计量经济学第五讲20130416
计量经济学课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案教学课件汇总完整版电子教案
假设样本回归直线已做出,设它为
yˆi ˆ ˆ xi
(2.2.3)
其中ˆ 是α的估计量, ˆ 是β的估计量,这样
就可以用样本回归直线(2.2.3)估计总体回归直线
(2.2.2)。
设给定的样本观测值(xi,yi),i =1,2,…,n, 在直角坐标系里,做出它们的对应点(xi,yi), i =1,2,…,n,构成散点图,如图2.2.1
COV(ui,xj) = 0 (i,j =1,2,3,…,n )
显然,如果x是非随机变量,则假定5将自动满足。 以上假定通常也叫高斯—马尔可夫 (Gauss Markov) 假定,也称古典假定。满足以上古典假定的线性回 归模型,也称为古典线性模型或经典线性模型。
根据假定2,对(2.1.1)式两边同时取期望值,则有
E(ui)= 0 (i =1,2,3,…,n)
假定3 每个ui( i = 1,2,3,…,n )的方差均为同一个
常数,即V(ui)
=
E( ui2)=
2 u
=常数
称之同方差假定或等方差性。
假定4 与自变量不同观察值xi相对应的随机项ui彼 此独立,即COV(ui,uj) = 0 (i≠j) 这个假定称为非自相关假定。 假定5 随机项ui与自变量的任一观察值xj不相关,即
2003年诺贝尔经济学奖再次垂青计量经济学家美 国的罗伯特F.恩格尔(Robert F.Engle)和英国的克 莱夫W.J. 格兰杰(Clive W.J.Granger)是因为他们 在时间序列数据研究方法方面的重要贡献,这再 一次向世人证明计量经济学是经济学中最重要的 学科之一。 另一方面,绝大多数诺贝尔经济学奖获得者即使 其主要贡献不在计量经济学领域,也都普遍应用 了计量经济学方法。
计量经济学全部课件
通过本课程的教学,要求学生掌握计量经 济学的基本理论和主要模型设定方法,熟悉计 量经济分析工作的基本内容和工作程序,能用 计量经济学软件包进行实际操作。本课程教学 采用课堂讲授与计算机实验相结合,适当运用 计算机多媒体课件和投影仪。教学目的不是要 求学生成为计量经济方法研究的专家,而是使 学生掌握计量经济学技术,并在经济分析、经 济管理和决策中正确使用这些技术,成为适应 现代化经济管理要求的人才。
35
库兹涅茨假设
但是,库兹涅茨对凯恩斯这种边际消费 倾向下降的观点持否定态度。他研究的 结论,消费与国民收入之间存在稳定的 上升比例。因此,上式只是根据凯恩斯 消费理论设定的消费模型。
16
二、计量经济学与经济统计 学、数理统计学
经济统计学主要涉及收集、加工、整理和计算 经济数据,并以列表或图示的形式提供经济数 据,而计量经济学则是研究经济关系本身。计 量经济研究中要使用经济统计学提供的经济数 据。数理统计学论述度量的方法,它是在实验 室控制试验的基础上发展起来的,不适用经济 关系,经过修正,使统计方法适用于经济生活 问题后,计量经济学就应用这些方法,称为计 量经济方法。
Y = b0 + b1 X
这里Y是消费支出,X是收入,b0和b1是常数或 参数,斜率系数b1表示MPC。 方程说明消费对收入的线性相关,这是数学模 型的一个例子。简单说,模型是一组数学方 程。假使模型只有一个方程,就称为单方程模 型;如果不止一个方程,就称为多方程模型或 联立方程模型。
29
可是消费函数的数学模型如上式所给出的,对 计量经济学家来说并无多大兴趣,因为它假设 消费与收入之间存在着严格的或确定的关系。 但是一船经济变量间的关系是不确定的。因 此,如果我们取得比如5000个中国家庭的消费 支出与可支配的收入(扣除税收后)的样本资 料,并把这些资料描绘在图纸上,以垂直轴作 为消费支出,水平轴作为可支配的收入,我们 决不会期望所有5000个观察值都恰好落在方程 的直线上。这是因为除收入外,还有其它变量 也影响消费支出。例如,家庭大小、家庭成员 年龄、家庭宗教信仰等等有可能对消费施加某 些影响。
计量经济学课件(全)
计量经济学第一章绪论目前,在经济学、管理学以及一些相关学科的研究中,定量分析用得越来越多。
所谓定量分析,即揭示经济活动中客观存在的数量关系。
定量分析方法统计分析方法:一元多元经济计量分析方法:以模型为基础时间序列分析方法:动态时间序列§1.1 计量经济学及其模型概述一、计量经济学计量经济学的诞生计量经济学“Econometrics”一词最早是由挪威经济学家弗里希(R.Frish)于1926年仿照“Biometrics”(生物计量学)提出来的,这标志着计量经济学的诞生。
弗里希将计量经济学定义为经济学、统计学和数学三者的结合。
计量经济学的定义计量经济学是以经济理论为指导,以经济事实为依据,以数学、统计学为方法,以计算机为手段;主要从事经济活动的数量规律研究,并以建立、检验和运用计量经济学模型为核心的一门经济学学科。
二、计量经济学模型模型,是对现实的描述和模拟。
模型分类语义模型:语言文字。
物理模型:简化的实物。
几何模型:几何图形。
数学模型:数学公式。
计算机模拟模型:计算机模拟技术。
计量经济学模型属于经济数学模型,即用数学公式来描述经济活动。
例:生产函数经济数学模型是建立在经济理论的基础之上的。
生产理论:“在供给不足的条件下,产出由资本、劳动、技术等投入要素决定,随着各投入要素的增加,产出也随之增加,但要素的边际产出递减。
” 建立初始模型初始模型的特点模型描述了经济变量之间的理论关系;通过模型可以分析经济活动中各因素之间的相互影响,从而为控制经济活动提供理论指导;认为这种关系是准确实现的;模型并没有揭示各因素之间的定量关系,因为参数未知。
模型的改进以1964-1984年我国工业生产活动的数据作为样本,估计得到:改进模型的特点1.用随机性的数学方程描述现实的经济活动与经济关系。
2.揭示了经济活动中各因素之间的定量关系。
3.可用于对研究对象进行深入的研究,如结构分析、生产预测等。
初始模型——数理经济学模型数理经济学模型:由确定性的数学方程所构 成,用以揭示经济活动中各因素间的理论关系。
最全计量经济学课件(所有章节打包)
GNP 10201.4 11954.5 14922.3 16917.8 18598.4 21662.5 26651.9 34560.5 46670 57494.9 66850.5 73142.7 76967.2
80579.36 88189.6
截面数据(cross-section data)
• 在某一时刻所观察到的一组个体的数据。 • 这类数据反应个体在分布或者结构上的差
1998 2011.31 1336.38 4256.01 1486.08 1192.29 3881.73 1557.78 2798.89 3688.20
1999 2174.46 1450.06 4569.19 1506.78 1268.20 4171.69 1660.91 2897.41 4034.96
• 费瑞希:“对经济的数量研究有好几个 方面,其中任何一个就其本身来说都不 应该和经济计量学混为一谈。因此,经 济计量学与经济统计学绝不是一样的。 它也不等于我们所说的一般经济理论, 即使这种理论中有很大部分具有确定的 数量特征,也不应该把经济计量学的意 义与在经济学中应用数学看成是一样的。
一、什么是计量经济学
计量经济学构成要素
经济理论 模型
计量经济模型
数据 精炼的数据
数理统计理论 计量经济理论
采用计量经济技术并使用精练数据估计计量经济模型 应用
结构分析
经济预测
政策评价
计算机
三大要素
• 经济理论 • 数据 • 统计推断 • 经济理论、数据和统计理论这三者对于真
正了解现代经济生活中的数量关系都是必 要的,但本身并非是充分条件。三者结合 起来就是力量,这种结合便构成了计量经 济学。
• 经济数据是计量经济分析的材料。 • 经济数据是经济规律的信息载体。
计量经济学讲义第五讲(共十讲)
第五讲 自相关高斯-马尔科夫假定五是:(,)0,i j i j C ovariance i j εεεεδ==≠如果该假定不成立,那么称模型的误差项是序列相关的。
由于序列相关主要针对于时间序列数据,因此,下面把i 改写为t ,样本容量N 改写为T 。
笔记:1、如果基于横截面数据的回归模型其误差项是相关的,则称为空间自相关。
但是要记住,除非观察顺序具有某种逻辑或者经济上的意义,否则,在横截面数据回归中,观察顺序是可以随意的,因此,也许在某种观测顺序下误差项呈现出一种模式的自相关但在另一种观测顺序下又呈现出另外一种模式的自相关。
然而,当我们处理时间序列时,观测服从时间上的一种自然顺序。
2、在经济变量时间序列回归模型中,误差项经常被称之为冲击(Shock )。
对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。
一、 自相关的后果在证明高斯-马尔科夫定理时,我们仅仅在证明OLS 估计量的方差最小(在所有线性无偏估计量中)时用到了序列无关假定,而在证明线性、无偏性并没有用到该假定,因此违背无自相关性假定并不影响线性、无偏性,只影响方差最小性质。
在证明方差最小时,我们分了两步,其中第一步是计算OLS 估计量的方差。
对模型:t 01t t y x ββε=++有:12ˆ12222()()()()(())()()[()]t t t t t t t t tx x Variance x x x x Variance x x Variance x x x x βεδβεε-=+---==--∑∑∑∑∑∑在假定五:0,0t t j j εεδ+=≠下,有:122ˆ222()[()]ttt x x x x βεδδ-=-∑∑如果假定五不成立,那么正确的方差表达式应该是:12ˆ1221122()2()()[()]t t t jT T tt t t j t j t x x x x x x x x βεεεδδδ+--+==-+--=-∑∑∑∑所以, OLS 法下通常的系数估计量方差的表示是错误的。
《计量经济学》课件
本课程重点是实践案例、计量模型和数据分 析技巧。
学习资源
课程教材
本课程所用教材为《计量经济 学》(第二版,高等教育出版 社)。
参考资料
课程还提供丰富的参考及 自主学习提高学习效果。
评估方式
1
作业
每周有一个统计分析作业,和一个回
考试
我们欢迎学生分享反馈、与教 师和同学一起讨论和学习。祝 大家学习愉快!
数据分析技巧
课程将介绍数据预处理和 清洗、模型诊断和结果解 释等实用数据分析技巧。
结语
毕业资格
获得60分及以上,完成所有作 业及考试,满足毕业要求即可 获得毕业资格。
继续学习
本课程旨在为学生提供实用的 计量经济学研究工具及数据分 析技能。学生可以进一步学习 相关课程、投身学术及研究岗 位。
分享反馈
2
归分析作业。
期末考试涵盖课程所有内容和应用。
3
课堂表现
学生可以通过课堂发言和问题解答, 积极参与课堂互动,提高交流能力和 思维水平。
课程重点
实践案例
本课程以丰富实践案例为 特色,学生可以在实践环 节中更好地理解课程内容, 提高数据分析和建模能力。
计量模型
本课程将介绍常见的计量 经济学模型,包括线性回 归模型、非线性回归模型、 面板数据模型和时间序列 模型等。
《计量经济学》课件
欢迎来到《计量经济学》课程!本课程将帮助学生了解各种经济现象和模型, 并通过实践案例提高数据分析能力。
课程介绍
课程目标
学习计量经济学基本理论及模型应用,提高 经济数据分析能力。
课程内容
本课程将介绍计量经济学中的基本概念、统 计分析、回归分析、面板数据和时间序列分 析。
适用对象
计量经济学课件第5章
回归分析是通过样本所估计的参数来代替总体的 真实参数,或者说是用样本回归线代替总体回归线。
尽管从统计性质上已知,如果有足够多的重复抽 样,参数的估计值的期望(均值)就等于其总体的 参数真值,但在一次抽样中,估计值不一定就等于 该真值。
那么,在一次抽样中,参数的估计值与真值的差 异有多大,是否显著,这就需要进一步进行统计检 验。
单侧检验与双侧检验:P67。
5
只有将非预期结果作为原假设,才能控制拒绝原 假设事实上为真但偶然被拒绝的概率,即控制拒绝 原假设犯错误的概率。但反之不真,即在原假设为 假时,无法确切地知道将其错误地接受为真的概率。
即拒绝原假设,我们知道犯错误的概率,但接受 原假设,不知道犯错误的概率,所以最好说不拒绝 而不是接受。
由样本推断总体,可能会犯错误, 第一类错误:原假设H0符合实际情况,检验结果 将它否定了,称为弃真错误。 第二类错误:原假设H0不符合实际情况,检验结果 无法否定它。称为取伪错误。 例:P68,图5-1,图5-2。
8
5.1.3 假设检验的判定规则
判定规则:在检验一个假设时,首先计算样本统计量, 将样本统计值与预先选定的临界值比较,根据比较 结果决定是否拒绝原假设.即临界值将估计值的取 值范围分为两个区域,接受域和拒绝域,来决定是否 拒绝还是接受.
产生不正确推断时所面对的两类错误。
4
5.1.1 古典原假设和备选假设
原假设或者零假设(null hypothesis),待检验的 假设,用符号H0表示, 代表研究者的非预期取值. 例如,你预期参数是正值,则建立虚拟假设为:
H0: <=0 备选假设,对研究者预期取值的表述,用符号HA表示,
接上例,备选假设为: HA : >0
计量经济学第5章PPT学习教案
量保持不变的情况下,Xj每变化1个单位时,Y 的均值E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直
接”或“净”(不含其他变量)影响。
第1页/共49页
2
总体回归模型n个随机方程的矩阵表达式为 Y Xβ μ
其中
1 X 11
X
1
X 12
1 X 1n
所以,
ˆ ~ N(, 2(X X )1)
第24页/共49页
以cii表示矩阵(X’X)-1 主对角线上的第i个元素,于是参数估 计量的 方差为 : 其中,2为随机误差项的总体 方差, 由于总 体未知 ,故方 差也不 可知。 因此, 在实际 计算时 ,用它 的估计 量代替:
ˆi ~ N (i , 2cii )
2Q
ˆˆ
2X X是一个正定矩阵
ˆ (X X ) XY 1
是使方程最小化的解。
第13页/共49页
14
知识点:正定矩阵
对于任意的非零向量c,令
a cX Xc
则
a cXXc vv
vi2
除非v中的每一个元素为0, 否则a为正的。但是,若v为0, 则
v Xc 0
这与X中的向量线性无关的假设是矛盾的,故X满秩,则必
n
第7页/共49页
8
回忆:由线性代数可知
如果一个矩阵没有逆矩阵,则被称 为奇异矩阵,如果有则为非奇异矩 阵(non-singular)
对于n阶方阵A,A是非奇异矩阵的 证明: 充要条件是A的行列式不等于0
当r且an仅k(当X X矩)阵 满ran秩k时(X,) 其k行1列式不 X X为(k等+1于)(零k+1)阶方阵,所以,X X为非奇异矩阵,可逆.
经济学计量经济学第五章PPT课件
• 当a>0、0<b<1时,y 随着t 的增加而趋向于0
• 描述以几何极数递增或递减的现象
• 序列的观察值按指数规律变化
• 序列的逐期观察值按一定的增长率增长或衰减
• 参数估计方法 • 采用对数变换法将模型化为线性进行估计
29
第29页/共45页
修正指数型增长曲线模型
• 一般形式
y L ab •
•
~yi ˆ0 yi f xi , ˆ0 zi ˆ0 ˆ0
• 易平~y求方i 出和ˆ其式0参最数小zi 的ˆ0普 通ˆ最小二i 乘估计值
•
ˆ
,该估计值使得残差
2
ˆ1
n
S ˆ1
~yi ˆ0 zi ˆ0 ˆ1 2
i 1
17
第17页/共45页
Gauss-Newton迭代法(续2)
• 类别 • 多项式增长曲线模型 • 简单指数型增长曲线模型 • 修正指数型增长曲线模型 • Logistic增长曲线模型 • Gompertz增长曲线模型
27
第27页/共45页
多项式增长曲线模型
• 一般数学形式
•
y• t
yt:a第0t
期
的a1某t
个经a济2t指2
标
;t :时a间k t
k
• a0,a1,…,ak:模型参数
• 至此完成非线性模型的OLS估计
18
第18页/共45页
Gauss-Newton迭代法(续3)
• 步骤
• 给出参数估计值 近似值
的初值 ,将
ˆ
在 处展开泰勒级数,取一阶
ˆ0
f xi , ˆ
ˆ0
• 计算
和
的样本观z测i 值ˆ0
《计量经济学》课件资料整理
第一章一、计量经济学定义。
计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
它是经济理论、统计学和数学三者的结合。
二、建立与应用计量经济学模型的主要步骤。
(一)理论模型的设计1.确定模型所包含的变量2.确定模型的数学形式3.拟定理论模型中待估参数的理论期望值(二)、样本数据的收集(三)、模型参数的估计(四)、模型的检验(五)、模型的应用三、理论模型的设计所包含的三部分工作。
(一)、确定模型所包含的变量在单方程模型中,变量分为两类。
作为研究对象的变量,也就是因果关系中的“果”,是模型中的被解释变量;而作为“原因”的变量,是模型中的解释变量。
确定模型所包含的变量,主要是指确定解释变量。
可以作为解释变量的有下列几类变量:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。
如何正确地选择解释变量?1、需要正确理解和把握所研究的经济现象中暗含的经济学理论和经济行为规律。
2、选择变量要考虑数据的可得性。
3、选择变量时要考虑所有入选变量之间的关系,使得每一个解释变量都是独立的。
(二)、确定模型的数学形式选择模型数学形式的主要依据是经济行为理论。
在数理经济学中,已经对常用的生产函数、需求函数、消费函数、投资函数等模型的数学形式进行了广泛的研究,可以借鉴这些研究成果。
也可以根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,由散点图显示的变量之间的函数关系作为理论模型的数学形式。
如果无法事先确定模型的数学形式,那么就采用各种可能的形式进行试模拟,然后选择模拟结果较好的一种。
(三)、拟定理论模型中待估参数的理论期望值理论模型中的待估参数一般都具有特定的经济含义,对于它们的数值范围,即理论期望值,可以根据它们的经济含义在开始时拟定。
这一理论期望值可以用来检验模型的估计结果。
拟定理论模型中待估参数的理论期望值,关键在于理解待估参数的经济含义。
例如在生产函数理论模型中有4个待估参数α、β、γ和A。
《计量经济学》ppt课件(2024)
02
最小二乘估计量的 性质
包括线性、无偏性、有效性等, 这些性质保证了估计量的优良特 性。
03
最小二乘法的计算
通过求解正规方程组或使用专门 的软件,可以得到参数的估计值 。
2024/1/29
9
经典线性回归模型假设条件及检验
1 2
经典线性回归模型的假设条件
包括线性关系、误差项独立同分布、无多重共线 性等,这些假设是模型有效的基础。
发展历程
从20世纪初的萌芽阶段,到20世 纪中叶的快速发展,再到21世纪 的广泛应用和不断创新。
4
计量经济学研Βιβλιοθήκη 对象与任务研究对象主要研究经济现象的数量关系,包括 经济变量之间的关系、经济系统的运 行规律等。
任务
揭示经济现象背后的数量规律,为经 济政策制定和评估提供科学依据,推 动经济学的理论创新和实践应用。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
2024/1/29
20
半参数估计方法原理及应用
原理
半参数估计方法结合了参数和非参数估 计方法的优点,既对总体分布做出一定 的假设,又利用样本数据进行推断。其 核心思想是通过引入一些辅助信息或约 束条件,降低模型的复杂度,提高估计 的精度和稳定性。
25
面板数据模型参数估计与检验
2024/1/29
参数估计方法
最小二乘法(OLS)、广义最小二乘法(GLS) 、极大似然估计(MLE)等。
参数检验
t检验、F检验、LM检验等,用于检验参数的显著 性。
计量经济学课件全完整版
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
计量经济学课件
计量经济学课件1. 引言计量经济学是经济学领域中一个重要的分支,通过运用数学和统计方法来研究和分析经济现象。
本课件将介绍计量经济学的基本概念、方法和应用,并提供实际案例进行演示和说明。
2. 计量经济学的基本概念2.1 变量与观测计量经济学的核心是对经济变量进行测量和观测。
在本节中我们将介绍不同类型的变量和观测方法,以及它们在计量经济学中的应用。
2.1.1 数值变量与分类变量•数值变量是可以用数值或数字来表示的变量,如收入、价格等。
•分类变量是具有特定类别或标签的变量,如性别、地区等。
2.1.2 原始观测与数据集•原始观测是指直接从调查或实验中得到的原始数据。
•数据集是包含多个观测的集合,可以是以表格形式展示的数据。
2.2 概率分布与统计量概率分布和统计量是计量经济学中常用的工具,用来描述和分析变量的分布和特征。
2.2.1 概率分布•概率分布是描述随机变量的取值和概率的函数。
常见的概率分布包括正态分布、均匀分布等。
2.2.2 统计量•统计量是根据样本数据计算得出的数值,用来对总体特征进行估计。
常见的统计量包括均值、方差、标准差等。
3. 计量经济学的方法和模型计量经济学研究中常用的方法和模型对于我们了解和解释经济现象至关重要。
在本节中,我们将介绍一些常见的计量经济学方法和模型。
3.1 线性回归模型线性回归模型是一种常用的计量经济学模型,用于探讨变量之间的关系。
该模型假设自变量和因变量之间存在线性关系。
3.1.1 单变量线性回归•单变量线性回归是指只有一个自变量和一个因变量的线性回归模型。
例如,收入和消费之间的关系。
3.1.2 多变量线性回归•多变量线性回归是指有多个自变量和一个因变量的线性回归模型。
例如,收入、教育水平和消费之间的关系。
3.2 时间序列分析时间序列分析是计量经济学中用于研究时间相关数据的方法。
它包括对趋势、季节性和周期性等进行建模和分析。
3.3 面板数据分析面板数据分析是指对同时具有时间序列和跨个体观测的数据进行分析。
计量经济学全册课件(完整)pptx
预测与置信区间
阐述如何利用一元线性回归模型进行 预测,并给出预测值的置信区间,以 评估预测的不确定性。
2024/1/28
8
多元线性回归模型
模型设定与参数估计
介绍多元线性回归模型的基本形 式,解释多个自变量对因变量的 影响,以及最小二乘法在多元线 性回归中的应用。
模型的统计性质
探讨多元线性回归模型的统计性 质,包括回归系数的解释、拟合 优度的度量、多重共线性的诊断 与处理等。
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义 ,阐述最小二乘法(OLS)进行参数 估计的原理。
模型的统计性质
探讨一元线性回归模型的统计性质, 包括回归系数的解释、拟合优度的度 量(如R方)、回归系数的显著性检 验等。
贝叶斯计量经济学的定义
贝叶斯计量经济学是应用贝叶斯统计推断方法,对经济模 型进行参数估计、假设检验和预测的一门学科。
贝叶斯计量经济学的研究对象
贝叶斯计量经济学主要关注经济模型的参数估计和不确定 性问题,如线性回归模型、时间序列模型、面板数据模型 等。
贝叶斯计量经济学的研究方法
贝叶斯计量经济学的研究方法主要包括先验分布的设定、 后验分布的推导、马尔科夫链蒙特卡罗模拟(MCMC)等 。
介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
计量经济学模型估计
介绍如何在EViews中建立计量经济学 模型,进行参数估计、模型检验和预 测等操作。
24
Stata软件介绍及操作指南
Stata软件概述
Stata是一款流行的计量经济学软件,具有强大 的数据处理和统计分析功能。
完整的计量经济学 计量经济学第五章 线性回归的PPT课件
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
计量经济学课件完整版
计量经济学课件完整版计量经济学课件完整版一、课程简介计量经济学是经济学领域的一门重要学科,它利用数学、统计学和经济学等学科的知识和方法,对经济现象进行量化和分析。
本课程将系统地介绍计量经济学的基本概念、方法和应用,旨在帮助学生掌握计量经济学的理论和实践技能,为进一步学习和研究经济学打下坚实的基础。
二、课程内容本课程共分为八个单元,包括:1、回归分析基础2、模型选择与优化3、时间序列分析4、面板数据分析5、多元回归分析6、离散选择模型7、因子分析8、协整分析每个单元都包括理论讲解、案例分析、软件操作和习题等内容,让学生全面了解和掌握计量经济学的方法和技术。
三、课程安排本课程共36学时,安排如下:1、理论讲解(20学时)2、软件操作与实践(10学时)3、习题课与答疑(6学时)四、教学目的通过本课程的学习,学生将能够:1、掌握计量经济学的基本概念和方法;2、熟练运用常用的计量经济学软件进行数据分析;3、了解计量经济学在经济学领域的应用;4、提高解决实际问题的能力,为未来的学习和工作打下基础。
五、教学方法本课程采用多种教学方法,包括:1、课堂讲解:教师通过讲解和演示,帮助学生掌握计量经济学的基本理论和方法;2、案例分析:通过分析实际案例,让学生了解计量经济学在实践中的应用;3、小组讨论:学生分组进行讨论和交流,加深对课程内容的理解;4、实践操作:通过上机实践,让学生掌握计量经济学软件的操作技巧。
六、考核方式本课程的考核方式包括:1、平时作业:完成课程对应的练习题和思考题,占总成绩的30%;2、期中考试:进行期中考试,考核学生对课程内容的掌握情况,占总成绩的30%;3、期末考试:进行期末考试,全面考核学生对课程内容的理解和应用能力,占总成绩的40%。
七、参考资料本课程推荐以下参考书籍:1、《计量经济学基础》(作者:高铁梅);2、《计量经济学》(作者:斯托克);3、《应用计量经济学》(作者:詹姆斯·H·斯托克等)。
《计量经济学》课件
序计 量 经 济 研 究 的 工 作 程
(三)参数估计
矩法 常用的参数估计方法极大似然法
最小二乘法
• 矩法——以样本矩代替总体矩建立方程, 求解参数的方法。
• 极大似然法——根据极大似然原理建立方 程,求解参数的方法。
• 最小二乘法——根据最小二乘原理建立方 程,求解参数的方法。
(四)模型的检验
前定变量外 滞生 后变 变量 量
滞后内生变量 滞后外生变量
前期的内生变量 前期的外生变量
• (4)控制变量
• 控制变量——人为设置的反映政策要求、决策 者意愿、经济系统的运行条件和运行状态等方 面的变量。
模型设计工作
经济变量的确定 模型方程的设定
• 计量经济模型——为了研究分析经济系统中的经 济变量之间的数量关系而采用的随机性 的数学方程。 y f (x1, x2 ,, xn ) u
• 结构分析包括:(1)利用模型分析和测度系统 中某一变量的(绝对和相对)变化对其他变量 的影响;(2)比较分析变量及参数变化对经济 系统平衡的影响;(3)分析与研究变量相互关 系的变化对经济系统平衡点位移的内在联系。
• 政策评价——利用计量经济模型和计算机技术, 模拟在不同政策(或决策)条件下,经济系统 运行的态势和结果,对政策(或决策)进行评 价和优选。
济 学 概
• 数理经济学为计量经济学提供经济模型; • 经济统计学为计量经济学提供经济数据;
述 • 数理统计学为计量经济学提供分析工具和
研究方法;
计量经济学与相关学科的关系图
经济学
数理经 济学
计量经 济学
经济统 计学
数学
数理统 计学
统计学
(四) 计量经济学的分类
计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 序列相关一、 为什么要关注序列相关问题?对于模型01i i i y x ββε=++,序列无关假定即:(,)0,i j Cov i j εε=≠。
对于时间序列数据,这个假定经常被违背,即出现序列相关问题。
时间序列数据是通过对同一个单元的连续观测而获得的,所有观测具有固定的时间先后顺序。
与之相比,横截面数据是通过对不同单元的观测而获得的,在横截面数据中,所有观测在本质上都处于一个平行位置,而其实际顺序具有随意性。
由于时间序列数据来自于同一个单元,而同一个单元的某些内在特性在一定时期不会出现较大的变化,因此时间序列数据经常表现出明显的序列相关性。
从直觉上看,这种序列相关一般应该是正的序列相关。
由于序列相关主要针对时间序列数据,因此在讨论这个问题时我们把模型中的脚标i 改写为t ,把样本容量N 改写为T : 01t t t y x ββε=++误差项ε容纳了除x 之外的其他对y 有影响的变量。
当这些变量序列相关时,误差项就很可能出现序列相关。
理解误差项序列相关的另一个视角是,在时间序列模型中,误差项经常被称之为冲击(Shock)。
对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。
笔记:在日常生活中,我们经常说“好运连连”、“屋漏偏逢连夜雨”等口头禅。
如果把“好运”理解成正向冲击,“连夜雨”理解成负向冲击,则这些口头禅就意味着冲击一般具有正相关性。
序列相关问题会产生什么样的后果呢?(一)理论意义上的后果在证明高斯-马尔科夫定理时,我们仅仅在证明OLS估计量具有有效性时涉及到了序列无关假定,而在证明线性、无偏性并没有用到该假定,因此序列相关并不影响OLS估计量所具有的线性与无偏性这两个性质(实际上也不影响OLS估计量的一致性,一致性只涉及到高斯-马尔科夫假定一、二、三),而只影响OLS估计量的有效性。
具体来说,当序列相关问题存在时,在所有线性无偏估计量中,OLS估计量再也不是最有效的估计量了。
如果在模型估计时利用序列相关信息而不是像OLS估计那样对序列相关问题视而不见,则模型估计的有效性将提高。
本章后面我们将介绍如何利用序列相关信息进行模型估计。
(二)实践意义上的后果计量软件包在默认状态下总是认为同方差假定成立,进而依据一些常规公式来计算参数估计的标准误。
例如,在默认状态下1ˆβ标准误的计算公式是,1ˆ)(se β=其中22ˆˆ2i N δε=-∑是对误差方差的估计。
然而我们知道, 12ˆ(())i i i i Var Var k y k βδε==∑∑ 如果序列无关假定不成立,则12ˆ2(,)()i i j i j i ji k k Cov Var k βεεδε≠+=∑∑ 即使同方差假定成立,然而由于0(,)i j i j i jk k Cov εε≠≠∑,因此们根本无法推导出12ˆ22()i x x βδδ=-∑这个通常的公式。
计1ˆβδ的目的显然是不可行的。
因此,序列相关问题在实践意义上的后果就是,计量软件包在默认状态下计算出的参数估计量的标准误是无意义的,进而基于这种标准误所进行的假设检验也是无意义的。
笔记:由于正序列相关更常见,故(,)i j i j i jk k Cov εε≠∑一般是大于0的,因此省略此项得到的1ˆβ的标准差一般会小于其真实的标准差。
相应的,计量软件包在默认状态下计算出的参数估计量的标准误很可能低估了真实的标准差,夸大了估计精度。
幸运的是,与异方差问题一样,当出现序列相关问题时,在大样本情况下,我们能够计算一个稳健标准误。
这个标准误既对序列相关问题稳健,也对异方差问题稳健,被称为HAC(heteroskedasticity and autocorrelation consistent)标准误或者Newey-West 标准误。
在大样本下,我们可以基于HAC 标准误进行统计推断。
关于HAC 标准误的简单介绍参见Stock & Watson(Second edition,p.606-607)。
二、 发现自相关与异方差检验一样、我们是通过对残差的分析来检验序列无关假定是否被违背。
(一)图示法如果残差随着观测顺序的变化并不频繁地改变符号,见图一,则这是误差项序列正自相关的证据;如果残差随着观测顺序的变化频繁地改变符号,则这是误差项序列负自相关的证据,见图二。
笔记: 1、与上述图形检验思路一样但更正规的一种检验方式是游程检验(runs test )。
首先记录残差的符号,例如:(++++++++++)(--)(+++++++)(-)(++++++)。
所谓游程是指具有同一符号的一个不间断历程。
在此例中,具有5个游程。
直观来看,如果游程太多,这意味着残差频繁地改变符号,而这是负自相关的证据;反之,如果游程太少,则是正自相关的证据。
给定观测值的个数,利用Swed & Eisenhart 所给出的一定显著水平下关于游程数的两个临界值,我们可以检验误差是独立的这个原假设。
详情可参见相关教科书。
2、在图一中,残差大约在三个位置改变了符号,你也许会问,这不是违背了正序列相关的判断吗?记住!我们发现的正序列相关是统计规律,而统计规律是大部分观测所具有的规律。
图一:正序列相关ˆt εˆt ε图二:负序列相关(二)Durbin-Watson (DW )检验DW 检验用来检验误差项是否存在一阶自相关。
该检验法利用OLS 残差ˆt ε构造检验统计量: 21221ˆˆ()ˆT t t t T t t DW εεε-==-=∑∑很容易证明ˆ2(1)DW ρ≈-,其中ˆρ是残差样本一阶自相关系数(该证明留作讨论相关图检验时的一个练习)。
基于这个结论,显然,如果误差项没有一阶自相关关系,那么ˆρ应该接近于0,而DW 应该接近于2;如果误差项具有强烈的一阶正自相关关系,即ˆρ接近于1,而DW 应该接近于0;如果误差项具有强烈的一阶负自相关关系,即ˆρ接近于-1,而DW 应该接近于4。
上述这些论述为我们利用DW 统计量来检验序列相关提供了指南。
为了更好地利用DW 统计量,我们当然希望知道它的分布。
不过不幸的是,在误差项一阶自相关系数为零的原假设下,DW 的精确分布取决于解释变量的取值。
换句话说,当我们利用相同的模型但不同的样本时(这里样本不同不是指样本容量不同,而是指变量取值不同),我们所面对的DW 统计量分布是不同的,从而这损害了DW 统计量的实际应用性。
Durbin-Watson 证明,DW 的精确分布位于两个极限分布之间。
我们可以利用这两个极限分布来进行假设检验。
在实践中,经济变量如果存在自相关,则一般是正自相关,因此在进行DW 检验时,我们通常利用单侧(左侧)检验(一般教科书所提供的临界值表是针对单侧检验的)。
笔记:1、经济变量一般正自相关是针对水平变量而言。
对于差分变量,负自相关在年度时间序列中也是常见的。
这是因为,差分表示变量的变化,如果经济变量在均衡位置上下波动,那么上一期涨幅较大往往意味着在本期将出现回落。
不过对于来自于资本市场的高频时间序列数据,由于冲量效应等原因,差分变量出现正自相关也是常见的。
2、如果DW 值远远大于2,这往往是模型错误设定的信号。
在单侧检验下,给定显著水平,当l DW d,我们d U d L 4-d U 4-d L2认为误差项是一阶正自相关的;当u l d DW d <≤,则无法判断;当u d DW <,我们认为误差项不存在一阶自相关。
由于存在无法判断的区间,因此DW 检验具有局限性。
另外,进行DW 检验还应该注意如下几个问题:(1)该检验用来判断误差项是否存在一阶自相关。
一阶自相关不存在并不一定意味着不存在高阶自相关。
(2)回归模型一般应带有截距项以保证残差均值为零;(3)DW 统计量的分布除了取决于解释变量矩阵X 外还依赖于全套的经典线性模型假定。
因此,为了保证DW 检验有效,其他经典线性模型假定必须成立。
(4)解释变量中不能含有滞后因变量。
考虑模型:121t t t t y a b x b y ε-=+++,当t ε与1t ε-相关时,t ε与1t y -是相关的,这将导致OLS 估计量有偏,且偏差不会随样本容量的增加而趋于零,即OLS 估计量不是一致估计量。
OLS 估计将把误差项所包含的信息价值归功于解释变量,而相应的残差看起来再也不含有价值的信息,因此,此时DW 值经常接近于2,从而具有误导性。
(三)相关图(Correlogram )检验在讨论DW 检验时,我们提到结论ˆ2(1)DW ρ≈-,一个显然问题是,为何我们不直接基于残差样本一阶自相关系数ˆρ对误差项是否存在一阶自相关进行检验呢?事实上这也是可行的,而且还可以推广,即我们能够基于残差样本k 阶自相关系数ˆk ρ来检验误差项是否存在k 阶自相关。
在讨论这些检验之前,我们先了解一些预备知识。
(1)时间序列平稳性在针对时间序列的经典计量分析中,我们要求时间序列都是平稳的。
本讲义第八讲我们详细讨论时间序列平稳性概念,但在这里有必要先简单介绍一下这个概念。
在直观意义上,平稳时间序列应该没有趋势性,也不会持久偏离均值;从数学上看,平稳时间序列{}t y 应该满足三个条件:期望值为常数,即()t E y μ=;方差为常数,即2()t Var y δ=;协方差与时间起点无关,即,()j t t j Cov y y δ-=。
(2)自相关系数平稳时间序列{}t y 的总体k 阶自相关系数是:2222(,)()()()()()()()t t t t t t k t k k tt Cov y y E y y E y E y y E y Var y E y E y ρ--=--==- 如果平稳时间序列的期望值为零,则2()()t t t k k E y y E y ρ-=,此时样本k 阶自相关系数是121ˆT t t k t k T t t k y y y ρ-=+==∑∑。
误差项t ε满足期望值为零的条件,故其样本k 阶自相关系数是121ˆT t t k t k T t t k εεερ-=+==∑∑,然而误差项是不可观测的,因此我们用残差代替之,于是121ˆˆˆˆTt t k t k T t t k εεερ-=+==∑∑。
练习:证明ˆ2(1)DW ρ≈-,其中1ˆˆρρ=是残差样本一阶自相关系数。
在介绍了一些预备知识后,为了利用残差样本k阶自相关系数ˆk ρ来检验误差项是否存在k 阶自相关,我们还需要了解ˆk ρ所服从的分布。
可以证明,22)ˆ(,a k k T k T TN ρρ-+:。
当T 很大时,还可进一步简化为:1)ˆ(,ak k T N ρρ:,因此在原假设0k ρ=下,10)ˆ(,a k T N ρ:,故在95%置信水平下,ˆk ρ≤≤-。