热力学第一章

合集下载

第一章.热力学第一定律

第一章.热力学第一定律

1.4-2 可逆过程
一次(两次)压缩过程 环境对系统作的功 大于
一次(两次)膨胀过程 系统对环境作的功 原因:多作的功变成热传给了环境 对于准静态膨胀过程的逆过程:压缩可使系统 复原时,环境也同时恢复到原状。这种: 能通过原来过程的反方向而使系统和环境都同 时复原,不留下任何痕迹的过程称为可逆过程
z 可逆过程是一种理想过程,是对真实世 界的科学抽象 一些重要的热力学函数只有通过可逆过 程才能求得
热力学第二定律
开尔文(Lord Kelvin, 1824-1907,英) 1848 克劳修斯(Clausius,1822-1888 ,德)1850
z 构成了热力学的基础
z 人类经验总结,物理化学中最基本定律
z 有着极其牢固的实验基础,其结论具有 高度普遍性和可靠性
z 20世纪初建立了热力学第三定律
一些过程的设计与求算: 1. 理想气体等温过程
∆U =0 ∆H =0 Q=W (可由功求热)
z 等温可逆过程
∫ ∫ W = V2 PdV = V2 nRT dV =nRT ln V2 = Q
V1
V V1
V1
z 对抗恒外压 W= P外 ( V2- V1) = Q
2. 理想气体绝热过程 Q=0 ∆U= nCv.m∆T ∆H = nCp.m∆T W=-∆U(可由内能求功)
浴的温度发生变化即∆T=0, 由此可知
系统 无热传递 环境
Q=0
(2) 气体 向真空膨胀,P外=0, W膨=0
由第一定律则: ∆U=Q-W膨=0 此时:dU=(∂U/∂T)vdT + (∂U/∂V)TdV =0
因dT =0 (∂U/∂v)Tdv=0 但dv≠0 故 (∂U/∂v)T = 0 同理可证 (∂U/∂P)T = 0 即U=f(T)

高等工程热力学-第一章、热力学基本原理及定义

高等工程热力学-第一章、热力学基本原理及定义
⑴试证明刚性容器绝热放气时,容器内剩余 气体经历了一个可逆的绝热膨胀过程。
⑵试写出终态温度T2及排出质量me的表达式。
§1-3 热力学第二定律
一、热力学第二定律的实质及说法
1、热力学第一定律的局限性及热力学第二定律的实质
◆热力学第一定律的实质是能量转换及守恒定律。.
◆任何一个已经完成或正在进行的过程都遵循热力学第一定律。
◆热过程是有方向性的,过程的进行是有条件的, 并有一定的限度。
◆热力学第一定律具有局限性。
热力学第二定律的实质----能质衰贬原理
◆热力学第二定律揭示了不同形式的能量,在转换成功 量的能力上是有“质”的差别的;
◆即使同一种形式的能量,其存在状态不同时,它的转 换能力也是不同的。
◆正是因为各种不同存在形式或不同存在状态的能量, 在传递及转换能力上存在着“质”的差别,所以,在能 量传递及转换过程中,就呈现出一定的方向、条件及限 度的特征。
①能量的存在形式。 有序能>无序能 ②周围环境----定义能质高低的共同基准。
“不能脱离周围环境来进行能质分析!” ③能量的存在状态,即系统所处的状态。
2、寂态(dead state)
当系统与周围环境达到热力学平衡时,系统的状态称为寂态。 此系统中的能量就完全丧失了转换的能力,其能质为零。因此, 寂态可以作为度量任何系统能量品位高低的统一基准。 系统的状态偏离寂态越远,系统能量的品位越高。
∴ 而

忽略动、位能变化,则
一种流体的焓增加等于另一种流体的焓减。 即一种流体的吸收的热量等于另一种放出的热量。
例3、喷管
0
0
0
则 对1kg流动工质
∵ ∴ ∴
例4、绝热节流
0
0

第1章 热力学第一定律

第1章 热力学第一定律

Extensive properties can be made intensive by normalizing.
5.热力学平衡态
系统在一定环境条件下,经足够长的时间,其各 部分可观测到的宏观性质都不随时间而变,此时系统 所处的状态叫热力学平衡态。 热力学系统,必须同时实现以下几个方面的平衡, 才能建立热力学平衡态: (i) 热平衡—系统各部分的温度T相等;若系统不是绝 热的,则系统与环境的温度也要相等。 (ii) 力平衡—系统各部分的压力p相等;系统与环境的 边界不发生相对位移。 (iii)质平衡—体系和环境所含有的质量不随时间而变。 (iv)化学平衡—若系统各物质间可以发生化学反应,则 达到平衡后,系统的组成不随时间改变。
此公式适合于恒外压过程。 (2)
式中p为系统压力,n为气体的物质的量。此公式适 合于理想气体恒压变温过程。
(3)
式中Wr为可逆功,p为系统的压力。只要知道p、V之 间的函数关系就可以对上式进行积分。此公式适合 于封闭体系可逆过程体积功的计算。
(4)Wr (5) (6)
Wr pdV
V1
V2
并且有
2 A 2 A xy yx
即二阶导数与求导次序无关
对一无限小的增量dA
dA=L(x,y)dx+M(x,y)dy
其中,L和M是独立变量x和y的函数,此时并不能马上断 定 A A dA是否是全微分,即不能断定是否存在一个函数(或性质) x y y x A(x,y),因为L(x,y),无需是 或M(x, y)无须是 。 L L dA为全微分的充要条件: y x x y 若α L/ αy≠ α M/ αx,则dA并非为全微分;若α L/ α y =α M/ α x, 则dA为全微分,且A是体系的一个性质, 它在状态1,2之间的差值为,dA=A2一A1,与路径无关。 断定体系性质是否为状态函数依据:1.自变量是否可 知;2. 体系表征数据的精度是否可靠。

第1章 热力学第一定律

第1章 热力学第一定律

系统在环境温度不变的条件下发生的变化历程。T1=T2=Te
2). 恒压过程(isobaric process): 系统在环境压力不变的条件下发生的变化历程。P1=P2=Pe
3) .恒容过程(isochoric process):
容积不变的系统发生的变化历程。V1=V2
4) 绝热过程(adiabatic process): 系统在与环境间无热量交换的条件下发生的变化历程。 5) 循环过程(cyclic process):
化学热力学是怎样产生的?
19世纪,发明蒸汽机,导致工业革命的出现。
蒸汽机:燃煤锅炉——产生高温高压水蒸气——推动机械运转 “热能——机械能” 如何提高“热 — 机”效率?
总结并发现热力学一、二定律——热力学的主要基础。
第一定律:研究化学变化过程中的热效应等能量转换问题。 第二定律:研究化学变化过程的方向和限度。
定义 H=U+PV (焓) QP =H2-H1=△H
对微小的恒压过程, δQP= dH
由于H=U+PV,所以焓是状态函数。△H=△U+△(PV) 热力学定义焓的目的,主要在于研究问题的方便。 物理意义:对于只作膨胀功的恒压过程,系统焓的变化在数值 上等于过程的热。
因恒压热等于系统的焓变,故恒压热也只决定于系统的初末态,与过程无关。
宏观性质统称为状态函数(state function)。
2. 状态函数: 状态函数是系统所处状态的单值函数。对于确定的状态,所 有的状态函数都有确定的值。相反,当状态函数发生变化时, 状态也随之变化。 ★状态和性质之间是相互影响,相互制约的,系统的状态性质 中只要有一个发生变化,必将引起其它性质的变化。 因此,描述系统的状态时,并不需要罗列系统的全部性质。 例:理想气体状态方程

第一章热力学第一定律(Thefirstlawofthermodynamics)

第一章热力学第一定律(Thefirstlawofthermodynamics)

容等表示.
★说明:(1)状态函数增量只与系统的始末态有关,与变化途径无关;
(2)热与功是两个过程函数,其值与变化途径密切相关。 途径不同,系统与环境之间功和热的交换也不一样。
2019/4/4 工科化学(1)课件 安徽理工大学化工系 倪惠琼 制作 13
根据过程进行的特定条件,过程分为: (1)等温过程(isothermal process) T1= T2= T环
摩尔值应为强度性质。
三、状态与状态函数
系统所有性质的综合表现称为系统的状态
系统的各宏观物理性质(如温度、压力、体积等
)均为状态的函数,称为状态函数,又称为系统的 热力学性质。
2019/4/4 工科化学(1)课件 安徽理工大学化工系 倪惠琼 制作 9
状态函数的特点
(1)定态有定值。(与其历史和达到该状态的历程无关) (2)系统状态的微小变化所引起状态函数的变化可以用全微分表 示,如dp、dV、dT等;
2019/4/4
10
四、热力学平衡状态
(equilibrium state of thermodynamics)
如果处在一定环境条件下的系统,其所有的性质均不 随时间而变化,而且当此系统与环境的一切联系均被隔离 后,也不会引起系统任何性质的变化,则称该系统处于热 力学平衡状态。
处于热力学平衡的系统必须同时满足下列平衡:
利用热力学第一定律计算变化中的热效应,利用热力 学第二定律解决各种物理化学过程变化的方向和限度问题 ,以及与相平衡、化学平衡、电化学、表面现象和胶体化 学中的有关基础理论问题。
5、有限粒子和极大量的粒子的性质从最初的量 变发展到质变。
2019/4/4
工科化学(1)课件 安徽理工大学化工系 倪惠琼 制作

第一章热力学第一定律

第一章热力学第一定律
例1-1 在恒定外压 在恒定外压pex=500kPa条件下,将n=2 条件下, 条件下 mol理想气体,从始态 1=300K、p1=500kPa加 理想气体, 理想气体 从始态T 、 加 热到T 过程的体积功。 热到 2=350K、p2=500kPa。求:过程的体积功。 、 。
解:先求出两种状态下的始态和终态体积。再由恒压 先求出两种状态下的始态和终态体积。 体积功的计算方法计算体积功。 体积功的计算方法计算体积功。
V1=nRT1/p1=[2*8.314*300/(500*1000)]m3= 9.977*10-3m3 V2=nRT2/p2=[2*8.314*350/(500*1000)]m3= 1.164*10-2m3 恒压既p1=p2=pex W = -pex(V2-V1) = -[500*1000*(1.164*10-2-9.977*10-3)] = -832J
热量的符号: 热量的符号:Q 体系从环境吸热为Q>0,“+” 体系从环境吸热为 , 体系向环境放热为Q<0,“-” 体系向环境放热为 , 体系绝热,Q=0 体系绝热, 单位:国际单位( ), 焦耳( ), ),KJ 单位:国际单位(SI), 焦耳(J),
热容:一定量物质,温度升高 所吸收的 热容:一定量物质,温度升高1K所吸收的 热。 常用符号为C 常用符号为 摩尔热容:1mol物质的热容。 物质的热容。 摩尔热容: 物质的热容 表示符号为C 单位为J.mol-1.K-1 表示符号为 m,单位为 说明:热容为容量性质,随物质的量变化。 说明:热容为容量性质,随物质的量变化。 摩尔热容为强度性质, 摩尔热容为强度性质,其数值与温度 T有关。 有关。 有关
始态 终态 ——→ ( n,T1, P1, V1)——→ (n,T2, P2, V2) , , 途径 I 等T 等P ( n,T1, P2, V`2) , 途径 II

热力学 第一章

热力学 第一章


(3)状态参量:描述热力学系统平 衡状态的宏观性质的物理量。

描述系统状态的宏观参量一般可以 直接测量。
广延量和强度量
3、均匀系与非均匀系
(1)均匀系:一个系统各部分的性质完全
一致,称为一个均匀系。(也称为一个相 —单相系) (2)非均匀系:复相系
§1.2 热平衡定律和温度

一、热平衡定律(热力学第零定律) 实验
2 3 3 6 1
如果保持温度不变,将1mol的水从1 1000 pn ,求:外界所做的功。
pn
加压到
§1.5 热力学第一定律
一、热量:系统与外界仅由于温度差,通过边界 所传递的能量。(通过分子间的碰撞来实现)
Q 过程量 热量是能量传递的另一种方式 Q 0 系统从外界吸收热量
Q 0 系统向外界放出热量
3 6 2 3
1
§1.6 热容量和焓
一、热容量
1、引入:桶的装水量(水容量)
M 水容: C h
Q 电容: C U
2、热容量:一个系统在某一过程中温度升 高1K所吸收的热量。
Q C lim T T dQ C dT
单位:焦耳/开尔文 J / K
3、系统的质量对热容量的影响:
an2 ( p 2 )(V nb) nRT V
1mol : a ( p 2 )( v b) RT v
3、简单固体和液体:
V (T , p) V0 (T0 ,0)1 (T T0 ) KT p
例1、一个简单可压缩系统,已知
nR 1 a ; KT pV p V
作业:1、1mol理想气体,在27℃的恒温下 发生膨胀,其压强由 20Pn 准静态地降到 1Pn ,求:气体所做的功和所吸取的热量。 2、在27℃,压强在0至 1000pn 之间,测得 水的体积为V (18.066 0.71510 p 0.04610 p )cm mol 如果保持温度不变,将1mol的水从1 pn 加压至 1000pn ,求:外界所做的功。

第一章 热力学第一定律

第一章 热力学第一定律

第一章 热力学第一定律
3.热力学能 热力学能:系统内部 能量的总和。符号U ,单位J 。它由多部 分组成: 分子的平动能、转动能、振动能、电子能、 原子核能及分子间 相互作用的势能。
一定量物质在确定状态,热力学能值为确定。但其绝对值是不 知道的。(如果对于某特定物质给予一个基准态,设该态 U=0,则可求得其它态的相对值)
系统分为:封闭系统、隔离系统和敞开系统。
隔离系统的例: 一个完好的热水 瓶:既不传热,也 无体积功与非体 积功的交换,且无 物质交换.
封闭系统的例: 一个不保温的热 水瓶:传热但无 物质交换;一个 汽缸:有功的交换, 但无物质交换.
敞开系统的例 :一个打开塞 子的热水瓶: 既有能量交换 ,又有物质交 换。
2
1.1 热力学概论
热力学的研究对象 热力学的方法和局限性 几个基本概念:(复习) •系统与环境
•系统的性质 •热力学平衡态
•状态函数
•状态方程
•过程和途径
1 热力学的研究对象 •研究热、功和其他形式能量之间的相互转换及
其转换过程中所遵循的规律。具体:
研究基础:热力学第一、二定律--人类长期 实践经验的总结。 研究内容: •研究各种物理变化和化学变化过程中所发生的 能量效应--热力学第一定律;
V=f(p,T)
例如,理想气体的状态方程可表示为:
pV=nRT
第一章 热力学第一定律—热力学基本概念
(2) 广度量和强度量
描述热力学系统的性质ቤተ መጻሕፍቲ ባይዱ为: 广度量(或广度性质):与物质的数量成正比的性质。如V,Cp ,
U,„等。它具有加和性。
强度量(或强度性质):与物质的数量无关的性质,如 p、T和组 成等。它不具有加和性。 两者的关系: 广度量与广度量的比是强度性质,例如,定压热容,Cp,为 广度量,物质的量n为广度量,摩尔定压热容Cp , m为强度量。

物理化学课件 第一章 热力学

物理化学课件 第一章 热力学
第一章 热力学第一定律和热化学
The first law of themodynamics and thermochemistry
第一节 热力学概论
一. 热力学
热力学(Thermodynamics): 研究宏观系统各种过程中能量相互转换所遵循的规 律的科学, 化学热力学:
热力学应用于化学及其相关的过程 主要原理:
内容:通过导热壁分别与第三个物体达热平衡的任意两个物 体彼此间也必然达热平衡。
定律延伸:任一热力学均相体系,在平衡态各自存在一个称 之为温度的状态函数,对所有达热平衡的均相体系,其温 度相同。
温标:a)摄氏温标 以水为基准物,规定水的凝固为零点, 水的沸点与冰点间距离的1/100为1℃。
b)理想气体温标 以低压气体为基准物质,规定水的三相点 为273.16K,温度计中低压气体的压强为 pr
平衡态公理: 一个孤立体系,在足够长的时间内必将趋于唯一的
平衡态,而且永远不能自动地离开它。
四、状态和状态函数
(一)状态 —系统所有性质的综合表现 ➢系统处于确定的状态,系统所有性质具有确定值;
➢系统所有性质具有确定值,系统状态就确定了;
➢系统的性质是相互关联的,通常采用容易直接测量 的强度性质和必要的广度性质来描述系统所处状态。
五、过程与途径
过程:系统从始态到终态发生的变化 途径:系统完成一个过程的具体方式和步骤
过程 -系统从始态到终态状态随发生的一系列变化
➢ 化学变化过程 按变化的性质分 ➢ 物理过程
p、V、T变化过程
相变化过程
过程按变化的条件分: 等温(T = 0) 等容(V = 0)
表述为热力学第一定律(相变和化学反应热效应)、热力 学第二定律(方向、限度和平衡)、热力学第三定律(熵)

第一章热力学第一定律

第一章热力学第一定律

第一章热力学第一定律本章主要内容1.1热力学概论1.2热力学第一定律1.3 可逆过程和最大功1.4 焓1.5 热容1.6 热力学第一定律对理想气体的应用1.7实际气体1.8热化学1.9化学反应热效应的求算方法1.10反应热与温度的关系——基尔霍夫定律§1.1热力学概论1.1.1热力学的研究对象(1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;(2)研究各种物理变化和化学变化过程中所发生的能量效应;(3)研究化学变化的方向和限度。

1.1.2 热力学的方法和局限性热力学方法:热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。

优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。

局限性:(1)对所得的结论只知其然而不知所以然;(2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。

(3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。

1.1.3 几个基本概念:1、系统与环境系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。

环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。

(1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。

(2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。

(3)孤立系统(isolated system )-系统与环境之间既无物质交换,又无能量交换,故又称为隔离系统。

有时把封闭系统和系统影响所及的环境一起作为孤立系统来考虑。

2、状态与状态性质(1)热力学系统的所有物理性质和化学性质的综合表现称为状态,而描述状态的的性质被称为状态性质(或热力学性质)一般用宏观可测性质来描述系统的热力学状态,故这些性质又称为热力学变量。

第一章热力学第一定律章总结

第一章热力学第一定律章总结

第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。

功分为体积功和非体积功。

二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。

体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。

1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。

或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。

2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。

2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。

第1章 热力学第一定律

第1章 热力学第一定律

§ 1.5 定容及定压下的热
U、H、U、 H、Qp、QV的区别与联系
1.哪个是状态函数? U、H 2.哪个能测量? ΔU、ΔH、Qp、QV 3.有何关系?W’=0时ΔU=Q ,ΔH=Q V p
§ 1.6 热容 1. 定容热。 δQ 注意:Wf=0,无相变、无 C= dT 化学变化的封闭系统。
2.可逆过程
可逆过程是一个极限的理想过程。
研究可逆过程的用处:
(1)确定提高实际过程的效率的可能性。
(2)求解重要热力学函数的变化值。
2.可逆过程





几种典型的可逆过程 可逆膨胀和可逆压缩:力平衡 可逆传热:热平衡 可逆相变:相平衡 可逆化学反应:A+B C
§ 1.4 体积功 3.可逆相变的体积功
§ 1.2 几个基本概念
1.系统和环境
在研究时被划分出来作为研究对象的 物体称为系统(System);系统以外与 系统有相互作用的周围部分称为环境 (Surroundings)。
1.系统和环境
系统分类
(1)敞开系统
(2)密闭(封闭)系统 (3)隔绝(孤立)系统
与环境的关系
物质交换 能量交换
√ × ×



1)三种不同过程的功相同么? 三种不同过程的内能变化相同么? 三种不同过程的热相同么? 2)哪种过程的功最大?
1.体积功 例: H2(1000Pa,3m3)
等温压缩 W=?
1molH2(3000Pa,1m3)
1)一次压缩? 2)等温可逆压缩?
1)一次膨胀:W=-2000 J 反向(一次压缩):W逆=(-3000)*(1-3)=6000 J 所以,在环境中留下了影响。 2)可逆膨胀:W=-3296 J 反向(可逆压缩):W逆=3296 J 所以,在环境中没有留下影响。

第一章 热力学第一定律

第一章 热力学第一定律

1.1.2.3 过程和途径
1.过程:当体系的状态发生变化时,状态变 化的经过,强调变化的方式 2.途径:完成变化的具体步骤,强调经由路 径的不同
注: 过程和途径不是严格区分的两个概念, 不强调方式和路径的时候可通用
几种常见的过程
• 等/定温过程:体系始态、终态及过程中的温度等于环境 温度且为常数。 T始=T终=T体=T环=常数 • 等/定压过程:体系始态、终态及过程中的压力等于环境 压力且为常数。 p始=p终=p体=p环=常数 • 等/定容过程:在变化过程中,体系的容积始终保持不变。 V体=常数

二次恒外压压缩
体系返回原状态,体系虽然恢复原 态,但环境失去功,得到热
等温可逆膨胀
V2 WⅣ nRT ln V1
W WⅣ WⅣ 0 , 又U Q W 0, 则Q 0
等温可逆压缩 V1 WⅣ nRT ln V2
体系循原过程返回,不仅体系恢复原态,而且未给 环境留下功热转化的痕迹,即环境也恢复原状态
1.1.3.1 能量守恒定律
1840年左 右,焦耳 发现了热 功当量
1.1.3.1 能量守恒定律
热功当量
升高相同的温度
状态1 加热 W=0 状态2 热 功 当 量
Q=0
Q=0
机械功 电功
1.1.3.1 能量守恒定律
电量热法
1.1.3.1 能量守恒定律
机械量热法
1.1.3.1 能量守恒定律
到1850年,科学界公认能量守恒定律是自然界的普 遍规律之一。
1.1.3.3 “热一”数学表达 式
Q
W
W
U1
Q
U2
U2-U1 = Q+W
1.1.3.3 “热一”数学表达式

第一章 热力学第一定律

第一章  热力学第一定律

第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。

(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。

用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。

ΔM (实)=ΔM (设)。

这种方法称为热力学的状态函数法。

③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。

此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。

⎰-=21V V a m bdV p W ,其中p amb 为环境压力。

Q 由热容计算或由热力学第一定律求得。

dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂xM y M y y x x M )(22尤拉关系式xy My x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2) 2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。

此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。

第一章热力学第一定律

第一章热力学第一定律

经验 总结总结 归纳提高 引出或定义出 解决的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律§1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法 1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。

⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等); 热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。

2、热力学方法——状态函数法⇨ 热力学方法的特点:①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc )②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。

⇨ 局限性:不知道反应的机理、速率和微观性质。

只讲可能性,不讲现实性。

3、热力学研究內容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。

热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。

1.1.2 热力学的基本概念生活实践 生产实践 科学实验 热力学第一定律 热力学第二定律 热力学第三定律 热力学第零定律 热力学理论基础 热力学能U 焓H 熵S 亥姆霍茨函数A 吉布斯函数G压力p 体积V 温度T 实验测得p ,V ,T 变化过程 相变化过程 化学变化过程1、系统与环境 ⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。

第一章 热力学第一定律

第一章 热力学第一定律

封闭系统 , 从状态 1 变为状态 2 ,此系统热力学能的
改变ΔU为:
ΔU = U2 - U1 = Q +W
d U = δQ +Δw
若系统所发生的变化非常微小,则:
——热力学第一定律的数学表达式
二、热力学能
热力学能,亦称为内能,它是指系统内部能量的总 和,包括分子运动的平动能、转动能、振动能、电子能、 核能以及位能等。热力学能用符号U表示。
胀次数无限多,系统自始至终是对抗最大的阻力情况
下,所以此过程所作的功为最大功。这种过程称为准 静态过程。
二、不同过程的体积功
准静态膨胀过程: 若气体为理想气体,且为 等温膨胀,则
V1 p
W4
V2
V
W4
V2
V1
pdV
V2
V1
V2 nRT dV nRT ln V V1
二、不同过程的体积功
T,p Zn s 2HCl aq ZnCl2 aq H 2 g
请问这是什么体系,界面在什么位置?
思考与讨论
3、如果物体A分别与物体B、C达到温度一致,则 物体B和C是否达到热力学平衡态? 4、某体系可以从状态B变化到状态A,也可以从 状态C变化到状态A,这两种状态A以及各种状 态函数在此两种状态A的数值是否完全相同? 5、理想气体向真空膨胀,当一部分气体进入真空 容器后,余下的气体继续膨胀时所做的功是大
能量效应;
• 研究物理过程和化学变化的方向和限度。
二、化学热力学研究的内容
将热力学的基本原理应用于化学现象及与化学有关
的物理现象的规律的研究,就称为化学热力学。其主要
内容是利用:
热力学第一定律---计算化学变化中的热效应 热力学第二定律---计算变化的方向和限度,特别是化 学反应的可能性以及平衡条件的预示。

第一章 热力学第一定律

第一章 热力学第一定律


在热力学中,体系与环境之间除热以外其余 各种形式被传递的能量都叫做功。用符号 “W”表示。
热和是与过程有关的函数,其微小变化不具 有全微分性质,不能全微分“d W”表示, 而要用“ W”表示。
功也是只有体系发生状态变化时才伴随发生, 没有过程就没有功。因此不能说体系中含有 多少功。
当体系从一个状态变化到另一个状态,我们 就可以说体系对环境作了多少功。
QP=H2 - H1=⊿H
•即:在封闭体系中,非体积功为零的等压 过程中,体系所吸收的热全部用来增加体 系的焓变 :
•QP=H2 - H1=⊿H
H≡U+ PV
与热力学能类似,焓的绝对值也不可知, 但我们只需要测定其变化量即可达到我们 的目的。
焓,也叫热函,是一个系统中的热力作用, 等于该系统内能加上其体积与外界作用于 该系统的压力的乘积的总和。
这些仅是字面上的解释,其真正的物理意 义目前还不是很清楚。
虽然焓真正的物理意义目前还不是很清楚, 但焓的使用比较丰富,比如键焓、燃烧焓、 生成焓、反应焓、溶解焓、稀释焓、蒸发焓、 气化焓等。
对于理想气体,有:
即:
QP= QV +⊿n(g) RT
⊿H =⊿U +⊿n(g) RT

已知,在373K和外压为100KPa时,可将 水蒸气近似看成理想气体,液态水的蒸发 热为40.66kJ/mol,请计算1mol液态水在上 述条件下完全蒸发为水蒸气时体系对环境 所做的功W,体系所吸收的热Q,体系的 热力学能变化⊿U,体系的焓变 ⊿H
第一章 化学热力学基础 1,2节
4学时
化学热力学的研究内容
研究化学变化的方向和限度及其伴随变化 过程中的能量的相互转换所遵循的规律;
1、化学反应中的热效应; 2、化学反应的方向和限度;

第一章 热力学第一定律

第一章 热力学第一定律

3、系统的性质(宏观性质)
(1)广度性质:与系统所含物质的量有关,具有 加和性。(如质量、体积等) (2)强度性质:与系统所含物质的量无关,不具有 加和性。(如温度、压力、密度等) 在一定条件下,广度性质可以转化为强度性质。
m V
第一章 热力学第一定律
二、状态与状态函数
1、状态:系统内所有宏观性质的总和。
第一章 热力学第一定律
§1-1 基本概念
一、系统与环境
1、概念:在热力学上将作为研究对象的那部分物质 称为系统;将与之有密切联系(即可能有 物质或能量交换)的其余部分称为环境。 系统
环境
第一章 热力学第一定律
说明:系统与环境的界面可以是实际存在的,
也可以无界面。
例如:以我们现在上课的教室为例
(1)如果以人为系统,则周围的空气就是环境; (系统与环境之间有界面) (2)如果以人和教室内的空气为系统,则教室外面的
U 1
B
U 2
循环都有多余的能量产生,违背
热力学第一定律。 所以 U 1 U 2
A
第一章 热力学第一定律 3、系统状态发生变化时,其内能的改变量是一定的, 但在实现这一状态变化的各个可能过程中,热和功可以 有不同的值。
例如:对于反应
Zn + CuSO4 = Cu + ZnSO4
每当有1mol 锌置换出1mol铜时,系统地内能减少249.4kJ。 即:U 249.4kJ / mol (1)途径Ⅰ:将锌片直接插入硫酸铜水溶液中; (2)途径Ⅱ:将锌片与铜片构成原电池。
2、符号规定:
(1)环境对系统做功时,W > 0; (2)系统向环境做功时,W < 0。
第一章 热力学第一定律
3、功的类型

(1)热力学第一章1

(1)热力学第一章1

热力系统选取
只交换功
过热器 锅 炉 汽轮机
绝热系统
只交换热
发电机
绝功系统
凝 汽 器 给煤
给水泵 发电
既交换功 工质质量 不变 也交换热
闭口系统
热力系统
m W 4 Q
1 开口系 1+2 闭口系 1+2+3 绝热闭口系 1+2+3+4 孤立系
1
2
3
非孤立系+相关外界 =孤立系
简单可压缩系统
5 t[ C ] (t[ F ] 32) 9
O
• 答案:t=-40℃
本节总结
• 绪论 • 第一章

• •

热能动力装置的工作过程 热力系统 状态参数的特征 基本状态参数(温度)
课后作业
• 1-1 • 1-2(1)、(2)问
温度计感应元件的物体应具备某种物理性质,它 随物体的冷热程度不同有显著的变化。

几种类型的温度计及其测量属性
温度计 气体温度计 液体温度计 电阻温度计 热电偶 磁温度计 光学温度计 测温属性 压力或体积 体积 电阻 热电动势 磁化率 辐射强度


温标就是温度的数值表示法。 经验温标:由选定的任意一种测量物质的 某种物理性质,采用任意一种温度标定规 则所得到的温标。
介物质称为工质。 • 热源(高温热源):把工质从中吸收热 能的物系称为热源。 • 冷源(低温热源):把接收工质排出热 能的物系叫做冷源。
蒸汽动力装置
1、热源,冷源 2、工质 (水、蒸汽) 3、膨胀做功 4、循环 (加压、加热、 膨胀做功、放热)
过热器 锅 炉
汽轮机
发电机
凝 汽 器

第一章 热力学第一定律

第一章 热力学第一定律

第一章 热力学第一定律
返回目录
退出
3
§1.2 几个基本概念
1. 系统和环境
2. 状态和状态函数 3. 过程与途径 4. 热力学平衡系统
第一章 热力学第一定律
返回目录
退出
4
1. 系统和环境
系统:研究对象 环境:系统以外的,与系统有关的部分 系统与环境由实际的或想象的界面分开 系统的分类:
系统
物质交换 能量交换
对于热力学系统而言,能量守恒原理就是热 力学第一定律。热力学第一定律的说法很多,但 都说明一个问题——能量守恒。
第一章 热力学第一定律
返回目录
退出
14
热力学第一定律的经典表述:
第一类永动机不可能存在。
不供给能量而可以连续不断对外做功的机器叫做第一类 永动机。
热功当量: 1 cal = 4.184 J和1 J = 0.239 cal。热功当量为能量守 恒原理提供了科学的实验证明。
相变体积功的计算: WV= p外(V1 -V2) = p (V1 -V2) = -nRT (相变) (可逆相变)
= p (Vl,s -Vg) ≈-pVg (气化或升华Vg>>Vl,s)
(理想气体)
第一章 热力学第一定律
返回目录
退出
30
§1.5 定容及定压下的热 1. 定容热
热不是系统的状态函数。但是在某些特定的条 件下,某一特定过程的热却可变成一个定值。 热力学第一定律 dU =δQ+δWV +δW ′ 只做体积功时 定容: =δQ+δWV =δQV- p外 dV =δQV
第一章 热力学第一定律
返回目录
退出
7
(2) 状态函数的特点
①系统的状态函数只说明系统当时所处的状态, 而不能说明系统以前的状态。 例如标准压力下,50℃的水,只说明系统 此时处于50℃,而不能知道这50℃的水是由 100℃冷却而来,还是由0℃加热而来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设 z =z (x , y)
dz是全微分
dz
z x
y
dx
z y
x
dy
充要条件:
2z 2z xy yx
可判断是否 是状态参数
强度参数与广延参数
强度参数:与物质的量无关的参数
如压力 p、温度T
广延参数:与物质的量有关的参数可加性
如 质量m、容积 V、内能 U、焓 H、熵S
比参数: v V
m
Hg
• 常用单位:
• 1 kPa = 103 Pa
• 1bar = 105 Pa
• 1 MPa = 106 Pa
• 1 atm = 760 mmHg

= 1.013105 Pa
• 1 mmHg = 133.3 Pa
• 1 at = 1 kgf/cm2

= 9.80665104 Pa
绝对压力,表压力和真空度
§1-1 热力系
1 开口系
1
m
2
1+2 闭口系
WQ
1+2+3 绝热闭口系 1+2+3+4 孤立系
4
3
非孤立系+相关外界
=孤立系
热力系统其它分类方式
均匀系 物理化学性质
非均匀系
按内部情况分: 工质种类
单元系 多元系
单相 相态
多相
简单可压缩系统
最重要的系统 只交换热量和一种准静态的容积变化功
第一章 基本概念
1-1 热力系
1、系统的定义
热力系 (热力学系统、简称系统): 就是具体指定的热力学 研究对象
§1-1 热力系
2、系统、外界与边界 外界:系统以外的与热力系有关的 所有物质 边界(界面):系统与外界的分界面
系统与外界的所有作用都必须通过边界
热力系选取的人为性
过热器
汽轮机
锅 炉
发电机
内能 (广) Internal Energy
摩尔数 (广) Mol
常见基本状态参数有六个
压力 p、温度 T、比容 v (三个容易测量的)、 热力学能、焓和熵(三个不易测量的)
1、压力: 单位面积上所受的垂直作用力,用符 号“p”表示
p 是物理中压强,单位: Pa (Pascal), N/m2
单位:
1mmHg = ρgh = 133.322Pa
当h变化大,ρ ρ(h)
p (h)gdh
工业或一般科研测量:
压力传感器
高精度测量:
活塞压力计
2、温度 T
温度T 的一般定义:
传统:冷热程度的度量。感觉,导热,热容量
微观:衡量分子平均动能的量度
T 0.5 m c 2
1) 同T , 0.5mc 2 不同,如碳固体和碳蒸气
发烧 100
00.01水冰三熔相点点
32
-17.8 盐水熔点 0
559.67 491.67 459.67
0 -273.15
-459.67
0
温标的换算
T[K] t[OC] 273.15 t[OC] 5 (t[F] 32)
9
t[F] t[R] 459.67
常见测温仪器
水银温度计 ,酒精温度计, 热电偶 热电阻 辐射温度计 铂电阻温度计 激光全息干涉仪 CARS(相干反斯托克斯喇曼光谱)法
m
比容
uU m
h H m
比内能 比焓
s S m
比熵
单位:/kg /kmol 具有强度参数的性质
强度参数与广延参数
速度 (强)
Velocity
高度 (强)
Height
温度 (强)
Temperature
应力 (强) Stress
动能 (广) Kinetic Energy
位能 (广) Potential Energy
容积变化功
后面继续讨论功的问题
压缩功 膨胀功
§1-2 状态和状态参数
状态:某一瞬间热力系所呈现的宏观状况 状态参数:描述热力系状态的物理量 状态参数的特征:
1、状态确定,则状态参数也确定,反之亦然 2、状态参数的积分特征:状态参数的变化量
与路径无关,只与初终态有关 3、状态参数的微分特征:全微分
状态参数的微分特征
2) 0.5mc2总0, T 0, 1951年核磁共振法对 氟化锂晶体的实验发现负的开尔文温度
3) T=0 0.5mw 2=0 分子一切运动停止, 零点能
温度的热力学定义
热力学第零定律 如果两个系统分别与第三个系统处于
热平衡,则两个系统彼此必然处于热平衡。
第零定律是温度测 量的理论基础,也 叫热平衡定律 图中B是温度计
温度的测量
温度计
物质 (水银,铂电阻) 特性 (体积膨胀,阻值)
基准点 刻度
温标
常用温标
• 热力学温标(绝对温标) K • 摄氏温标 ℃ • 华氏温标 F • 朗肯温标 R
常用温标之间的关系
绝对K 摄氏℃
华氏F
373.15 100 水沸点
212
朗肯R
671.67
273.16 273.15
37.8
➢国际单位制,单位面积上所受的力表示 pa, kpa ➢大气压的倍数表示 atm, at
➢液柱的高度表示 mH2O, mmHg 例如一个标准大气压:
H H2O
p
H2O
1.013 105 pa 1000 9.81
10m H2O
HH g
p
Hg
1.013 105 pa 13.6 103 9.81
760m
3、比容(比体积) v
单位质量的物质所占有的容积
V v [m3/kg]
m
v = 1
工质聚集的疏密程度
v 1
物理上常用密度
[kg/m3]
4、热力学能 U
热力学能:组成物质的微观粒子所具有的能量。
1. 主要包括 (1)内动能:Uk
物质内部的分子,原子等微观粒子不停地作热运 动的热运动动能。 是温度的函数。
p pb pv
pg
pv
pb
p
压力p测量
绝对压力与环境压力的相对值(差值) ——相对压力
注意:只有绝对压力 p 才是状态参数
环境压力与大气压力
环境压力
指压力表所处环境
大气压力
注意:
环境压力一般为
大气压,但不是绝对
h
的。
大气压力
大气压随时间、地点变化
物理大气压 1atm = 760mmHg
当h变化不大,ρ常数
➢ 绝对压力 是以绝对真空为基准计量得到的压力,
是工质的真实压力。
➢ 表压力
是以大气压为基准测量得到的压力 用 Pe 表示 ➢ 真空度
用 Pv 表示
Pe
P
Pb
0
Pb Pv
P0
绝对压力,表压力,真空度,大气压力之间的关系
当 p > pb 当 p < pb
表压力 pg 真空度 pv
p
p pg pb
凝 汽 器
给水泵
只交换功 既交换功 也交换热
只交换热
边界特性
固定、活动 真实、虚构
热力系分类
以系统与外界的联系分:

是否传质
开口系
是否传热
非绝热系
是否传功
非绝功系
是否传热、功、质 非孤立系
无 闭口系 绝热系 绝功系 孤立系
常见:
开口系:既有质量交换,也可以有能量交换 闭口系:无质量交换 绝热系:无热量交换 孤立系:无任何联系
相关文档
最新文档