线的标准方程、双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆中数量关系的区别.6.执行如图所示的程序框图,若输出的b的值为31,则图中判断框内①处应填的整数为4.考点:程序框图.专题:算法和程序框图.分析:根据框图的流程依次计算程序运行的结果,直到输出的b的值为31,确定跳出循环的a值,从而确定判断框的条件.解答:解:由程序框图知:第一次循环b=2+1=3,a=2;第二次循环b=2×3+1=7,a=3;第三次循环b=2×7+1=15,a=4;第四次循环b=2×15+1=31,a=5.∵输出的b的值为31,∴跳出循环的a值为5,∴判断框内的条件是a≤4,故答案为:4.点评:本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.7.在直角坐标系中,不等式组表示平面区域面积是4,则常数a的值0.考点:简单线性规划.专题:不等式的解法及应用.分析:利用二元一次不等式组的定义作出对应的图象,找出对应的平面区域,利用面积是9,可以求出a的数值.解答:解:由图象可知不等式对应的平面区域为三角形BCD.由解得,即C(﹣2,2).由题意知a>﹣2.由得,即D(a,﹣a).由得,即B(a,a+4),所以|BD|=|2a+4|=2a+4,C到直线x=a的距离d=a﹣(﹣2)=a+2,所以三角形BCD的面积为,即(a+2)2=4,解得a=0或a=﹣6(舍去).故答案为:0.点评:本题主要考查一元二次不等式组表示平面区域,利用数形结合是解决本题的关键.8.(文科)已知函数f(x)=a+是奇函数,则实数a的值为.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由题意可得f(﹣x)=﹣f(x),即a+=﹣a﹣,即2a=﹣=1,由此求得a的值.解答:解:函数f(x)=a+是奇函数,可得f(﹣x)=﹣f(x),即a+=﹣a﹣,即2a=﹣=1,解得a=,故答案为.点评:本题主要考查奇函数的定义和性质,属于基础题.9.“”是“不等式2x2﹣5x﹣3<0成立”的充分不必要条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的解法求出不等式的等价条件,利用充分条件和必要条件的定义进行判断即可.解答:解:由2x2﹣5x﹣3<0,得(x﹣3)(2x+1)<0,解得,∴“”是“不等式2x2﹣5x﹣3<0成立”的充分不必要条件.故答案为:充分不必要条件.点评:本题主要考查充分条件和必要条件的判断,根据不等式的解法求出不等式的等价条件是解决本题的关键.10.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是.考点:几何概型.专题:计算题.分析:本题考查的知识点几何概型,我们可以求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到正方形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案.解答:解:满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S三角形=×4=满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示则S阴影=π则使点P到三个顶点的距离至少有一个小于1的概率是P===故答案为:.点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.11.在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为4.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先根据抛物线的方程求得准线的方程,进而利用点A的纵坐标求得点A到准线的距离,进而根据抛物线的定义求得答案.解答:解:依题意可知抛物线的准线方程为y=点A与抛物线焦点的距离为3,∴纵坐标为1,点A到准线的距离为+1=3,解得p=4.抛物线焦点(0,2),准线方程为y=﹣2,∴焦点到准线的距离为:4.故答案为:4.点评:本题主要考查了抛物线的定义的运用.考查了学生对抛物线基础知识的掌握.属基础题.12.在△ABC中,若BC⊥AC,AC=b,BC=a,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S﹣ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S﹣ABC的外接球半径R=.考点:进行简单的合情推理.专题:压轴题;探究型.分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,△ABC 中,若BC⊥AC,AC=b,BC=a,则△ABC的外接圆半径,我们可以类比这一性质,推理出在四面体S﹣ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S﹣ABC的外接球半径R=解答:解:由平面图形的性质类比推理空间图形的性质时一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由圆的性质推理到球的性质.由已知在平面几何中,△ABC中,若BC⊥AC,AC=b,BC=a,则△ABC的外接圆半径,我们可以类比这一性质,推理出:在四面体S﹣ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S﹣ABC的外接球半径R=故答案为:点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).13.已知椭圆C:+=1(a>b>0)和圆O:x2+y2=,若C上存在点P,使得过点P引圆O 的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率取值范围是.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用条件判断出O、P、A、B四点共圆,由三角函数求得|OP|的长,根据|OP|的范围和椭圆离心率、性质,列出不等式求出椭圆的离心率的取值范围.解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠APB=60°,∠APO=∠BPO=30°,在直角三角形OAP中,∠AOP=60°,|OA|=∴cos∠AOP=,则|OP|==,∵b<|OP|≤a,∴b≤a,∴3b2≤a2,即3(a2﹣c2)≤a2,∴2a2≤3c2,则,即e≥,又0<e<1,则≤e<1,故答案为:.点评:本题考查椭圆的离心率,四点共圆的性质,及三角函数的概念,考查转化思想,属于中档题.14.已知函数,将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和为52.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:通过分类讨论①当1≤x≤2时,f(x)=x﹣1,由x﹣1=t,解得x=1+t;②当2<x≤3时,f(x)=3﹣x,由3﹣x=t,解得x=3﹣t;③当3<x≤6时,1<,则f(x)=3()=x﹣3,由x﹣3=t,解得x=3+t;④当6<x≤9时,,f(x)==9﹣x,由9﹣x=t,解得x=9﹣t;⑤当9<x≤18时,,则f(x)=3=x﹣9,由x﹣9=t,解得x=9+t;⑥当18<x≤27时,,则f (x)==27﹣x,由27﹣x=t,解得x=27﹣t.即可得到答案.解答:解:①当1≤x≤2时,f(x)=x﹣1,由x﹣1=t,解得x=1+t;②当2<x≤3时,f(x)=3﹣x,由3﹣x=t,解得x=3﹣t;③当3<x≤6时,1<,则f(x)=3()=x﹣3,由x﹣3=t,解得x=3+t;④当6<x≤9时,,f(x)==9﹣x,由9﹣x=t,解得x=9﹣t;⑤当9<x≤18时,,则f(x)=3=x﹣9,由x﹣9=t,解得x=9+t;⑥当18<x≤27时,,则f(x)==27﹣x,由27﹣x=t,解得x=27﹣t.因此将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和=(1+t)+(3﹣t)+(3+t)+(9﹣t)+(9+t)+(27﹣t)=52.故答案为52.点评:熟练掌握含绝对值符号的函数如何去掉绝对值符号、分类讨论的思想方法、函数的交点等是解题的关键.二、解答题(共6大题,共90分)15.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2, (6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.解答:解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.点评:本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.16.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:(1)EF=BC;(2)平面EFD⊥平面ABC.考点:平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(1)利用平面与平面平行的性质,可得EG∥BD,利用G为AD的中点,可得E 为AB的中点,同理可得,F为AC的中点,即可证明EF=BC;(2)证明AB⊥平面EFD,即可证明平面EFD⊥平面ABC.解答:证明:(1)因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,…(4分)又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以EF=BC.…(7分)(2)因为AD=BD,由(1)知,E为AB的中点,所以AB⊥DE,又∠ABC=90°,即AB⊥BC,由(1)知,EF∥BC,所以AB⊥EF,又DE∩EF=E,DE,EF⊂平面EFD,所以AB⊥平面EFD,…(12分)又AB⊂平面ABC,故平面EFD⊥平面ABC.…(14分)点评:本题考查平面与平面平行的性质,考查平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.17.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点.(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.考点:直线与圆的位置关系;点到直线的距离公式.专题:直线与圆.分析:(Ⅰ)建立如图所示的直角坐标系,由条件求得M、N两点的坐标,即可求得以MN为直径的圆的方程.(Ⅱ)设点P的坐标为(x0,y0),求得M(4,)、N(4,),以及MN的值,求得MN的中点,坐标为(4,),由此求得以MN为直径的圆截x轴的线段长度为2,化简可得结果.解答:解:(Ⅰ)以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如直角坐标系,由于⊙O的方程为x2+y2=4,直线L的方程为x=4,∠PAB=30°,∴点P的坐标为(1,),∴l AP:y= (x+2),l BP:y=﹣(x﹣2).将x=4代入,得M(4,2),N(4,﹣2).∴MN的中点坐标为(4,0),MN=4.∴以MN为直径的圆的方程为(x﹣4)2+y2=12.同理,当点P在x轴下方时,所求圆的方程仍是(x﹣4)2+y2=12.…(6分)(Ⅱ)设点P的坐标为(x0,y0),则+=4 (y0≠0),∴=4﹣.∵直线AP:y=(x+2),直线BP:y=(x﹣2),将x=4代入,得y M=,y N=.∴M(4,)、N(4,),MN=|﹣|=,故MN的中点坐标为(4,).以MN为直径的圆截x轴的线段长度为2=•=•==4 为定值.再根据以MN为直径的圆O′的半径为2,AB的中点O到直线MN的距离等于4,故O′为线段MN的中点,可得⊙O′必过⊙O 内定点(4﹣2,0).点评:本题主要考查求圆的标准方程,直线和圆的位置关系,点到直线的距离公式,属于中档题.18.如图,储油灌的表面积S为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.(1)试用半径r表示出储油灌的容积V,并写出r的范围.(2)当圆柱高h与半径r的比为多少时,储油灌的容积V最大?考点:导数在最大值、最小值问题中的应用.专题:应用题;导数的综合应用.分析:(1)由表面积S为定值,用r表示出h,可得储油灌的容积V及r的范围;(2)求导函数,确定函数的极大值即最大值,即可得出结论.解答:解:(1)∵S=2πr2+2πrh+πr2=3πr2+2πrh,∴,…(3分)∴=;…(7分)(2)∵,令V'=0,得,列表rV'(r) + 0 ﹣V(r)↗极大值即最大值↘…(11分)∴当时,体积V取得最大值,此时,∴h:r=1:1.…(13分)答:储油灌容积,当h:r=1:1时容积V取得最大值.…(15分)点评:本题考查导数知识的运用,考查函数的最值,考查学生利用数学知识解决实际问题的能力,确定函数解析式是关键.19.已知椭圆的焦距为4,设右焦点为F1,离心率为e.(1)若,求椭圆的方程;(2)设A、B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若,求e的取值范围.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:(1)利用椭圆的焦距为4,,求出几何量,即可求椭圆的方程;(2)①设出A的坐标,利用AF1的中点为M,BF1的中点为N,求出M、N的坐标,根据原点O在以线段MN为直径的圆上,可得OM⊥ON,从而可得结论;②直线方程与椭圆、圆联立,表示出k,根据,即可求e的取值范围.解答:解:(1)由题意,,∴c=2,a=2,∴=2∴椭圆的方程为;(2)①证明:设A(x,y)则B(﹣x,﹣y)因为椭圆的方程为,所以右焦点F1(2,0),M(,),N(,﹣),∵原点O在线段MN为直径的圆上,∴OM⊥ON,∴,∴x2+y2=4,∴点A在定圆上.②解:由,可得,∴将e==,b2=a2﹣c2=,代入上式可得∵,∴∴∵0<e<1∴<e≤.点评:本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,考查学生的计算能力,属于中档题.20.已知函数.(I)判断函数f(x)的单调性;(Ⅱ)若y=xf(x)+的图象总在直线y=a的上方,求实数a的取值范围;(Ⅲ)若函数f(x)与的图象有公共点,且在公共点处的切线相同,求实数m的值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:计算题;综合题.分析:(1)先对函数进行求导运算,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减,可求得单调区间.(2)将将函数f(x)的解析式代入,可将问题转化为不等式对于x>0恒成立,然后g(x)=lnx+后进行求导,根据导函数的正负情况判断函数的单调性进而可得到函数g(x)的最小值,从而得到答案.(3)将函数f(x)与的图象有公共点转化为有解,再由y=lnx与在公共点(x0,y0)处的切线相同可得到同时成立,进而可求出x0的值,从而得到m的值.解答:解:(Ⅰ)可得.当0<x<e时,f′(x)>0,f(x)为增函数;当e<x时,f′(x)<0,f(x)为减函数.(Ⅱ)依题意,转化为不等式对于x>0恒成立令g(x)=lnx+,则g'(x)=当x>1时,因为g'(x)=>0,g(x)是(1,+∞)上的增函数,当x∈(0,1)时,g′(x)<0,g(x)是(0,1)上的减函数,所以g(x)的最小值是g(1)=1,从而a的取值范围是(﹣∞,1).(Ⅲ)转化为,y=lnx与在公共点(x0,y0)处的切线相同由题意知∴解得:x0=1,或x0=﹣3(舍去),代入第一式,即有.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.33071 812F 脯36812 8FCC 迌39938 9C02 鰂M35473 8A91 誑27882 6CEA 泪TvV39853 9BAD 鮭35304 89E8 觨34857 8829 蠩30839 7877 硷M。
湖北省普通高中高二下学期期末模拟考试理科数学试题含答案
湖北省普通高中高二下学期期末模拟考试数学(理科)试题(考试范围:选修2-1、2-2;考试时间:120分钟)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(50分)1.观察下图,可推断出“?”应该填的数字是 ( )?8164247594716531 A .19 B .192 C .117D .1182.函数x x x f 3cos )(=的导数是( )(A ) x x 3sin 33cos + (B ) x 3sin 31- (C) x x x 3sin 33cos - (D)x x x 3sin 3cos -3.下列说法正确的是 ( ) A .命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B .a ∈R,“1a<1”是“a>1”的必要不充分条件 C .“p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D .命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题4.已知点P 是曲线13+-=x x e e y 上一动点,α∠为曲线在点P 处的切线的倾斜角,则α∠的最小值是 ( ) A .0B .4πC .32π D .43π 5.抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为( ) A.3 B. 23 C. 2 D.336.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 ( )A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x7.一质点沿直线运动,如果由始点起经过t 秒后的位移为t t t s 833123+-=,那么速度为零的时刻是( ) A .1秒B .1秒末和2秒末C .4秒末D .2秒末和4秒末8.如下图,三棱锥P -ABC 中,三条侧棱两两垂直,且长度相等,点E 为BC 中点,则直线AE 与平面PBC 所成角的余弦值为 ( )A .33B .36C .31D .329.曲线2)(3-+=x x x f 上点0P 处的切线垂直于直线x y 41-=,则点P 0的坐标是( ) A .)0,1(-B .)2,0(-C .)4,1(--或)0,1(D .)4,1(10.已知(0,)x ∈+∞,观察下列各式:21≥+xx ,3422422≥++=+x x x x x ,4273332733≥+++=+x x x x x x ,...,类比有n xa x n ≥+(n ∈N *),则=a ( ) A .n B .2nC .2nD .n n二、填空题(25分)11.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 . 12.已知复数z 的实部为2-,虚部为1,则225z i = .13.直线x y =是曲线kx y sin =的一条切线,则符合条件的一个实数k 值为 .14.若幂函数)(x f 的图象经过点)21,41(A ,则该函数在点A 处的切线方程为 .15.如图所示,点)1,0(),1,1(),0,1(),0,0(C B A O ,则曲线2x y =与x 轴围成的封闭图形的面积是 .三、解答题(75分)16. (满分12分)已知动点P 到定点()2,0F的距离与点P 到定直线l :22x =的距离之比为22.(1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若0EM FN =,求MN 的最小值.17.(满分12分)已知()f x '是()f x 的导函数,()ln(1)2(1),f x x m f m R '=++-∈,且函数()f x 的图象过点(0,-2)。
高二理科数学下册期末复习测试题及答案
高二理科数学下册期末复习测试题及答案第Ⅰ卷选择题共60分一、选择题每小题5分,共50分。
1、已知复数满足,则等于A. B. C. D.2、一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个是女孩的概率是A. B. C. D.3、黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2021个图案中,白色地面砖的块数是A.8046B.8042C.4024D.60334、右图是计算1+3+5+…+99的值的算法程序框图, 那么在空白的判断框中, 应该填入下面四个选项中的A. i≤50B. i≤97C. i≤99D. i≤1015、一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分100分。
某学生选对每道题的概率为0.8,则考生在这次考试中成绩的期望与方差分别是A、80;8B、80;64C、70;4D、70;36、在上有一点,它到的距离与它到焦点的距离之和最小,则点的坐标是A.-2,1B. 1,2C.2,1D. -1,27、从某校高三年级中随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示,若某高校 A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为A.10B.20C.8D.168、设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为A. B. C. D.9、如图所示,定点A和B都在平面α内,定点P α,PB⊥α,C是α内异于A和B 的动点,且PC⊥AC,那么,动点C在平面α内的轨迹是A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点10、矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影落在BC边上,若二面角C—AB—D的平面角大小为,则sin 的值等A. B. C. D.二、填空题每题5分,共25分,注意将答案写在答题纸上11、若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B10,0.8,则EX, EY分别是, .12、甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,且。
高二下学期期末考试理科数学模拟试题含答案
高二下学期期末考试理科数学模拟试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(i 是虚数单位)的共轭复数的虚部为( )A .B .0C .1D .22.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 3.若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34B.34C .-43D.434.等于( )A .1 B .e-1 C .e D .e+15..把函数y=sin (2x-)的图象向左平移个单位后,所得函数图象的一条对称轴为 A .x=0B .x=C .x=—D .x=6.已知随机变量X 服从二项分布X ~B (6,0.5),则P (X=2)等于() A. B. C. D.7设随机变量服从正态分布,若,则c =()11i i+-1-10(2)x e x dx +⎰6π6π6π12π2π16641516156435ξ(2,9)N (1)(1)P c P c ξξ>+=<-A.1B.2C.3D.48.某单位安排2013年春节期间7天假期的值班情况,7个员工每人各值一天.已知某员工甲必须排在前两天,员工乙不能排在第一天,员工丙必须排在最后一天,则不同的值班顺序有( ) A .120种B .216种C .720种D .540种 9.的展开式中各项系数的和为2,则该展开式中常数项为(A )—40(B )—20(C )20(D )4010.函数f(x)对定义在R 上的任意x 都有f(2-x)=f(x),且当时其导函数满足,若,则有()A .B .C .D .11.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次.若抽到各球的机会均等,事件A =“三次抽到的号码之和为6”,事件B =“三次抽到的都是2”,则P (B |A )=() A.17 B.27C.16 D.72712.将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2012项与5的差,即a 2012-5=51()(2)a x x x x +-1x ≠'()f x '()'()xf x f x >12a <<)(log )2()2(2a f f f a <<2(2)(log )(2)a f f a f <<2(log )(2)(2)a f a f f <<2(log )(2)(2)a f a f f <<A .2018×2012B .2018×2011C .1009×2012D .1009×2011 二、填空题:本大题共4小题,每小题5分. 13.的展开式中,常数项是________14.为预防和控制甲流感,某学校医务室预将23支相同的温度计分发到高三年级10个班级,要求分到每个班级的温度计不少于2支,则不同的分发方式共有________种 15.设曲线与轴、轴、直线围成的封闭图形的面积为,若在上单调递减,则实数的取值范围是。
高二下学期数学期末考试试卷(理科)第6套真题
高二下学期数学期末考试试卷(理科)一、选择题1. 若复数z满足z﹣2i=﹣i•z,则z=()A . ﹣1+iB . 1﹣iC . 1+iD . ﹣1﹣i2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是()A . 0.2B . 0.8C . 0.2或0.8D . 0.163. 某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如表:使用智能手机不使用智能手机总计学习成绩优秀4812学习成绩不优秀16218总计201030附表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828经计算K2的观测值为10,则下列选项正确的是()A . 有99.5%的把握认为使用智能手机对学习有影响B . 有99.5%的把握认为使用智能手机对学习无影响C . 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响D . 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响4. 用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个偶数时,下列假设正确的是()A . 假设a、b、c都是偶数B . 假设a、b、c都不是偶数C . 假设a、b、c至多有一个偶数D . 假设a、b、c至多有两个偶数5. 函数f(x)=x2﹣lnx的单调递减区间是()A .B .C . ,D .6. 已知X的分布列为X﹣11P设y=2x+3,则E(Y)的值为()A .B . 4C . ﹣1D . 17. 从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D .8. 在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(﹣1,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.A . 1 193B . 1 359C . 2 718D . 3 4139. 如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,则下列结论错误的是()x3456y2.5t44.5A . 产品的生产能耗与产量呈正相关B . t的取值必定是3.15C . 回归直线一定过点(4,5,3,5)D . A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是()A . 150B . 210C . 240D . 30011. 大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式:,如果把这个数列{an}排成如图形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,4)的值为()A . 1200B . 1280C . 3528D . 361212. 已知函数f(x)的导函数为f’(x),且f’(x)<f(x)对任意的x∈R恒成立,则下列不等式均成立的是()A . f(ln2)<2f(0),f(2)<e2f(0)B . f(ln2)>2f(0),f(2)>e2f(0)C . f(ln2)<2f(0),f(2)>e2f(0)D . f(ln2)>2f(0),f(2)<e2f(0)二、填空题13. 直线是曲线y=lnx的一条切线,则实数b的值为________.14. 计算定积分:=________.15. 已知(1﹣x)5=a0+a1x+a2x2+a3x3+a5x5,则(a0+a2+a4)(a1+a3+a5)的值等于________.16. 已知函数f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在,使得对任意的,都有f(x1)≤g(x2)成立,则实数a的取值范围是________.三、解答题17. 在(2 ﹣)6的展开式中,求:(1)第3项的二项式系数及系数.(2)含x2的项.18. 在各项为正的数列{an}中,数列的前n项和Sn满足Sn= (an+),(1)求a1,a2,a3;(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.19. 为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型① 与模型;②作为产卵数y和温度x的回归方程来建立两个变量之间的关系.温度x/°C20222426283032产卵数y/个610 21 24 64 113 322 t=x2 400 484 576 676 784 900 1024 z=lny1.792.303.043.184.164.735.7726692803.571157.540.430.320.00012其中,,zi=lnyi,,附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:,(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(2)若模型①、②的相关指数计算分别为.,请根据相关指数判断哪个模型的拟合效果更好.20. 某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.(Ⅰ)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(Ⅱ)请分析比较甲、乙两人谁的面试通过的可能性大?21. 对于命题P:存在一个常数M,使得不等式对任意正数a,b恒成立.(1)试给出这个常数M的值;(2)在(1)所得结论的条件下证明命题P;(3)对于上述命题,某同学正确地猜想了命题Q:“存在一个常数M,使得不等式对任意正数a,b,c恒成立.”观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的命题.22. 已知函数存在两个极值点.(Ⅰ)求实数a的取值范围;(Ⅱ)设x1和x2分别是f(x)的两个极值点且x1<x2,证明:.。
学高二第二学期期末考试理科数学试题及答案.docx
试卷类型: A高二数学(理科)试题注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5 页。
2. 答题前,考生务必在答题卡上用直径毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚, 并粘好条形码。
请认真核准条形码上的准考证号、 姓名和科目。
3. 答第Ⅰ卷时, 选出每题答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4. 答第Ⅱ卷时,请用直径毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
5. 第( 22)、( 23)小题为选考题,请按题目要求从中任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑。
6. 考试结束后,将本试卷和答题卡一并收回。
附:回归方程 y? bx?a?中斜率与截距的最小二乘估计公式分别为:? bnn( x i x)( y i y)x i y i n x yi 1i 1 ?nn, a? y b x( x i x) 2x i 22nxi 1i1第Ⅰ卷一、 选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)已知复数z22i,其中 i 是虚数单位,则z的模等于1i( A)2(B) 3 (C)4(D)2(2)用反证法证明某命题时,对结论:“自然数a,b, c中恰有一个偶数”正确的反设为(A)a, b, c (C)a, b, c 中至少有两个偶数(B)a, b, c 中至少有两个偶数或都是奇数都是奇数(D)a,b, c 都是偶数( 3)用数学归纳法证明:对任意正偶数n ,均有11111(11134...n2n 42n 1n 2 1...),在验证n 2 正确后,归纳假设应写成( A)假设n k(k N * ) 时命题成立(B)假设n k (k N * ) 时命题成立( C)假设2(* )()假设*n k k N 时命题成立n 2( k 1)(k N ) 时命题成立D(4)从 3 男 4 女共 7 人中选出 3 人,且所选 3 人有男有女,则不同的选法种数有( A) 30 种(B) 32种(C) 34种(D) 35种(5) 曲线y e x在点 2, e2处的切线与坐标轴所围三角形的面积为(A) 2e2(B)e2(C)e2(D)9e224(6)已知随机变量 X 服从正态分布 N 3,2,且 P( X 1) 1 P( X3) ,则 P( X5) 等于4(A)1 (B) 5 (C) 3 (D) 788 48(7) 已知 a2 3sin xdx ,曲线 f ( x) ax1ln( ax 1) 在点 1, f (1) 处的切线的斜率为 k ,则ak 的最小值为(A) 1(B)3 (C)2(D)32( 8) 甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为2 3 . 若三人中只有甲通过的概率为1,3 , , p ,且他们是否通过测试互不影响164则甲、丙二人中至少有一人通过测试的概率为(A)7 (B)3 (C)5 (D)68487( 9)函数 f ( x) x 3 2xf (1) ,则函数 f (x) 在区间2,3 上的值域是(A)[ 4 2 ,9](B)[ 4 2 ,4 2](C) [ 4,4 2 ] (D)4,9(10) 设 1x 5 a 0 a 1 (1 x) a 2 1 x 2 ... a 5 (1 x) 5 ,则 a 0 a 2 a 4 等于(A) 242 (B) 121 (C) 244 (D)122(11) 已知函数 f ( x)e x (x 2bx)(b R) . 若存在 x1,2 ,使得 f ( x) xf ( x)0 ,则实数x2b 的取值范围是(A),5(B),8(C)3 , 5 (D)8 ,632 63(12)中国南北朝时期的着作《孙子算经》中,对同余除法有较深的研究 . 设a, b, m(m 0)为整数,若 a 和b被 m 除得的余数相同,则称 a 和b对模 m 同余,记为 a b(mod m) .如9和21 被6除得的余数都是 3 ,则记921(mod 6) .若a C200 C 2012 C 202 22...C2020 220, a b(mod 10) ,则b的值可以是(A) 2011(B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
高二下学期数学期末考试试卷(理科)
高二下学期数学期末考试试卷(理科)高二下学期数学期末考试试卷(理科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分)1.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4) B.x29-y216=1(x≤-3)C.x216-y29=1(x≥4) D.x29-y216=1(x≥3)2.用秦九韶算法计算f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值,需要进行乘法运算和加法运算的次数分别为( )A. 6,6B. 5,6C. 6,5D. 6,12高二理科数学试卷(4-2)高二理科数学试卷(4-3)3.下列存在性命题中,假命题是( ) A. ∃x ∈Z ,x 2-2x-3=0B. 至少有一个x ∈Z ,x 能被2和3整除C. 存在两个相交平面垂直于同一条直线D. x ∈{x 是无理数},x 2是有理数 4.将甲、乙两枚骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两枚骰子所出现的点数.若点P (a ,b )落在直线x +y =m (m 为常数)上,且使此事件的概率最大,则此时m 的值为 ( ) A. 6B. 5C. 7D. 85.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A. ()2,1B. ()2,1-C.11,4⎛⎫- ⎪⎝⎭ D.11,4⎛⎫⎪⎝⎭高二理科数学试卷(4-4)6.按右图所示的程序框图,若输入81a =,则输出的i =( ) A. 14 B. 17 C. 19D. 217.若函数()[)∞+-=,在12xk x x h 在上是增函数,则实数k 的取值范围是( ) A. B. C.D.8.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:0~50为优,51~100为良。
高二下学期期末考试理科数学试题 (含答案)
高二下学期期末考试理科数学试题(含答案)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合A=﹛-2,0,2﹜,B=﹛x |x 2-x -2=0﹜,则A∩B= ( )(A) ∅ (B ){2} (C ){0} (D) {-2}2.复数的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i3.已知命题p :∃x 0∈R ,lg x 0<0,那么命题 ⌝p 为A. ∀x ∈R ,lg x >0B. ∃x 0∈R ,lg x 0>0C. ∀x ∈R ,lg x ≥0D. ∃x 0∈R ,lg x 0≥04.已知向量(2,1)a =,(3,)b m =,若(2)//a b b +,则m 的值是( )A .32B .32-C .12D .12- 5.已知实数,x y 满足3141y x x y y ≤-⎧⎪+≤⎨⎪≥⎩,则目标函数z x y =-的最大值为( )A .-3B .3C .2D .-26.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) (A ) 5 (B(C ) 2 (D ) 17.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727 (B ) 59 (C )1027 (D) 13 8.若21()nx x -展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84- B. 84 C. 36- D. 369.已知三棱锥P ABC -的三条棱PA ,PB ,PC 长分别是3、4、5,三条棱PA ,PB ,PC 两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是 ( )A .25π B.50π C. 125π D.都不对10.已知ω>0,函数f(x)=sin(ωx +4π)在(2π,π)上单调递减,则ω的取值范围是( ) (A )[21,45] (B )[21,43] (C )(0,21] (D )(0,2] 11.已知双曲线2222:1x y C a b-=(0a >,0b >)的左顶点为M ,右焦点为F ,过左顶点且斜率为l 的直线l 与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,双曲线C 的离心率为( ) A . 3 B .2 C. 53 D .4312.若存在实数[ln3,)x ∈+∞,使得(3)21x a e a -<+,则实数a 的取值范围是( )A .(10,+∞)B .(-∞,10) C. (-∞,3) D .(3,+∞)二、填空题(本题共4道小题,每小题5分,共20分)13.已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14.已知3()5sin 8f x x a x =+-,且(2)4f -=-,则(2)f = .15.函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.16.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且()2cos cos a b C c B -⋅=⋅.(1)求角C 的大小;(2)若2c =,ABC ∆.18.设数列{}n a 的前n 项和为n S ,满足112n n a S -=,又数列{}n b 为等差数列,且109b =,2346b b b ++=. (1)求数列{}n a 的通项公式;(2)记112n n n a c b b ++=,求数列{}n c 的前n 项和n T .19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值. 附:相关系数公式∑∑∑===----=n i i n i in i ii y y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,,//AD CD AB CD ⊥,122AB AD CD ===,点M 是线段EC 的中点.(1)求证://BM 面ADEF ;(2)求平面BDM 与平面ABF 所成锐二面角的余弦值.21.已知椭圆C :12222=+by a x (a >b >0)的焦点在圆x 2+y 2=3上,且离心率为23. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的直线l 与椭圆C 交于A ,B 两点,F 为右焦点,若△F AB 为直角三角形,求直线l 的方程.22.已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间;(2)证明:当2a e≥时, ()x f x e ->.试卷答案1.BB=﹛-1,2﹜,故A B=﹛2﹜.2.D略3.C4.A5.C6.BAC=1,但ABC ∆为直角三角形不是钝角三7.C该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为ππ5420=2710. 8.B略9.B10.A 592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C 另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤11.B12.B13.14.-1215.1(x )=sin(x +φ)-2sin φcos x =sin x cos φ-sin φcos x =sin(x -φ),故其最大值为1.16.817.(1)由()2cos cos a b C c B -⋅=⋅得2sin sin cos AcosC BcosC BsinC =+∴2sin cos sin A C A = ∴1cos 2C =∵0C π<< ∴3C π=(2)∵1sin 2ABC S ab C ∆=∴4ab = 又2222()23c a b abcosC a b ab =+-=+-∴2()16a b += ∴4a b += ∴周长为6.18.(1)设{}n b 的公差为d ,则1199366b d b d +=⎧⎨+=⎩ ∴101b d =⎧⎨=⎩∴1n b n =-当1n =时,11112a S -=,∴12a =当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-∴12n n a a -= ∴2n n a =(2)由(1)知 11,2n b n a =-=,()211211n c n n n n ⎛⎫==- ⎪++⎝⎭ ∴1211111212231n n T c c c n n ⎛⎫=+++=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-= ⎪++⎝⎭ 19.(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分 因为51()()(3)(1)000316i i i x x y y =--=-⨯-++++⨯=∑, …………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分==…………………………4分所以相关系数()()0.95n i i x x y y r --===≈∑.………5分 因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.……………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当70X >时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元.…………8分当5070X ≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元. ……………………………9分当50X <时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元, 所以商家在过去50周周总利润的平均值为4600元. ………………………12分20.(1)证明:取DE 中点N ,连,MN AN 则//MN AB ,且MN AB =∴ABMN 是平行四边形,∴//BM AN∵BM ⊄平面ADEF ,AN ⊂平面ADEF ,∴//BM 平面ADEF(2)如图,建立空间直角坐标系,则()()()()()2,0,0,2,2,0,0,4,0,0,0,0,0,0,2A B C D E因为点M 是线段EC 的中点,则()0,2,1M ,()0,2,1DM =,又()2,2,0DB =.设()111,,n x y z =是平面BDM 的法向量,则1111220,20DB n x y DM n y z ⋅=+=⋅=+=.取11x =,得111,2y z =-=,即得平面BDM 的一个法向量为()1,1,2n =-.由题可知,()2,0,0DA =是平面ABF 的一个法向量.设平面BDM 与平面ABF 所成锐二面角为θ,因此,cos 2DA n DA n θ⋅===⨯⋅. 21.解:(Ⅰ)因为椭圆的焦点在x 轴上,所以焦点为圆x 2+y 2=3与xa=2.分 (Ⅱ)当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y=kx ,设A(x 1,y 1),B(x 2,y 2).(ⅰ)当FA ⊥FB消y 得(4k 2+1)x 2-4=0.则x 1+x 2=0此时直线l 分 (ⅱ)当FA 与FB此时直线l综上,直线l 分 22.(1)函数()ln a f x x x =+的定义域为()0,+∞. 由()ln a f x x x =+,得()221a x a f x x x x ='-=-.………1分 ①当0a ≤时, ()0f x '>恒成立, ()f x 递增,∴函数()f x 的单调递增区间是()0,+∞ ………2分②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分(2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln x a x e x-+>,………5分 即ln x x x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+, 当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e =时, ()min 1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()x x xe φ-=,则()()1x x x x e xe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<.所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max 1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e ≥时, (f x )x e ->.………12分。
高二下学期理科数学期末考试试题带详细答案
高二下学期理科数学期末考试试题带答案一、选择题1.复数满足,则()A. B。
C。
D.2.已知集合,,若,则b等于()A.1 B.2 C.3 D.1或23.若函数y=f(x)的定义域是[-2,4],则函数g(x)=f(x)+f(—x)的定义域是()A.[-4,4] B.[—2,2] C.[—4,-2] D.[2,4]4.函数的极值的情况是( )A.极大值是,极小值是B.极大值是,极小值是C.只有极大值,没有极小值D.只有极小值,没有极大值5.若二次函数在区间上为减函数,那么()A. B. C. D。
6.已知为第二象限的角,,则是的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.若的展开式中的系数是80,则实数a的值为( )A.—2 B. C. D.28.已知随机变量X的分布列为其中a,b,c成等差数列,若EX=,则DX=A. B。
C. D.9.已知定义在上的函数是偶函数,对都有,当时,的值为()A.-2 B. 2 C。
4 D。
-410..若偶函数满足,且在时,,则关于的方在上根的个数是()A.2个B.3个C.4个D.6个11.曲线和曲线围成的图形面积是( )A. B. C. D.12.已知函数,若关于的不等式恰有两个整数解,则实数的取值范围是()A. B.C。
D.二、填空题13.一个家庭中有两个小孩,假定生男,生女是等可能的.已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是________.14.如图,用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻区域必须涂不同的颜色,不同的涂色方案有______种.15.已知随机变量服从正态分布,,则__________.16.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为__________.(用数字作答)三、解答题17.已知,命题:对任意,不等式恒成立;命题:存在,使得成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JCIS 高二下学期期末考试理科数学模拟试题
、选择题
1 •若复数z 满足z 1 i 严1 -2i ,其中i 为虚数单位,则复数z 对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2•函数f (x )的定义域为开区间(a ,b ),导函数f'(x )在(a,b )内的图象如图所示,则函数 f
(x )在开区间
6.已知随机变量 服从正态分布“ ,若,则厂一 ()
A. 0.954
B. 0.023
C. 0.977
D. 0.046
1 2 7 •由“丄:-, 2 4 <- 2 5
,2
<- ”得出: "若 a b - 0 且 m .0 ,
则b :::b m ”这个推导过程使用的方法 是
2 3 ( ) A.数学归纳法 3 5 4 7
a a m
B.演绎推理
C.类比推理
D.归纳推理
3
&若函数f x =ax bx 在x = 1处有极值-2,则a,b 的值分别为()
A. 1, -3
B. 1,3
C. -1,3
D. -1, -3
2
9 •甲命题:若随机变量
「N 3,;,若P 卩2i ; = 0.3,则P 卩41=0.7 •乙命题:随机变量
1
、B n, p ,且 E =300, D =200,则 P 二—,则正确的是()
3
A.甲正确乙错误
B.甲错误乙正确
C.甲错误乙也错误
D.甲正确乙也正确
10 •大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,
某城市关系要好的A,B,C,D 四个家庭各有两个小孩共 8人,准备使用滴滴打车软件,分乘甲、
(a,b )内有极小值点( )
A . 1个
B • 2个
ax
3 .曲线y = e cosx 在x = 0处的切线与直线
x ■ 2y = 0垂直,则 a =(
A. -2
B. -1
C. 1
D. 2
4.下列求导运算正确的是( )
A. 2x
' = x 2xJ
B. 3e x
' =3e x
D.
(x ] cosx-xsinx
cosx
cosx 2
A. e
B. e2
1
C. -1
D. e 2 3
C. 3
2
乙两辆汽车出去游玩,每车限坐 4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪 生姐妹需乘同一辆车,则乘坐甲车的 4名小孩恰有2名来自于同一个家庭的乘坐方式共有
A. 18 种
B. 24 种
C. 36 种
D. 48 种
11.已知回归方程<}=2x 1 ,而试验得到一组数据是(2 , 4.9) , (3 , 7.1) , (4 , 9.1),则残差平方和是() A . 0.01 B . 0.02 C . 0.03 D . 0.04
12 .定义在 R 上的可导函数
f X ,其导函数为
「X 满足f X 2x 恒成立,则不等式
f(4 -x),8x ::: f(x) 16 的解集为(
)
A. 2, ::
B. 4, ::
C. -::,2
D. -::,4 、填空题
13.复数 z 满足(z+2i)=3—i ,则 z= ____________
5
15 .若(1—2x ) =a °+a 1X+a 2X 2 + a 3X 3+a 4X 4+a 5X 5,贝V — = ____________ .
a 2
1
16 .若 ABC 三边长分别为a 、b 、c ,内切圆的半径为r ,则 ABC 的面积S r(a b c),类比上
2
述命题猜想:若四面体ABCD 四个面的面积分别为 S )、S 2、§3、S 4,内切球的半径为r ,则四面体ABCD 的体积V = ________
三、解答题(注意:17~21题为必做题,22~23只需任选一题作答)
3
2
17 .已知函数 f x = x -2x -4x .
(1) 求函数y 二f x 的单调区间;
(2) 求函数f x 在区间1-1,4 1上的最大值和最小值
18 .网上购物逐步走进大学生活,某大学学生宿舍 4人积极参加网购,大家约定:每个人通过掷一枚质地
均匀的骰子决定自己去哪家购物,掷出点数为
5或6的人去淘宝网购物,掷出点数小于
5的人去京东商城
购物,且参加者必须从淘宝网和京东商城选择一家购物。
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用',分别表示这4个人中去淘宝网和京东商城购物的人数,集 X 二 ,求随机变量X 的分布列 与数
学期望EX 。
5
14.已知(ax +1)的展开式中各项系数和为
为 _________ .(用数字作答)
243,则二项式 弐-/
的展开式中含x 项的系数
a 3x
2x 2 丄 2x 1 2.X 〔.
x x 、_ x
20.(本题满分12分)某中学将100名高一新生分成水平相同的甲,乙两个“平行班” ,每班50人.陈老
师采用A,B 两种不同的教学方式分别在甲,乙两个班级进行教改实验 •为了解教学效果,期末考试后,陈
老师分别从两个班级中各随机抽取 20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于
90分者为
“成绩优秀” •
19.当x .1时,求证
:
(1)从乙班样本的20个个体中,从不低于 86分的成绩中随机抽取 2个,求抽出的两个均“成绩优秀” 的概率;
(2)由以上统计数据填写下面 2x2列联表,并判断是否有9°%的把握认为“成绩优秀”与教学方式有关
甲班(A 方式)
乙班(B 方式)
总计
成绩优秀
成绩不优秀
总计
K 2
n(ad -be)
(a b)(e d)(a e)(b d)
P ( (K^k) 0.25
0.15
0.10
0.05
0.025
k 1.323 2.072 2.706 3.841 5.024
21 .已知函数 f (x)二(x 2 -a)e x .
(i)若函数f(x)在R 上不是单调函数,求实数 a 的取值范围;
(n)当a - -1时,讨论函数g(x)二f (x) -4xe x - x(x -1)的零点个数.
2
附:
22 .选修4-4 :坐标系与参数方程
一x = 2 +2cosB, 一
在直角坐标系xOy中,曲线G的参数方程为{( v为参数),以坐标原点O为极点,x轴
y = 2si n 日
正半轴为极轴建立极坐标系,曲线C2的极坐标方程为亍二、、3sinr • cos,曲线C3的极坐标方程为6
(I)把曲线G的参数方程化为极坐标方程;
(□)曲线G与曲线G交于O、A,与曲线C2交于O、B,求AB
23.选修4-5:不等式选讲
已知函数f(x)='x—3—5 , g(x)=x+2—2.
(1)求不等式f x <2的解集;
(2)若不等式f x -g x _m-3有解,求实数m的取值范围.。