2016年贵州省贵阳市中考数学试卷解析版
2016学年贵州省贵阳中考数学年试题
湖北省武汉市2016年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】因为124<<,所以122<<,则实数2的值在1和2之间。
故选B 。
【提示】估算无理数大小,正确得出无理数接近的有理数是解题关键。
【考点】估算无理数的大小2.【答案】C【解析】依题意得:x 30-≠,解得x 3≠,故选C 。
【提示】分式有意义的条件是分母不等于零,分式无意义的条件是分母等于零。
【考点】分式的概念3.【答案】B【解析】原式3a =,故选项A 错误;原式22a =,故选项B 正确;原式44a =,故选项C 错误;原式62a =,故选项D 错误。
所以选B 。
【提示】此题运用的是整式的混合运算,熟练掌握运算法则是解本题的关键【考点】整式的混合运算4.【答案】A【解析】根据白色的只有两个,不可能摸出三个进行解析。
选项A 中,摸出的是3个白球是不可能事件;选项B 中,摸出的是3个黑球是随机事件;选项C 中,摸出的是2个白球、1个黑球是随机事件;选项D 中,摸出的是2个黑球、1个白球是随机事件。
故选A 。
【提示】必然事件指在一定条件下,一定发生的事件。
不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件。
【考点】随机事件5.【答案】C【解析】根据完全平方公式,即可解析。
题目中22(x 3)x 6x 9+=++,故选C 。
【提示】本题运用完全平方公式,解决本题的关键是熟记完全平方公式。
【考点】完全平方公式6.【答案】D【解析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解析。
因为点A(a,1)与点A (5,b)'关于坐标原点对称,所以a 5=-,b 1=-。
故选D 。
【提示】本题运用的是关于原点对称的点的坐标的内容,两点关于原点对称,则两点的横、纵坐标都是互为相反数。
【考点】关于原点对称的点的坐标7.【答案】A【解析】找到从左面看所得到的图形即可。
2016年贵州省贵阳市中考数学试卷(含解析版) (2)
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正题序一二三四五六七八总分得分确选项的字母框,每小题3分,共30分.1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.(3分)(2016•贵阳)空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.(3分)(2016•贵阳)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.(3分)(2016•贵阳)如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A .2cm B.4cm C.6cm D.8cm9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为______.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______. 13.(4分)(2016•贵阳)已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是______.14.(4分)(2016•贵阳)如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 的值是______.15.(4分)(2016•贵阳)已知△ABC ,∠BAC=45°,AB=8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为______.三、解答题:本大题10小题,共100分. 16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是______;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(10分)(2016•贵阳)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE 、CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A 等级:135分﹣150分 B 等级:120分﹣135分,C 等级:90分﹣120分,D 等级:0分﹣90分) (1)此次抽查的学生人数为______;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC ,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是______;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.(12分)(2016•贵阳)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分. 1.(3分)(2016•贵阳)下面的数中,与﹣6的和为0的数是( ) A .6B .﹣6C .D .﹣【分析】根据两个互为相反数的数相加得0,即可得出答案. 【解答】解:与﹣6的和为0的是﹣6的相反数6. 故选A .2.(3分)(2016•贵阳)空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3. 故选:C . 3.(3分)(2016•贵阳)如图,直线a ∥b ,点B 在直线a 上,AB ⊥BC ,若∠1=38°,则∠2的度数为( )A .38°B .52°C .76°D .142°【分析】由平角的定义求出∠MBC 的度数,再由平行线的性质得出∠2=∠MBC=52°即可. 【解答】解:如图所示: ∵AB ⊥BC ,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°, ∵a ∥b ,∴∠2=∠MBC=52°; 故选:B .4.(3分)(2016•贵阳)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( ) A .B .C .D .【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C .5.(3分)(2016•贵阳)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )A .B .C .D .【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线, 故选:C . 6.(3分)(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的( ) A .中位数 B .平均数 C .最高分 D .方差【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖. 故选:A .7.(3分)(2016•贵阳)如图,在△ABC中,DE ∥BC,=,BC=12,则DE 的长是( )A .3B .4C .5D .6【分析】根据DE ∥BC ,得到△ADE ∽△ABC ,得出对应边成比例,即可求DE 的长. 【解答】解:∵DE ∥BC , ∴△ADE ∽△ABC ,∴==,∵BC=12,∴DE=BC=4.故选:B.8.(3分)(2016•贵阳)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC 于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.(3分)(2016•贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.(3分)(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.(4分)(2016•贵阳)不等式组的解集为x<1.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.(4分)(2016•贵阳)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15. 13.(4分)(2016•贵阳)已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 a >b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论. 【解答】解:∵一次函数y=﹣2x +1中k=﹣2, ∴该函数中y 随着x 的增大而减小, ∵1<2, ∴a >b .故答案为:a >b . 14.(4分)(2016•贵阳)如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 的值是.【分析】作OM ⊥AB 于M ,由垂径定理得出AM=BM=AB=4cm ,由勾股定理求出OM ,再由三角函数的定义即可得出结果.【解答】解:作OM ⊥AB 于M ,如图所示: 则AM=BM=AB=4cm ,∴OM===2(cm ),∵PM=PB +BM=6cm , ∴tan ∠OPA===;故答案为:.15.(4分)(2016•贵阳)已知△ABC ,∠BAC=45°,AB=8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 x=4或x ≥8 .【分析】分析:过点B 作BD ⊥AC 于点D ,则△ABD 是等腰直角三角形;再延长AD 到E 点,使DE=AD ,再分别讨论点C 的位置即可.【解答】解:过B 点作BD ⊥AC 于D 点,则△ABD 是等腰三角形;再延长AD 到E ,使DE=AD ,①当点C 和点D 重合时,△ABC 是等腰直角三角形,BC=4,这个三角形是唯一确定的; ②当点C 和点E 重合时,△ABC 也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C 在线段AE 的延长线上时,即x 大于BE ,也就是x >8,这时,△ABC 也是唯一确定的; 综上所述,∠BAC=45°,AB=8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是:x=4或x ≥8三、解答题:本大题10小题,共100分. 16.(8分)(2016•贵阳)先化简,再求值:﹣÷,其中a=.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值. 【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.(10分)(2016•贵阳)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是 0 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率. 【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解. 【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0; 故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯, 画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2, 所以恰好关掉第一排与第三排灯的概率==.18.(10分)(2016•贵阳)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE 、CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.【分析】(1)由四边形ABCD 是正方形可得出AB=CB ,∠ABC=90°,再由△EBF 是等腰直角三角形可得出BE=BF ,通过角的计算可得出∠ABF=∠CBE ,利用全等三角形的判定定理SAS 即可证出△ABF ≌△CBE ;(2)根据△EBF 是等腰直角三角形可得出∠BFE=∠FEB ,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF 是直角三角形. 【解答】(1)证明:∵四边形ABCD 是正方形, ∴AB=CB ,∠ABC=90°,∵△EBF 是等腰直角三角形,其中∠EBF=90°, ∴BE=BF ,∴∠ABC ﹣∠CBF=∠EBF ﹣∠CBF , ∴∠ABF=∠CBE . 在△ABF 和△CBE 中,有,∴△ABF ≌△CBE (SAS ).(2)解:△CEF 是直角三角形.理由如下: ∵△EBF 是等腰直角三角形, ∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°, 又∵△ABF ≌△CBE , ∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB ﹣∠FEB=135°﹣45°=90°, ∴△CEF 是直角三角形.19.(10分)(2016•贵阳)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A 等级:135分﹣150分 B 等级:120分﹣135分,C 等级:90分﹣120分,D 等级:0分﹣90分) (1)此次抽查的学生人数为 150 ;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【分析】(1)根据统计图可知,C 等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A 等级的学生数,B 等级和D 等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数. 【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人), 故答案为:150;(2)A 等级的学生数是:150×20%=30, B 等级占的百分比是:69÷150×100%=46%, D 等级占的百分比是:15÷150×100%=10%, 故补全的条形统计图和扇形统计图如右图所示, (3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.(10分)(2016•贵阳)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元. (1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球? 【分析】(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m 个,则买蓝球(20﹣m )个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m 个,则买蓝球(20﹣m )个,根据题意得: 103m +56(20﹣m )≤1550, 解得:m ≤9,∵m 为整数, ∴m 最大取9答:学校最多可以买9个足球. 21.(8分)(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡脚为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1790m .如图,DE ∥BC ,BD=1700m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1m )【分析】首先过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,进而表示出AM ,DF 的长,再利用AE=,求出答案.【解答】解:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M , 由题意可得:EM ⊥AC ,DF=MC ,∠AEM=29°, 在Rt △DFB 中,sin80°=,则DF=BD •sin80°,AM=AC ﹣CM=1790﹣1700•sin80°, 在Rt △AME 中,sin29°=,故AE==≈238.9(m ),答:斜坡AE 的长度约为238.9m .22.(10分)(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y=(x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2). (1)求反比例函数的表达式; (2)求点F 的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.(10分)(2016•贵阳)如图,⊙O是△ABC的外接圆,AB 是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B ,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2, ∴△OEB 的面积=OE •BE=×2×2=2,扇形BOD 的面积==,∴线段ED ,BE ,所围成区域的面积=﹣2.24.(12分)(2016•贵阳)(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断. 中线AD 的取值范围是 2<AD <8 ; (2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE +CF >EF ; (3)问题拓展:如图③,在四边形ABCD 中,∠B +∠D=180°,CB=CD ,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.【分析】(1)延长AD 至E ,使DE=AD ,由SAS 证明△ACD ≌△EBD ,得出BE=AC=6,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围;(2)延长FD 至点M ,使DM=DF,连接BM 、EM ,同(1)得△BMD ≌△CFD ,得出BM=CF ,由线段垂直平分线的性质得出EM=EF ,在△BME 中,由三角形的三边关系得出BE +BM >EM 即可得出结论;(3)延长AB 至点N ,使BN=DF ,连接CN ,证出∠NBC=∠D ,由SAS 证明△NBC ≌△FDC ,得出CN=CF ,∠NCB=∠FCD ,证出∠ECN=70°=∠ECF ,再由SAS 证明△NCE ≌△FCE ,得出EN=EF ,即可得出结论. 【解答】(1)解:延长AD 至E ,使DE=AD ,连接BE ,如图①所示: ∵AD 是BC 边上的中线, ∴BD=CD ,在△BDE 和△CDA 中,,∴△BDE ≌△CDA (SAS ), ∴BE=AC=6,在△ABE 中,由三角形的三边关系得:AB ﹣BE <AE <AB +BE , ∴10﹣6<AE <10+6,即4<AE <16, ∴2<AD <8;故答案为:2<AD <8;(2)证明:延长FD 至点M ,使DM=DF ,连接BM 、EM ,如图②所示: 同(1)得:△BMD ≌△CFD (SAS ), ∴BM=CF ,∵DE ⊥DF ,DM=DF , ∴EM=EF ,在△BME 中,由三角形的三边关系得:BE +BM >EM , ∴BE +CF >EF ;(3)解:BE +DF=EF ;理由如下:延长AB 至点N ,使BN=DF ,连接CN ,如图3所示: ∵∠ABC +∠D=180°,∠NBC +∠ABC=180°, ∴∠NBC=∠D , 在△NBC 和△FDC 中,,∴△NBC ≌△FDC (SAS ), ∴CN=CF ,∠NCB=∠FCD , ∵∠BCD=140°,∠ECF=70°, ∴∠BCE +∠FCD=70°, ∴∠ECN=70°=∠ECF , 在△NCE 和△FCE 中,, ∴△NCE ≌△FCE (SAS ), ∴EN=EF , ∵BE +BN=EN , ∴BE +DF=EF .25.(12分)(2016•贵阳)如图,直线y=5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y=ax 2+4x +c的图象交x 轴于另一点B . (1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y=ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴、y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F ,E 的坐标.温馨提示:在直角坐标系中,若点P ,Q 的坐标分别为P (x 1,y 1),Q (x 2,y 2), 当PQ 平行x 轴时,线段PQ 的长度可由公式PQ=|x 1﹣x 2|求出; 当PQ 平行y 轴时,线段PQ 的长度可由公式PQ=|y 1﹣y 2|求出.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,C 两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B 点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为﹣n +5,D 点的坐标为D (n ,﹣n 2+4n +5),根据两点间的距离公式和二次函数的最值计算可求线段ND 长度的最大值; (3)由题意可得二次函数的顶点坐标为H (2,9),点M 的坐标为M (4,5),作点H (2,9)关于y 轴的对称点H 1,可得点H 1的坐标,作点M (4,5)关于x 轴的对称点HM 1,可得点M 1的坐标连结H 1M 1分别交x 轴于点F ,y 轴于点E ,可得H 1M 1+HM 的长度是四边形HEFM 的最小周长,再根据待定系数法可求直线H 1M 1解析式,根据坐标轴上点的坐标特征可求点F 、E 的坐标. 【解答】解:(1)∵直线y=5x +5交x 轴于点A ,交y 轴于点C , ∴A (﹣1,0),C (0,5),∵二次函数y=ax 2+4x +c 的图象过A ,C 两点, ∴, 解得,∴二次函数的表达式为y=﹣x 2+4x +5; (2)如图1,∵点B 是二次函数的图象与x 轴的交点,∴由二次函数的表达式为y=﹣x 2+4x +5得,点B 的坐标B (5,0), 设直线BC 解析式为y=kx +b , ∵直线BC 过点B (5,0),C (0,5),∴, 解得,∴直线BC 解析式为y=﹣x +5,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为﹣n +5,D 点的坐标为D (n ,﹣n 2+4n +5), 则d=|﹣n 2+4n +5﹣(﹣n +5)|, 由题意可知:﹣n 2+4n +5>﹣n +5,∴d=﹣n 2+4n +5﹣(﹣n +5)=﹣n 2+5n=﹣(n ﹣)2+,∴当n=时,线段ND 长度的最大值是;(3)由题意可得二次函数的顶点坐标为H (2,9),点M 的坐标为M (4,5), 作点H (2,9)关于y 轴的对称点H 1,则点H 1的坐标为H 1(﹣2,9), 作点M (4,5)关于x 轴的对称点HM 1,则点M 1的坐标为M 1(4,﹣5), 连结H 1M 1分别交x 轴于点F ,y 轴于点E ,所以H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F 、E 即为所求, 设直线H 1M 1解析式为y=k 1x +b 1, 直线H 1M 1过点M 1(4,﹣5),H 1(﹣2,9),。
2016年贵州省贵阳市中考真题数学
2016年贵州省贵阳市中考真题数学一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与-6的和为0的数是( )A.6B.-6C.1 6D.1 6解析:与-6的和为0的是-6的相反数6.答案:A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A.0.129×10-2B.1.29×10-2C.1.29×10-3D.12.9×10-1解析:0.00129这个数用科学记数法可表示为1.29×10-3.答案:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为( )A.38°B.52°C.76°D.142°解析:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°-90°-38°=52°,∵a∥b,∴∠2=∠MBC=52°;答案:B.4. 2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.1 10B.1 5C.3 10D.2 5解析:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率=603 20010.答案:C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )A.B.C.D.解析:从上边看时,圆柱是一个矩形,中间的木棒是虚线,答案:C.6. 2016年6月4日-5日贵州省第九届“贵青杯”-“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的( )A.中位数B.平均数C.最高分D.方差解析:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.答案:A.7.如图,在△ABC中,DE∥BC,13ADAB,BC=12,则DE的长是( )A.3B.4C.5D.6解析:∵DE∥BC,∴△ADE∽△ABC,∴13 DE ADBC AB==,∵BC=12,∴DE=13BC=4.答案:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )解析:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×,∵BC=12,∴=答案:B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A.B.C.D.解析:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.答案:B.10.若m、n(n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )A.m<a<b<nB.a<m<n<bC.b<n<m<aD.n<b<a<m解析:如图抛物线y=(x-a)(x-b)与x 轴交于点(a ,0),(b ,0),抛物线与直线y=1的交点为(n ,1),(m ,1),由图象可知,n <b <a <m.答案:D.二、填空题:每小题4分,共20分11.不等式组14328x x -⎧⎨⎩<<的解集为 .解析:14328x x -⎧⎨⎩<①<②,由①得,x <1,由②得,x <2, 故不等式组的解集为:x <1.答案:x <1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .解析:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3, 所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.答案:15.13.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是.解析:∵一次函数y=-2x+1中k=-2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b.答案:a >b.14.如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 的值是 .解析:作OM ⊥AB 于M ,如图所示:则AM=BM=12AB=4cm ,∴OM cm ===), ∵PM=PB+BM=6cm ,∴63OM tan OPA PM ∠===;15.已知△ABC ,∠BAC=45°,AB=8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 或 .解析:过B 点作BD ⊥AC 于D 点,则△ABD 是等腰三角形;再延长AD 到E ,使DE=AD ,①当点C 和点D 重合时,△ABC 是等腰直角三角形,,这个三角形是唯一确定的;②当点C 和点E 重合时,△ABC 也是等腰三角形,BC=8,这个三角形也是唯一确定的; ③当点C 在线段AE 的延长线上时,即x 大于BE ,也就是x >8,这时,△ABC 也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是:x ≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:22111211a a a a a a ++-÷--+-,其中1a =. 解析:原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.答案:原式=()2211211·111111a a a a a a a a +--=-=-+----,当1a =时,原式=2.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解析:(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.答案:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=21 126.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.解析:(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.答案:(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC-∠CBF=∠EBF-∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有AB CBABF CBE BF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分-150分 B等级:120分-135分,C等级:90分-120分,D等级:0分-90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.解析:(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.答案:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如下图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?解析:(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m 个,则买蓝球(20-m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.答案:(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得15929x y x y +=⎧⎨=-⎩, 解得:10356x y =⎧⎨=⎩,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m 个,则买蓝球(20-m)个,根据题意得:103m+56(20-m)≤1550,解得:7947m ≤, ∵m 为整数,∴m 最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡脚为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1790m.如图,DE ∥BC ,BD=1700m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1m)解析:首先过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,进而表示出AM ,DF 的长,再利用sin 29AM AE =︒,求出答案. 答案:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,由题意可得:EM ⊥AC ,DF=MC ,∠AEM=29°,在Rt △DFB 中,sin80°=DF BD,则DF=BD ·sin80°, AM=AC-CM=1790-1700·sin80°, 在Rt △AME 中,sin29°=AM AE,故AE=1790170080sin2299sinsiAMn-⋅︒=︒︒≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数kyx=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.解析:(1)∵反比例函数kyx=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为8yx =;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x ,则BC=x ,BN=8-x ,在Rt △CNB 中,x 2-(8-x)2=42,解得:x=5,∴点B 的坐标为B(5,0),设直线BC 的函数表达式为y=ax+b ,直线BC 过点B(5,0),C(8,4),∴5084a b a b ⎨+⎩+⎧==, 解得:43203a b ⎧⎪⎪⎨⎪⎪⎩==, ∴直线BC 的解析式为42033x y +=, 根据题意得方程组420338y y xx ==⎧+⎪⎪⎨⎪⎪⎩, 解此方程组得:643x y ⎧⎪⎨⎪⎩==或18x y -⎧⎨⎩==- ∵点F 在第一象限,∴点F 的坐标为F(6,43).23.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB=8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD ,OD ,若AC=CD ,求∠B 的度数; (3)在(2)的条件下,OD 交BC 于点E ,求由线段ED ,BE ,»»BD所围成区域的面积.(其中»BD 表示劣弧,结果保留π和根号)解析:(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B ,再由角平分线得出∠CAD=∠DAB=∠B ,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B 的度数;(3)证出∠OEB=90°,在Rt △OEB 中,求出OE=12OB=2,由勾股定理求出BE ,再由三角形的面积公式和扇形面积公式求出△OEB 的面积=12OE ·BOD 的面积═83 ,所求图形的面积=扇形面积-△OEB 的面积,即可得出结果. 答案:(1)如图1所示,AP 即为所求的∠CAB 的平分线;(2)如图2所示:∵AC=CD ,∴∠CAD=∠ADC ,又∵∠ADC=∠B ,∴∠CAD=∠B ,∵AD 平分∠CAB ,∴∠CAD=∠DAB=∠B ,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD ,∠DAB=30°,又∵∠DOB=2∠DAB ,∴∠BOD=60°,∴∠OEB=90°,在Rt △OEB 中,OB=12AB=4, ∴OE=12OB=2,∴=∴△OEB 的面积=12OE ·BE=122⨯⨯=BOD 的面积=260483603ππ⋅=,∴线段ED ,BE ,»»BD所围成区域的面积=83π-.24.(1)阅读理解: 如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE(或将△ACD 绕着点D 逆时针旋转180°得到△EBD),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.中线AD 的取值范围是 ;(2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE+CF >EF ;(3)问题拓展:如图③,在四边形ABCD 中,∠B+∠D=180°,CB=CD ,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB ,AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.解析:(1)延长AD 至E ,使DE=AD ,由SAS 证明△ACD ≌△EBD ,得出BE=AC=6,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围;(2)延长FD 至点M ,使DM=DF ,连接BM 、EM ,同(1)得△BMD ≌△CFD ,得出BM=CF ,由线段垂直平分线的性质得出EM=EF ,在△BME 中,由三角形的三边关系得出BE+BM >EM 即可得出结论;(3)延长AB 至点N ,使BN=DF ,连接CN ,证出∠NBC=∠D ,由SAS 证明△NBC ≌△FDC ,得出CN=CF ,∠NCB=∠FCD ,证出∠ECN=70°=∠ECF ,再由SAS 证明△NCE ≌△FCE ,得出EN=EF ,即可得出结论.答案:(1)解:延长AD 至E ,使DE=AD ,连接BE ,如图①所示:∵AD 是BC 边上的中线,∴BD=CD ,在△BDE 和△CDA 中, BD CD BDE CDA DE AD ∠∠⎧⎪⎨⎪⎩===,∴△BDE ≌△CDA(SAS),∴BE=AC=6,在△ABE 中,由三角形的三边关系得:AB-BE <AE <AB+BE ,∴10-6<AE <10+6,即4<AE <16,∴2<AD <8;故答案为:2<AD <8;(2)证明:延长FD 至点M ,使DM=DF ,连接BM 、EM ,如图②所示:同(1)得:△BMD ≌△CFD(SAS),∴BM=CF ,∵DE ⊥DF ,DM=DF ,∴EM=EF ,在△BME 中,由三角形的三边关系得:BE+BM >EM ,∴BE+CF >EF ;(3)解:BE+DF=EF ;理由如下:延长AB 至点N ,使BN=DF ,连接CN ,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D ,在△NBC 和△FDC 中, BN DF NBC D BC DC ⎧∠⎪⎪⎩∠⎨===,∴△NBC ≌△FDC(SAS),∴CN=CF ,∠NCB=∠FCD ,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF ,在△NCE 和△FCE 中, CN CF ECN ECF CE CE ∠∠⎧⎪⎨⎪⎩===,∴△NCE ≌△FCE(SAS),∴EN=EF ,∵BE+BN=EN ,∴BE+DF=EF.25.如图,直线y=5x+5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y=ax 2+4x+c 的图象交x 轴于另一点B.(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值;(3)若点H 为二次函数y=ax 2+4x+c 图象的顶点,点M(4,m)是该二次函数图象上一点,在x 轴、y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F ,E 的坐标. 温馨提示:在直角坐标系中,若点P ,Q 的坐标分别为P(x 1,y 1),Q(x 2,y 2), 当PQ 平行x 轴时,线段PQ 的长度可由公式PQ=|x 1-x 2|求出;当PQ 平行y 轴时,线段PQ 的长度可由公式PQ=|y 1-y 2|求出.解析:(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,C 两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B 点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM 的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.答案:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴045a c c-+⎧⎨⎩==,解得15ac⎩-⎧⎨==,∴二次函数的表达式为y=-x2+4x+5;(2)如图,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴505k bb⎨⎩+⎧==,解得15kb⎩-⎧⎨==,∴直线BC 解析式为y=-x+5,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为-n+5,D 点的坐标为D(n ,-n 2+4n+5),则d=|-n 2+4n+5-(-n+5)|,由题意可知:-n 2+4n+5>-n+5,∴d=-n 2+4n+5-(-n+5)=-n 2+5n=-(n-52)2+254, ∴当n=52时,线段ND 长度的最大值是254; (3)由题意可得二次函数的顶点坐标为H(2,9),点M 的坐标为M(4,5),作点H(2,9)关于y 轴的对称点H 1,则点H 1的坐标为H 1(-2,9),作点M(4,5)关于x 轴的对称点HM 1,则点M 1的坐标为M 1(4,-5),连结H 1M 1分别交x 轴于点F ,y 轴于点E ,所以H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F 、E 即为所求,设直线H 1M 1解析式为y=k 1x+b 1,直线H 1M 1过点M 1(4,-5),H 1(-2,9),根据题意得方程组11115492k b k b --⎩++⎧⎨==, 解得1173133k b ⎧⎪⎪-⎪⎨⎪⎩==, ∴71333x y -+=,∴点F,E的坐标分别为(137,0)(0,133).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
贵州省贵阳市中考数学试题
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6ﻩB.﹣6ﻩC.ﻩD.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A.0.129×10﹣2ﻩB.1.29×10﹣2C.1.29×10﹣3ﻩD.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°ﻩC.76°D.142°4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A. B. C.ﻩD.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A. B.C. D.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数ﻩB.平均数 C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是( )A.3ﻩB.4ﻩC.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cmﻩC.6cmﻩD.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(mi n)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.ﻩD.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )A.m<ab<nﻩB.a<m<n<bﻩC.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x 的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含1020.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交A C于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABC D中,∠B +∠D=180°,C B=CD ,∠BCD =140°,以为顶点作一个70°角,角的两边分别交AB,AD 于E 、F 两点,连接EF ,探索线段BE ,DF,EF 之间的数量关系,并加以证明.25.如图,直线y=5x+5交x 轴于点A,交y 轴于点C,过A ,C 两点的二次函数y =ax 2+4x +c的图象交x轴于另一点B .(1)求二次函数的表达式;(2)连接BC,点N 是线段B C上的动点,作N D⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H 为二次函数y=ax 2+4x +c 图象的顶点,点M(4,m)是该二次函数图象上一点,在x 轴、y轴上分别找点F ,E,使四边形HEFM 的周长最小,求出点F ,E 的坐标. 温馨提示:在直角坐标系中,若点P,Q 的坐标分别为P(x1,y 1),Q(x 2,y2), 当PQ平行x 轴时,线段PQ 的长度可由公式PQ=|x1﹣x 2|求出;当PQ 平行y 轴时,线段PQ 的长度可由公式P Q=|y 1﹣y 2|求出.ﻬ2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A 、B 、C、D 四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是( )A.6 B.﹣6ﻩC.ﻩD.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A .2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2ﻩC.1.29×10﹣3 D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°ﻩB.52°ﻩC.76°ﻩD.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A. B. C.ﻩD.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.ﻩD.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分ﻩD.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4C.5ﻩD.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A.2cmﻩB.4cmﻩC.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A. B.C.ﻩD.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<bﻩC.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1 .【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15 .【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8 .【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150 ;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含10)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式; (2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,6,)23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DA B=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE ≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x 轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.,y2),温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2当PQ平行x轴时,线段PQ的长度可由公式PQ=|x﹣x2|求出;1当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y|求出.2【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B 点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为﹣n +5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段N D长度的最大值;(3)由题意可得二次函数的顶点坐标为H (2,9),点M 的坐标为M(4,5),作点H(2,9)关于y轴的对称点H 1,可得点H1的坐标,作点M(4,5)关于x 轴的对称点HM 1,可得点M1的坐标连结H 1M 1分别交x 轴于点F ,y 轴于点E,可得H 1M 1+HM 的长度是四边形HE FM 的最小周长,再根据待定系数法可求直线H 1M 1解析式,根据坐标轴上点的坐标特征可求点F 、E的坐标.【解答】解:(1)∵直线y =5x +5交x 轴于点A ,交y 轴于点C,∴A (﹣1,0),C (0,5), ∵二次函数y =ax 2+4x+c的图象过A,C 两点, ∴,解得, ∴二次函数的表达式为y=﹣x 2+4x+5;(2)如图1,∵点B 是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x 2+4x +5得,点B 的坐标B(5,0),设直线BC 解析式为y=kx +b,∵直线BC 过点B (5,0),C (0,5),∴, 解得,∴直线BC解析式为y=﹣x +5,设ND 的长为d ,N 点的横坐标为n,则N 点的纵坐标为﹣n +5,D点的坐标为D (n,﹣n2+4n +5),则d=|﹣n 2+4n +5﹣(﹣n +5)|,由题意可知:﹣n 2+4n +5>﹣n +5,∴d=﹣n 2+4n +5﹣(﹣n +5)=﹣n 2+5n=﹣(n﹣)2+,∴当n=时,线段ND 长度的最大值是; (3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H (2,9)关于y 轴的对称点H 1,则点H 1的坐标为H 1(﹣2,9),作点M(4,5)关于x轴的对称点HM 1,则点M 1的坐标为M 1(4,﹣5),连结H 1M1分别交x 轴于点F,y轴于点E,所以H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F 、E即为所求,设直线H 1M 1解析式为y=k 1x +b1,直线H 1M 1过点M 1(4,﹣5),H 1(﹣2,9),根据题意得方程组,。
2016学年贵州省贵阳中考数学年试题答案
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前湖北省武汉市2016年初中毕业生学业考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.的值在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间 2.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( )A .3x <B .3x >C .3x ≠D .3x = 3.下列计算中正确的是( )A .22a a a =B .222a a a =C .224(2)2a a =D .824632a a a ÷=4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球.下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++6.已知点(,1)A a 与点(5,)A b '关于坐标原点对称,则实数a ,b 的值是( )A .5a =,1b =B .5a =-,1b =C .5a =,1b =-D .5a =-,1b =- 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD8.某车间这些工人日加工零件数的众数、中位数、平均数分别是( )A .5,6,5B .5,5,6C .6,5,6D .5,6,69.如图,在等腰Rt ABC △中,AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )AB .πC .D .210.平面直角坐标系中,已知(2,2)A ,(4,0)B ,若在坐标轴上取点C ,使ABC △为等腰三角形,则满足条件的点C 的个数是( )A .5B .6C .7D .8第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.计算5(3)+-的结果为 .12.某市2016年初中毕业生人数约为63000,63000用科学记数法表示为 . 13.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .14.如图,在□ABCD 中,E 为边CD 上一点,将ADE △沿AE 折叠至AD E '△处,AD '与CE 交于点F .若52B =∠,20DAE =∠,则FED'∠的大小为 .15.将函数2y x b =+(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数|2|y x b =+(b 为常数)的图象,若该图象在直线2y =下方的点的横坐x 满足03x <<,则b 的取值范围为 .毕业学校_____________ 姓名________________考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)16.如图,在四边形A B C D 中,°90ABC =∠,3AB =,4BC =,10CD =,DA =则BD 的长为 .三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分) 解方程523(2)x x +=+.18.(本小题满分8分)如图,点B ,E ,C ,F ,在同一条直线上,AB DE =,AC DF =,BE CF =.求证:AB DE ∥.19.(本小题满分8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 ;(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本小题满分8分) 已知反比例函数4y x=. (1)若该反比例函数的图象与直线+4(0)y kx k =≠只有一个公共点,求k 的值; (2)如图,反比例函数4(14)y x x=≤≤的图象记为曲线1C ,将1C 向左平移2个单位长度,得曲线2C ,请在图中画出2C ,并直接写出1C 平移至2C 处所扫过的面积.21.(本小题满分8分)如图,点C 在以AB 为直径的O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交O 于点E .(1)求证:AC 平分DAB ∠;(2)连接BE 交AC 于点F ,若4cos 5CAD =∠,求AF FC的值.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种其中a 为常数,且35a ≤≤.(1)若产销甲、乙两种产品的年利润分别为1y 万元、2y 万元,直接写出1y ,2y 与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本小题满分10分)在ABC △中,P 为边AB 上一点.图1图2图3(1)如图1,若ACP B =∠∠,求证:2AC AP AB =; (2)若M 为CP 的中点,2AC =;①如图2,若PBM ACP =∠∠,3AB =,求BP 的长;②如图3,若45ABC =∠,60A BMP ==∠∠,直接写出BP 的长.24.(本小题满分12分)抛物线2y ax c =+与x 轴交于A B 、两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.图1图2(1)如图1,若(1,3)P -,(4,0)B . ①求该抛物线的解析式;②若D 是抛物线上一点,满足DPO POB =∠∠,求点D 的坐标; (2)如图2,已知直线PA ,PB 与y 轴分别交于E ,F 两点,当点P 运动时,OE OFOC+是否为定值?若是,试求出该定值;若不是,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2016年贵州省贵阳市中考数学试卷含答案
2016年贵州省贵阳市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下面的数,与-6的和为0的数是( )A .6B .-6C .61D .-61 2.空气的密度为0.001 29g/cm 3,0.001 29这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1 3.如图,直线a ∥b ,点B 在直线a 上,AB ⊥BC ,若∠1=38°,则∠2的度数为( )(第3题图)A .38°B .52°C .76°D .142°4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A .101B .51C .103D .52 5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )(第5题图)A B C D6.2016年6月4日~5日贵州省第九届“贵青杯”——“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的( )A .中位数B .平均数C .最高分D .方差7.如图,在△ABC 中,DE ∥BC ,31=AB AD ,BC =12,则DE 的长是( )(第7题图)A .3B .4C .5D .68.小颖同学在手工制作中,把一个边长为12 cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A .23cmB .43cmC .63cmD .83cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形可以大致描述蕊蕊妈妈行走的路线是( )(第9题图)A B C D10.若m ,n (n <m )是关于x 的一元二次方程1-(x -a )(x -b )=0的两个根,且b <a ,则m ,n ,b ,a 的大小关系是( )A .m <a <b <nB .a <m <n <bC .b <n <m <aD .n <b <a <m二、填空题(本题共5小题,每小题4分,共20分)11.不等式组⎩⎨⎧<<-84123x x ,的解集为 .12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数为 . 13.若点M (1,a )和点N (2,b )是一次函数y =-2x +1图像上的两点,则a 与b 的大小关系是 .14.如图,若⊙O 的半径为6 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,则tan ∠OP A 的值是 .(第14题图) 15.已知△ABC ,∠BAC =45°,AB =8,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 .三、解答题(本题共10小题,共100分)16.(8分)先化简,再求值:11121122-+÷+-+--a a a a a a ,其中a =2+1. 17.(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 .(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(10分)如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF .(1)求证:△ABF ≌△CBE .(2)判断△CEF 的形状,并说明理由.(第18题图) 19.(10分)某校为了了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分~150分,B等级:120分~135分,C等级:90分~120分,D等级:0分~90分)(1)此次抽查的学生人数为.(2)把条形统计图和扇形统计图补充完整.(3)若该校九年级有学生1 200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.(第19题图)20.(10分)为了加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价分别是多少元.(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1 550元,学校最多可以购买多少个足球?21.(8分)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1 790 m.如图,DE∥BC,BD=1 700 m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1 m)(第21题图)k 22.(10分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=x (x>0)的图像经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).求:(1)反比例函数的表达式;(2)点F的坐标.(第22题图)23.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,BD所围成区域的面积.(其中BD表示劣弧,结果保留π和根号)(第23题图)24.(12分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是.(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF.(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(第24题图)25.(12分)如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图像交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图像于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图像的顶点,点M(4,m)是该二次函数图像上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1-x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1-y2|求出.(第25题图)参考答案一、1.A 【分析】6与-6的和为0.故选A.2.C 【分析】0.001 29这个数用科学记数法可表示为1.29×10﹣3.故选C .3.B 【分析】如答图,∵AB ⊥BC ,∠1=38°,∴∠MBC =180°-90°-38°=52°.∵a ∥b , ∴∠2=∠MBC =52°.故选B .(第3题答图) 4.C 【分析】∵共有200辆车,其中帕萨特有60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率为20060=103.故选C . 5.C 【分析】从上面看时,圆柱是一个矩形,中间的木棒是虚线.故选C .6.A 【分析】共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选A .7.B 【分析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AB AD BC DE =31.∵BC =12,∴DE =31BC =4. 故选B .8.B 【分析】如答图,过点A 作BC 边上的垂线交BC 于点D ,过点B 作AC 边上的垂线交AD 于点O ,则O 为圆心.设⊙O 的半径为R ,由等边三角形的性质知,∠OBC =30°,OB =R .∴BD =cos ∠OBC • OB =23R ,∴BC =2BD =3R .∵BC =12 cm ,∴R =312=43(cm ).故选B .(第8题答图)9.B 【分析】由s 关于t 的函数图像可知,在图像AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,所以可以大致描述蕊蕊妈妈行走的路线是B .故 选B .10.D 【分析】如答图,抛物线y =(x -a )(x -b )与x 轴交于点(a ,0),(b ,0),抛物线与直线y =1的交点为(n ,1),(m ,1).由图像可知,n <b <a <m .故选D .(第10题答图)二、11.x <1 【分析】⎩⎨⎧<<-②.84①123x x , 由①,得x <1.由②,得x <2.故不等式组的解集为x <1. 12.15 【分析】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3, 所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数为0.3×50=15.所以估计这些卡片中绘有孙悟空这个人物的卡片张数为15张.13.a >b 【分析】∵在一次函数y =-2x +1中,k =-2,∴该函数中y 随着x 的增大而减小. ∵1<2,∴a >b .14.35 【分析】如答图,过点O 作OM ⊥AB 于点M ,则AM =BM =21AB =4(cm ),∴OM = AM OA 22-=4622-=25(cm ).∵PM =PB +BM =6(cm ),∴tan ∠OP A =PM OM =652=35.(第14题答图)15.x =42或x ≥8 【分析】如答图,过点B 作BD ⊥AC 于点D ,则△ABD 是等腰三角形;再延长AD 到点E ,使DE =AD .①当点C 和点D 重合时,△ABC 是等腰直角三角形,BC = 42,这个三角形是唯一确定的;②当点C 和点E 重合时,△ABC 也是等腰三角形,BC =8,这个三角形也是唯一确定的;③当点C 在线段AE 的延长线上时,即x 大于BE ,也就是x >8,这时,△ABC 也是唯一确定的.综上所述,∠BAC =45°,AB =8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是x =42或x ≥8.(第15题答图)三、16.解:原式=11)1(1122+--+--•a a a a a =1112---a a =11-a . 当a =2+1时,原式=22. 17.解:(1)0. 因为控制第二排灯的开关已坏,闭合开关时灯也不亮,所以将4个开关都闭合时,教室里所有灯都亮起的概率是0.(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图如答图:(第17题答图) 共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率为122=61. 18.(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°.∵△EBF 是等腰直角三角形,∠EBF =90°,∴BE =BF ,∴∠ABC -∠CBF =∠EBF -∠CBF ,∴∠ABF =∠CBE .在△ABF 和△CBE 中,⎪⎩⎪⎨⎧=∠=∠=,,,BE BF CBE ABF CB AB∴△ABF ≌△CBE (SAS ).(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180° -∠BFE =135°.又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,∴∠CEF =∠CEB -∠FEB =135° -45°=90°,∴△CEF 是直角三角形.19.解:(1)150.由题意可知,此次抽查的学生有36÷24%=150(人).(2)A 等级的学生人数是150×20%=30,B 等级所占的百分比是69÷150×100%=46%,D 等级所占的百分比是15÷150×100%=10%,故补全的条形统计图和扇形统计图如答图.(第19题答图)(3)1 200×(46%+20%)=792(人),答:估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.20.解:(1)设一个足球的单价为x 元,一个篮球的单价为y 元.根据题意,得⎩⎨⎧-==+,,92159y x y x 解得⎩⎨⎧==.56103y x , 答:一个足球的单价为103元,一个篮球的单价为56元.(2)设可购买足球m 个,则购买篮球(20 -m )个.根据题意,得103m +56(20 -m )≤1 550,解得m ≤9477. ∵m 为整数,∴m 最大取9.答:学校最多可以购买9个足球.21.解:如答图,过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M .由题意可知,EM ⊥AC ,DF =MC ,∠AEM =29°.在Rt △DFB 中,因为sin 80°=BDDF ,所以DF =BD • sin 80°. 所以AM =AC -CM =1 790 -1 700 • sin 80°.在Rt △AME 中,sin 29°=AE AM , 故AE =︒29sin AM =︒︒⨯-29sin 80sin 17001790≈238.9(m ). 答:斜坡AE 的长度约为238.9 m .(第21题答图)22.解:(1)∵反比例函数y =xk 的图像经过点A ,点A 的坐标为(4,2), ∴k =2×4=8,∴反比例函数的表达式为y =x 8. (2)如答图,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N .由题意可知,CN =2AM =4,ON =2OM =8,∴点C 的坐标为(8,4).设OB =x ,则BC =x ,BN =8-x .在Rt △CNB 中,x 2 -(8 -x )2=42,解得x =5.∴点B 的坐标为(5,0).设直线BC 的函数表达式为y =ax +b .∵直线BC 过点B (5,0),C (8,4),∴⎩⎨⎧=+=+,,4805b a b a 解得⎪⎩⎪⎨⎧-==.32034b a , ∴直线BC 的函数表达式为y =34x -320. 根据题意,得方程组⎪⎩⎪⎨⎧=-=,,x y x y 832034解得⎩⎨⎧-=-=81y x ,或⎪⎩⎪⎨⎧==.346y x , ∵点F 在第一象限,∴点F 的坐标为(6,34).(第22题答图)23.解:(1)如答图①,AP 即为所求的∠CAB 的平分线.(2)如答图②.∵AC =CD ,∴∠CAD =∠ADC .又∵∠ADC =∠B ,∴∠CAD =∠B .∵AD 平分∠CAB ,∴∠CAD =∠DAB =∠B .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠B =90°,∴3∠B =90°,∴∠B =30°.(3)由(2)知,∠CAD =∠BAD ,∠DAB =30°.又∵∠DOB =2∠DAB ,∴∠BOD =60°,∴∠OEB =90°.在Rt △OEB 中,OB =21AB =4,∴OE =21OB =2, ∴BE =OE OB 22-=2422-=23.∴△OEB 的面积为21OE • BE =21×2×23=23,扇形BOD 的面积为3604π602⨯=3π8. ∴线段ED ,BE ,BD 所围成区域的面积为3π8-23.① ②(第23题答图) 24.(1)2<AD <8.如答图①,延长AD 至点E ,使DE =AD ,连接BE .∵AD 是BC 边上的中线,∴BD =CD .在△BDE 和△CDA 中,⎪⎩⎪⎨⎧=∠=∠=,,,AD DE CDA BDE CD BD∴△BDE ≌△CDA (SAS ),∴BE =AC =6.在△ABE 中,由三角形的三边关系,得AB -BE <AE <AB +BE ,∴10-6<AE <10+6,即4<AE <16,∴2<AD <8.(2)证明:如答图②,延长FD 至点M ,使DM =DF ,连接BM ,EM .同(1)知,△BMD ≌△CFD (SAS ),∴BM =CF .∵DE ⊥DF ,DM =DF ,∴EM =EF .在△BME 中,由三角形的三边关系,得BE +BM >EM ,∴BE +CF >EF .(3)解:BE +DF =EF .理由如下:如答图③,延长AB 至点N ,使BN =DF ,连接CN .∵∠ABC +∠D =180°,∠NBC +∠ABC =180°,∴∠NBC =∠D .在△NBC 和△FDC 中,⎪⎩⎪⎨⎧=∠=∠=,,,DC BC D NBC DF BN∴△NBC ≌△FDC (SAS ),∴CN =CF ,∠NCB =∠FCD .∵∠BCD =140°,∠ECF =70°,∴∠BCE +∠FCD =70°,∴∠ECN =70°=∠ECF .在△NCE 和△FCE 中,⎪⎩⎪⎨⎧=∠=∠=,,,CE CE ECF ECN CF CN∴△NCE ≌△FCE (SAS ),∴EN =EF .∵BE +BN =EN ,∴BE +DF =EF .① ② ③(第24题答图)25.解:(1)∵直线y =5x +5交x 轴于点A ,交y 轴于点C ,∴A (-1,0),C (0,5).∵二次函数y =ax 2+4x +c 的图像过A ,C 两点,∴⎩⎨⎧=+-=,,540c c a 解得⎩⎨⎧=-=.51c a , ∴二次函数的表达式为y =-x 2+4x +5.(2)∵点B 是二次函数的图像与x 轴的交点,∴由二次函数的表达式为y =-x 2+4x +5,得点B 的坐标为(5,0).设直线BC 的表达式为y =kx +b .∵直线BC 过点B (5,0),C (0,5),∴⎩⎨⎧==+,,505b b k 解得⎩⎨⎧=-=.51b k , ∴直线BC 的表达式为y =-x +5.设ND 的长为d ,N 点的横坐标为n ,则N 点的纵坐标为-n +5,D 点的坐标为(n ,-n 2+4n +5).∴d =|-n 2+4n +5-(-n +5)|.由题意可知,-n 2+4n +5>-n +5,∴d =-n 2+4n +5-(-n +5)=-n 2+5n =-(n -25)2+425, ∴当n =25时,线段ND 长度的最大值是425. (3)由题意可知,二次函数的顶点坐标为H (2,9),点M 的坐标为(4,5). 如答图,作点H (2,9)关于y 轴的对称点H 1,则点H 1的坐标为(-2,9),作点M (4,5)关于x 轴的对称点M 1,则点M 1的坐标为(4,-5).连接H 1M 1分别交x 轴于点F ,y 轴于点E ,则H 1M 1+HM 的长度是四边形HEFM 的最小周长,则点F ,E 即为所求.设直线H 1M 1的表达式为y =k 1x +b 1.∵直线H 1M 1过点M 1(4,-5),H 1(-2,9),∴⎩⎨⎧+-=+=-,,b k b k 11112945 解得⎪⎩⎪⎨⎧=-=.3133711b k , ∴直线H 1M 1的表达式为y =-37x +313. ∴点F ,E 的坐标分别为(713,0)(0,313).(第25题答图)。
2016年贵州省贵阳市中考数学试卷
一、选择题:以下每小题均有 A、B、C、D 四个选项,其中只有一个选项正确,请用 2B 铅笔在答题卡上填涂正确选项的字母框,每小题 3 分,共 30 分.
1.(3 分)(2016•贵阳)下面的数中,与﹣6 的和为 0 的数是( )
A.6 B.﹣6 C. D.﹣
两个根,且 b<a,则 m,n,b,a 的大小关系是 ( ) A.m<a<b<n B.a<m<n<b C.b<n<m<a 二、填空题:每小题 4 分,共 20 分
D.n<b<a<m
11.(4 分)(2016•贵阳)不等式组
的解集为______.
12.(4 分)(2016•贵阳)现有 50 张大小、质地及背面图案均相同的《西游记》人物卡 片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放 回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为 0.3.估 计这些卡片中绘有孙悟空这个人物的卡片张数约为______.
25.(12 分)(2016•贵阳)如图,直线 y=5x+5 交 x 轴于点 A,交 y 轴于点 C,过 A,C 两 点的二次函数 y=ax2+4x+c 的图象交 x 轴于另一点 B. (1)求二次函数的表达式; (2)连接 BC,点 N 是线段 BC 上的动点,作 ND⊥x 轴交二次函数的图象于点 D,求线 段 ND 长度的最大值; (3)若点 H 为二次函数 y=ax2+4x+c 图象的顶点,点 M(4,m)是该二次函数图象上一 点,在 x 轴、y 轴上分别找点 F,E,使四边形 HEFM 的周长最小,求出点 F,E 的坐标. 温馨提示:在直角坐标系中,若点 P,Q 的坐标分别为 P(x1,y1),Q(x2,y2), 当 PQ 平行 x 轴时,线段 PQ 的长度可由公式 PQ=|x1﹣x2|求出; 当 PQ 平行 y 轴时,线段 PQ 的长度可由公式 PQ=|y1﹣y2|求出.
2016年贵州省贵阳市中考数学试卷(含答案与解析)
绝密★启用前贵州省贵阳市2016年初中毕业生学业考试数学本试卷满分150分,考试时间120分钟.第I卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与6-的和为0的数是()A.6B.6-C.16D.16-2.空气的密度为30.00129g/cm,0.00129这个数用科学记数法可表示为()A.20.12910-⨯B.21.2910-⨯C.31.2910-⨯D.112.910-⨯3.如图,直线a b∥,点B在直线a上,AB BC⊥.若1=38∠,则2∠的度数为 ( )A.38B.52C.76D.1424.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神舟专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.110B.15C.310D.255.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是 ()A B C D6.2016年6月4—5日贵州省第九届“贵青杯”—“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖.某代表队已经知道了自己的成绩,他们想要知道自己是否获奖,只需再知道这45支队成绩的-()A.中位数B.平均数C.最高分D.方差7.如图,在ABC△中,DE BC∥,13ADAB=,12BC=.则DE的长是( )A.3B.4C.5D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cmB.43cmC.63cmD.83cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回到家.图中的折线段OA AB BC——是她出发后所在位置离家的距离(km)s与行走时间(min)t之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A B C D10.若m,n()n m<是关于x的一元二次方程1()()0x a x b---=的两个根,且b a<,则m,n,b,a的大小关系是()A.m a b n<<<B.a m n b<<<C.b n m a<<<D.n b a m<<<毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷第2页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.不等式组321,48x x -⎧⎨⎩<<的解集为 .12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .13.已知点(1,)M a 和点(2,)N b 是一次函数21y x =-+图象上的两点,则a 与b 的大小关系是 .14.如图,已知O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,=2cm BP ,则tan OPA ∠的值是 .15.已知ABC △,45BAC ∠=,8AB =要使满足条件的ABC △唯一确定,那么BC 边长度x 的取值范围为 .三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分) 先化简,再求值:22111211a a a a a a ++-÷--+-,其中21a .17.(本小题满分10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(本小题满分10分)如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点.EBF △是等腰直角三角形,其中90EBF =∠,连接CE ,CF . (1)求证:ABF CBE △≌△;(2)判断CEF △的形状,并说明理由.19.(本小题满分10分)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图.请根据统计图中的信息解答下列问题:(说明:A 等级:135分~150分,B 等级:120分~135分,C 等级:90分~120分, D 等级:0分~90分)(1)此次抽查的学生人数为 ; (2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(本小题满分10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛.为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球的2倍少9元. (1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(本小题满分8分) -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第6页(共22页)“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观平台DE观景,然后再沿着坡角为29的斜坡由E步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE BC∥,1700mBD=,80DBC=∠.求斜坡AE的长度.(结果精确到0.1m)22.(本小题满分10分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数(0)ky xx=>的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(本小题满分10分)如图,O是ABC△的外接圆,AB是O的直径,8AB=.(1)利用尺规,作CAB∠的平分线,交O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC CD=,求B∠的度数;(3)在(2)的条件下,OD交BC于点E.求由线段ED,BE,BD所围成区域的面积.(其中BD表示劣弧.结果保留π和根号)24.(本小题满分12分)(1)阅读理解:如图1,在ABC△中,若10AB=,6AC=,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE AD=,再连续BE(或将ACD△绕着点D逆时针旋转180得到EBD△).把AB,AC,2AD集中在ABE△中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)解决问题:如图2,在ABC△中,D是BC边上的中点,DE DF⊥于点D,DE交AB于点E,DF交AC于点F.求证:BE CF EF+>;(3)问题扩展:如图3,在四边形ABCD中,180B D+=∠∠,CB CD=,140BCD=∠,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.图1图2图325.(本小题满分12分)如图,直线55y x=+交x轴于点A,交y轴于点C,过A,C两点的二次函数24y ax x c=++的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND x⊥轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数24y ax x c=++图象的顶点,点(4,)M m是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为11(,)P x y,22(,)Q x y,当PQ平行x轴时,线段PQ长度可由公式12||PQ x x=-求出;当PQ平行y轴时,线段PQ的长度可由公式12||PQ y y=-求出.毕业学校_____________姓名________________考生号_____________________________________________数学试卷第5页(共22页)b,∴2MBC52∠=∠=︒;故选B.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷第9页(共22页) 数学试卷 第10页(共22页)【提示】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题. 【考点】三角形的外接圆与外心,等边三角形的性质 9.【答案】B【解析】观察s 关于t 的函数图象,发现:在图象AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.【提示】根据给定s 关于t 的函数图象,分析AB 段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论. 【考点】函数的图象 10.【答案】D【解析】如图抛物线y (x a)(x b)=--与x 轴交于点(a,0),(b,0),抛物线与直线y 1=的交点为(n,1),(m,1),由图象可知,n b a m <<<;故选D.【提示】利用图象法,画出抛物线y (x a)(x b)=--与直线y 1=,即可解决问题. 【考点】抛物线与x 轴的交点第Ⅱ卷二、填空题 11.【答案】x 1<【解析】解第一个不等式得x 1<,解第二个不等式得x 2<;故不等式组的解集为:x 1<;【解析】作OM AB ⊥于M ,如图所示:1使△ABC唯一确定,那么BC的长度x满足的条件是:x42x8=≥或.2a12a1a-=+-==212(2)用A1、A2、A3、A4分别表示第一排、第二排、第三批、第四排日光灯,数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴ABF CBE ∠=∠.在△ABF 和△CBE 中,有AB CB ABF CBE BF BE =⎧⎪∠=∠⎨⎪=⎩,∴ABF CBE(SAS)△≌△.(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴BFE FEB 45∠=∠=︒,∴AFB 180BFE 135∠=︒-∠=︒, 又∵ABF CBE △≌△,∴CEB AFB 135∠=∠=︒,∴CEF CEB FEB 1354590∠=∠-∠=︒-︒=︒,∴△CEF 是直角三角形.【提示】(1)由四边形ABCD 是正方形可得出AB CB =,ABC 90∠=︒,再由△EBF 是等腰直角三角形可得出BE BF =,通过角的计算可得出ABF CBE ∠=∠,利用全等三角形的判定定理SAS 即可证出ABF CBE △≌△;(2)根据△EBF 是等腰直角三角形可得出BFE FEB ∠=∠,通过角的计算可得出AFB 135∠=︒,再根据全等三角形的性质可得出CEB AFB 135∠=∠=︒,通过角的计算即可得出CEF 90∠=︒,从而得出△CEF 是直角三角形. 【考点】正方形的性质,全等三角形的判定与性质,等腰直角三角形 19.【答案】(1)由题意可得,此次抽查的学生有:3624%150÷=(人), 故答案为:150; (2)如图所示:A 等级的学生数是:15020%30⨯=,B 等级占的百分比是:69150100%46%÷⨯=, D 等级占的百分比是:15150100%10%÷⨯=, 故补全的条形统计图和扇形统计图如右图所示, (3)1200(46%20%)792⨯+=(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人. 【提示】(1)根据统计图可知,C 等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A 等级的学生数,B 等级和D 等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图,用样本估计总体,扇形统计图20.【答案】(1)一个足球的单价103元,一个篮球的单价56元 (2)学校最多可以买9个足球【解析】(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得x y 159x 2y 9+=⎧⎨=-⎩,解得:x 103y 56=⎧⎨=⎩,答:一个足球的单价103元,一个篮球的单价56元;数学试卷 第15页(共22页) 数学试卷 第16页(共22页)BD sin80︒, 1700sin80︒,AE1700sin80238.9m 29︒≈︒答:斜坡AE 的长度约为238.9m .3数学试卷 第17页(共22页) 数学试卷 第18页(共22页)23.【答案】(1)如图所示,AP 即为所求的∠CAB 的平分线;∴B 30∠=︒;1OE BE 22=⨯2π48π3603=,OE BE 23=故答案为:2AD 8<<数学试卷 第19页(共22页) 数学试卷 第20页(共22页)(3)解:BE DF EF +=;理由如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示:∵ABC D 180∠+∠=︒,NBC ABC 180∠+∠=︒,∴NBC D ∠=∠,在△NBC 和△FDC 中,BN DF NBC D BC DC =⎧⎪∠=∠⎨⎪=⎩,∴NBC FDC(SAS)△≌△,∴CN CF =,NCB FCD ∠=∠, ∵BCD 140∠=︒,ECF 70∠=︒,∴BCE FCD 70∠+∠=︒ , ∴ECN 70ECF ∠=︒=∠,在△NCE 和△FCE 中,CN CF ECN ECF CE CE =⎧⎪∠=∠⎨⎪=⎩,∴NCE FCE(SAS)△≌△,∴EN EF =, ∵BE BN EN +=,∴BE DF EF +=.【提示】(1)延长AD 至E ,使DE AD =,由SAS 证明ACD EBD △≌△,得出BE AC 6==,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围; (2)延长FD 至点M ,使DM DF =,连接BM 、EM ,同(1)得BMD CFD △≌△,得出BM CF =,由线段垂直平分线的性质得出EM EF =,在△BME 中,由三角形的数学试卷 第21页(共22页) 数学试卷 第22页(共22页)【考点】二次函数综合题。
2016年贵州省贵阳市中考数学试卷
上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为
()
A. 2 3 cm
B. 4 3 cm
C. 6 3 cm
D. 8 3 cm
9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了 60 min 后回到
家.图中的折线段 OA—AB—BC 是她出发后所在位置离家的距离 s (km) 与行走时间
()
C. b<n<m<a
D. n<b<a<m
数学试卷 第 2 页(共 6 页)
第Ⅱ卷(非选择题 共 120 分)
二、填空题(本大题共 5 小题,每小题 4 分,共 20 分.请把答案填在题中的横线上)
11.不等式组
3x 2<1, 4x<8
的解集为
.
12.现有 50 张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面
绝密★启用前
在
贵州省贵阳市 2016 年初中毕业生学业考试
数学
本试卷满分 150 分,考试时间 120 分钟.
此
第 I 卷(选择题 共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有 一项是符合题目要求的)
卷
1.下面的数中,与 6 的和为 0 的数是
上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通
过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为 0.3 ,估计这些卡片中
绘有孙悟空这个人物的卡片张数约为
.
13.已知点 M (1,a) 和点 N(2,b) 是一次函数 y 2x 1图象上的两点,则 a 与 b 的大小关
数学试卷 第 6 页(共 6 页)
2016年贵州省贵阳市中考数学试题(含解析)-推荐
2016年贵州省贵阳市中考数学试卷、选择题:以下每小题均有 A 、B 、C 、D 四个选项,其中只有一个选项正确,请用 填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与-6的和为0的数是( )A . 6B . - 6 C. - D . - r0.00129g/cm 3, 0.00129这个数用科学记数法可表示为(B . 1.29X 10-2C . 1.29X 10-3D . 12.9X 10「13.如图,直线 a // b ,点B 在直线a 上,AB 丄BC ,若/ 1=38 °则/ 2的度数为(4. 2016年5月,为保证 中国大数据产业峰会及中国电子商务创新发展峰会 ”在贵阳顺利召开,组委会决 定从神州专车”中抽调200辆车作为服务用车,其中帕萨特 60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )丄 国2A.10 B .5 C.10 D. 55•如图是一个水平放置的圆柱形物体,中间有一细棒,6. 2016年6月4日-5日贵州省第九届 贵青杯”-乐韵华彩”全省中小学生器乐交流比赛在省青少年活动 中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前 23名获奖,某代表队已经知道了自己的成 绩,他们想知道自己是否获奖,只需再知道这 45支队成绩的( )9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了 60min 后回家,图中的折线段 OA - AB - BC 是她出发后所在位置离家的距离 s ( km )与行走时间t ( min )之间的函数关系,则下列图1422B 铅笔在答题卡上2.空气的密度为 -2A . 0.129X 10则此几何体的俯视图是(A .中位数B .平均数C .最高分AD丽D .方差 丄,BC=12,则DE 的长是(&小颖同学在手工制作中,把一个边长为 个顶点恰好都在这个圆上,则圆的半径为(A . 2 cmB . 4 cmC . 6- cm12cm 的等边三角形纸片贴到一个圆形的纸片上, 若三角形的三DE // BC ,形中可以大致描述蕊蕊妈妈行走的路线是()a 的大小关系是( )A . m v ab v nB . a v m v n v bC . b v n v m v aD . n v b v a v m二、填空题:每小题 4分,共20分pK- 2<111.不等式组〔4x<-s的解集为12 .现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机 抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟 空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为13. 已知点M( 1,a)和点N( 2,b)是一次函数y= - 2x+1图象上的两点,则a 与b 的大小关系是 14. 如图,已知O O 的半径为6cm ,弦AB 的长为8cm , P 是AB 延长线上一点,BP=2cm ,贝U tan / OPABAC=45 ° AB=8,要使满足条件的△ ABC 唯一确定,那么 BC 边长度x 的取值范围三、解答题:本大题 10小题,共100分•2__ 話!16.先化简,再求值:-"■十 I ,其中a=「.17. 教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制 第二排灯的开关已坏(闭合开关时灯也不亮) (1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2) 在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯, 于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18 .如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△ EBF 是等腰直角三角形, 其中/ EBF=90 ° 连接CE 、CF .(1) 求证:△ ABF ◎△ CBE ;(2) 判断△ CEF 的形状,并说明理由.b v a ,贝U m , n , b ,)(x - b ) =0的两个根,且 的值是 15 .已知△ ABC , /为D C19•某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C, D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图, 请根据统计图中的信息解答下列问题:(说明:A等级:135分-150分B等级:120分-135分,C等级:90分-120分,D等级:0分-90 分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.M吒年适应性考试数学应缰20直年适应性考试数学成饋条爾计底扇形琳计图A B C D等飯20 •为加强中小学生安全和禁毒教育,某校组织了防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20 个, 元,学校最多可以购买多少个足球?21 .蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚然后再沿着坡脚为29°勺斜坡由E点步行到达蘑菇石”A点,/ DBC=80 °,求斜坡但要求购买足球和篮球的总费用不超过1550 B点先乘坐缆车到达观景平台DE观景, 蘑菇石”A点到水平面BC的垂直距离为AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4, 2).(1)求反比例函数的表达式;(x> 0)的图象经过23. 如图,O O是厶ABC的外接圆,AB是O O的直径,AB=8 .利用尺规,作/ CAB 的平分线,交O O 于点D ;(保留作图痕迹,不写作法) 在(1)的条件下,连接 CD , OD ,若AC =CD ,求/ B 的度数;在(2)的条件下,OD 交BC 于点E ,求由线段ED , BE ,'^所围成区域的面积.(其中表示劣弧,(1)(2) (3) 如图①,在△ ABC 中,若AB=10 , AC=6,求BC 边上的中线 AD 的取值范围.解决此问题可以用如下方法:延长 AD 到点E 使DE=AD ,再连接BE (或将△ ACD 绕着点D 逆时针旋转 180°得到△ EBD ),把AB 、AC , 2AD 集中在△ ABE 中,利用三角形三边的关系即可判断. 中线AD 的取值范围是 (2) 问题解决: 如图②,在△ ABC 中,D 是BC 边上的£圜①25.如图,直线y=5x+5交x 轴于点A ,交y 轴于点C ,过A , C 两点的二次函数y=ax 2+4x+c 的图象交x 轴于另一点B .(1) 求二次函数的表达式; (2)连接BC ,点N 是线段BC 上的动点,作 ND 丄x 轴交二次函数的图象于点 D ,求线段ND 长度的最 大值;(3)若点H 为二次函数y=ax 2+4x+c 图象的顶点,点 M (4, m )是该二次函数图象上一点,在 x 轴、y 轴 上分别找点F , E ,使四边形HEFM 的周长最小,求出点 F , E 的坐标. 温馨提示:在直角坐标系中,若点P , Q 的坐标分别为P ( x i , y l ) , Q ( x 2, y 2),当PQ 平行x 轴时,线段PQ 的长度可由公式 PQ=|X 1-X 2|求出;PQ 的长度可由公式 PQ=| y 1 - y 2|求出.圍② E圏③2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与-6的和为0的数是()A. 6 B . - 6 C. D. - r【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与-6的和为0的是-6的相反数6.故选A .2.空气的密度为0.00129g/cm3, 0.00129这个数用科学记数法可表示为()A. 0.129X 10 2 B . 1.29 X 10 2 C . 1.29 X 10 3 D . 12.9X 10 1【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10-n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为 1.29X 10-3.AB丄BC,若/仁38°则/ 2的度数为(故选:C .【考点】平行线的性质.【分析】由平角的定义求出/ MBC的度数,再由平行线的性质得出/ 2= / MBC=52。
【中考真题】2016年贵州省贵阳市中考数学试卷含答案解析
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA ﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a 的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA ﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a 的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x 轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,∴d=﹣n2+4n+5﹣(﹣n+5)=﹣n2+5n=﹣(n﹣)2+,∴当n=时,线段ND长度的最大值是;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C. D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含12020.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2016年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C. D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,。