2017-2018上海市长宁区中考一模数学试卷(含答案)2018.01-(1)
最新届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ ) (A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ )(A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ;(C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )//; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ .10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC 于点E 、F ,且23=EC AE .(1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示EF .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =,联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.A;2.D;3.B;4.A;5.C;6.D.二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,与方向相反 ∴a CF 53-= (2分)同理:b EC 52=(2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分) ∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分)∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分)∴)13(8+=x (1分)∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2018届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.第2题图AB CDE 第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D AG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F EDABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EP D CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
<合集试卷5套>2018年上海市长宁区中考数学综合测试试题
【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.
详解:连接OC,
由圆周角定理得,∠COD=2∠A=64°,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠D=90°-∠COD=1°,
故答案为:1.
点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
【答案】
【解析】试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率= ,
故答案为 .
17.如果正比例函数 的图像经过第一、三象限,那么 的取值范围是__.
【答案】k>1
【解析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.
∴B1(2,0),
∴A1(2,2).
∵点A1在函数 (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为 ,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征,坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
【答案】28
【解析】设这种电子产品的标价为x元,
由题意得:0.9x−21=21×20%,
解得:x=28,
所以这种电子产品的标价为28元.
故答案为28.
16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 ,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
故选B.
5.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式 的解集为( )
2017长宁初三数学一模
2017长宁区数学一模(满分 150分, 完成时间 100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在平面直角坐标系中,抛物线()212+--=x y 的顶点坐标是( ▲ )A .()1,2-;B .()2,1;C .)(1,2-;D .()1,2.2.在△ABC 中,∠C =90°,AB =5,BC =4,那么A ∠的正弦值是( ▲ )A .43; B .34; C .53; D .54.3.如图,下列能判断BC ∥ED 的条件是( ▲ )A .ED AD BC AB = ; B .ACAEBC ED =;C .AC AE AB AD = ; D .AEAC AB AD =. 4.已知⊙1O 与⊙2O 的半径分别是2和6,若⊙1O 与⊙2O 相交,那么圆心距21O O 的取值范围是( ▲ ) A .4221<<O O ; B .6221<<O O ; C .8421<<O O ; D .10421<<O O . 5.已知非零向量与,那么下列说法正确的是( ▲ )A =,那么b a =;B -=b a // ;C .如果//=;D .如果-==.6.已知等腰三角形的腰长为6 cm ,底边长为4 cm ,以等腰三角形顶角的顶点为圆心5 cm 为半径画圆,A BEC D第3题图第18题图ACB那么该圆与底边的位置关系是( ▲ )A .相离;B .相切;C .相交;D .不能确定. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.如果y x 43=(0x ≠),那么=yx▲ . 8.已知二次函数12-2+=x x y ,那么该二次函数图像的对称轴是 ▲ . 9.已知抛物线c x x y ++=23与y 轴的交点坐标是()3,0-,那么c = ▲ .10.已知抛物线x x y 3-21-2=经过点()m 2,-,那么m = ▲ . 11.设α是锐角,如果αtan =2,那么αcot = ▲ .12.在直角坐标平面中,将抛物线22x y =先向上平移1个单位,再向右平移1个单位,那么平移后的 抛物线解析式是 ▲ .13.已知⊙A 的半径是2,如果B 是⊙A 外一点,那么线段AB 长度的取值范围是 ▲ . 14.如图,点G 是△ABC 的重心,联结AG 并延长交BC 于点D ,GE//AB 交BC 于E ,若AB=6, 那么GE= ▲ .15.如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角 仪AD 的高度为1.5米,那么旗杆BC 的高度为 ▲ 米.16.如图,⊙O 1与⊙O 2相交于A 、B 两点,⊙O 1与⊙O 2的半径分别是1O O =122,那么两圆 公共弦AB 的长为 ▲ .17.如图,在梯形ABCD 中,AD//BC ,AC 与BD 交于O 点,DO : BO =1:2,点E 在CB 的延长线上,如果3:1:=∆∆ABE AOD S S ,那么BC :BE= ▲ . 18.如图,在△ABC 中,∠C =90°,AC =8,BC =6.D 是AB 的中点, 点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A'处,GEDCBA第14题图D CBA第15题图第17题图A第16题图第20题图当A'E ⊥AC 时,A'B = ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:21tan 45sin 30tan 30cos 60cot 303sin 45⋅-⋅+.20.(本题满分10分第(1)小题满分4分,第(2)小题满分6分) 如图,在△ABC 中,D 是AB 的中点,联结CD . (1)若AB =10且∠ACD =∠B ,求AC 的长;(2)过D 点作BC 的平行线交AC 于点E ,设=,DC =b ,请用向量、表示和AB (直接写出结果).21.(本题满分10分第(1)小题满分5分,第(2)小题满分5分)如图,在△ABC 中,CD ⊥AB 于点D ,⊙D 经过点B ,与BC 交于点E ,与AB 交于点F . 已知21tan =A ,3cot 4ABC ∠=,AD =8. 求(1)⊙D 的半径; (2)CE 的长.第23题图22.(本题满分10分第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB//CD ,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC 的坡角为30°,坝底宽AB 为(328+)米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG//BE 且与AE 交于点G . (1)求证:GF =BF ;(2)在边BC 边上取点M ,使得BM =BE ,联结AM 交DE 于点O .求证:EF OD ED FO ⋅=⋅.第22题图24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线c bx x y ++-=22与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知()0,2A .(1)当()0,4-B 时,求此抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当OAP ∠tan =3时,求此抛物线的解析式; (3)O 为坐标原点,以A 为圆心OA 长为半径画⊙A ,以点C 为圆心、OC 21长为半径画⊙C .当⊙A 与⊙C 外切时,求此抛物线的解析式.第24题图第25题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分) 已知△ABC ,AB=AC=5,BC=8.∠PDQ 的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合).设∠PDQ =∠B ,BD =3. (1)求证:△BDE ∽△CFD ;(2)设BE =x ,OA =y ,求y 关于x 的函数关系式,并写出定义域; (3)当△AOF 是等腰三角形时,求BE 的长.第25题备用图初三数学参考答案和评分建议(2017.1)一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.C ; 5.D ; 6.A . 二.填空题:(本大题共12题,满分48分) 7.34; 8.直线1=x ; 9.3-; 10.4; 11.12; 12.()1122+-=x y ;13.2>AB ; 14.2; 15.5.136+; 1617.1:2; 18.2或27.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=211112332⨯-⨯⎝⎭(6分)266=-+2= (4分) 20.(本题满分10分,第(1)题4分,第(2)题6分)解:(1) ∵10=AB 点且D 是AB 的中点 ∴AD =5 (1分) ∵B ACD ∠=∠ A A ∠=∠ ∴ACD ∆∽ABC ∆ (1分) ∴ACAD AB AC =∴AD AB AC ⋅=2(1分) ∴25105=⨯=AC . (1分)(2)b a AC 22+-=, b a AB 24+-= (6分) 21.(本题满分10分,第(1)题5分,第(2)题5分) 解:(1)∵CD ⊥AB AD =8 1tan 2A = 在Rt∆ACD 中21tan ==AD CD A AD =8 得 CD =4 (2分) 在Rt ∆CBD 中43cot ==∠CD BD ABC BD =3 (2分)∴⊙D 的半径为3. (1分)(2)过圆心D 作DH ⊥BC ,垂足为H . ∴BH =EH (1分) 在Rt ∆CBD 中=90CDB ∠︒5BC ==,53cos ==∠BC BD ABC (1分)在Rt ∆BDH 中 =90BHD ∠︒ 53cos ==∠BD BH ABC BD =3 得BH =59(1分) ∵BH =EH ∴BE =2BH =518 (1分) ∴CE =BC -BE =575185=- .(1分)22.(本题满分10分,第(1)题5分,第(2)题5分)解: 据题意得6=DC 米,2=DG 米,30=∠ABC ,()328+=AB 米,AB DG ⊥;(1)过点C 作AB CH ⊥垂足为H . ∵AB CH ⊥ AB DG ⊥ ∴90=∠=∠CHA DGA∴CH DG //又∵四边形ABCD 为梯形 ∴AB DC //∴四边形DGHC 为矩形 (1分)∴6==CD GH 2==CH DG (1分) 在CHB ∆Rt 中 3cot ==∠CHBHB ∴32=BH (1分) ∴()2326328=--+=AG (1分)∴在ADG Rt ∆中 122tan ===AG DG A 即背水坡AD 的坡度为1 (1分) (2)据题意得 BH EF ⊥ BH MN ⊥ ME =6 MN =EF =4 1tan =H 由(1)同理可得 四边形MEFN 为矩形 (1分) ∴4==EF MN 6==NF ME (1分)在HNM ∆Rt 与EFB ∆Rt 中 1tan ==HN MN H 3c o t ==EFBFB ;∴4=HN 34=BF (1分)∴34103464+=++=++=BF NF HN BH . (1分)答:背水坡AD 的坡度为1,加高后坝底HB 的长度为()3410+米.(1分) 23.(本题满分12分,第(1)题6分,第(2)题6分) 证明:(1)∵四边形ABCD 为正方形∴BC AD // CD AB // CD AD = (1分)又∵BE GF // 即BC GF // ∴AD GF // (1分)∴EDEFAD GF = (1分) ∵CD AB // ∴ED EF CD BF = (1分) ∴CDBFAD GF =(1分) 第22题图∵CD AD = ∴BF GF =. (1分) (2)延长GF 交AM 于点H . ∵BC GF // ∴BC FH // ∴AB AF BE GF = ABAFBM FH =(1分) ∴BMFHBE GF =(1分) ∵BE BM = ∴FH GF = (1分)∵AD GF //即AD FH // ∴AD GF ED EF = ODFOAD FH =(1分) ∴AD FH ED EF = (1分) ∴OD FO ED EF = ∴EF OD ED FO ⋅=⋅. (1分)24.(本题满分12分,第(1)题4分,第(2)题4分,第(3)题4分) 解:(1)把点()0,2A 、()0,4-B 代入得 4401680b c b c -++=⎧⎨--+=⎩; (2分)解得 1-=b 8=c (1分)∴抛物线解析式为 822+--=x x y . (1分) (2)设对称轴与x 轴的交点为H .把点()0,2A 代入解析式c bx x y ++-=22得c b 0++-=44 ①()c b x c bx x y ++=++-=222b --2 P (c b b +2,)在Rt ∆PHA 中 PH =c b +2AH =2-b3tan ==∠AHPHOAP 代入得322=-+b c b ② ①②联立得⎪⎩⎪⎨⎧=+=++3-2044-2bc b c b (2分)解得 ⎩⎨⎧==-4211c b (不合题意,舍)⎩⎨⎧==81-22c b (1分)∴抛物线的解析式为 822+--=x x y . (1分) (3)由题意得C 点坐标为()c ,0(0c >)c OC 2121=()0,2A OA =2 ∴24c AC += 当两圆外切时242c 21c AC +=+= 解得2242c c +=+ 解得381=c ,02=c (不符合题意,舍去) (2分) 此时抛物线解析式为3822++-=bx x y 代入()0,2A 解得31=b (1分)所以抛物线解析式为 22833y x x =-++. (1分)25.(本题满分12分,第(1)题4分,第(2)题4分,第(3)题6分) 解:(1)∵在ABC ∆中 AC AB = ∴C B ∠=∠ (1分)∵BED B EDC ∠+∠=∠ (1分) ∴BED B EDO FDC ∠+∠=∠+∠; ∵B EDO ∠=∠ ∴FDC BED ∠=∠ (1分) 又∵C B ∠=∠ ∴BDE ∆∽CFD ∆. (1分) (2)过点D 作AB DM //交AC 于点M . ∵BDE ∆∽CFD ∆ ∴BDFC BE CD =∵8=BC 3=BD x BE = ∴x FC 53= ∴x FC 15= (1分) ∵AB DM //∴CB CD AB DM =即855=DM ∴825=DM ∵AB DM // ∴MDC B ∠=∠ ∴C MDC ∠=∠∴825==DM CM 82515-=x FM ∵AB DM //∴FMAFDM AO =即82515515825--=x x y (1分) ∴xxy 5242575--=()30<<x . (2分) (3)① 当AF AO =时.由(2)可知xx y AO 5242575--== AF =FC - AC =515-xB CDE FO A MP QNE DBCAG OF x x 5242575--=5-15x 解得512=x (2分)②当FA FO =时易证:815==AM DO作AB DH ⊥垂足为H .512543cos =⨯=∠⋅=B BD BH59533sin =⨯=∠⋅=B BD DH ∴402122=-=DH OD HO∴4083=--=HO BH AB OA由(2)得x x y 5242575--=即x x52425754083--=解得 65112=x 即65112=BE . (2分)③当OF OA =时设DP 与CA 的延长线交于点N . ∴OFA OAF ∠=∠ 易证ANE C B ∠=∠=∠ ABC ∆≌CDN ∆∴8==BC CN 5=ND ∴3=AN易证BDE ∆≌NAE ∆∴x BE NE == x ED -=5 作BC EG ⊥垂足为G . 易知x BG 54=x EG 53= ∴()22535⎪⎭⎫⎝⎛--=x x GD ∴+=+x GD BG 54()353522=⎪⎭⎫⎝⎛--x x ∴31340>=x (舍去) (2分) 综上所述,当OAF ∆是等腰三角形时815=BE 或65112=BE . 第(3)题 另解:① 当AF AO =时. 当AF AO =时AMO CH E D B F∴EOD AOF AFO ∠=∠=∠又∵BDE ∆∽CFD ∆ ∴AFO BDE ∠=∠又∵EDF B ∠=∠ ∵o180=∠+∠+∠+∠EOD EDO BDE B ∴o90=∠+∠=∠+∠EOD EDO EDO BDE ∴512543cos =⨯=∠⋅=B BD BE . ②当FA FO =时作AG ⊥BC 于点G ,BH ⊥AC 于点H , FR ⊥AO 于点R . OR=AR 通过计算BH AC AG BC ABC ⋅=⋅=∆2121S 得524=BH 57=AH在Rt △ABH 中 257cos =∠BAH在Rt △AFR 中AFAO AF AR RAF 21257cos ===∠ 解得 65112=x 。
2017年上海中学中考数学一模试卷(含解析)
2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n,B n,等腰△A n B n﹣1B n为第n个三角﹣1形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。
上海市长宁区2018年中考数学一模和答案解析
'.学年第一学期初三数学教学质量检测试卷2017-20182018.01分)(考试时间:100分钟满分:150分)一、选择题(本大题共6题, 每题4分, 满分24 【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B铅笔正确填涂】?3A???ABCACABC的长可以表示为(,则▲,1.在Rt =中,∠)=90°,33??cos3sin3 A)(D).;(B);(C)(;??sincos?CAEBAABCD 2.如图,在分别在边的延长线上,中,点、、ED AB2?BCDE),那么下列条件中能判断▲∥的是(A ADEC1AE2??(A);(B);ACEC2BC AC1DE2?? D)C).;((第2题图AEBC223?(x?1)y??▲2个单位后得到的新抛物线的表达式为()3.将抛物线向右平移223?))y??(x?1?1y??(x?1(A);(B);223)x?3?y1x?)?5??(y??((D.)(C );PP)▲(-2,3)为圆心,2为半径的圆与轴的位置关系是(4.已知在直角坐标平面内,以点x相离、相切、相交都有可能.相交;(D)C (A)相离;(B)相切;()e4b?e?2ae?是单位向量,且▲)已知,那么下列说法错误的是(,5...1b//a||b|??2|a?|a|2b?a?)()D);((AC).;;(B B2A AC ACBDOABCD,与相交于点.如图,在四边形中,对角线6O DBCDABDAC)∠,那么下列结论不一定正确的是(平分∠▲,且∠=.....DOC?AOD?BOCAOB??∽∽;A)(B);(DCOA?BC?CDAC?BCCD.C())=;(D 6题图第每题二、填空题(本大题共12题, 4分, 分)满分48 【在答题纸相应题号后的空格内直接填写答案】a1a?b?b、a,则满足7.若线段的值为▲.b2b8.正六边形的中心角等于▲度.;.'.2ax?2)y?(a 9.若抛物线的开口向上,则的取值范围是▲.23x?y?x?4的顶点坐标是▲.10.抛物线?????DEFABCDEFABCDEF的相似比为11.已知2:3与与,的面积为相似,且36,若?ABC 的面积等于▲.则APAP<BPAB=PAB,那么4,点的黄金分割点,且是线段12.已知线段的长为▲.31:,则该坡面的坡角为▲度..若某斜面的坡度为132ty?x?2x?nAmBnm与).已知点都在抛物线(-2,、)上,则(2,的大小关系14nm”)“<”或“是=▲.(填“>”、?GABCBAC中,∠是重心,15.如图,在Rt=90°,点A DABGDG//BCDGAG作于点,,联结交,过点?ADGAB=BC= 6,的周长等于▲.9,则若DG BC OOOO R的半径为与⊙,⊙,若⊙16.已知⊙相切,的半径为4题图第15221110OO?R的值为▲.,则且21BA 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个ABCD如图,已知梯形是等距四边形,四边形的等距点.CD10?cosA BCAB//CDB,. 若=10,点,是等距点 17题图第10CD则的长等于▲.AD?D??60ABCD中,的菱形.如图,在边长为2,18?EFBCE、FABBEF点翻折,沿着直线分别在边、将上. CB BEGBAD的长等于▲.的中点点恰好与边重合,则题图第18三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】19.(本题满分10分)cot45??cos30?.计算:2060tan??45sin4;.'.20.(本题满分10分,第(1)小题5分,第(2)小题5分)?BC ABCDABDEBCDFACDE、AC、DF分别交边中,点//在边,上,如图,在,//A3AE?FE、于点,且.2ECBF 1)求的值;(DE BC EF baBC?AC?ba EF.、2)联结,用含的式子表示,设,(BCF 20题图第分)2)小题5521.(本题满分10分,第(1)小题分,第(DAB BCAC?DCOCOAB,上,联结于点并延长交弦如图,点,在⊙O5?20AC CDOBAC,若,=40联结.、AB的长;(1)求弦C ABO?sin)求的值.(2 21题图第.(本题满分10分)22DCDAB如图,一栋居民楼,的高为16米,远处有一栋商务楼°60DA小明在居民楼的楼底处的仰角为处测得商务楼顶,又在商°45CA、DB.其中务楼的楼顶处的俯角为处测得居民楼的楼顶CB、DA、两点的正下方,且两点分别位于两点在同一水平线上,BCD求商务楼的高度.4141.2?7331.?米.,结果精确到) (0.1参考数据CA题22)小题6分))小题23.(本题满分12分,第(16分,第(F?∠ADB=∠CDEADABCDBC,上,联结中,点,在边如图,E2DFDE??AD FBAEDEDEAC交,且交边延长线于点于点.,CAD?BFD?(1)求证:;BD ADBF?DE??AB()求证:.2题图第23分)分,每小题24.(本题满分1241122x??bx?y??y?xc xCyA轴、分别与在直角坐标平面内,直线轴交于点、抛物线.22BDCxACA的上方.轴的另一个交点为点在该抛物线上,且位于直线. 经过点与点点,且与(1)求上述抛物线的表达式;??ABCABEEBDBC、BDAC的面积之比为4:5)联结(2,,且交于点,如果的面积与DBA的余切值;求∠;.'.??DFDDFACCDAOCCFD作的坐标.⊥,垂足为点相似,求点3)过点,联结与. 若(第24题图备用图)小题5分)2)小题6分,第(3325.(本题满分14分,第(1)小题分,第(DBADABCDABPBDP,中,=2,、=4. 不与点是对角线重合)已知在矩形上的一个动点(点EPEBAPBFFPPFBDBCAPFPE. 交,画∠于点⊥,交射线=∠于点. 联结,过点作yEFPD=x =设., ABFFAP在一条直线上时,求(1)当点、的面积;、xBCyF上时,求在边关于的函数解析式,并写出函数定义域;2 ()如图1,当点PDPCFPCBPE)联结(3,请直接写出,若∠=∠的长.DADA DA PBFEC B备用图1备用图图25题图第;.'.答案和评分建议学长宁区2017-2018学年第一学期初三数参考2018.1(本大题共6题,每题4分,满分24分)一、选择题:D.;6.B1.A;2.D;3.;4.A;5.C 分)12题,满分48(本大题共二.填空题:30a1656?260),?1(2>.;.2;10.11.12;8;.7;;9.27016630?..;17.;16;15.10;.18或13.1414;.5分,、1920、21、22题每题10分,第23、24题每题12分,第2514题三、(本大题共7题,第分)满分7831?) 解:原式分(4=19. (本题满分10分)2223?4?()231? (2 =分) 232?3?32?=) (2分23?2) = (2分2分))小题20.(本题满分10分,第(1)小题5分,第(252ECAE3??)∵∴(1分)1(解:52ACEC2BDEC??(2∵DE//BC∴分)5ABAC2BFBD??又∵DF//A分)(2∴5ABBC3BF2FC??)∵(2∴5BC5BC3BCCF aBC?aCF??与方向相反(,2∴分)∵52b?EC 2同理:分)(523??EF?b?aCFEF??EC(1∴分)又∵5521.(本题满分10分,第(1)小题5分,第(2)小题5分)AC?BC过圆心O,1解:()∵CD DABAB=AD=BD(2C∴⊥,22分);.'.0520AC?90ADC=CD,∵又∵∠=402220AD?AC??CD 2∴分)(AD=AB=∴12分)40(rODrO =40-分)()设圆的半径为1,则(22202OB?90?BDOD ODB=ADBD∴= ∵=20, ∠222r?(40?r)?20分)(∴1ODr =25,分)=15 (∴2315OD???sin?ABO∴分)(1525OB分)(本题满分1022.045∠DBE=BECDE,B⊥,作与点由题意可知解:过点060CE=AB=,∠DAC=分)(216x?3CD BE=AC=xAC=x则1,分)设(,??CEDE?CD3x?16∵分)(10016??3xx45?DBE??BED?90,BE=DE分)(∴2∵∴16?x(1∴分)1?3)18(3?x?(∴1分)937.?83?CD?3x?241∴分)(CD分)(1答:商务楼米。
【精选3份合集】2017-2018学年上海市长宁区九年级统考数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.2.估计624的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】624=562636=54=,∵49<54<64,∴54,∴6247和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.3.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A .B .C .D .【答案】B【解析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2bx a=->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四, ∴a <0,b >0, 又∵反比例 函数y=cx图像经过二、四象限, ∴c <0,∴二次函数对称轴:2bx a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B. 【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.4. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .【答案】C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间. 故选:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b【答案】A【解析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.6.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1【答案】A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答. 【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【答案】B【解析】由(1)得x>-1,由(2)得x≤1,所以-1<x≤1.故选B.8.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A .点AB .点BC .点CD .点D【答案】D【解析】根据全等三角形的性质和已知图形得出即可. 【详解】解:∵△MNP ≌△MEQ , ∴点Q 应是图中的D 点,如图,故选:D . 【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.9.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D 【解析】分析: 详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P (一男一女)=123=205. 故选B .二、填空题(本题包括8个小题)11.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________. 【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 详解:解方程x 2-10x+21=0得x 1=3、x 2=1, ∵3<第三边的边长<9, ∴第三边的边长为1.∴这个三角形的周长是3+6+1=2. 故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.12.已知(x+y )2=25,(x ﹣y )2=9,则x 2+y 2=_____. 【答案】17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y )2=25,x 2+y 2+2xy=25;(x ﹣y )2=9, x 2+y 2-2xy=9,所以x 2+y 2=17. 【点睛】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b)(a-b)=22a b +.(3)常用等价变形:()2222 ,a b b a b a a b -=-=-+=-+()33a b b a -=--,()()b a b a -=--,()22a b a b --=+.13.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm 1.253【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=12×5×tan30°25314.已知16xx+=,则221xx+=______【答案】34【解析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.1520n n的最小值为___【答案】120n20=25n n,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵20=25n n20n∴5n1n是完全平方数;∴n的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16.函数11yx=-的自变量的取值范围是.【答案】x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠117.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).【答案】甲【解析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;18.将一副三角尺如图所示叠放在一起,则BEEC的值是.3【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴BE ABEC CD=.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD 中,∠D=30°,∴ACCD 3AC tan30==︒.∴BE AB AC 3EC CD 33AC ===. 三、解答题(本题包括8个小题)19.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x < 1922x < 2225x < 2528x < 2831x < 3134x <频数7 932b2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【答案】 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8; 本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <范围内的数据有3个,在2831x <范围内的数据有4个, 15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适. 因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标. 【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.20.先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣1+4.【答案】-5【解析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣1+4时,∴x=12+12+2=3, 原式=2(x 2)x 1++÷24x x 1-+=x 2x 2+--=﹣5. 【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.求y 与x 之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22.为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)【答案】凉亭P到公路l的距离为273.2m.【解析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即31+x),解得:x≈273.2,∴PD=273.2.答:凉亭P到公路l的距离为273.2m.【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.23.解不等式组21114(2)x x x +-⎧⎨+>-⎩ 【答案】﹣1≤x <1.【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x ﹣2),得:x <1,则不等式组的解集为﹣1≤x <1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.已知a ,b ,c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判定△ABC 的形状.【答案】等腰直角三角形【解析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC 的形状.【详解】解:∵a 2c 2-b 2c 2=a 4-b 4,∴a 4-b 4-a 2c 2+b 2c 2=0,∴(a 4-b 4)-(a 2c 2-b 2c 2)=0,∴(a 2+b 2)(a 2-b 2)-c 2(a 2-b 2)=0,∴(a 2+b 2-c 2)(a 2-b 2)=0得:a 2+b 2=c 2或a=b ,或者a 2+b 2=c 2且a=b ,即△ABC 为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.25.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?【答案】(1)(30103)-m (2)(30213)+米【解析】分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米. 详解: (1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF 中,∵斜坡AN 的坡比为3∶1,∴31AF NF =, ∴5050333NF ==, ∴MN=MF-NF=50-5033=1505033-.(2)在RT △BMK 中,BM=502,∴BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE =⨯=, ∴28350HG HE EG HE MK =+=+=+(米)答:休闲平台DE 的长是150503-米;建筑物GH 高为()28350+米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.26.如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .求证:△ADE ∽△ABC ;若AD=3,AB=5,求的值.【答案】(1)证明见解析;(2)35. 【解析】(1)由于AG ⊥BC ,AF ⊥DE ,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB ,进而可证明△ADE ∽△ABC ;(2)△ADE ∽△ABC ,AD AE AB AC =,又易证△EAF ∽△CAG ,所以AF AE AG AC=,从而可求解. 【详解】(1)∵AG ⊥BC ,AF ⊥DE ,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC ,∴∠AED=∠ACB ,∵∠EAD=∠BAC ,∴△ADE ∽△ABC ,(2)由(1)可知:△ADE ∽△ABC , ∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC ,∴△EAF ∽△CAG , ∴AF AE AG AC=, ∴AF AG =35 考点:相似三角形的判定中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元【答案】B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.2.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.3.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.10 【答案】C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.4.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C.D.【答案】A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【答案】D【解析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.6.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB =CDB .∠BCA =∠DCAC .∠BAC =∠DACD .∠B =∠D =90°【答案】B 【解析】由图形可知AC =AC ,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC 和△ADC 中∵AB =AD ,AC =AC ,∴当CB =CD 时,满足SSS ,可证明△ABC ≌△ACD ,故A 可以;当∠BCA =∠DCA 时,满足SSA ,不能证明△ABC ≌△ACD ,故B 不可以;当∠BAC =∠DAC 时,满足SAS ,可证明△ABC ≌△ACD ,故C 可以;当∠B =∠D =90°时,满足HL ,可证明△ABC ≌△ACD ,故D 可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.7.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( )A .2x%B .1+2x%C .(1+x%)x%D .(2+x%)x%【答案】D【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x a x x a+-=+ 故选D.8.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A 2B 3C .1D 6【答案】C【解析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON ∽△CHM ,再利用相似比可计算出ON 的长. 【详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD 为正方形, ∴∠MAH=45°,∴△AMH 为等腰直角三角形,∴222, ∵CM 平分∠ACB ,∴2∴2∴222)2+2,∴OC=122,CH=AC ﹣2+222, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON OC MH CH =2222=+ ∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角。
2017-2018上海市长宁区中考一模数学试卷(含答案)2018.01-(1)
2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B铅笔正确填涂】1.在中,∠90°,,,则的长可以表示为(▲)(A);(B);(C);(D).2.如图,在中,点D、E分别在边、的延长线上,,那么下列条件中能判断∥的是(▲)(A);(B);(C);(D ).第2题图3.将抛物线向右平移2个单位后得到的新抛物线的表达式为(▲)(A);(B);(C);(D ).4.已知在直角坐标平面内,以点P(-2,3)为圆心,2为半径的圆P 与轴的位置关系是(▲)(A)相离;(B)相切;(C)相交;(D)相离、相切、相交都有可能.5.已知是单位向量,且,,那么下列说法错误..的是(▲)(A );(B);(C);(D ).6.如图,在四边形中,对角线与相交于点O,平分∠,且∠ =∠,那么下列结论不一定正确.....的是(▲)(A )∽;(B )∽;第6题图(C);(D ).二、填空题(本大题共12题, 每题4分, 满分48分)【在答题纸相应题号后的空格内直接填写答案】7.若线段a、b 满足,则的值为▲.8.正六边形的中心角等于▲度.9.若抛物线的开口向上,则的取值范围是▲.10.抛物线的顶点坐标是▲.11.已知与相似,且与的相似比为2:3,若的面积为36,则的面积等于▲.12.已知线段4,点P是线段的黄金分割点,且<,那么的长为▲.13.若某斜面的坡度为,则该坡面的坡角为▲度.14.已知点A(-2)、B(2)都在抛物线上,则m与n的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在中,∠90°,点G 是重心,联结,过点G 作,交于点D ,若6,9,则的周长等于 ▲ .16.已知⊙的半径为4,⊙的半径为R ,若⊙与⊙相切, 且,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形是等距四边形,,点B 是等距点. 若10,,则的长等于 ▲ .18.如图,在边长为2的菱形中,,点E 、F 分别在边、上. 将沿着直线翻折,点B 恰好与边的中点G 重合,则的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)第18题第17题第15题计算:.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在中,点D 在边上,,,、分别交边、 于点E 、F ,且.(1)求的值;(2)联结,设,,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 如图,点C 在⊙O 上,联结并延长交弦于点D ,,联结、,若40,.(1)求弦的长; (2)求的值.22.(本题满分10分)如图,一栋居民楼的高为16米,远处有一栋商务楼, 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为,又在商务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为.其中A 、C两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上,求商务楼的高度. (参考数据:,.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)第20题第21题CDA B第22题如图,在中,点D在边上,联结,∠∠,交边于点E,交延长线于点F ,且.(1)求证:∽;(2)求证:.24.(本题满分12分,每小题4分)在直角坐标平面内,直线分别与x轴、y轴交于点A、C. 抛物线经过点A与点C,且与x轴的另一个交点为点B. 点D在该抛物线上,且位于直线的上方.(1)求上述抛物线的表达式;(2)联结、,且交于点E ,如果的面积与的面积之比为4:5,求∠的余切值;(3)过点D作⊥,垂足为点F,联结. 若与相似,求点D的坐标.第24题备用图25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形中,2,4. P 是对角线上的一个动点(点P 不与点B 、D 重合),过点P 作⊥,交射线于点F . 联结,画∠∠,交于点E .设,.(1)当点A 、P 、F 在一条直线上时,求的面积;(2)如图1,当点F 在边上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结,若∠∠,请直接写出的长.长宁区2017学年第一学期初三数学参考答案和评分建议2018.1 一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7.; 8.; 9.>2;10.; 11.; 12.;13.; 14.; 15.10;16.或14; 17.; 18..备用图 备用图图1 第25题三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= (4分)= (2分)= (2分)= (2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵∴(1分)∵∴(2分)又∵∴(2分)(2)∵∴∵,与方向相反∴(2分)同理:(2分)又∵∴(1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵过圆心O,∴⊥22(2分)∵40,又∵∠∴(2分)∴240(1分)(2)设圆O的半径为r,则40 (1分)∵20, ∠∴∴(1分)∴2515 (2分)∴(1分)22.(本题满分10分)解:过点B作⊥与点E,由题意可知∠,∠,16 (2分)设,则,(1分)∵(1分)∵∴∴(2分)∴(1分)∴(1分)∴(1分)答:商务楼的高度为37.9米。
2018年上海长宁区初三一模数学试卷答案
jia
os
hi
∣ ⃗ ∣ ∣ b = −2 ∣ ∣a ⃗ ∣ ∣ ∣
/1
a ⃗ = −
2/
学生版 答案
A 教师版
答案版
04
编辑
).
⃗ b
= ∠DBC
,那么下列结论不一定正确
A. C.
△AOD ∽ △BOC
B. D.
△AOB ∽ △DOC
C D = BC
BC ⋅ C D = AC ⋅ OA
答案 解析
= 3
,
18 /1
,
答案
2/ 0
4
.
答案 解析
6
或14
如下两图易得10 − 4 = 6 或10 + 4 = 14 .
17. 如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等 距点,如图,已知梯形ABC D是等距四边形.AB//C D,点B是等距点,若BC 于 .
D
A
.∵∠AOD = ∠BOC ,且∠DAC
= ∠DBC
,
∴△AOD ∽ △BOC ,
B
.由A得
OA OD
=
OB OC
,
又∵∠AOB = ∠DOC ,以△AOB∽△DOC ,
C
.由B得∠OAB = ∠ODC ,
= ∠DBC
又∵AC 平分∠DAB,∠DAC
,
∴∠OAB = ∠OAD = ∠OBC , 故∠C DO = ∠C BO ,以C D = BC ,
= 10
,cos A =
− − √ 10 10
.则C D的长等
/0
4
os
解析
[试卷合集3套]上海市长宁区2018届中考数学一月一模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x =-【答案】B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x =,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x =-,每个象限内,y 随着x 的增大而增大,故此选项错误;故选B .考点:反比例函数的性质;正比例函数的性质.2.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A 、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 5.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<4【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.若23,则a的值可以是()A.﹣7 B.163C.132D.12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a <3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.9.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.5【答案】D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.二、填空题(本题包括8个小题)11.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.【答案】(6,1)或(﹣6,1)【解析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.当y=1时,12x1-1=1,解得x=±6当y=-1时,12x1-1=-1,方程无解故P点的坐标为(62,)或(-62,)【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.12.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.【答案】4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,222253 4.BC DB CD =-=-=故答案为:4cm.13.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.【答案】2【解析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、P .∵六边形ABCDEF 的六个角都是110°,∴六边形ABCDEF 的每一个外角的度数都是60°.∴△AHF 、△BGC 、△DPE 、△GHP 都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.14.计算tan 260°﹣2sin30°2cos45°的结果为_____.【答案】1【解析】分别算三角函数,再化简即可.【详解】解:原式=23()-2×1222 =1.【点睛】本题考查掌握简单三角函数值,较基础.15.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.【答案】1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 18.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.三、解答题(本题包括8个小题)19.解方程:112 22xx x-=---【答案】无解【解析】解:去分母:方程两边同时乘以x-2,得1-x=-1-2(x-2)1-x="-1-2x+4X="2检验:当x=2时,x-2=0,所以x=2不是原方程的解.∴原方程无解.【详解】请在此输入详解!20.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.【答案】8.2 km【解析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.21.如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.【答案】(1)证明见解析;(2)610 5【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,22AD222=+=∴2222DF OF OD125=++=,∵BD BD=,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴DF BF AD BE =,即53BE22=, ∴6BE 105=. 【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.22.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y 与x 的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y 与x 的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20, 因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.23.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.【答案】300米【解析】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.24.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -.故答案为()12n n -.(3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.25.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元. ①若设购进甲种羽毛球m 筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W (元)与甲种羽毛球进货量m (筒)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】(1)设甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m 筒,则乙种羽毛球为(200﹣m )筒,由条件可得到关于m 的不等式组,则可求得m 的取值范围,且m 为整数,则可求得m 的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.26.全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【答案】(1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件【答案】C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误.故选C .【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.2.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3.已知抛物线y=ax 2+bx+c 与反比例函数y=b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( ) A . B . C .D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0. 4.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.5.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
年上海市长宁区、金山区中考数学一模试卷
2017年上海市长宁区、金山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是() A.(﹣1,2)B.(1,2)ﻩC.(2,﹣1)ﻩD.(2,1)2.(4分)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是() A.ﻩB.C.D.3.(4分)如图,下列能判断BC∥ED的条件是()A.=ﻩB.=ﻩC.=D.=4.(4分)已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是( )A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8ﻩD.4<O1O2<105.(4分)已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=ﻩB.如果||=|﹣|,那么∥C.如果∥,那么||=||D.如果=﹣,那么||=||6.(4分)已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是( )A.相离ﻩB.相切 C.相交ﻩD.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.(4分)如果3x=4y,那么=.8.(4分)已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是.9.(4分)已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c=.10.(4分)已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m=.11.(4分)设α是锐角,如果tanα=2,那么cotα=.12.(4分)在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是.13.(4分)已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是.14.(4分)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC 与E,若AB=6,那么GE=.15.(4分)如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为米.16.(4分)如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.17.(4分)如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= .18.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E 在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B =.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°•tan30°﹣cos60°•cot30°+.20.(10分)如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)21.(10分)如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与A B交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.22.(10分)如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23.(12分)如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE 与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.24.(12分)在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B (点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.25.(14分)已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.ﻬ2017年上海市长宁区、金山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)(2017•金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)ﻩB.(1,2)C.(2,﹣1)ﻩD.(2,1)【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选B.2.(4分)(2017•金山区一模)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A 的正弦值是()A.ﻩB.ﻩC.D.【解答】解:∵∠C=90°,AB=5,BC=4,∴sinA==,故选D.3.(4分)(2017•金山区一模)如图,下列能判断BC∥ED的条件是()A.=B.=ﻩC.=D.=【解答】解:∵=,∴BC∥ED;故选C.4.(4分)(2017•金山区一模)已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6ﻩC.4<O1O2<8 D.4<O1O2<10【解答】解:两圆半径差为4,半径和为8,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,4<O1O2<8.故选C.5.(4分)(2017•金山区一模)已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=B.如果||=|﹣|,那么∥C.如果∥,那么||=||D.如果=﹣,那么||=||【解答】解:A、如果||=||,与的大小相等,与的方向不一向相同,故A错误;B、如果||=||,与的大小相等,与不一定平行,故B错误;C、如果∥,与的大小不应定相等,故C错误;D、如果=﹣,那么||=||,故D正确;故选:D.6.(4分)(2017•阳谷县一模)已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离ﻩB.相切ﻩC.相交D.不能确定【解答】解:如图所示:在等腰三角形ABC中,作AD⊥BC于D,则BD=CD=BC=2,∴AD===4>5,即d>r,∴该圆与底边的位置关系是相离;故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2017•金山区一模)如果3x=4y,那么=.【解答】解:由3x=4y,得x:y=4:3,故答案为:.8.(4分)(2017•金山区一模)已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是x=1.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,对称轴是:x=1.故本题答案为:x=1.9.(4分)(2017•金山区一模)已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c= ﹣3 .【解答】解:当x=0时,y=c,∵抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),∴c=﹣3,故答案为﹣3.10.(4分)(2017•金山区一模)已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m=4.【解答】解:∵y=﹣x2﹣3x经过点(﹣2,m),∴m=﹣×22﹣3×(﹣2)=4,故答案为4.11.(4分)(2017•金山区一模)设α是锐角,如果tanα=2,那么cotα=.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.12.(4分)(2017•金山区一模)在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是y=2(x﹣1)2+1 .【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向右平移1个单位所得对应点的坐标为(1,1),所以平移后的抛物线解析式为y=2(x﹣1)2+1.故答案为y=2(x﹣1)2+1.13.(4分)(2017•金山区一模)已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是AB>2 .【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.14.(4分)(2017•金山区一模)如图,点G是△ABC的重心,联结AG并延长交BC 于点D,GE∥AB交BC与E,若AB=6,那么GE= 2.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.(4分)(2017•金山区一模)如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆B C的高度为6+1.5米.【解答】解:在Rt△CDE中,tan∠CDE=,∴CE=DE•tan∠CDE=6,∴BC=CE+BE=6+1.5(米),故答案为:6+1.5.16.(4分)(2017•金山区一模)如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.【解答】解:连接O1A,O2A,如图所示设AC=x,O1C=y,则AB=2AC=2x,∵O1O2=2,∴O2C=2﹣y,∵AB⊥O1O2,∴AC2+O1C2=O1A2,O2C2+AC2=O2A2,∴,解得:,∴AC=,∴AB=2AC=;故答案为:.17.(4分)(2017•金山区一模)如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= 2:1 .【解答】解:∵AD∥BC,∴△AO D∽△COB ,∵DO :B O=1:2,∴S△AOD :S △COB =1:4,S △AOD :S △AOB =1:2,∵S△AOD :S △ABE =1:3,∴S △A BC :S △AB E=6:3=2:1,∴BC :B E=2:1.18.(4分)(2017•金山区一模)如图,在△AB C中,∠C=90°,A C=8,BC=6,D 是A B的中点,点E在边A C上,将△ADE 沿DE 翻折,使得点A 落在点A'处,当A'E ⊥A C时,A'B= 或7 .【解答】解:分两种情况:①如图1,过D 作D G⊥BC 与G,交A′E 与F,过B 作BH ⊥A′E 与H,∵D为AB 的中点,∴BD =AB=AD,∵∠C=90,AC =8,BC=6,∴AB=10,∴BD=AD=5,sin ∠ABC=,∴, ∴D G=4,由翻折得:∠DA′E=∠A,A′D=AD =5,∴si n∠DA′E=si n∠A =,∴,∴DF=3,∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8﹣1=7,∴A′H=A′E﹣EH=7﹣6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.三、解答题(本大题共7题,满分78分)19.(10分)(2017•金山区一模)计算:sin30°•tan30°﹣cos60°•cot30°+.【解答】解:原式=×﹣××+=﹣+2=2.20.(10分)(2017•金山区一模)如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)【解答】解:(1)∵D是AB中点,∴AD=AB=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AB•AD=10×5=50,∴AC==5;(2)如图所示:∵DE∥BC,D是AB的中点,∴AD=DB,AE=EC,∵=,=,∴==,∴,∵==,∴.21.(10分)(2017•金山区一模)如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.【解答】解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.22.(10分)(2017•金山区一模)如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.【解答】解:(1)如图,过点C作CP⊥AB于点P,则四边形CDGP是矩形,∴CP=DG=2,CD=GP=6,∵∠B=30°,∴BP===2,∴AG=AB﹣GP﹣BP=8+2﹣6﹣2=2=DG,∴背水坡AD的坡度DG:AG=1:1;(2)由题意知EF=MN=4,ME=CD=6,∠B=30°,则BF===4,HN===4,NF=ME=6,∴HB=HN+NF+BF=4+6+4=10+4,答:加高后坝底HB的宽度为(10+4)米.23.(12分)(2017•金山区一模)如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.【解答】证明:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,∴,∵AD=CD,∴GF=BF;(2)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,∴,∴,∴FO•ED=OD•EF.24.(12分)(2017•金山区一模)在平面直角坐标系中,抛物线y=﹣x2+2b x+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A (2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.【解答】解:(1)把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c 得,,∴b=﹣1.c=8,∴抛物线的解析式为y=﹣x2﹣2x+8;(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0①,∵抛物线的顶点为P,∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,∴P(b,b2+c),∴PH=b2+c,AH=2﹣b,在Rt△PHA中,tan∠OAP=,∴=3②,联立①②得,,∴(不符合题意,舍)或,∴抛物线的解析式为y=﹣x2﹣2x+8;(3)∵如图2,抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,∴C(0,c)(c>0),∴OC=c,∵A(2,0),∴OA=2,∴AC=,∵⊙A与⊙C外切,∴AC=c+2=,∴c=0(舍)或c=,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,∴b=,∴抛物线的解析式为y=﹣x2+x+.25.(14分)(2017•金山区一模)已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D 在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠EDC=∠B+∠BED,∴∠FDC+∠EDO=∠B+∠BED,∵∠EDO=∠B,∴∠BED=∠EDC,∵∠B=∠C,∴△BDE∽△CFD.(2)过点D作DM∥AB交AC于M(如图1中).∵△BDE∽△CFD,∴=,∵BC=8,BD=3,BE=x,∴=,∴FC=,∵DM∥AB,∴=,即=,∴DM=,∵DM∥AB,∴∠B=∠MDC,∴∠MDC=∠C,∴CM=DM=,FM=﹣,∵DM∥AB,∴=,即=,∴y=(0<x<3).(3)①当AO=AF时,由(2)可知AO=y=,AF=FC﹣AC=﹣5,∴=﹣5,解得x=.∴BE=②当FO=FA时,易知DO=AM=,作DH⊥AB于H(如图2中),BH=BD•cos∠B=3×=,DH=BD•sin∠B=3×=,∴HO==,∴OA=AB﹣BH﹣HO=,由(2)可知y=,即=,解得x=,∴BE=.③当OA=OF时,设DP与CA的延长线交于点N(如图3中).∴∠OAF=∠OFA,∠B=∠C=∠ANE,由△ABC≌△CDN,可得CN=BC=8,ND=5,由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,作EG⊥BC于G,则BG=x,EG=x,∴GD=,∴BG+GD=x+=3,∴x=>3(舍弃),综上所述,当△OAF是等腰三角形时,BE=或.ﻬ参与本试卷答题和审题的老师有:Ldt;张其铎;lantin;sjzx;2300680618;家有儿女;wd1899;733599;gsls;放飞梦想;szl;知足长乐;tcm123;sks;三界无我;王学峰;星月相随;弯弯的小河(排名不分先后)菁优网2017年4月8日。
【数学】长宁区2018年一模试卷及答案
(考试时间:100 分钟 满分:150 分)2018.01
一、选择题(本大题共 6 题, 每题 4 分, 满分 24 分) 【每小题只有一个正确选项, 在答题纸相应题号的选项上用 2B 铅笔正确填涂】 1.在 Rt ∆ ABC 中,∠C=90°, ∠A = α ,AC= 3 ,则 AB 的长可以表示为( ▲ ) (A)
联结 AC、OB,若 CD=40, AC = 20 5 . (1)求弦 AB 的长; (2)求 sin ∠ABO 的值.
O
C
第 21 题图
咨询电话:4000-121-121
3
22. (本题满分 10 分) D 如图,一栋居民楼 AB 的高为 16 米,远处有一栋商务楼 CD, ,又在商 小明在居民楼的楼底 A 处测得商务楼顶 D 处的仰角为 60° 务楼的楼顶 D 处测得居民楼的楼顶 B 处的俯角为 45° .其中 A、C 两点分别位于 B、D 两点的正下方,且 A、C 两点在同一水平线上, 求商务楼 CD 的高度. (参考数据: 2 ≈ 1.414 , 3 ≈ 1.732 .结果精确到 0.1 米) A C 第 22 题图 B
2
▲
.
▲
.
11.已知 ∆ ABC 与 ∆ DEF 相似,且 ∆ ABC 与 ∆ DEF 的相似比为 2:3,若 ∆ DEF 的面积为 36,则 ∆ ABC 的面积等于 ▲ . ▲ .
12.已知线段 AB=4,点 P 是线段 AB 的黄金分割点,且 AP<BP,那么 AP 的长为 13.若某斜面的坡度为 1 : 3 ,则该坡面的坡角为 ▲ 度.
4.已知在直角坐标平面内, 以点 P(-2,3)为圆心, 2 为半径的圆 P 与 x 轴的位置关系是 ( ▲ ) (A) 相离; (B) 相切; (C) 相交; (D) 相离、相切、相交都有可能.
2018年上海市长宁区初三数学一模试卷
2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.第2题图AB CDE 第6题图O ABD二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .第18题图A B CDBCDA 第17题图第15题图D AG三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅.F EA第23题图第20题图AD E 第21题图24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DA DCBAF EP D CB A 第25题图长宁区2017学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2017年上海市长宁区中考数学一模试卷
2017年上海市长宁区中考数学一模试卷.年上海市长宁区中考数学一模试卷2017分)4分,满分24一、选择题(本大题共6题,每题2) 1) +2的顶点坐标是(x1.(4分)在平面直角坐标系中,抛物线y=﹣(﹣),1D.(2)) C.(2,﹣1 )A.(﹣1,2 B.(1,2) BC=4,那么∠A的正弦值是(2.(4分)在△ABC中,∠C=90°,AB=5,.D.. B .C A)∥ED的条件是( 3.(4分)如图,下列能判断BC=..CA=. = B.D=相交,那么圆心与⊙,若⊙OO与⊙O的半径分别是2和64.(4分)已知⊙O2121)距OO的取值范围是(2110O<.4<OD<6 C.4<OO<8 OOA.2<O<4 B.2<O21212112分)已知非零向量与),那么下列说法正确的是(5.(4∥||=|.如果,那么A.如果|﹣|=|||,那么 =B|=﹣.如果,那么∥,那么|=|||=|| D|.如果C,以等腰三角形的顶角,底边长为4cm(4分)已知等腰三角形的腰长为6cm.6)的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是(.不能确定.相交 D A.相离B.相切 C分)分,满分4812二、填空题(本大题共题,每题4.3x=4y ,那么= (7.4分)如果2.,2x+1那么该二次函数的图象的对称轴是 y=x分)(8.4已知二次函数﹣第2页(共30页)2.,0﹣3),那么c= y=3x9.(4分)已知抛物线 +x+c与y轴的交点坐标是(2.m= 3x经过点(﹣2,m10).(4分)已知抛物线y=﹣x,那么﹣.α是锐角,如果tanα=2,那么cotα= 11.(4分)设2个单位,再向右平y=2x1先向上平移12.(4分)在直角坐标平面中,将抛物线. 1个单位,那么平移后的抛物线解析式是移13.(4分)已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取.值范围是14.(4分)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.(4分)如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为米.16.(4分)如图,⊙O与⊙O相交于A、B两点,⊙O与⊙O的半径分别是1和,2112.,那么两圆公共弦AB的长为 OO=221(4分)如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,. BC,17.那么:BE= 3=1::S的延长线上,如果在点ECBS ABE△AOD△第3页(共30页)E的中点,点D,BC=6,是AB18.(4分)如图,在△ABC中,∠C=90°,AC=8时,AC落在点A'处,当A'E⊥在边AC上,将△ADE沿DE翻折,使得点A.A'B=分)题,满分78三、解答题(本大题共7+(cos60°?cot30°10.分)计算:sin30°?tan30°﹣19..AB中点,联结CD(.10分)如图,在△ABC中,D是20的长.ACACD=)若AB=10且∠∠B,求(1设AC于点,点作、,请用向量表示(2)过DBC的平行线交=E,=(直接写出结果)和,EBC交于点,与于点D,⊙D经过点B⊥分)如图,△21.(10ABC中,CDAB.ABC=∠,AD=8与交与点ABF.已知tanA=,cot的半径;D求(1)⊙的长.)CE2( 304第页(共页)米,6,坝顶宽DC为分)如图,拦水坝的横断面为梯形ABCD,AB∥CD(22.10)米.为(8+2米,迎水坡BC的坡角为30°,坝底宽AB2坝高DG为的坡度;AD(1)求背水坡米,并且保持坝顶宽度不变,迎水坡和22)为了加固拦水坝,需将水坝加高(的宽度.HB背水坡的坡度也不变,求加高后坝底DE,、DE在CB的延长线上,联结AE分)如图,已知正方形23.(12ABCD,点E.GBE 且与AE交于点,与边AB交于点FFG∥.(1)求证:GF=BF FO?ED=OD?EF.求证:于点DEO.使得BM=BE,联结AM交,(2)在BC边上取点M2(点BA、+2bx+c与x轴交于点x.24(12分)在平面直角坐标系中,抛物线y=﹣)0A(2,轴正半轴交于点A在点B的右侧),且与yC,已知)时,求抛物线的解析式;4,0(1)当B(﹣时,求此抛物线的解析OAP=3tan∠为坐标原点,抛物线的顶点为2)OP,当(式;长为半OC为圆心,,以为圆心O为坐标原点,以AOA长为半径画⊙AC)(3外切时,求此抛物线的解析式.C,当⊙CA与⊙径画圆⊙ 305第页(共页)AB交边上,DPPDQ的顶点D在BCABC25.(14分)已知△,AB=AC=5,BC=8,∠,(点F与点CADQ交AB边于点O且交的延长线于点FE边于点,.B,设A不重合)BD=3∠PDQ=∠;∽△BDECFD(1)求证:△的函数关系式,并写出定义域;x,求y关于OA=y2()设BE=x,的长.是等腰三角形时,求BE)当△(3AOF306第页(共页)年上海市长宁区中考数学一模试卷2017参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)2+2)x﹣1(4分)(2017?金山区一模)在平面直角坐标系中,抛物线y=﹣(1.)的顶点坐标是(A.(﹣1,2) B.(1,2) C.(2,﹣1) D.(2,1)【分析】由抛物线解析式可求得答案.解:【解答】2+2),﹣(x﹣1∵y=∴抛物线顶点坐标为(1,2),.故选B【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,2+k中,顶点坐标为(h,k)﹣h),对称轴为x=h.即在y=a(x2.(4分)(2017?金山区一模)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是(). CDA.. B.sinA=根据代入数据直接得出答案.【分析】【解答】解:∵∠C=90°,AB=5,BC=4,,sinA=∴=.故选D【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.(4分)(2017?金山区一模)如图,下列能判断BC∥ED的条件是()第307页(共页)= CDA...= B=. =根据平行线分线段成比例定理,对每一项进行分析即可得出答案.【分析】,解:∵=【解答】;BC∴∥ED.故选C此题考查了平行线分线段成比例,找准对应关系,列出正确的比例式【点评】是解题的关键.与O6,若⊙2O与⊙O的半径分别是和4.(4分)(2017?金山区一模)已知⊙112)的取值范围是(⊙O相交,那么圆心距OO21210O<4<O8 4<OO<D..<OA.2<O<4 B.2OO<6 C21221112本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,【分析】P<R则﹣r根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,.,r分别表示两圆的半径)R+r.(P表示圆心距,R <,8【解答】解:两圆半径差为4,半径和为两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,.8<4<OO所以,21.故选C本题考查了由数量关系及两圆位置关系确定圆心距范围内的数的方法,【点评】属于基础题,比较简单.)(已知非零向量与,那么下列说法正确的是45.(分)(2017?金山区一模)∥﹣|,那么.如果.如果A||=||,那么=B||=| 308第页(共页)||D|=|C.如果.如果=∥,那么﹣|,那么|=||根据向量的定义,可得答案.【分析】与与|=||的方向不一向相同,故,【解答】解:A、如果|的大小相等,错误;A与不一定平行,故,BB、如果与|错误;|=||的大小相等,与的大小不应定相等,故C∥错误;C,、如果正确;,故|DD、如果=|=|﹣,那么|.D故选:【点评】本题考查了平面向量,利用向量的定义:既有大小又有方向的量是解题关键.6.(4分)(2017?阳谷县一模)已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关)系是(.相切.不能确定B C.相交 DA.相离BD=CD=BC=2,由勾股定理,由等腰三角形的性质得出⊥BC于D【分析】作AD,即可得出结论.>r5,即d求出>AD=4解:如图所示:【解答】在等腰三角形ABC中,作AD⊥BC于D,,BC=2BD=CD=则,5=4∴AD==>,d>r即∴该圆与底边的位置关系是相离;故选:A.第9页(共30页)本题考查了等腰三角形的性质、直线与圆的位置关系、勾股定理;熟【点评】是解决问题的关键.练掌握等腰三角形的性质,由勾股定理求出AD分)二、填空题(本大题共12题,每题4分,满分48=.4分)(2017?金山区一模)如果3x=4y,那么(7.根据等式的性质,可得答案.【分析】,3【解答】解:由3x=4y,得x:y=4:.故答案为:是解题关键.【点评】本题考查了比例的性质,等式的两边都除以3y2,那么该二次函数的图y=x(2017?金山区一模)已知二次函数﹣2x+18.(4分). x=1 象的对称轴是用配方法将抛物线的一般式转化为顶点式,可求抛物线的对称轴.【分析】22,)2x+1=(x﹣1【解答】解:∵y=x﹣.x=1对称轴是:.x=1故本题答案为:本题考查了二次函数的解析式与对称轴的关系.用配方法或对称轴公【点评】式可求抛物线的对称轴.2,0与y(2017?金山区一模)已知抛物线(4分)y=3x轴的交点坐标是(+x+c.9.3 c= ﹣﹣3),那么代入即可求得,把x=0轴上点的坐标特点为横坐标为0,纵坐标为y【分析】y的值.c),再根据已知条件得出,交点坐标为(0c,x=0解:当时,y=c【解答】页)30页(共10第2,+x+c与y轴的交点坐标是(3∵抛物线y=3x)0,﹣,3∴c=﹣.故答案为﹣3轴y【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,要明确.0上点的坐标横坐标为2,那m)经过点(﹣﹣3x2(2017?金山区一模)已知抛物线10.(4分)y=,﹣x.4 m= 么2的一元一次m﹣3x中,列出直接把点(﹣2,m)代入抛物线y=﹣x【分析】方程即可.2,)2,y=﹣xm﹣3x经过点(﹣【解答】解:∵2﹣3×(﹣2)﹣×2=4,∴m=.4故答案为【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是把点坐标代入抛物线解析式列出m的方程,此题基础题.11.(4分)(2017?金山区一模)设α是锐角,如果tanα=2,.那么cotα= 【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α,是锐角,如果tanα=2,那么cotα=.故答案为:【点评】本题考查了同角三角函数关系,利用一个角的余切等于它余角的正切是解题关键.2先向上平移(2017?滨城区二模)在直角坐标平面中,将抛物线y=2x.(4分)121个单位,再向右平移1个单位,那么平移后的抛物线解析式是 y=2(x﹣1)2.+1第11页(共30页)2,再利用点平移的规律写出)先确定抛物线y=2x,的顶点坐标为(00【分析】)平移后对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.(0,02个1,把点(0,0)向上平移【解答】解:抛物线y=2x,的顶点坐标为(00),个单位所得对应点的坐标为(1,1)单位,再向右平移12.)+1所以平移后的抛物线解析式为y=2(x﹣12.﹣故答案为y=2(x1)+1本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,【点评】不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛故a物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.外一点,那是⊙AB4分)(2017?金山区一模)已知⊙A的半径是2,如果(13. AB>么线段AB长度的取值范围是2 .【分析】根据点P在圆外?d>r,可得线段AB长度的取值范围是AB>2.【解答】解:∵⊙A的半径是2,B是⊙A外一点,.2AB>∴线段AB长度的取值范围是.2故答案为:AB>【点评】此题主要考查了点与圆的位置关系,要熟练掌握,解答此题的关键是要明确:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.14.(4分)(2017?金山区一模)如图,点G是△ABC的重心,联结AG并延长交BC 于点D,GE∥AB交BC与E,若AB=6,那么GE=2 .【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段第12页(共30页)的长.=,进而得出成比例定理,得出GE=,即的重心,解:∵点G是△ABC【解答】,AG=1:2DG∴:,:DA=1:3∴DG,ABGE∥∵,==∴,即,∴EG=2.故答案为:2本题主要考查了三角形的重心以及平行线分线段成比例定理的综合应【点评】.1用,解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:处,ABC底部18米的(2017?金山区一模)如图,在地面上离旗杆15.(4分)那么AD的高度为1.5米,C用测角仪测得旗杆顶端的仰角为30°,已知测角仪米.旗杆BC的高度为6+1.5,计算即可.CE【分析】根据正切的定义求出,中,Rt【解答】解:在△CDEtan∠CDE=,CDE=6∴CE=DE?tan∠+1.5(米)BC=CE+BE=6∴,.+1.56故答案为:页)30页(共13第本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的【点评】概念、熟记锐角三角函数的定义是解题的关键.与⊙OB两点,⊙O相交于A、分)16.(4(2017?金山区一模)如图,⊙O与⊙112和.的半径分别是O=2,OO,那么两圆公共弦AB1 的长为212,由勾股定理可得方程组,解方程OC=yA,设AC=x,【分析】首先连接OA,O121的值,继而求得答案.y组即可求得x与,如图所示OAA【解答】解:连接O,21,AB=2AC=2x设AC=x,OC=y,则1,∵=2OO21,﹣y∴OC=22,O⊥O∵AB21222222,O+ACCAAC∴C+OA=O=O,2112,∴,解得:,∴AC=AB=2AC=∴;.故答案为: 3014第页(共页)此题考查了相交圆的性质与勾股定理.此题难度适中,注意掌握辅助【点评】线的作法,注意数形结合思想与方程思想的应用.交于BDAC与(2017?金山区一模)如图,在梯形ABCD中,AD∥BC,17.(4分):,那么BC的延长线上,如果S:S=1:3O点,DO:BO=1:2,点E在CB ABEAOD△△.2:1 BE=,=1:24,S:S=1【分析】由平行线证出△AOD∽△COB,得出S:S:AOBAOD△AOD△△COB△,即可得出答案.1S:S=2:由S:S=1:3,得出ABE△△ABE△AODABC△,解:∵AD∥BC【解答】,COB∴△AOD∽△,2BO=1:∵DO:,:2=1=1:4,S:S:∴SS AOB△AOD△COB△AOD△,3∵S:S=1:ABEAOD△△,:1S=6:3=2:∴S ABE△△ABC.:BE=2:1∴BC本题考查了相似三角形的判定与性质、梯形的性质以及三角形的面积【点评】关系;熟练掌握相似三角形的判定与性质是解决问题的关键.DBC=6,AC=84分)(2017?金山区一模)如图,在△ABC中,∠C=90°,,18.(处,当A翻折,使得点落在点A'ADEE是AB的中点,点在边AC上,将△沿DE.或A'B=7 ACA'E⊥时, 3015第页(共页)分两种情况:【分析】,由中点的定义求AB=101,作辅助线,构建矩形,先由勾股定理求斜边①如图DG根据同角的三角函数列式可以求HFGB是矩形,和BD 的长,证明四边形出AD,A′D=AD=5,由矩形性质和勾股的长,并由翻折的性质得:∠DA′E=∠A和DF;定理可以得出结论:A′B=的长.A′MNF,同理可以求出A′B②如图2,作辅助线,构建矩形解:分两种情况:【解答】,HBH⊥A′E与与,交A′EF,过B作作①如图1,过DDG⊥BC与G的中点,D为AB∵,AB=AD∴BD=,BC=6AC=8,∵∠C=90,,∴AB=10,∴BD=AD=5ABC=sin,∠,∴,∴DG=4,A′D=AD=5,A由翻折得:∠DA′E=∠A=∠DA′E=sin∠,∴sin,∴,∴DF=3∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,,∴A′E∥BC页(共16第30页)∠DGB=180°,HFG+∴∠∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,是矩形,HFGB∴四边形,∴BH=FG=1同理得:A′E=AE=8﹣1=7,,∴A′H=A′E﹣EH=7﹣6=1;△AHB=中,由勾股定理得:A′B=在Rt②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于,M交直线DN于F,延长A′E,∵A′E⊥AC∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,,A′M=4,中,∴DM=3Rt△A′MD∴FN=A′M=4,Rt△BDN中,∵BD=5,,BN=3DN=4,∴∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,中,由勾股定理得:A′B=Rt△=7;ABF的长为综上所述,A′B或7..或7故答案为:第17页(共30页)本题考查了翻折变换的性质、勾股定理、矩形的性质、三角函数及解【点评】直角三角形的有关知识,作辅助线构建矩形是本题的关键,明确翻折前后的对应角和边相等,在证明中利用同角的三角函数列比例式比证明相似列比例式计算简单.分)7题,满分78三、解答题(本大题共﹣:sin30°?tan30°一模)计算区19.(10分)(2017?金山.cos60°?cot30°+原式利用特殊角的三角函数值计算即可得到结果.【分析】.××+=×﹣﹣【解答】解:原式=+2=2此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法【点评】则是解本题的关键..AB中点,联结CD是(2017?金山区一模)如图,在△.20(10分)ABC中,D的长.B∠,求ACACD=AB=101()若且∠页(共第1830页)表示,,请用向量的平行线交点作BCAC于点E,=设、=(2)过D(直接写出结果)和即可得出结果;得出∽△ABC,,1)求出AB=5AD=,证明△ACD【分析】(,由向量的定义容易得出结果.)由平行线的性质得出AE=EC(2中点,AB)∵D是【解答】解:(1,AD=AB=5∴∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,,∴2=AB?AD=10×5=50AC,∴=5AC=;∴(2)如图所示:∵DE∥BC,D是AB的中点,,AE=EC∴AD=DB,,=∵,=,==∴,∴=∵=,.∴第19页(共30页)【点评】本题考查了相似三角形的判定与性质、平面向量、平行线的性质;熟练掌握相似三角形的判定与性质是解决问题的关键.21.(10分)(2017?金山区一模)如图,△ABC中,CD⊥AB于点D,⊙D经过点ABC=,∠AD=8F.已知.tanA=,cotB,与BC交于点E,与AB交与点的半径;D求(1)⊙的长.2)CE(的半径;DBD,从而得出⊙(1)根据三角函数的定义得出CD和【分析】(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由即可.CEBE,从而得出三角函数的定义得出,,AD=8,tanA=【解答】解:(1)∵CD⊥AB,中,CD=4tanA==,AD=8,ACD在Rt△,在Rt△ABC==∠,BD=3CBD,cot;3D∴⊙的半径为(2)过圆心D作DH⊥BC,垂足为H,,∴BH=EHBC=中∠CDB=90°,Rt△=,CBD在∠=5,cosABC=ABC=BD=3=,,,BH=中,∠BHD=90°,△BDHcos∠在Rt,BH=EH∵,BE=2BH=∴﹣CE=BC﹣BE=5∴=.第20页(共30页)本题考查了圆周角定理、解直角三角形以及垂径定理、勾股定理,掌【点评】握定理的内容以及用法是解题的关键.,CDAB∥分)(2017?金山区一模)如图,拦水坝的横断面为梯形ABCD,22.(108+2(30°,坝底宽)AB为坝高DG为2米,迎水坡BC的坡角为坝顶宽DC为6米,米.的坡度;)求背水坡AD(1米,并且保持坝顶宽度不变,迎水坡和)为了加固拦水坝,需将水坝加高2(2的宽度.HB背水坡的坡度也不变,求加高后坝底、CP=DG=2CDGP是矩形,从而得,即可知四边形CP⊥AB于点P(【分析】1)作;1DG:AG=1:BP=BP=2根据AG=AB﹣GP﹣可得CD=GP=6,由BF=、∠B=30°,由2()根据题意得EF=MN=4、、ME=CD=6HN=、NF=ME,可得答案.根据HB=HN+NF+BF,P⊥CPAB于点)如图,过点【解答】解:(1C作是矩形,则四边形CDGP,CD=GP=6CP=DG=2∴,页(共第2130页)°,∵∠B=30,=∴=2BP=BP=8+2﹣AG=AB﹣﹣GP2=2=DG,∴﹣6;1:AG=1:∴背水坡AD的坡度DG (2)由题意知EF=MN=4,ME=CD=6,∠B=30°,==4,NF=ME=6=4,则,BF=HN==,HB=HN+NF+BF=4+6+4∴=10+410+4HB的宽度为()米.答:加高后坝底【点评】本题主要考查解直角三角形的应用,掌握坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度是解题的关键.(2017?金山区一模)如图,已知正方形ABCD,点E在CB的延长线上,(12分)23.联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G..GF=BF)求证:(1(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO?ED=OD?EF.=CD∥,AD,可得到则有=,由BF∥1【分析】()根据已知条件可得到GF;GF=FB,可得到又因为AD=CD根据平行线分线段成比例定理得到,AM交于H)(2由于,BM=BE,延长GF得到,AD,,即,等量代换得到,GF=FH由GF∥得到于是得到结论.页)30页(共22第是正方形,)∵四边形ABCD1【解答】证明:(,AD=CDAB∥CD,∴AD∥BC,∵GF∥BE,,∴GF∥BC,∴GF∥AD,∴,∥CD∵AB,∴,AD=CD∵;∴GF=BF,于AMH2)延长GF交(∵GF∥BC,,BC∴FH∥,∴∴,,∵BM=BE,∴GF=FH,ADGF∵∥,∴,∴,∴∴FO?ED=OD?EF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.第23页(共30页)2+2bx+cx(2017?金山区一模)在平面直角坐标系中,抛物线y=﹣.24(12分)与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,)0(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;为圆心,OC长为半长为半径画⊙A,以CA(3)O为坐标原点,以为圆心OA径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.)利用待定系数法即可确定出函数解析式;(1【分析】(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,进而得出函数关系式;c(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.2+2bx+cx得,0)的坐标代入y=﹣B(2,0)、(﹣4,)把点【解答】解:(1A,,1.c=8﹣∴b=2;2x+8﹣y=∴抛物线的解析式为﹣x(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入2得,+2bx+c﹣y=x①,﹣4+4b+c=0页)30页(共24第,P∵抛物线的顶点为222+c),+b+2bx+c=﹣(x﹣b∴y=﹣x2,b)+c∴P(b,2+c,AH=2﹣∴PH=bb,OAP=tan∠在,Rt△PHA中,②,=3∴联立①②得,,(不符合题意,舍)或∴,2;﹣y=﹣x2x+8∴抛物线的解析式为2+2bx+c 与y轴正半轴交于点C,3)∵如图2,抛物线y=﹣x(,)c>0(0,c)(C∴OC=c,∴,,0)A∵(2,∴OA=2,AC=∴外切,与⊙C∵⊙A,AC=c+2=∴c=,∴c=0(舍)或2+2bx+c得,﹣4+4b+c=0y=﹣x,0A把点(2,)的坐标代入,∴b=2x+x.+﹣∴抛物线的解析式为y=第25页(共30页)此题是圆的综合题,主要考查了待定系数法,锐角三角函数,两圆外【点评】)中两圆的半径之和OAP=3建立方程和(32切的性质等知识点;()中用tan∠建立方程是解答关键.等于ACDPDQ的顶点,AB=AC=5,BC=8,∠(25.14分)(2017?金山区一模)已知△ABCF (点CA的延长线于点FAB边于点E,DQ交边于点O且交DP在BC边上,交AB.BD=3,A不重合),设∠PDQ=∠B与点;)求证:△BDE∽△CFD1(的函数关系式,并写出定义域;关于x,求)设(2BE=x,OA=yy的长.AOF)当△是等腰三角形时,求BE3(页(共第2630页))根据两角对应相等两三角形相似即可证明.【分析】(1,得CFD1中).由△BDE∽△AB)过点D作DM∥交AC于M(如图,推=(2,∠MDC∥ABAB,推出∠,得B==,推出DM=,由DM出FC=,由DM∥,得∥﹣CMDC=∠FM=,ABCM=DM=,于DM=,代入化简即可.,∠时,分别计算OA=OF 时,②当AO=AFFO=FA时,③当(3)分三种情形讨论①当即可.,AB=AC(1)∵【解答】解:,CB=∠∴∠,BEDB+∠∵∠EDC=∠,∠BED∠FDC+EDO=∠B+∴∠,B∵∠EDO=∠,EDC∴∠BED=∠,B=∠C∵∠.CFDBDE∽△∴△.中)(如图1MABD)过点作DM∥交AC于2(,BDE∽△CFD∵△ 3027第页(共页),,BE=x=,∵BC=8,∴BD=3,=∴,∴FC=,∥AB∵DM,,即==∴DM=∴,,∥AB∵DM,∠MDC∴∠B=,∠C∴∠MDC=,FM=∴CM=DM=,﹣,∥AB∵DM,即==,∴.)<0<x∴3y=(时,AO=AF(3)①当,﹣AF=FCAO=y=,﹣5AC=2由()可知x=.=∴﹣5,解得BE=∴DO=AM=②当,FO=FA时,易知中)(如图于⊥,作DHABH2 3028第页(共页),×BH=BD?cos∠B=3=,DH=BD?sin∠B=3=×,∴=HO=,HO=﹣BH﹣OA=AB∴y=)可知,即x=,由(,解得=2.BE=∴.中)N(如图3OA=OF时,设DP与CA的延长线交于点③当,∠ANEOFA,∠B=∠C=∴∠OAF=∠,,ND=5≌△CDN,可得CN=BC=8由△ABC,xED=5NE=BE=x,﹣由△BDE≌△NAE,可得,xBG=x,EG=于作EG⊥BCG,则,GD=∴,x+=3∴BG+GD=,>∴x=3(舍弃) 3029第页(共页).BE=或综上所述,当△OAF是等腰三角形时,【点评】本题考查相似三角形综合题、全等三角形的判定和性质、勾股定理、锐角三角函数、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.第30页(共30页)。
2018年上海长宁区初三一模数学试卷
2018年上海长宁区初三一模数学试卷选择题(本大题共6题.每题4分.满分24分).1.A. B.C. D.在中,,,,则的长可以表示为( ).Rt △ABC ∠C =90∘∠A =αAC =3AB 3cos α3sin α3sin α3cos α2.A. B.C. D.如图.在中,点、分别在边、的延长线上,.那么下列条件中能判断的是( ).△ABC D E BA CA =2ABAD DE//BC=AE EC 12=2ECAC =DE BC 12=2ACAE 3.A. B.C. D.将抛物线向右平移个单位后得到的新抛物线的表达式为( ).y =−+3(x +1)22y =−+1(x +1)2y =−+3(x −1)2y =−+5(x +1)2y =−+3(x +3)24.A.相离 B.相切C.相交D.相离、相切、相交都有可能已知在直角坐标平面内,以点为圆心,为半径的圆与轴的位置关系是( ).P (−2,3)2P x 5.A. B.C. D.已知是单位向量,且..那么下列说法错误的是( ).e =−2a e =4b e//a b =2∣a ∣=−2∣∣b ∣∣∣a ∣=−a 12b填空题(本大题共12题.每题4分.满分48分).6.A. B.C. D.如图,在四边形中.对角线与相交于点,平分,且,那么下列结论不一定正确的是( ).ABCD AC BD O AC ∠DAB ∠DAC =∠DBC △AOD ∽△BOC△AOB ∽△DOC CD =BC BC ⋅CD =AC ⋅OA7.若线段、满足,的值为 .a b =a b 12a +b b8.正六边形的中心角等于 度.9.若抛物线的开口向上,的取值范围是 .y =(a −2)x 2a 10.抛物线的顶点坐标是 .y =−4x +3x 211.已知与相似,与的相似比为,的面积为.则的面积等于 .△ABC △DEF △ABC △DEF 2:3△DEF 36△ABC 12.已知线段,点是线段的黄金分割点,且,那么的长为 .AB =4P AB AP <BP AP 13.若某斜面的坡度为,则该坡面的坡角为 度.1:3√14.已知点、都在抛物线上,则与的大小关系是 .(填“”、“”或“”)A (−2,m )B (2,n )y =+2x −t x 2m n m n ><=15.如图,在中,.点是重心.联结,过点作,交于点.若,,则的周长等于 .Rt △ABC ∠BAC =90∘G AG G DG //BC DG AB D AB =6BC =9△ADG解答题(本大题共7题.满分78分).16.已知⊙的半径为.⊙的半径为,若⊙与⊙相切,且,则的值为 .O 14O 2R O 1O 2=10O 1O 2R 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点,如图,已知梯形是等距四边形.,点是等距点,若,.则的长等于 .ABCD AB //CD B BC =10cos A =10−−√10CD 18.如图.在边长为的菱形中,,点、分别在边、上,将沿着直线翻折.点恰好与边的中点重合.则的长等于 .2ABCD ∠D =60∘E F AB BC △BEF EF B AD G BE 19.计算:.−cos 30cot 45∘445−tan 60sin 2∘∘∘20.如图.在中,点在边上,,,、分别交边、于点、,且.△ABC D AB DE //BC DF //AC DE DF AC BC E F =AE EC 32(1)求的值.(2)联结,设.,用含、的式子表示.BF BC EF =BC −→−a =AC −→−b a b EF −→−21.(1)求弦的长.(2)求的值.如图,点在⊙上,联结并延长交弦于点,,联结、,若,.C O CO AB D =AC ⌢BC ⌢AC OB CD =40AC =205√AB sin ∠ABO 22.如图.一栋居民楼的高为米,远处有一栋商务楼,小明在居民楼的楼底处测得商务楼顶处的仰角为,又在商务楼的楼顶处测得居民楼的楼顶处的俯角为,其中、两点分别位于、两点的正下方,且、两点在同一水平线上,求商务楼的高度.(参考数据:..结果精确到米)AB 16CD A D 60∘D B 45∘A C B D A C CD ≈1.4142√=1.7323√0.123.如图,在中,点在边上,联结,,交边于点,交延长线于点,且.△ABC D BC AD ∠ADB =∠CDE DE AC E DE BA F A =DE ⋅DF D 2(1)求证:.(2)求证:.△BFD∽△CADBF⋅DE=AB⋅AD24.(1)求上述抛物线的表达式.(2)连结、,且交于点,如果的面积与的面积之比为.求的余切值.(3)过点作,垂足为点,连结,若与相似,求点的坐标.在直角坐标平面内,直线分别与轴、轴交于点、,抛物线经过点与点,且与轴的另一个交点为点,点在该抛物线上,且位于直线的上方.y=x+212x y A C y=−+bx+c12x2A C xB D ACBC BD BD AC E△ABE△ABC4:5∠DBAD DF⊥AC F CD△CFD△AOC D25.(1)当点、、在一条直线上时,求的面积.(2)如图.当点在边上时,求关于的函数解析式,并写出函数定义域.已知在矩形中,.,是对角线上的一个动点(点不与点、重合).过点作,交射线于点,联结,画,交于点,设,.ABCD AB=2AD=4P BD P B D P P F⊥BD BC F AP∠FP E=∠BAP P E BF E P D=x EF=yA P F△ABF1F BC y x(3)连结.若,请直接写出的长.P C∠FP C=∠BP E P D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第一学期初三数学教学质量检测试卷(测试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ )(A ) 21=EC AE ; (B ) 2=ACEC;(C ) 21=BC DE ; (D )2=AEAC.3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 和x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )//; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】第2题图 A BCDE第6题图O ABCD7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 和∆DEF 相似,且∆ABC 和∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 和n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 和⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好和边AD 的中点G 重合,则BE 的长等于 ▲ . 三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBDA 第17题图第15题图D ABG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE .(1)求BCBF的值;(2)联结EF ,设a BC =,b AC =,用含a 、b 的式子表示EF . 21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米) 23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别和x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 和点C ,且和x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积和∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 和∆AOC 相似,求点D 的坐标.F EDABC第23题图第20题图FBACD E 第21题图DAOBCCDAB第22题图25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不和点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数分析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.长宁区2017学年第一学期初三数学参考答案和评分建议 2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分)又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC 备用图 备用图图1 DCB A D CB AF E P D C B A第25题图∵=,和方向相反 ∴53-= (2分)同理:52=(2分) 又∵→+=CF ∴→-=a 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 和点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分)∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
(1分)23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵DF DE AD ⋅=2 ∴ADDFDE AD =∵EDA ADF ∠=∠ ∴ADF ∆∽EDA ∆ (2分)∴DAE F ∠=∠ (1分) 又∵∠ADB=∠CDE ∴∠ADB+∠ADF=∠CDE+∠ADF即∠BDF =∠CDA (2分) ∴BFD ∆∽CAD ∆ (1分) (2)∵BFD ∆∽CAD ∆ ∴ADDFAC BF =(2分) ∵AD DF DE AD = ∴DEAD AC BF = (1分) ∵BFD ∆∽CAD ∆ ∴C B ∠=∠∴AC AB = (1分) ∴DEAD AB BF = ∴AD AB DE BF ⋅=⋅. (2分) 24.(本题满分12分,每小题4分)解:(1)由已知得A (-4,0),C (0,2) (1分) 把A 、C 两点的坐标代入c bx x y ++-=221得 ⎩⎨⎧=-=0482b C (1分) ∴⎪⎩⎪⎨⎧=-=223c b (1分) ∴223212+--=x x y (1分)(2)过点E 作EH ⊥AB 于点H 由上可知B (1,0) ∵ABC ABE S S ∆∆=54∴OC AB EH AB •⨯=•215421 ∴5854==OC EH (2分) ∴)58,54(-E ∴59154=+=HB (1分)∵090=∠EHB ∴895859cot ===∠EH HB DBA (1分)(3)∵DF ⊥AC ∴090=∠=∠AOC DFC①若CAO DCF ∠=∠,则CD//AO ∴点D 的纵坐标为2把y=2代入223212+--=x x y 得x=-3或x=0(舍去) ∴D (-3,2) (2分)②若ACO DCF ∠=∠时,过点D 作DG ⊥y 轴于点G ,过点C 作CQ ⊥DG 交x 轴于点Q∵090=∠=∠AOC DCQ ∴090=∠+∠=∠+∠CAO ACO ACQ DCF ∴CAO ACQ ∠=∠∴CQ AQ =设Q (m ,0),则442+=+m m ∴23-=m ∴)0,23(-Q易证:COQ ∆∽DCG ∆∴34232QO CO GC DG ===设D(-4t,3t+2)代入223212+--=x x y 得t=0(舍去)或者83=t∴)825,23(-D (2分)25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分) 解:(1)∵矩形ABCD ∴090=∠=∠ABF BAD∴090=∠+∠ADB ABD ∵A 、P 、F 在一条直线上,且PF ⊥BD ∴090=∠BPA ∴090=∠+∠BAF ABD ∴BAF ADB ∠=∠ ∵2142tan ===∠AD AB ADB ∴21tan ==∠AB BF BAF ∴1=BF (2分) ∴1122121=⨯⨯=•=∆BF AB S ABF(1分) (2)∵PF ⊥BP ∴090=∠BPF∴090=∠+∠PBF PFB ∵090=∠ABF ∴090=∠+∠ABP PBF ∴PFB ABP ∠=∠ 又∵∠BAP =∠FPE∴BAP ∆∽FPE ∆ ∴EFBPPF AB =(2分) ∵AD//BC ∴PBF ADB ∠=∠∴21tan tan =∠=∠ADB PBF 即21=BP PF ∵x BP -=52 ∴)52(21x PF -= (2分)∴y xx-=-522522 ∴)52552(4)52(2<≤-=x x y (1分+1分) (3)15±(3分) 或514557-(2分)。