(完整版)文科统计概率大题1

合集下载

概率统计试题及答案文科

概率统计试题及答案文科

概率统计试题及答案文科一、选择题(每题4分,共20分)1. 以下哪个选项是概率论中的随机事件?A. 太阳从东方升起B. 抛硬币得到正面C. 明天是晴天D. 地球停止自转答案:B2. 假设随机变量X服从正态分布N(μ, σ²),则以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的方差D. σ²是X的期望值答案:A3. 以下哪个选项是描述离散型随机变量的分布?A. 正态分布B. 均匀分布C. 二项分布D. 泊松分布答案:C4. 在统计学中,以下哪个概念用于描述数据的集中趋势?A. 方差B. 均值C. 标准差D. 极差答案:B5. 假设样本数据为{2, 3, 4, 5, 6},以下哪个选项是这组数据的中位数?A. 3B. 4C. 3.5D. 5答案:B二、填空题(每题5分,共20分)1. 概率论中,必然事件的概率为______。

答案:12. 在二项分布中,如果n=10,p=0.5,则E(X)=______。

答案:53. 一组数据的方差为4,标准差为______。

答案:24. 假设随机变量X服从泊松分布,且λ=3,则P(X=2)=______。

答案:0.1894三、简答题(每题10分,共20分)1. 请简述什么是大数定律,并给出一个应用实例。

答案:大数定律是指在大量重复试验的情况下,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛掷次数的增加,正面朝上的次数与总抛掷次数的比率会趋近于0.5。

2. 请解释什么是置信区间,并说明其在统计推断中的作用。

答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间。

它的作用是提供一个范围,使得我们有把握认为总体参数落在这个范围内。

例如,在估计一个产品的合格率时,95%的置信区间可以帮助我们了解合格率可能的范围。

四、计算题(每题15分,共40分)1. 假设随机变量X服从二项分布B(n=20, p=0.3),求P(X≥10)。

概率文科带详细答案

概率文科带详细答案

一摸概率文科1(本小题满分13分)我区高三期末统一测试中某校的数学成绩分组统计如下表:(Ⅰ)求出表中m 、n 、M 、N 的值,并根据表中所给数据在下面给出的 坐标系中画出频率分布直方图;(Ⅱ)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩 在90分以上的人数;(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求 被选中2人分数不超过30分的概率.2. (本题满分13分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(Ⅰ)下表是年龄的频数分布表,求正整数,a b 的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.3(本小题共13分)(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率;(Ⅱ)在教龄10年以下,且经常使用信息技术实施教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是多少?4.(本小题共13分)某中学高三(1)班有男同学30名,女同学10名,老师按照分层抽样的方法组建了一个4人的校本教材自学实验小组.(Ⅰ)求小组中男、女同学的人数;(Ⅱ)从这个小组中先后选出2名同学进行测试,求选出的2名同学中恰有一名女同学的概率.5.(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.(Ⅰ)求研究性学习小组的人数;(Ⅱ)规划在研究性学习的中、后期各安排1次交流活动,每次随机抽取小组中1名同学发言.求2次发言的学生恰好来自不同班级的概率.6(本小题共13分)某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少%75的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;(Ⅱ)假定选择的“非低碳小区”为小区A ,调查显示其“低碳族”的比例为21,数据如图1所示,经过 同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区A 是否达到“低碳小区”的标准?(百千克/户图2(百千克/户图17(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿.8.(本小题满分13分)某学校共有高一、高二、高三学生2000名,各年级男、女生人数如下图:75 80 85 90 95 100 分数 频率0.010.02 0.07已知在全校学生中随机抽取1名,抽到高二年级女生的概率是19.0. (Ⅰ)求高二女生人数;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名? (Ⅲ)已知245,245≥≥z y ,求高三年级中女生比男生多的概率. 9. (本小题满分13分)甲、乙两名考生在填报志愿的时候都选中了A 、B 、C 、D 四所需要面试的院校,但是它们的面试安排在同一时间了。

文科数学概率高考题(含答案)

文科数学概率高考题(含答案)

文科数学概率高考题(含答案)概率是历年高考数学文科考试经常出现的题型。

为了帮助考生掌握数学中概率知识点,下面是店铺为大家整理的数学概率高考题,希望对大家有所帮助!文科数学概率高考题(一)1.[2014•新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.1.132.[2014•全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.2.233.[2014•浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.3.134.[2014•陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1000 2000 3000 4000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.5.、[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.5.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.K2 古典概型6.[2014•福建卷] 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.6.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个.所以所求概率为P(M)=310.7.[2014•广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.7.258.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A.p1C.p18.C9.[2014•湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.9.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23,方差为s2甲=1151-232×10+0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35,方差为s2乙=1151-352×9+0-352×6=625.因为x甲>x乙,s2甲(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.文科数学概率高考题(二)10.[2014•江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.10.1311.[2014•江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.11211.B12.[2014•江西卷] 将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.12.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014.(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=0,1≤n≤9,k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=0,1≤n≤8,k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)=g(90)F(90)=9171=119.当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n∈S时,p(n)的最大值为119.13.[2014•辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n(n11n22-n12n21)2n1+n2+n+1n+2,P(χ2≥k) 0.100 0.050 0.010k 2.706 3.841 6.63513.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.14.[2014•山东卷] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量 50 150 100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.14.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D为“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.15.[2014•陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4515.B16.[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.16.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.[2014•天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学 X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.17.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.18.[2014•重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.文科数学概率高考题(三)19.[2014•福建卷] 如图15所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.19.1820.[2014•湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1520.B21.[2014•辽宁卷] 若将一个质点随机投入如图11所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π821.B22.[2014•重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)22.932K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率23.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.23.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.K6 离散型随机变量及其分布列24.[2014•江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X 的概率分布和数学期望E(X).24.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C24+C23+C22C29=6+3+136=518.(2)随机变量X所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=C44C49=1126;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X=3)=C34C15+C33C16C49=20+6126=1363;于是P(X=2)=1-P(X=3)-P(X=4)=1-1363-1126=1114.所以随机变量X的概率分布如下表:X 2 3 4P 111413631126因此随机变量X的数学期望E(X)=2×1114+3×1363+4×1126=209.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布25.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.25.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

高考文科统计概率习题(含答案)汇编

高考文科统计概率习题(含答案)汇编

160/3120/3100/360/340/380/320/3频率/组距pm2.5(毫克/立方米)0.1050.1000.0950.0900.0850.0800.0750.0700.0650概率统计习题(文)概率统计习题(文) 1.某中学为了了解学生的课外阅读情况,某中学为了了解学生的课外阅读情况,随机调查了随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图1的条形图表示。

根据条形图可得这50名学生这一天平均每人的课外阅读时间为均每人的课外阅读时间为A.0.67(小时)(小时) B.0.97(小时)(小时) C.1.07(小时)(小时) D.1.57(小时) 2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .31 B .21 C .32D .43 3.近年来,随着以煤炭为主的能源.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急消耗大幅攀升、机动车保有量急 剧增加,我国许多大城市灰霾现剧增加,我国许多大城市灰霾现 象频发,造成灰霾天气的“元凶” 之一是空气中的pm2.5(直径小(直径小于等于2.5微米的颗粒物)微米的颗粒物)..右图是某市某月(按30天计)根据对“pm2.5” 24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有立方米为达标,那么该市当月有 天“pm2.5”含量不达标.”含量不达标.4.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A . 300B . 100C . 60D . 205.高三某班学生每周用于数学学习的时间x (单位:小时)与数学成绩y (单位:分)之间有如下数据:之间有如下数据:x 24 15 23 19 16 11 20 16 17 13y 92 79 97 89 64 47 83 68 71 59根据统计资料,该班学生每周用于数学学习的时间的中位数是该班学生每周用于数学学习的时间的中位数是▲ ; 根据上表可得回归方程的斜率为3.53,截距为13.5,若某同学每周用于数学学习的时间为18 小时,则可预测该生数学成绩生数学成绩是 ▲ 分(结果保留整数). 6.记集合{}22(,)|16A x y x y =+£和集合{}(,)|40,0,0B x y x y x y =+-£³³表示的平面区域分别为12,W W ,若在区域1W 内任取一点(,)M x y ,则点M 落在区域2W 内的第12题图题图24小时平均浓度小时平均浓度 (毫克/立方米)0.060 0.0560.0400.034 0组距频率体重(kg )45 50 55 60 65 70 0.010(第4题图)概率为概率为( )A .12pB .1pC .14D .24p p- 7.已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为( )A .ˆ 1.234y x =+B .ˆ 1.235y x =+C .ˆ 1.230.08y x =+D .ˆ0.08 1.23y x =+8.(本小题满分13分)分) 2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人有一个停车休息的场所。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

(完整版)概率大题训练总结(全国高考经典概率问题文科),推荐文档

(完整版)概率大题训练总结(全国高考经典概率问题文科),推荐文档

1(本小题满分 12 分)某赛季,甲、乙两名篮球运动员都参加了 7 场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数;(2))你认为哪位运动员的成绩更稳定?(3)如果从甲、乙两位运动员的 7 场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.(参考数据:92 + 82 +102 + 22 + 62 +102 + 92 = 466 ,72 + 42 + 62 + 32 + 12 + 22 + 112 = 236 )2 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为 5 月1 日至30 日,评委会把同学们上交作品的件数按 5 天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为 2:3:4:6:4:1,第三组的频数为 12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有 10 件、2 件作品获奖,问这两组哪组获奖率高?3 已知向量a =(1, -2),b =(x, y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a b =-1 的概率;(2)若实数x, y ∈[1,6],求满足a b > 0 的概率.4某公司在过去几年内使用某种型号的灯管 1000 支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足 1500 小时的频率;(3)该公司某办公室新安装了这种型号的灯管 2 支,若将上述频率作为概率,试求恰有 1 支灯管的使用寿命不足 1500 小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100 个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m、n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x ,y ,求事件“ | x -y |> 5 ”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了 22 人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中 120~130(包括 120 分但不包括 130 分)的频率为 0.05,此分数段的人数为 5 人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于 90 分的概率. 频率0.400.350.300.250.200.150.100.0570 80 90 100 110 120 130分数气温(℃)频数频率[-5, -1] x = 0.03 [0, 4] 8[5, 9] 12[10,14] 22[15,19] 25[20, 24] t =[25, 29] m =[30, 34] n =合计100 138 图 图321608 06O8图1 171615 1413 0.7 某班 50 名学生在一次百米测试中,成绩全部介于 13 秒与 18 秒之间,将测试结果按如下 方式分成五组:每一组3,14) ;第二组 4,15) ,……,第五组7,1.右图是按上述分组 方法得到的频率分布直方 图 图0. 图.0. (I ) 若成绩大于或等于 14 秒且小于 16 秒认为 良好,求该班在这次百米测试中0. 成绩良好的人数;(II ) 设m 、n 表示该班某两位同学的百米0. 测试成绩,且已知 m , n 3,14)7,1 ,求事件“ m n1 ”的概率.8 一人盒子中装有 4 张卡片,每张卡上写有 1 个数字,数字分别是 0,1、2、3。

高三文科统计与概率练习题

高三文科统计与概率练习题

高三文科统计与概率练习题在高三的学习生涯中,统计与概率是文科学生们需要掌握的重要知识点之一。

为了提高学生的能力,下面将提供一些统计与概率的练习题,帮助学生们巩固知识和提升解题能力。

1. 统计(1)某班级有30名学生,其中20名男生和10名女生,求男生人数占总人数的百分比。

(2)一次考试中,某学生的成绩为75分,超过了总人数的80%。

求该次考试的总人数。

(3)某校体育队中共有60名学生,其中30名男生,体操队由男女学生组成,其中男生占总队员数的40%。

求体操队的女生人数。

2. 概率小明有5件T恤,3条裤子和2双鞋子。

如果他从中随机选择一件衣服和一件裤子,并且随机穿上一双鞋子,那么他穿上的衣服、裤子和鞋子都是同一个颜色的概率是多少?提示:首先计算出小明选择同一颜色的T恤、裤子和鞋子的概率,然后根据全概率公式计算最终结果。

3. 事件的独立性假设A和B是两个相互独立的事件。

已知P(A) = 0.4,P(B) = 0.3,求P(A并B)。

4. 期望值一枚均匀的骰子中有1、2、3、4、5、6六个面,每个面的概率都是1/6。

如果投掷一次骰子,求出投掷结果的期望值。

5. 排列组合在一副扑克牌中,红桃和黑桃各有13张,方块和梅花各有13张。

从中随机选择5张牌,求以下各种情况的概率:(1)5张牌都是红桃;(2)5张牌都是黑桃;(3)5张牌都是方块;(4)5张牌都是梅花;(5)5张牌中有3张红桃和2张黑桃。

通过以上练习题,希望能够帮助高三文科学生们更好地掌握统计与概率的知识点,并提高解题能力。

在备战高考的道路上,坚持练习和不断提升是成功的关键。

祝愿大家取得优异的成绩!。

高三复习文科统计概率(概率专项完整版)练习

高三复习文科统计概率(概率专项完整版)练习

高三复习文科统计概率(概率专项)练习必须掌握知识点:○1随机事件的定义;正确理解概率的定义,能理解频率与概率的联系与区别.解析:判断事件是否随机抓住不能确保发生或不发生的事件,通常未发生的不是自然科学规律的事件为随机事件,而已发生、自然科学规律、公式以及定理等确定的事件为必然事件,违背自然科学的未发生的为不可能事件;事件发生的概率通俗讲就是事件发生的可能性大小,故可能发生也可能不发生,如天气预报有雨却没下雨,某人说某事99%的概率发生缺没发生等并不表示天气预报有误也不表示某人说法错误;频率是统计得来,随着试验次数不同而浮动,概率可看着是对频率的固定值估计,是一个定值,但试验次数无限增加时,频率无限趋近该事件的概率.○2掌握对立事件与互斥事件的区别与联系.解析:对立事件与互斥事件都不能同时发生,而互斥事件可以同时不发生,对立事件却必然有事件发生,故对立事件是互斥事件充分不必要条件;互斥事件与对立事件经常作为间接求解使用.○3掌握古典概型和几何概型.解析:古典概型成立的特征需两个条件,条件一是试验的结果是有限的(如抛一枚硬币出现正面、方面两种情况),条件二是试验的所有结果发生可能性相同(如抛一枚硬币出现正面、反面的概率一样),解答古典概型题计算方式为()AP A事件发生的事件总数试验所有可能发生的事件总数;几何概型其实就是一个“量比”的问题,事件发生的概率与试验“器具”的量有关,且为其“量比”(如长度比、面积比、事件比、空间比、数轴比等,典型的如等公交车、过交通岗、设靶、数轴取数、抛黄豆以等).○4独立性检验解析:独立性检验是经常出现在大题当中,固定的考试模式以及固定的求解步骤对考生来说没有难度,需要注意的是几种求问法:(1)是否有不低于99.5%的把握认为吸烟与患肺炎相关;(2)是否能在犯错误的概率不超过0.5%前提下,认为吸烟与患肺炎有关;(3)若低于95%的把握,则认为吸烟与患肺炎无关,反之亦然,从上表统计数据是否能判断吸烟与患肺炎有关,请注明你的结论。

高三文科数统计概率归纳总结(超详细)(精华版)

高三文科数统计概率归纳总结(超详细)(精华版)

统计概率考点总结【考点一】分层抽样01,交通治理部门为明白机动车驾驶员(简称驾驶员)对某新法规的知晓情形,对甲,乙,丙,丁四个社N ,其中甲社区有驾驶员区做分层抽样调查;假设四个社区驾驶员的总人数为96 人;如在甲,乙,N 丙,丁四个社区抽取驾驶员的人数分别为12,21,25,43,就这四个社区驾驶员的总人数为()A ,101 B,808 C,1212 D ,202102,某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体同学中抽取一个容量为280 的样本,就此样本中男生人数为.03,一支田径运动队有男运动员56 人,女运动员42 人;现用分层抽样的方法抽取如干人,如抽取的男运动员有8 人,就抽取的女运动员有人;04,某单位有840 名职工, 现采纳系统抽样方法抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机,编号, 就抽取的42 人中, 编号落入区间[481, 720] 的人数为()A .11B .12 C.13 D .1405,将参与夏令营的600 名同学编号为:001,002,600,采纳系统抽样方法抽取一个容量为50 的样本,且随机抽得的号码为003.这600 名同学分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为()A .26, B.25,17,8 C.25,16,9 D .24,17,916, 8【考点二】频率分布直方图(估量各种特点数据)01,从某小区抽取100 户居民进行月用电量调查, 发觉其用电量都在50 到350 度之间, 频率分布直方图所示.x 的值为;(I) 直方图中(II) 在这些用户中, 用电量落在区间100,250 内的户数为.02,下图是样本容量为200 的频率分布直方图;依据样本的频率分布直方图估量,样本数据落在[6 ,10]内的频数为,数据落在(2,10)内的概率约为03,有一个容量为200 的样本,其频率分布直方图如下列图,依据样本的频率分布直方图估量,样本数据落在区间10,12 内的频数为A .18B .36 C.54 D .7204,如上题的频率分布直方图,估量该组试验数据的众数为,中位数为,平均数为【考点三】数据特点01,抽样统计甲,乙两位设计运动员的 5 次训练成果( 单位: 环), 结果如下:运动员甲乙第 1 次8789第 2 次9190第 3 次9091第 4 次8988第 5 次9392就成果较为稳固( 方差较小) 的那位运动员成果的方差为.02,某单位200 名职工的年龄分布情形如图2,现要从中抽取40 名职工作样本,用系统抽样法,将全体职工随机按1-200 编号,并按编号次序平均分为40 组(1-5 号,6-10 号,196-200 号).如第5 组抽出的号码为22,就第8 组抽出的号码应是;如用分层抽样方法,就40 岁以下年龄段应抽取人.03,在某次测量中得到的 A 样本数据如下:82,84,84,86,86,86,88,88,88,88.如 B 样本数据恰好是 A 样本数据都加 2 后所得数据,就A,B 两样本的以下数字特点对应相同的是(A) 众数(B) 平均数(C)中位数(D) 标准差04,总体由编号为,19,2的020 个个体组成;利用下面的随机数表选取 5 个个体,选取方法是从随01,02,机数表第 1 行第5 列和第6 列数字开头由左到右依次选取两个数字,就选出的第 5 个个体编号为A .08B .07 C.02 D.0105,容量为20 的样本数据,分组后的频数如下表就样本数据落在区间[10,40] 的频率为A B C D06,小波一星期的总开支分布图如图1 所示,一星期的食品开支如图2 所示,就小波一星期的鸡蛋开支占总开支的百分比为% % % D. 不能确定07,对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),就该样本的中位数,众数,极差分别是( )A .46,45,56B . 46,45,53C . 47,45,56D .45,47,5308,考察某校各班参与课外书法小组人数, 在全校随机抽取 5 个班级 , 把每个班级参与该小组的人数作为样本数据. 已知样本平均数为 7, 样本方差为 4, 且样本数据相互不相同 , 就样本数据中的最大值为【考点四】求回来直线,相关系数,相关指数 依据一组样本数据 (x i , 01,设某高校的女生体重y (单位: kg )与身高 x (单位: cm )具有线性相关关系, y y i )(i=1 ,2, , n ),用最小二乘法建立的回来方程为 ,就以下结论中不正确选项A.y 与 x 具有正的线性相关关系 x , )y B. 回来直线过样本点的中心( C.如该高校某女生身高增加 1cm ,就其体重约增加D.如该高校某女生身高为170cm ,就可肯定其体重必为x, y 有观测数据理力争( x 1 , y 1 )( i=1,2, 02,对变量 ,10),得散点图如下左图;对变量 u ,v 有观测数据( u 1 , v 1 )( i=1,2, , 10) ,得散点图如下右图 . 由这两个散点图可以判定; ( A )变量 与 正相关, 与 正相关 x y u v ( B )变量 与 正相关, 与 负相关 x y u v ( C )变量 与 负相关, 与 正相关 x y u v ( D )变量 与 负相关, 与 负相关x y u vx 和y 的n 个样本点,直线l 是由这些样本点通过03,设(x1,y1),(x2,y2),,(x n,y n)是变量最小二乘法得到的线性回来直线(如图),以下结论中正确选项x 和y 的相关系数为直线l 的斜率A .x 和y 的相关系数在B .0 到1 之间C.当n 为偶数时,分布在l两侧的样本点的个数肯定相同D .直线l 过点( x, y)x1,y1),(x2,y2),,(x n,y n)(n≥2,x1,x2, ,x n 不全相等)的散点图中,如所04,在一组样本数据(1有样本点(x i,y i)( i=1,2 ,, n) 都在直线y= x+1 上,就这组样本数据的样本相关系数为2(C)12(A )-1 (B)0 (D)105,如表供应了某厂节能降耗技术改造后生产甲产品过程中记录的产量x ( 吨) 与相应的生产能耗y ( 吨标准煤) 的几组对比数据;请依据表格供应的数据,用最小二乘法求出y 关于x 的线性回来方程为:ny xx i y i nx y ^b^,a^b x ,i 1y343546) (n22x i nxi 106,某产品的广告费用x 与销售额广告费用y 的统计数据如下表x(万元) 4235销售额y(万元) 49 26 39 54 依据上表可得回来方程^y=b^x+a中的b^^,据此模型预报广告费用为 6 万元时销售额为()A .万元B.万元C.万元D.万元07,某地2021 年其次季各月平均气温x (℃)与某户用水量y (吨)y 关于月平均如下表,依据表中数据,用最小二乘法求得用水量气温x 的线性回来方程是A . y.B. y.x C. y.x D . y.5x x08,( 2021 年全国 I 18 题)某公司为确定下一年度投入某种产品的宣扬费,需明白年宣扬费 x(单位:千元 )对年销售量 y(单位:t)和年利润 z(单位:千元 )的影响.对近 8 年的年宣扬费 x i 和年销售量 y i (i = 1,2, , 8)数据作了初步处理,得到下面的散点图及一些统计量的值. ( 1)依据散点图判定, y =a + bx 与 y = c + d x 哪一个相宜作为年销售量 y 关于年宣扬费 x 的回来方程类型? (给出判定即 可,不必说明理由 )( 2)依据 (1) 的判定结果及表中数据, 建立 y 关于 x 的回来方程; ( 3)已知这种产品的年利润z 与 x , y 的关系为 z = - x.依据 (2) 的结果回答以下问题:①年宣扬费 x = 49 时,年销售量及年利润的预报值是多少? ②年宣扬费 x 为何值时,年利润的预报值最大?888822( x ix)( w iw)(w iw)( y iy)( x ix)( y i y)x y wi 1i 1i 1i 15631 46981 附: ( 1)在下 表中 w i = x i , w =w i8 i1( 2)对于一组数据 (u 1, v 1), (u 2,v 2), n, (u n , v n ),其回来直线 v = α+ βu 的斜率和截距的最小二乘法 ( u iu)( v i v) ^ ,α= v -β^运算公式分别为u i 1n2(u iu)i 1【考点五】独立性检验01,通过随机询问 110 名性别不同的高校生是否爱好某项运动,得到如下的列联表:男 40 20 60女 20 30 50总计6050 110爱好 不爱好 总计22n c 2ad d k)bc a 110 40 30 20 20由 算得,.22KK a b P(Kc b d60 50 60 500. 050 0. 010 0. 001 3. 8416. 63510. 828k参照附表,得到的正确结论是 A .再犯错误的概率不超过 0.1% 的前提下,认为“爱好该项运动与性别有关” B .再犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”C .有 99%以上的把握认为“爱好该项运动与性别有关”D .有 99%以上的把握认为“爱好该项运动与性别无关”【考点六】古典概型——列举法( 6 选 3, 5 选 3)1 14, 就 n01,从 n 个正整1,2, n 中任意取出两个不同的数 5 的概率为, 如取出的两数之和等于 m , n ( m 7 , n 9 ) 可以任意选取 , 就 m ,n 都取到奇数的概02,现在某类病毒记作X m Y n , 其中正整数 率为 .03,从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0 的概率是4 91 3291 9A.B.C.D.22x y 3的概率是 ( )04,某同学同时掷两颗骰子,得到点数分别为a ,b ,就椭圆 + b = 1 的离心率 e> 2 2a 21 51 1 A .18B . 36C . 6D . 305,一袋中装有 10 个球 , 其中 3 个黑球 , 7 个白球 , 先后两次从袋中各取一球 (不放回 ). 就其次次取出的是黑球的概率是;已知第一次取出的是黑球 ,就其次次取出的仍是黑球的概率是.06,从装有1A.103 个红球,2 个白球的袋中任取 3 个球,就所取的 3 个球中至少有 1 个白球的概率是()339D.10B.10C.507,从长度分别为2,3,4,5 的四条线段中任意取出三条,就以这三条线段为边可以构成三角形的概率是【考点七】几何概型(显性,隐性)1 2,01,小波通过做嬉戏的方式来确定周末活动,他随机的往单位圆内投掷一点,如此点到圆心的距离大于14就周末去看电影;如此点到圆心的距离小于,就去打篮球;否就,在家看书. 就小波周末不在家看书的概率为.a, 就时间“3a 10 ”发生的概率为02,利用运算机产生0~1 之间的匀称随机数03,在长为12cm 的线段AB 上任取一点 C.现作一矩形,令边长分别等于线段AC ,CB 的长,就该矩形面32cm2 的概率为积小于1 6132345(A) (B) (C) (D)1x , 使得x 1 x 2 1 成立的概率为3,304,在区间上随机取一个数3 05,如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形A .OAB 内随机取一点,就此点取自阴影部分的概率是B.C. D .2π121π2π1π1RT BAC 中, 06,在 A, AB = 1 , BC = 2211 2D ,就 ΔABD 的面积比 ΔABC 的面积的( 1)在 BC 上取一点 仍大的概率为 211 2BC 交于点 D ,就 ΔABD 的面积比 ΔABC 的面积的( 2)过 A 作射线与 仍大的概率为 314A ,B ,C ,就 ΔABC 为锐角三角形的概率为 07,在一个圆上任取三点答案:有注明讲的题目为下次上课必讲对象 【考点一】 5(讲) 【考点二】 4(讲) 702. 643. B 【考点三】 1. 22. 37, 203. D4. D5. B6. C7. A8. 10 【考点四】1. D 8( 讲)2. C3. D4. D5.6. B7 .D【考点五】 1. C 20 633 10 2 9【考点六】 1. 82.4. C5.7.13 16 2 3【考点七】1. 4 讲 6 讲7 讲2. 5. A。

(完整版)文科统计概率大题1

(完整版)文科统计概率大题1

bx a+.=++x y z,则该产品为一等品。

现从一批该产品中,随机抽取10件产品作为样本,其质量指质量指标(,,x y z )()1,1,2()2,1,1 ()2,2,2 ()1,1,1()1,2,1产品编号 6A7A8A 9A10A质量指标(,,x y z )()1,2,2 ()2,1,1 ()2,2,1 ()1,1,1 ()2,1,2(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品, (i )用产品编号列出所有可能的结果;(ii )设事件B 为“在取出的2件产品吕,每件产品的综合指标S 都等于4”,求事件B 发生的概率。

4.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间。

将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,…,第五组[]17,18,右图是按上述分组方法得到的频率分布直方图。

(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率。

5.为丰富课余生活,某班开展了一次有奖知识竞赛,在竞赛后把成绩(满分为100分,分数均为整数)进行统计,制成如右图的频率分布表: (Ⅰ)求,,,a b c d 的值;(Ⅱ)若得分在[]100,90之间的有机会得一等奖,已知其中男女比例为2∶3,如果一等奖只有两名,写出所有可能的结果,并求获得一等奖的全部为女生的概率.6.现从某100件中药材中随机抽取10件,以这10件中药材的重量(单位:克)作为样本,样本数据的茎叶图如下:(1)求样本数据的中位数、平均数,试估计这100件中药材的总重量;(2)记重量在15克以上的中药材为优等品,在该样本的优等品中,随机抽取2件,求这2件中药材的重量之差不超过2克的概率。

7.某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。

高三数学概率统计专题测试(文科)

高三数学概率统计专题测试(文科)

高三文科数学专题练习——概率统计一、选择题1、2009年2月,国家教育部就“文理分科是否取消”等教改问题征集民意之际,某新闻单位从900名家长中抽取15人,1500名学生中抽取25人,300名教师中抽取5人召开座谈会,这种抽样方法是( )A .简单随机抽样B .抽签法C .系统抽样D .分层抽样 2、(2009惠州)某雷达测速区规定:凡车速大于或等于70km/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测 点对200辆汽车的车速进行检测所得结果的频率分布直方 图,则从图中可以看得出将被处罚的汽车大约有( ) A .30辆 B .40辆 C .60辆 D .80辆3、在0,1,2,3,…,9这十个数字中,任取四个不同的数字,那么“这四个数字之和大于5”这一事件是( )A .必然事件B .不可能事件C .随机事件D .不确定是何事件 4、某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不确定是何事件5、(2009揭阳)已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为( ) A . 14 B . 58 C . 12D .38 二、填空题6、容量为100的样本数据,依次分为8组,如下表:组号 1 2 345 6 7 8 频数10133xx1513129则第三组的频率是 .7、(2009揭阳)某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别 为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是 . 8、(2009中山)若数据123,,,,n x x x x 的平均数x =5,方差22σ=,则数据12331,31,31,,31n x x x x ++++的平均数为 ,方差为 .9、(2009惠州)若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆2216x y += 内的概率为 .10、在一个直径为6的球内随机取一点,则这个点到球面的最近距离大于2的概率为 .三、解答题11、(2009潮州)潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)1500,1000[)。

(完整版)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档

(完整版)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档

1 52 5258 259 2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】 题型一 古典概型 例 1从甲、乙等5 名学生中随机选出2 人,则甲被选中的概率为().A.B.C.D.【答案】 【解析】 法有:可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊), (丙,丁),(丙,戊),(丁,戊),共有10 种选法,其中只有前 4 种是甲被选中,所以所求概率为 42.故选 B.10 5例 2 将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 .【答案】 【解析】根据题意显然这是一个古典概型,其基本事件有:数 1,数 2,语; 数 1,语,数 2;数 2,数 1,语; 数 2,语,数 1;语,数 2,数 1; 语,数 1,数 2 共B2314π 81 2⎧⎪∆ = 4 p 2 - 4(3 p - 2) ≥ 0⎨ x + x = -2 p < 0 1 2 ⎩ ⎪ x x= 3 p - 2 > 0 1 2有 6 种,其中 2 本数学书相邻的有 4 种,则其概率为:.【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二 几何概型 例 1如图所示,正方形ABCD 内的图形来自中国古代的太极 AD图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概BC率是( ).A.B.C.D.【答案】【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为.故选 B.例 2 在区间[0, 5] 上随机地选择一个数的概率为.,则方程 x 2 +2 px +3 p - 2 = 0 有两个负根【答案】【解析】方程 x 2+2 px +3 p - 2 = 0 有两个负根的充要条件是 即Bπ 4p 23p = 4 = 6 2 31 ⎛ a ⎫2 ⨯⨯ ⎪2⎝ 2 ⎭ = 8a 2400或 p ≥ 2 ,又因为 p ∈[0, 5] ,所以使方程 x 2 +2 px +3 p - 2 = 0 有两个负根的 p【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与 x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征 例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200 ,, 300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行检验,则应从丙种型号的产品中抽取件.【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取300 ⨯ 60 1000= 18 (件).例 2已知样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值 x = 5 ,则样本数据2x 1 +1 , 2x 2 +1 , ⋅⋅⋅ , 2x n +1 的均值为 .【答案】11 【解析】因为样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值x = 5 ,又样本数据2x 1 +1 ,2x 2 +1, ⋅⋅⋅ , 2x n +1的和为2(x 1 + x 2 + + x n )+ n ,所以样本数据的均值为2x +1 =11.例 3 某电子商务公司对10000 名网络购物者 2018 年度的消费情况进行统计,3 2.发现消费金额(单位:万元)都在区间[0.3,0.9] 内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.a/万万【答案】a = 3 人数为0.6 ⨯10000 = 6000【解析】由频率分布直方图及频率和等于1,可得0.2 ⨯ 0.1+ 0.8⨯ 0.1+1.5⨯ 0.1+ 2 ⨯ 0.1+ 2.5⨯ 0.1+a ⨯ 0.1 = 1 ,解之得a = 3 .于是消费金额在区间[0.5,0.9]内频率为0.2 ⨯0.1+ 0.8⨯0.1+ 2 ⨯0.1+ 3⨯0.1 = 0.6 ,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6⨯10000=6000.例4 某城市100户居民的月平均用电量(单位:度),以[160,180),[180, 200),[200, 220),[220, 240),[240, 260),[260, 280),[280, 300]分组的频率分布直方图如图所示.2220 + 240 = 230得 x = 0.0075 .又(0.002 + 0.0095 + 0.011+ 0.0125)⨯ 20 = 0.7 > 0.5 ,160 180 200 220 240 260 280 300 万万万万万万/万(1) 求直方图中 x 的值;(2) 求月平均用电量的众数和中位数;(3)在月平均用电量为[220, 240), [240, 260), [260, 280), [280, 300]的四组用户中, 用分层抽样的方法抽取11户居民,则从月平均用电量在[220, 240)的用户中应抽 取多少户?【答案】见解析【解析】(1)由(0.002 + 0.0095 + 0.011+ 0.0125 + x + 0.005 + 0.0025)⨯ 20 = 1 ,(2)由图可知,月平均用电量的众数是.因为(0.002 + 0.0095 + 0.011)⨯ 20 = 0.45 < 0.5 ,所以月平均用电量的中位数在[220, 240)内.设中位数为a ,由(0.002 +0.0095 +0.011)⨯20 +0.0125⨯(a -220)=0.5 ,得a = 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为[220,240)的用户有0.0125⨯ 20 ⨯100 = 25 (户);月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15(户);月平均用电量为[260,280)的用户有0.005⨯20⨯100=10(户);月平均用电量为[280, 300]的用户有0.0025⨯ 20 ⨯100 = 5 (户).所以从月平均用电量在[220,240)的用户中应抽取25⨯1 = 5 (户).5【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2 牵涉到策略问题,一般可以转化为比较两个指标的大小.题型四回归与分析例1 下图是我国2008 年至2014 年生活垃圾无害化处理量(单位:亿吨)的折线图∑ i =1nn(t - t ) (y - y)2 ∑ 2i ii =1∑ i =17( y - y )2i nn万万 1.80 万万 1.60 万万万 1.40 万万 1.20 万万1.00y0.80234567年份代码t(1) 由折线图看出,可用线性回归模型拟合 y 与t 的关系,请用相关系数加以说明(2) 建立 y 关于t 的回归方程(系数精确到0.01 ),预测2016 年我国生活垃圾无害化处理量.参考数据: 7 y = 9.32 , 7 t y = 40.17 ,= 0.55 , ≈ 2.646 .∑ii =1∑i ii =1n∑(t i - t )( y i - y )参考公式:相关系数r =i =1回归方程 y = a+ b t 中斜率和截距的最小二乘估计公式分别为:∑(t i - t )( y i - y )b= i =1 a = y - bt .∑(ti- t )2i =1【答案】见解析72【解析】(1)由折线图中数据和附注中参考数据得t = 4 , ∑(t i - t ) = 28 ,i =1 7∑ i =17 7(t - t ) ⋅ ( y - y )2∑ 2iii =1 ∑ i =17 (t - t ) 2ii =1 ∑ i =17( y - y )2i7 ∑ 7(t - t ) 2 i i =1i= 0.55 ,∑7(t - t )(y - y )= ∑7t y - t ∑7y = 40.17 - 4 ⨯ 9.32 = 2.89 ≈2.89≈ . , r0.99 i ii ii0.55⨯ 2 ⨯ 2.646i =1i =1i =1因为 y 与t 的相关系数近似为0.99 ,说明 y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合 y 与t 的关系.7777 ∑(t i - t )( y i - y )7∑t i y i - ∑t i ⋅∑ y i(1)变量 y 与t 的相关系数r =i =1=i =1i =1,7 ⨯⋅777又∑t i = 28 , ∑ y i = 9.32 , ∑t i y i = 40.17 2= 5.292 ,i =1i =1i =1= 0.55 ,所以r = 7 ⨯ 40.17 - 28⨯ 9.32 ≈ 0.997 ⨯ 5.292 ⨯ 0.55,故可用线性回归模型拟合变量 y 与t 的关系.t y - 7t ⋅ y117∑7i i40.17 - 7 ⨯ 4 ⨯ 7 ⨯ 9.32(2) t = 4 , y =∑y ,所以b ˆ= i =1 == 0.10 ,7 i =1 i∑7 i =1t 2 -7t 2 28a ˆ = y -b ˆx = 1⨯ 9.32 - 0.10 ⨯ 4 ≈ 0.93 ,所以线性回归方程为 y ˆ = 0.1t + 0.93 .7当t = 9 时, y ˆ= 0.1⨯ 9 + 0.93 = 1.83 .因此,我们可以预测 2016 年我国生活垃圾无害化处理1.83 亿吨.【易错点】没有读懂题意,计算错误.∑(72y - y i) i =1∑ i =17( y - y )2i【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据.题型五独立性检验例1 甲、乙、丙、丁四位同学各自对A、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B 两变量更强的线性相关性?( ) A.甲B.乙C.丙D.丁【答案】D【解析】D 因为r>0 且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r 的绝对值越趋向于1,相关性越强.残差平方和m 越小相关性越强【巩固训练】题型一古典概型151 141 1211. 将一颗质地均匀的骰子(一种各个面上分别标有1,2, 3, 4,5, 6 个点的正方体玩具)先后抛掷2 次,则出现向上的点数之和小于10 的概率是 .【答案】 56【解析】将先后两次点数记为(x , y ),则基本事件共有6 ⨯ 6 = 36 (个), 其中点数之和大于等于10有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6 种, 则点数之和小于10 共有30 种,所以概率为30 = 5. 36 62. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于 30 的概率是( ).A.B .C .D .【答案】C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个, 随机选取两数有45 (种)情况,其中两数相加和为 30 的有 7 和 23,11 和19,13 和 17,共 3 故选C .3. 袋中有形状、大小都相同的 4 只球,其中1 只白球,1 只红球, 2 只黄球,从中一次随机摸出【答案】 只球,则这 2 只球颜色不同的概率为 .【解析】1 只白球设为 a ,1 只红球设为 b , 2 只黄球设c 为 , d ,2 P = 56181则摸球的所有情况为(a,b),(a, c),(a, d ),(b,c),(b,d ),(c, d ),共6 件,满足题意的事件为(a,b),(a, c),(a, d ),(b,c),(b,d ),共5.题型二几何概型1.某公司的班车在7:00,8:00,8:30 发车,学.小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是().A.F(1) 13B. 12F(1)C.F(2) 23D. 34【答案】B【解析】如图所示,画出时间轴.7:30 7:40 7:50 8:00 8:10 8:20 8:30B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10 分钟.根据几何概型,所求概率P =10 +10 =1 .故选B.40 22.从区间[0,1]随机抽取2n 个数x1,x2 ,…,x n ,y1 ,y2 ,…,y n ,构成n 个数对(x1, y1),(x2 , y2),…,(xn ,yn),其中两数的平方和小于1 的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为().p 2 =p3p 1 =p3p 1 =p2AB4n 2n 4mA.mB. mC.2mnn D. 【答案】C【解析】由题意得:(x i△△△△y i)(i =1 2 ⋅⋅⋅n)在如图所示方格中,而平方和小于1 的π4 =m π =4m点均在如图所示的阴影中,由几何概型概率计算公式知1 n ,所以C.n .故选3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,A C ,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,,p3,则A.B.C.D.【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可.设直角三角形ABC 的三个角 A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为S1=1ab ,2p 2p 1 =p2+p3△ABC⎝ ⎭ ⎝ ⎭ ⎝ ⎭2区域Ⅱ的面积为 1 ⎛ 1 ⎫2 1 ⎛ 1 ⎫2 1 1 ⎛ 1 ⎫21S 2 = 2 π 2 c ⎪ + 2 π 2 b ⎪ + 2 ab - 2 π 2 a ⎪ = 2 ab ,2 区域Ⅲ的面积为 S = 1 π⎛ 1 c ⎫ + 1 π⎛ 1 b ⎫ - 1 ab = 1 πa 2 - 1 ab .3 2 2⎪ 2 2 ⎪ 28 2 ⎝ ⎭ ⎝ ⎭显然 p 1 = p 2 .故选 A .题型三 抽样与样本的数据特征1. 已知一组数据4 ,6 , 5 , 8 ,7 , 6 ,那么这组数据的平均数为 .【答案】10【解析】平均数x = 1 (4 + 6 + 5 + 8 + 7 + 6)= 6 . 62. 某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为.【答案】3;6000【解析】频率和等于 1 可得0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 1.5 ⨯ 0.1 + 2 ⨯ 0.1 + 2.5 ⨯ 0.1 + a ⨯ 0.1 = 1 , 解之得a = 3 .于是消费金额在区间[0.5, 0.9] 内频率为0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 2 ⨯ 0.1 + 3 ⨯ 0.1 = 0.6 , 所以消费金额在区间[0.5, 0.9] 内的购物者的人数为: 0.6 ⨯10000 = 6000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100 位居民每人的月均用水量(单位:吨),将数据按照[0, 0.5),[0.5,1),⋅⋅⋅,[4, 4.5)分成9 组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30 万居民,估计全市居民中月均用水量不低于3 吨的人数,请说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08⨯0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08 ,0.20 ,0.26 ,0.06 ,0.04 ,0.02 .由0.04+0.08+0.5⨯a + 0.20 + 0.26 + 0.5⨯a + 0.06 + 0.04 + 0.02 = 1 ,解得 a = 0.30 .(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30 万居民中月均用水量不低于 3 吨的人数为300000⨯ 0.12 = 36000 .(3)因为前 6 组的频率之和为0.04 - 0.08 - 0.15 - 0.20 - 0.26 - 0.15=0.88 > 0.85 ,而前5 组的频率之和为0.04+0.08+0.15 -0.20 -0.26=0.73 < 0.85 ,所以2.5 …x < 3.由0.3⨯(x - 2.5)= 0.85 - 0.73 ,解得x = 2.9 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5 户家庭,得到如下统计数据表:区一户收入为15 万元家庭年支出为()A.11.4 万元B.11.8 万元C.12.0 万元D.12.2 万元【答案】B所以回归直线方程为yˆ=0.76x+0.4.当社区一户收入为15 万元,家庭年支出为(万元).故选B.0.4 = 11.8yˆ=0.76⨯15+y ∑2. 为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出 与x 之间有线性相关关系,设其回归直线方程为 y ˆ= b ˆx + a ˆ.已知∑x i i =110= 225 , y i = 1600 , b ˆ= 4 .该i =1班某学生的脚长为 24,据此估计其身高为( ).A . 160B . 163C . 166D .170【答案】C 【解析】 故选 C .x = 22.5 , y = 160 ,所以a= 160 - 4⨯ 22.5 = 70 , x = 24 时, y = 4 ⨯ 24 + 70 = 166 .3. 某公司为确定下一年投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位: )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费x i和年销售量计量的值.y i (i = 1, 2,⋅⋅⋅,8)数据作了初步处理,得到下面的散点图及一些统万万万万/万万10 t(u 2,v 2 ) (u 1,v 1 ) y = c + d x x = 49表中,,(1) 根据散点图判断, y = a + bx 与y = c + d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?(2) 根据(1)的判断结果及表中数据,建立 y 关于x 的回归方程;(3) 已知这种产品的年利润z 与x , y 的关系式为 z = 0.2y - x,根据(2)的结果回答下列问题:(ⅰ)年宣传费 时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据 ,⋅ ⋅ ⋅ , (u n , v n ),其回归直线v =+ u 的斜率,和截距的最小二乘估计分别为【答案】见解析【解析】(1)由散点图变化情况可知选择 较为适宜.w i = x iˆ =i =1∑(u i - u )(v i - v ) n∑ i =1n(u - u )2i.x yw∑( )2x- x ii =1∑( )( - ) w - w y y i ii =1∑8( )2w- w ii =1 ∑( - )( -) 8x x y yiii =146.6563 6.8289.8 1.6 1469 108.81 8w = ∑w i8 i =1563 - 68⨯ 6.8 = 100.6 c = y - d = ∑(w - w1.6)∑8(w - w )(y - yii) 108.8(2)由题意知d =i =1= = 68 .又82i一定过点(, y ),i =1所以 ,所以 y 与x 的回归方程为 y = 100.6 + 68 x .(3)(ⅰ)由(2)知,当 x = 49 时,y = 100.6 + 68⨯ 49 = 576.6(t ),(千元),所以当年宣传费为 x = 49 时,年销售量为576.6(t ),利润预估为66.32 千元.(ⅱ)由(2)知, z = 0.2 y - x = 0.2 (100.6 + 68 x )- x =-(x - 6.8)2+ 6.82 + 20.12 ,所以当 x = 6.8 时,年利润的预估值最大,即 x = 6.82 = 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用,把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2 列联表计算的 K 2≈3.918,则下列表述中正确的是( )A. 有 95℅的把握认为“这种血清能起到预防感冒的作用”B. 若有人未使用该血清,那么他一年中有 95℅的可能性得感冒y = c + d x 66.32 z = 0.2 ⨯ 576.6 - 49 = 20.12 = 13.6 x - x +a a +bc c + dkg C. 这种血清预防感冒的有效率为 95℅D. 这种血清预防感冒的有效率为 5℅【答案】A【解析】由题可知,在假设成立情况下,P (K 2≥ 3.841) 的概率约为 0.05,即在 犯错的概率不错过 0.05 的前提下认为“血清起预防感冒的作用”,即有 95℅的把握认为“这种血清能起到预防感冒的作用”.这里的 95℅是我们判断 不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误.C ,D 也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x ,y 之间关系最强的是( )A .B .C .D .【答案】D【解析】在频率等高条形图中, 与 相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中 x 1, x 2 所占比例相差越大,则分类变量 x , y 关系越强,故选D .3. 淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位: )的频率分布直方图如图所示.H H万万万万万万万万万万/k g万万万万(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ,估计 A 的概率;(2)填写下面列联表,并根据列联表判断是否有99% 的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01 ).附:21. 【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得,, P (A )= P (B )P (C )= 0.4092 .(2)由计算可得 的观测值为 k 2 = 200 ⨯ (62 ⨯ 66 - 38 ⨯ 34)2100 ⨯100 ⨯ 96 ⨯104 = 15.705 ,因为15.705 > 6.635 ,所以P (K 2 ≥ 6.635)≈ 0.001 ,从而有99% 以上的把握认为箱产量与养殖方法有关.(3)1 ÷ 5 = 0.2 , 0.1 - (0.004 + 0.020 + 0.044)= 0.032 , 50 + 2.35 = 52.35 ,所以中位数为52.35 .0.032 ÷ 0.068 = 8 17 , 8 ⨯ 5 ≈ 2.35 , = 0.66 P (C )= 0.068 ⨯ 5 + 0.046 ⨯ 5 + 0.010 ⨯ 5 + 0.008 ⨯ 5K 2 = 0.62 P (B )= 0.040 ⨯ 5 + 0.034 ⨯ 5 + 0.024 ⨯ 5 + 0.014 ⨯ 5 + 0.012 ⨯ 5 17K 2= n (ad - bc )2 (a + b )(c + d )(a + c )(b + d )22“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

概率与统计测试题(文科)

概率与统计测试题(文科)

概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是 A .分层抽样 B .简单随机抽样 C .系统抽样 D .以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为 ( ). A .7 B .15 C .25 D .353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有A .360人B .240人C .144人D .120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 605.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512C .712D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙―心有灵犀‖。

概率统计(文科)非常漂亮的题目

概率统计(文科)非常漂亮的题目

概率统计〔文科〕 1.为了了解某班学生喜好体育运动是否与性别有关,对本班50人进展了问卷调查得到了如下的列联表:按喜好体育运动与否采用分层抽样方法抽取容量为的样本,那么抽到喜好体育运动的人数为6.(1)请将上面的列表补充完整;(2)能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;下面的临界值表供参考:〔参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++〕2.十八届五中全会公报指出:努力促进人口均衡开展,坚持计划生育的根本国策,完善人口开展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖安康、妇幼保健、托幼等公共效劳水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200(1)是否有99%以上的把握认为“生二胎与性别有关〞,并说明理由;(2)把以上频率当概率,假设从社会上随机抽取甲、乙、丙3位30到40岁的男公务员,求这三人中至少有一人要生二胎的概率. 附:22()()()()()n ad bc k a b c d a c b d -=++++ 解:〔1〕由于22()()()()()n ad bc k a b c d a c b d -=++++ =2200(80404040)5012080120809⨯⨯-⨯=⨯⨯⨯<6.635, ⋅4分 故没有99%以上的把握认为“生二胎与性别有关〞. ⋅6分〔2〕题意可得,一名男公务员要生二胎的概率为80120=23, 一名男公务员不生二胎的概率为40120=13, ⋅8分记事件A:这三人中至少有一人要生二胎那么11126()1()133327P A P A=-=-⨯⨯=⋅12分3.某企业对其生产的一批产品进展检测,得出每件产品中某种物质含量〔单位:克〕的频率分布直方图如下图.(I)估计产品中该物质含量的中位数与平均数〔同一组数据用该区间的中点值作代表〕;(Ⅱ)规定产品的级别如下表:假设生产1件A级品可获利润100元,生产1件B级品可获利润50元,生产1件C级品亏损50元.现管理人员从三个等级的产品中采用分层抽样的方式抽取10件产品,试用样本估计生产1件该产品的平均利润.4.随着“全面二孩〞政策推行,我市将迎来生育顶峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进展调查统计,期间发现各医院的新生儿中,不少都是“二孩〞;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩〞宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩〞宝宝.〔I〕从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做安康咨询.①在市第一医院出生的一孩宝宝中抽取多少个?②假设从7个宝宝中抽取两个宝宝进展体检,求这两个宝宝恰出生不同医院且均属“二孩〞的概率;〔II〕根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?甲 乙 7 89〔第18题图〕解析:〔Ⅰ〕(1)由分层抽样知在市第一医院出生的宝宝有4747=⨯个,其中一孩宝宝有2个. ………… 2分 (2) 在抽取7个宝宝中,市一院出生的一孩宝宝2人,分别记为11,B A ,二孩宝宝2人,分别记为11,b a ,妇幼保健院出生的一孩宝宝2人,分别记为22,B A ,二孩宝宝1人,记为2a ,从7人中抽取2人的一切可能结果所组成的根本领件空间为{}),(),,(),,(),,(),(),,(),,(),,(),,(),,(),,(),,(),,(),(),,(),,(),,(),,(),,(),,(,),(222222212121212121112121211111212121111111a B a A B A a b B b A b a a B a A a b a a B B B A B b B a B a A B A A A b A a A B A =Ω… 5分 用A 表示:“两个宝宝恰出生不同医院且均属二孩〞,那么)},(),,{(2121a b a a A =212)(=∴A P ………… 7分〔Ⅱ〕22⨯ 一孩 二孩 合计 第一医院 20 20 40 妇幼保健院20 10 30 合计4030 70………… 9分()072.2944.1367030403040202010207022<≈=⨯⨯⨯⨯-⨯⨯=K ,故没有85%的把握认为一孩、二孩宝宝的出生与医院有关. ………… 12分5.甲,乙两组数学兴趣小组的同学举行了赛前模拟考试,成绩记录如下〔单位:分〕: 甲:79,81,82,78,95,93,84,88 乙:95,80,92,83,75,85,90,80〔Ⅰ〕画出甲,乙两组同学成绩的茎叶图;〔Ⅱ〕计算甲,乙两组同学成绩的平均分和方差,并从统计学的角度分析,哪组同学在此次模拟考试中发挥比拟稳定;〔Ⅲ〕在甲,乙两组同学中,假设对成绩不低于90分的再随机 地抽3名同学进展培训,求抽出的3人中既有甲组同学又有乙组同学 的概率.〔参考公式:样本数据12,,,n x x x 的标准差:s =222121()()()n x x x x x x n⎡⎤-+-++-⎣⎦…x 为样本平均数〕 .解:〔Ⅰ〕甲,乙两组同学成绩的茎叶图如下: (2)分〔Ⅱ〕从平均分和方差的角度看,甲组同学在此次模拟考试中发挥比拟稳定,理由如下:1(79+81+82+78+95+93+84+88)=858x =甲,1(95+80+92+83+75+85+90+80)=858x =乙……………………………………4分22222221[(7985)(8185)(8285)(7885)(9585)(9385)8S =-+-+-+-+-+-甲22(8485)(8885)]35.5+-+-=22222221[(9585)(8085)(9285)(8385)(7585)(8585)8S =-+-+-+-+-+-乙22(9085)(8085)]41+-+-=…………………………………6分由于x x =乙甲,2S S <乙2甲, ………………………………………8分所以,甲组同学在此次模拟考试中发挥比拟稳定.〔Ⅲ〕假设甲组同学中成绩不低于90分的两人设为A ,B ,乙组同学中成绩不低于90分的三人设为a ,b ,c ,那么从他们中抽出3名同学有以下10种可能:ABa ,ABb ,ABc ,Aab ,Aac , Abc ,Bab ,Bac ,Bbc ,abc ; 其中,全是乙组的只有abc 一种情况,没有全是甲组的情况, …………………10分 所以,抽出的3人中既有甲组又有乙组同学的概率是:1911010P =-=. ………………………………………12分 6.2015年“双11”网购在狂欢节后,某教师对本班42名学生网上购物情况进展调查,经统计得到如下的2x ⨯列联表:〔单位:人〕〔1〕据此判断能否在犯错误的概率不超过0.05的前提下认为购置“电子产品〞或“服饰〞与性别有关?下面是临界子表供参考:〔2〕在统计结果中,按性别用分层抽样的方法抽取7位学生进展问卷调查. ①求抽取的男生和女生的人数;②再从这7位学生中选取2位进展面对面的交流,求这2位学生都是男生的概率.7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bx a
+.
=++
x y z
,则该产品为一等品。

现从一批该产品中,随机抽取10件产品作为样本,其质量指
质量指标(,,x y z )
()1,1,2
()2,1,1 ()2,2,2 ()1,1,1
()1,2,1
产品编号 6A
7A
8A 9A
10A
质量指标(,,x y z )
()1,2,2 ()2,1,1 ()2,2,1 ()1,1,1 ()2,1,2
(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品, (i )用产品编号列出所有可能的结果;(ii )设事件B 为“在取出的2件产品吕,每件产品的综合指标S 都等于4”,求事件B 发生的概率。

4.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间。

将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,…,第五组[]17,18,右图是按上述分组方法得到的频率分布直方图。

(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率。

5.为丰富课余生活,某班开展了一次有奖知识竞赛,在竞赛后把成绩(满分为100分,分数均为整数)进行统计,制成如右图的频率分布表: (Ⅰ)求,,,a b c d 的值;
(Ⅱ)若得分在[]100,90之间的有机会得一等
奖,已知其中男女比例为2∶3,如果一等奖只有两名,写出所有可能的结果,并求获得一等奖的全部为女生的概率.
6.现从某100件中药材中随机抽取10件,以这10件中药材的重量(单位:克)作为样本,样本数据的茎叶图如下:
(1)求样本数据的中位数、平均数,试估计这100件中药材的总重量;
(2)记重量在15克以上的中药材为优等品,在该样本的优等品中,随机抽取2件,求
这2件中药材的重量之差不超过2克的概率。

7.某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。

某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人
(Ⅰ)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(Ⅱ)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率。

8.为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表:
月工资(单位:百元)[)
15,25[)
25,35[)
35,45[)
45,55[)
55,65[)
65,75
男员工数 1 8 10 6 4 4 女员工数 4 2 5 4 1 1 (I)完成下面的月工资频率分布直方图(注意填写纵坐标);
(II )试由上图估计该单位月平均工资(用区间中点值代表该区间的值);
(III )若从月工资在[)25,35和[)45,55两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率。

9.袋中装有4个大小相同的小球,球上分别编有数字l ,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能 被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,两球的编号 组成有序实数对(a ,b ),求点(a ,b )落在圆162
2
=+y x 内的概率.
10.某学校进行体检,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50人身材介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),

第八组[190,195],并按此分组绘制如下图所示的频
率分布直方图,其中,第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第七组的人数为3人。

(1)求第六组的频率;
(2)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中第六组至第八组学生身高的平均数。

相关文档
最新文档