人教版初一数学下册加减消元法解二元一次方程组
人教版数学七年级下册 8.2.3 加减消元法解二元一次方程组 教案
比较上述两种方法,共性都是依据等式的性质对方程变形,构造相同的系数后作差消元,不同之处在于方法一只对一个方程变形,但是出现分数系数运算较麻烦,而方法二要对两个方程都变形,但是整系数运算比较简便。
进一步看方法三:如果选择y构造相反的系数。
由于4和6的最小公倍数是12,所以方程1的两边同时乘以3,得到9x+12y=48,记为方程3,方程2的两边同时乘以10x-12y=66,记为方程4,则方程3和方程4中y的系数互为相反数,就可以相加消去未知数y,进一步即可求解方程组。
比较方法二和方法三,都是利用系数的最小公倍数构造相同或相反的系数,然后加减消元。这样的构造方法一是能够保证整数系数的运算,二是能够保证系数不会过大从而带来计算量的增大。对比两个方法,为减小运算量,选择系数公倍数较小的未知数消元。
教 案
教学基本信息
课题
加减消元法解二元一次方程组
学科
数学
学段:初中
年级
初一
教学目标及教学重点、难点
学习目标:
1.理解加减消元的依据;
2.利用加减消元法解二元一次方程组.
重点:
1.加减消元的依据;
2.加减消元法解二元一次方程组的步骤.
难点:
根据二元一次方程组的未知数系数特征选择消元的方式.
教学过程(表格描述)
进一步,当方程出现分母、括号或同类项时需要先整理,再判断加减消元的方式。
提升练习
提升训练1:
数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》教学反思
《8.2.2加减消元法---解二元一次方程组》教学反思“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。
通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。
加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。
因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。
我讲解了《用加减法解二元一次方程组》这一节课,通过这堂课的教学,使我有以下几方面的认识:一、在教学过程中,结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。
同时,我还将运用讲授法和练习法,将学生的自主练习运用投影的方式展示。
我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。
引导学生充分发挥他们的智慧,发现,提出,讨论,最后解决问题,完成了预定的教学内容,达到了预期的效果。
二、代入消元法和加减法都是二元一次方程组的解法,它们的基本思路都是消元,即将二元方程转化为一元方程。
而加减法是通过相加减达到消元的目的的,因此在教学这部分内容时,引导学生仔细观察、分析、讨论,最后归纳解题方法,并且让学生掌握用加减法解二元一次方程组,然后和代入消元法比较,让学生发现在有些时候用加减消元法更方便、简单。
由此突出了本节课的重点。
三、在整个教学过程中,我始终坚持以学生为主体,让他们不断的发现问题、提出问题、讨论问题、最后解决问题,从而获取知识。
充分体现了目前素质教育所要求的由教师立导型教学模式向学生立导型教学模式的转变。
人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案
$$\begin{cases}2x+3y=7 \\ x-4y=-3\end{cases}$$
(2)掌握加减消元法的计算步骤:引导学生遵循正确的计算步骤,包括方程的变形、乘法运算、加减运算等,确保求解过程准确无误。
(3)运用加减消元法求解二元一次方程组:培养学生将所学知识应用于实际问题的能力,掌握从问题中抽象出方程组,然后通过加减消元法求解。
(3)针对实际问题,教师可引导学生通过画图、列表等方法,将问题中的信息转化为方程组,进而求解。
(4)在讲解消元法的局限性时,可以举例说明当方程组中的系数相差较大时,使用加减消元法可能导致计算过程复杂,此时可以寻求代入法或其他解法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“消元-解二元一次方程组(加减法)”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个问题的情况?”(例如:小明去商店买笔和本子,他知道自己总共花了多少钱,以及笔和本子的价格关系,如何求出笔和本子的单价?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案
一、教学内容
本节课为人教版数学七年级下册第8章第2课,主题为“消元-解二元一次方程组(加减法)”。教学内容主要包括以下几点:
1.理解加减消元法的基本原理;
2.学会使用加减消元法解二元一次方程组;
3.掌握判断二元一次方程组解的过程;
4.能够灵活运用加减消元法解决实际问题。
4.在小组讨论与合作中,增强沟通与表达能力,培养团队合作精神。
在教学过程中,关注学生核心素养的提升,注重培养学生对数学知识的深入理解和灵活运用能力,为学生的终身学习和可持续发展奠定基础。
最新人教版初中数学七年级下册 8.2.2 加减消元法—解二元一次方程组教案
8.2.2 加减消元法简介:本节课的内容是人教版义务教育教科书《数学》七年级(下)§8.2消元---解二元一次方程组,主要内容是掌握用加减法消元解二元一次方程组,进一步了解消元是解二元一次方程组的思想方法.在本节学习之前,学生已经学习了二元一次方程组和代入消元解二元一次方程组的内容,学生已经对二元一次方程组及解二元一次方程组有一定的认识,会用二元一次方程组表示问题中的数量关系。
本节内容是学习解二元一次方程组的重要部分,在教材中占据重要的地位。
教材分析本节课是学习用加减法解二元一次方程组,进一步理解消元,通过实际情境问题引出解二元一次方程组的方法概念,对于方程组中有一个未知数的系数相等或者是互为相反数的方程组学生往往比较容易掌握,但是对于系数既不相等又不是互为相反数的方程组,老师要引导学生转化解决,让学生掌握用加减法解二元一次方程组的一般步骤。
本节课教学重点为:用加减消元法解二元一次方程组。
教学难点:探索如何用加减法将“二元”转化为“一元”的消元过程.教学目标1、知识与技能使学生熟练的掌握用加减消元法解二元一次方程组。
2、过程与方法通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,使学生进一步理解加减消元法所体现的化归思想,培养观察能力。
3、情感态度与价值观进一步体会方程是刻画现实世界的有效数学模型重点难点教学重点:用代入法、加减法解二元一次方程组. 教学难点:会用二元一次方程组解决实际问题教学方法引导发现法、小组合作探究法、练习法。
教学准备教学过程设计程序(要素)时间创设情教师行为期望的学生行为景创设情境引入新课8分钟创设问题情境知识回顾1.根据等式性质填空<1>若a=b,那么a±c= .<2>若a=b,那么ac=2.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。
某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?列出方程组思考:1、用代入消元法怎么解此方程组?2、观察y的系数,能否找出新的消元方法呢师生共同得出答案引出新知。
课件人教版七年级数学下册8.加减消元法课件
消去未知数___x___.
3
用加减法解方程组 2x 2x
3y 8y
5, ① 时, 3②
①-②得( A )
A.5y=2
B.-11y=8
C.-11y=2
D.5y=8
3x-3 y=4,①
4 解方程组 2x+3y=1② 时,用加减消元法 最简便的是( A ) A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
①×3,得6x+15y=24.③
②×2,得6x+4y=10.④
③-④,得11y=14,y= 1 4 .
把y=
1 1
4 1
11 代入①,得2x+5×
1 1
x=
4 1
=8,x= 9,
1
9
1
.
因此,这个方程组的解是 1 1
y= 1 4 . 11
2x+3y 6, (4)
3x 2y 2.
2x+3y=6,① 解: (4) 3x-2y=-2.②
1.用加减消元法解二元一次方程组的一般步骤: 答:每节火车车厢平均装50 t化肥, 麦x hm2和y hm2, 那么2台大收割机和5台小收割
把②变形得5y=2x+11,
A.9
B.7
次方程,然后解答方程即可.
可以直接代入①呀!
(1)变形:看其中一个未知数的系数是否相等或互为相反数,若既不相等也不互为相反数,则利用等式的性质把某个
③方程组中任一个未知数的系数的绝对值既不相等, 也不成倍数关系,可利用最小公倍数的知识,把两 个方程都适当地乘一个数,使某个未知数的系数的 绝对值相等,然后再利用加减法求解.
巩固新知
1 一条船顺流航行,每小时行20 km;逆流航行,每
小时行16 km. 求轮船在静水中的速度与水的流速.
人教版版七年级数学下册《加减法解二元一次方程组》教学教案
《加减法解二元一次方程组》精品教案教学目标1、理解加减消元法的含义。
2、掌握用加减法解二元一次方程组。
3、使学生理解加减消元法的化归思想方法。
重点、难点重点: 学用“加减法“解二元一次方程组难点: 对于相同字母的系数绝对值不相等时的解法.教学过程一、复习用代入法解方程组:错误!未找到引用源。
设计意图:通过利用以前学的代入法解二元一次方程组,巩固学过的知识的同时也同样为本节学的加减消元法打下基础。
二、探究新知观察方程组错误!未找到引用源。
比较两个方程中y的系数,能否找出新的消元方法呢?分析:这个方程中,未知数y的系数(相同或相反),把这方程组的左边与左边相减,右边与右边相减,能得到什么结果?解:由②-①得: x=6把x=6代入①,得 6+y=10解得y=4所以这个方程组的解是解方程组错误!未找到引用源。
分析:这个方程中,未知数y的系数(相同或相反),把这方程组的左边与左边,右边与右边。
解:①+②得3x=9解得:x=3把x=3代入①得:6+y=7解得:y=1所以方程组的解是错误!未找到引用源。
总结规律:1、某一未知数的系数时,用减法。
2、某一未知数的系数时,用加法。
加减消元法:当二元一次方程组中同一未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
设计意图:由简单方程组入手,更加深刻理解加减消元解二元一次方程,并且归纳出加减法解方程的步骤。
三、例题讲解例3 用加减法解方程组错误!未找到引用源。
对于当方程组中两方程不具备上述特点时,则可用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件.让学生观察思考:学生说出自己的结论,师引导分析:师生共同解决引导学生分析总结同字母的系数不同的方程消元的方法。
例4、2台大收割机和5台小收割机均工作2h共收割小麦3.6 hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?学生试着分析题目,找出等量关系列出方程组,进行解答。
人教版七年级数学下册:消元——解二元一次方程组【精品课件】
巩固练习
用代入法解下列方程组:
y 2x 3 ① (1) 3x 2 y 8 ②
解:把①代入②,得
3x+2( 2x-3)=_8 解这个方程,得x= 2 . 把x= 2 代入①,得y= 1__
∴原方程组的解是
x 2
y
1
巩固练习
(2) 2x y 5 ① 3x 4y 2 ②
解:由①,得y= 2x-5 … ③ 把③代入②,得3x+4( 2x-5 )= 2 解这个方程,得x= 2 把x= 2 代入③,得y= -1
探究新知
y=
x + 10
x + y =200
x + x +10 =200
探究新知
y = x + 10
①
x + (xy+10) = 200 ②
转化
x +( x +10) = 200
x = 95
y = 105
将未知数的个数由多化少,逐一解决的思想,叫做
消元思想.
∴方程组 y = x + 10 的解是 x = 95,
y 3
1, ① y 9.②
由①得,x=y+1 . ③
把③代入②得,y+1+3y=9,解得y=2.
把y=2代入x=y+1得x=3.
故原方程组的解为
x 3,
y
2.
课堂检测
基础巩固题
1.二元一次方程组
x y 4, x y 2
的解是(
D)
A.
x y
3 7
B.
x y
1 1
C.
x
像上面这种解二元一次方程组的方法,叫做加减消元法, 简称加减法.
七年级数学下册(加减消元法解二元一次方程)教案 (新版)新人教版 教案
消元---二元一次方程组的解法
练习和归纳: 解方程组:1、⎩
⎨
⎧==+115y -3x 33
y 2x
2、⎩⎨
⎧=+=+7
2y 3x 15y 2x
3、思考:已知a 、b 满足方程组
,则a+b=
六、小结归纳:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点:同一个未知数的系数相同或互为相反数
基本思路:加减消元:二元变一元 主要步骤:加减消去一个元 求解分别求出两个未知数的值 写解写出原方程组的解
七、作业:教材第98页第3题。
学生分组讨论后请代表板演过程,然后教师和学生一起分析有没
有过错,或写的好的地方在哪?
师生共同归纳方程特点和解题
过程,而且特别强调整体性及去括号的注意事项。
通过练习强化使
得当堂学习有所得,这
样相对不容易忘记。
七、教学评价设计 1、课堂理解度多少? 2、作业反馈情况如何?。
数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》说课稿
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。
二元一次方程组的解法(2) 加减消元法1课件2022-2023学年人教版七年级数学下册
是同类项,则
x y
1
= ___________.
深探·自学
如何得结论呢!
y
已知 x ,
x 2
已知
y 1
2 x y 4
满足方程组
x 2 y 5
mx y 3
是方程组
x ny 6
,则
x y
3
=___________.
4
的解,则 mn = ___________.
x 1
y 2
∴这个方程组的解为
x 1
y 2
总结:①某个未知数的系数互为
相反数,用加法消元.
初探·自学
习惯指标 ★积极参与课堂合作
学科指标 ★解二元一次方程组
联系上面的解法,想一想怎么解方程组
2 x y 4
x y 1
解:由①-②得, = 5 .
且 (2b a)
关于, 的二元一次方程组为
2a 6b 4
6a 2b 8
2022
(2 1) 2022 1 .
2.
Ax+By=2,
甲、乙两人同解方程组
甲正确解得
Cx-3y=-2.
x=1,
乙因抄错
y=-1.
x=2,
C,解得
求
y=-6.
习 惯 指 标 ★做好课前准备
第2课时
二元一次方程组的解法(2)
——加减消元法1
万物皆有裂痕,那是光进来的地方.
习惯指标 ★积极参与课堂合作
初探·自学
解二元一次方程组:
2 x y 4
x y 1
人教版加减消元----解二元一次方程组
小丽
5 y和 5 y
互为相反数……
按照小丽的思路,你能消去一个未知数吗?
3
消元——解二元一次方程组
人教版数学七年级下册8单元第2课
3x 5y 21 ① 2x 5y -11 ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边
变式一:32xx
5y 5y
21 ① -11②
分析:
观察方程组中的两个方程,未知数 y的系数相等,都是5。把两个方程 两边分别相减,就可以消去未知数 y,同样得到一个一元一次方程。
6
消元——解二元一次方程组
3x 5y 21 ① 2x 5 y -11 ②
人教版数学七年级下册8单元第2课
解:把 ①-②得: x= 32 把x= 32代入①,得2×32+5y=21
人教版数学七年级下册8单元第2课 8.2 加减消元——解二元一次方程组
1
消元——解二元一次方程组
人教版数学七年级下册8单元第2课
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么?
主要步骤:
变形
用一个未知数的代数式
表示另一个未知数
代入
消去一个元
求解
分别求出两个未知数的值
二.选择题
6x+7y=-19①
1. 用加减法解方程组
应用( B)
6x-5y=17②
A.①-②消去y B.①-②消去x
B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)情感态度与价值观:让学生在探究中感受数学知识的实际用
价值,养成良好的学习习惯。教学重难点
重点:用加减法解二元一次方程组
难点:两个方程相减消元时,对被减得方程各项符号要做变号处 理。
教学方法:本节课采用小组合作探究”的教学法。
作业:必做作业:用加减消元法解二元一次方程组
掌握要求更高一层,为学有余力的同学提供进一步思考的平台.
教学反思:
本节课的主要目的是:让学生进一步经历 消元”的过程,体会到 消元思想”的实质是 化未知为已知”一—把未知的、复杂的问题转化 为已知的、简单的问题逐一解决,从而找到解决问题的办法。从而知 道解决二元一次方程的主要方法是消元:加减法消元和代入法消元。 本节课我采用的方法是先让学生自己观察, 再小组合作交流出解决问 题的方法,老师只是引导、点拨。本节课开始从一个典型的、特殊的 方程组入手先用代入消元解决,引入新课,由方程组的未知数系数 相 等”或相反”到 再到一般的所有方程组,层层递进,逐一解决,经历 了由特殊到一般的思维过程,提高了 ”加减法 消元思想的认识,知道 了用加减法解二元一次方程组的条件和步骤。在讲课过程中,大部分
例2:?x+5y=5
<
3x_4y= 23
认真观察此方程组中么解题方法?
设计目的:利用引导性的问题,可引发学生对问题的思考,促使 学生明确讨论目标,并促进学生运用已有的知识去发现和获取新的知 识。增强他们对学习的自信心。
小结:
1.当某一个未知数的系数相同时,则选择用相减消去这个未知数。
2.当某一个未知数的系数互为相反数时,则选择用相加消去这个 未知数。
8.2消元一一用加减法解二元一次方程组
教学设计
教材分析
学生是在学过代入消元法解二元一次方程组基础上学习本节内
容,初步知道 消元”解决二元一次方程组是核心,其中蕴含着 转化 思想,而本节课学习加减消元法深化对 消元理解,拓展对二元一次 方程的解法。
教学目标:
(1)知识与技能:会用加减消元法求未知数系数相等或相反数的 二元一次方程组的解。
学情分析
我所任教的班级学生基础一般,本节课主要围绕重点,打好基础。 结合学校采取的小组合作学习,他们已经具备了一定的合作探索能力 和交流思维能力。大多数学生性格比较活泼,他们希望自己的能力得 到周围人的勺肯定y,5但是对于七年级的学生来说,他们独立分析问题的 能力和灵活应帶的能力还有待提高,很多时候还需要教师的点拨、引
不成整数倍的二元一次方程组时, 把一个(或两个)方程的两边乘以 适当的数,使两个方程中某一未知数的系数相等或互为相反数从而化 为例题1、例题2方程组求解.
(设计目的:让学生通过合作交流,讨论得出解较为复杂的二元 一次方程组的加减消元法的思路,从而他们加深对转化的数学思想的 理解,同时也培养了学生分析问题和解决问题的能力。 在整个探讨的 过程中也增强了学生的信心,学生有了发现的乐趣和成功的喜悦, 增 强自信心。)
认真观察此方程组中y的系数有什么特点,并根据特点你想到什 么解题方法?课上探究:能否有其他方法解答。(设计目的;这部分
是学生在课前已经完成,这样可以巩固上节课的内容,同时能为本节 课学习做一个铺垫)
二、探究新知
例
345^123^99
认真观察此方程组中y的系数有什么特点,并根据特点你想到什 么解题方法?
学生能积极思考并理解,尽管我有意识的放慢了讲课节奏,但还是有 少数学生跟不上,尤其是在 系数的最小公倍数”问题上,还有几个 学生不知道最小公倍数是什么意思,阻碍他们对本节课的学习,这需 要在课下业余时间给予辅导。整节课的各个环节安排还是很紧凑的, 学生的积极性、参与性还是比较高的。
小结:
(1)加减消元法解二元一次方程组的基本思想是什么?
(2)用加减消元法解二元一次方程组的主要步骤有哪些?
找出——同一个未知数的系数相同或互为相反数
加减消去一个元
求解分别求出两个未知数的值
写解——写出方程组的解
三、巩固练习
「6x_5y=3px-2y二斗
:6x+y = -15+Sy—9
设计目的:梳理本节课的主要内容,巩固所学的知识。
练习1:用加减法解下列方程组:
(设计目的:通过练习巩固某一个未知数系数相同或相反时解决 问题的步骤,增加学生的积极性,给学生提供展现自我才华的机会。 巩固所学知识,为下面探讨较为复杂的二元一次方程组做铺垫。)
例3:0十3心
(2x +4y=3
例
5x -6y=互为相反数,且
(设计目的:通过总结,让学生了解利用加减消元法解二元一次 方程组的基本思路。为下面解决复杂的二元一次方程组提供策略。) 让学生自己讨论如何解决,再师生共同解决,规范解题的格式。
(设计目的:组织学生观察、思考、探究、小组合作交流,展示 等方式培养了学生综合能力,活跃了课堂气氛。巡视帮助学生释疑解 难,让学生受到重视。同时也培养了学生的合作精神和激发了学习热 情)
导和归纳。因此,我遵循学生的认识规律,由浅入深,适时引导,调
动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
教学过程
一、知识回顾
1、温故而知新:复习等式的性质
2、解二元一次方程组的基本思想: 要把二元一次方程组转化一元 一次方程.
3、用代入法解方程的步骤
「321x+123y=567
4、 用代入法解方程〔345x-123y= 99