设有一以理想气体为工作物质的热机循环

合集下载

复习[热学部分习题解答]报告

复习[热学部分习题解答]报告


(1) n p / kT 2.44 10 m M 3 (2) nm n 1.30kgm NA 21 (3) k 3kT / 2 6.2110 J (4) d 1 / n 3.45 10 m
3 9
25
3
ห้องสมุดไป่ตู้
例8 设有一恒温容器,其内储有某种理想气体,若
p ( C)
绝热 绝热
o
p (B)
等温 绝热
V
o p
( D)
等温 绝热
V
绝热
o
V
o
V
例19 图中两卡诺循环
1 2
p
吗?
p
W1
W1 W2
T1
T1
W1 W2
W2
T2
W2
T3 W1
T2
o
V
o
V
1 2
1 2
例20 设高温热源的热力学温度是低温 热源热力学温度的n倍,则理想气体在一次 卡诺循环中,传给低温热源的热量是从高 温热源吸收热量的 ( A) n 倍 解:Q放 T低 1 (B) 1/n倍 Q吸 T高 n (C) n-1倍 (D)(n+1)/n倍
C p,m 20.79J mol K
1
1
1)画 P—V 图
p A B
2)在这过程中氦气吸热
C
o
20
40
V (l )
Q吸 QAB 2C p ,( ) m T2 T1 T1 (273 27)K V1 V2 T1 T2
T2 600K
QAB 1.25 10 J
i kT . 2
刚性分子,分子自由度数为 i,则当温度为 T 时, (1)一个分子的平均动能为

《中山大学902普通物理历年考研真题及答案解析》

《中山大学902普通物理历年考研真题及答案解析》

子平均动能的增量为γNQA式中γ为比热容比,NA 为阿伏伽德罗常数。
3.半径为
a
的>0
的匀强磁场。一直导线弯成等腰梯形
ABCDA,
上上底长为 a,下底长为 2a。回路总电阻为 R.。求: (1)AD 段,BC 段和闭合回路中的感应电动势; (2)B,C 两点间的电位差。 4.一玻璃劈类的尖端的厚度为 0.05mm,折射率为 1.50。今用波长为 700nm 的平行单色
3.在两平行导线的平面内,有一矩形线圈,如图所示。如导线中电流 I 随时间变化,试 计算线圈中的感生电动势。
《中山大学 898 普通物理历年考研真题及答案解析》
6/69
4.用波长λ1=400nm 和λ2=700nm 的混合光垂直照射单缝,在衍射图样中,λ1 的第 k1 级明 纹中心位置恰与λ2 的第 k2 级暗纹中心位置重合。求 k1 和 k2;试问λ1 的暗纹中心位置能否与 k2 的暗纹中心位置重合并指出重合的级数?
三、实验题(每题 15 分)
1.在单摆实验中,测量小振幅时摆动 50 个周期所需的时间 50T 和摆长 L 的关系时,得 到以下结果:当 L=60.30cm,50T=77.90s;当 L=70.30cm,50T=84.30s;当 L=79.80cm,50T=89.75s; 当 L=90.20cm,50T=95.45s;当 L=100.20cm,50T=100.55s.
(1)求速度 v 对时间的变化规律。 (2)求路程 x 对时间的变化规律。 (3)证明速度 v 与路程 X 之间有如下关系:V = V0e-k’x (式中的 k’=k/m。) (4)如果 v0=20m/s,经 15s 后,速度降为 vt=lOm/s,求 k'。 2.某气体如图(温熵图)所示的循环,求该循环的效率。

热力学第二定律(材料)

热力学第二定律(材料)

Q1 Q 2 + =0 T1 T2
所以任意可逆循环的热温商的总和等于零。 所以任意可逆循环的热温商的总和等于零。即,

δQ r
T
= 0
§2.3 熵的概念
根据任意可逆循环热温商的公式:
∫( T
B
δQ
)R = 0
可分成两项的加和:
A δQ δQ ∫A ( T ) R1 + ∫B ( T ) R 2 = 0
解决过程的 方向和限度
{
1。寻找自然界自发过程方向性的共同因素 。 2。热功转化的方向性所决定(第二定律) 。热功转化的方向性所决定(第二定律) 3。从热功转化的关系(热机)中寻找决 。从热功转化的关系(热机) 定过程方向的状态函数X 定过程方向的状态函数
热机:系统经过一个循环, 热机:系统经过一个循环,从环境中吸取热并将 其转化为功;反之,即为制冷机。 其转化为功;反之,即为制冷机。
自发变化的共同特征 —— 不可逆性
§ 2.2 热力学第二定律
克劳修斯( 克劳修斯(Clausius)的说法:“不可能把热从低 )的说法: 温物体传到高温物体,而不引起其它变化。 温物体传到高温物体,而不引起其它变化。” 开尔文( 开尔文(Kelvin)的说法:“不可能从单一热源取 )的说法: 出热使之完全变为功,而不发生其它的变化。 出热使之完全变为功,而不发生其它的变化。” 奥斯特瓦德( 奥斯特瓦德(Ostward)表述:“第二类永动机是不可 )表述: 能造成的” 能造成的”。 (第二类永动机:从单一热源吸热使之完全变为功而 第二类永动机: 不留下任何影响。) 不留下任何影响。)
例如1气缸中理想气体作等温膨胀时, 例如1气缸中理想气体作等温膨胀时,气体从恒温 热源吸收的热量就可以全部用来对外做功( 热源吸收的热量就可以全部用来对外做功(即从单 一热源吸热作功),但气体 发生了变化! 一热源吸热作功),但气体p、V发生了变化! ),

大学物理作业答案(下)

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。

1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。

试求圆筒内部的磁感应强度。

解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.i ω σc deab f67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。

今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。

解:)(22r R IJ -=π10121r k J B ⨯=μ 20221r k J B ⨯-=μj Ja O O k J r r k J B B B 021********21)(21μμμ=⨯=-⨯=+=j r R IaB )(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr rL R I Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。

热学第四章

热学第四章

(3) Q p =v C p∆ T ∆T = Qp v Cp = 2× 500 = 8.6K 7× 8.31 2 p∆ V = R∆ T v
T = T0 +∆ T = 8.60C
v R∆ T V 2 = V 1 +∆ V = V 1 + p 2×0.082×8.6 = 44.8 + 1 = 0.046m3 = 46.2(升)
例4.4:理想气体从 ( P1 V1 ) 绝热自由膨胀到状 : 态 ( P2 2V1 ) ,试求末态压强 P2 。 解:绝热过程:Q = 0 绝热过程: 自由膨胀过程: 自由膨胀过程:W=0 由热力学第一定律:Q = U2 - U1 +W ,得 由热力学第一定律: U2 = U1 即:内能不变 因理想气体内能只决定于温度, 因理想气体内能只决定于温度,故 T2 =T1 理想气体的状态方程: 理想气体的状态方程:P2V2 /T2 = P1V1 /T1 已知 V2 = 2V1 T2 = T1 ,得 P2 = P1 / 2
p1 = p0 =1.013×105 Pa 解:
V1 = 44.8×10−3 m3 , T = 273 K 1
CV = 5R / 2
CP = 7R / 2
−3 3
先等压加热到 V2 = 2V1 = 89.6×10 m 则此时温度
V2 T2 = ( )T = 546Κ 1 V 1
在此过程吸收热量: 在此过程吸收热量:
V3 = V2 = 89.6×10−3 m
(四)理想气体的绝热压缩与绝热膨胀
[例4.3〕气体在气 缸中运动速度很快,而热量传递很 例 〕 缸中运动速度很快, 若近似认为这是一绝热过程。试问要把300K、 慢,若近似认为这是一绝热过程。试问要把 、 1atm 下的空气分别压缩到 下的空气分别压缩到10atm及100atm,则末态 及 , 温度分别有多高? 温度分别有多高 〔解〕

大学物理课后答案第5章

大学物理课后答案第5章

第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为ghp gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。

【高中物理】优质课件:焦耳汤姆孙实验

【高中物理】优质课件:焦耳汤姆孙实验

解:
0
1 T2 T1
1 300 1000
70%
(1)
1
1 300 1100
73.3%
(2)
2
1 200 1000
80%
1 0 4.7% 0
2 0 14.3% 0
若采取(2)方案将低温热源温度降低到环境温度
以下,又必需使用致冷机。因此,实用上,从节能方
面综合考察,以方案(1)为好。
例 : 1mol 理想气体在 400K 与 300K 之间完成一 卡诺循环,在等温线上,起始体积为 1L ,最后体 积为5L,试计算在此循环中所作的功,以及高温热 源吸收的热量和传给低温热源的热量。
高中物理
焦耳 汤姆孙实验
焦耳-汤姆孙 ( Thomson )实验
A
绝 热 套
T 1
T2 B
多孔塞
例 :1mol 氧气作如图所示的循环。 求:循环效率
解:Q
ab
=
M M
mol
C
P
(T
b
T)
a
P
Q
bc
=
M M
C (T
Vc
mol
T
)
P 0
b
Q
ca
=
M M
R
mol
T ln
c
V 2V0
0
0
Q a ab
等 温
例:一台家用冰箱,放在室温为27C的房 间里,做一 盘零下13度的冰块需从冰室取走 2.09105 J 的热量,设冰箱为理想卡诺制冷 机,问:(1)做一盘冰块需作多少功?(2) 若此冰箱以2.09 102 的速率取出热量,要求 的电功率多少kw ?(3)作冰块需多少时间?

以实际气体为工作物质的卡诺循环

以实际气体为工作物质的卡诺循环

以实际气体为工作物质的卡诺循环卡诺循环是一种热力学循环,用于描述理想的热机工作原理。

该循环是由19世纪法国物理学家尼古拉·卡诺提出的,通过理论上的推导说明了热机的最大效率与热机内部参数之间的关系。

卡诺循环的一个关键要素是工作物质,它需要是可逆的理想气体。

本文将介绍使用实际气体作为工作物质的卡诺循环。

实际气体的特性:实际气体通常具有非理想气体的特性,这意味着它们的行为不能完全符合理想气体定律。

实际气体的特性包括:1. 对压缩和膨胀的数据不敏感。

也就是说,在相同压力水平下,实际气体的体积变化比理想气体小。

2. 具有摩擦和黏合力,从而导致能量损失。

3. 在高压和低温下,实际气体不一定保持气态状态。

在卡诺循环中,使用理想气体和实际气体的最大区别是可逆过程和不可逆过程之间的关系。

理论上,只有可逆过程才存在于理想气体中。

而实际气体不完全符合这一点,因为存在着一些不可逆过程,导致热能的损失。

卡诺循环的理论原理:卡诺循环是一种理想的热力学循环,其目的在于说明热机最大化工作所达到的效率。

卡诺循环由四个过程组成:等温膨胀、绝热膨胀、等温压缩和绝热压缩。

这些过程描述了热机如何从热源吸收热能和向热源放热。

在卡诺循环中,使用的工作物质通常是理想气体,因为它是一种可逆热机。

但如果使用实际气体作为工作物质,卡诺循环的效率就会降低,因为实际气体通常包含不可逆过程。

卡诺循环的性能参数:卡诺循环的性能参数包括效率和热机内部温度。

1. 效率:卡诺循环的效率是指热机工作过程中所利用的热能与热源提供的总能量之比。

效率公式为:η = (T1 - T2) / T1其中,T1为热机工作时的高温热源温度,T2为热机工作时的低温热源温度。

2. 温度:在卡诺循环中,热机内部有两种温度。

一个是热源的温度,另一个是热机的内部温度。

热机内部的温度高于低温热源,但低于高温热源。

温度公式为:T1 - T2 = Q1 / C1= Q2 / C2其中,Q1为高温热源提供的能量,Q2为低温热源提供的能量,C1和C2分别为热机工作过程中的两个热容。

1.热学习题解答.

1.热学习题解答.

第1章 温度习题答案一、 选择题 1. D 2. B二、填空题1. Pa 31008.9⨯ K 4.90 C 08.182-三、计算题1. 解:漏掉的氢气的质量kg T Vp T V p R M m m m 32.0)(22211121=-=-=∆第2章 气体分子动理论答案一、选择题1. B解:两种气体开始时p 、V 、T 均相同,所以摩尔数也相同。

现在等容加热 V C MQ μ=△T ,R C R C V V 25,232H He ==由题意 μM Q =HeR 23⋅△T = 6 J 所以 R M Q 252H ⋅=μ△T =(J)1063535H =⨯=e Q 。

2. C 解:由,)(,)(,He 222O 1112R MT V p R M T V p R MT pV ⋅=⋅==μμμ,,2121T T p p ==又 所以,21)()21He O 2==V V MM μμ( 根据内能公式,2RT i M E ⋅=μ得二者内能之比为65352121=⋅=E E 3. B解:一个分子的平均平动动能为,23kT w =容器中气体分子的平均平动动能总和为3210410523232323-⨯⨯⨯⨯===⋅==pV RT M kT N Mw N W A μμ =3(J)。

4. C解:由RpVC E RT MpV T C ME VV ===得 ,μμ, 可见只有当V 不变时,E ~ p 才成正比。

5. D解:因为)(d v f NN =d v ,所以)(21212v f N mv v v ⋅⋅⎰d ⎰=21221v v mv v d N 表示在1v ~2v 速率间隔内的分子平动动能之和。

6. D 解:由,2,2122v n d z nd ππλ==体积不变时n 不变,而v ∝T , 所以, 当T 增大时,λ不变而z 增大。

二、填空题1. 27.8×10-3 kg ⋅mol -1 解:由RT MpV μ=可得摩尔质量为523mol10013.1100.130031.8103.11⨯⨯⨯⨯⨯⨯====--p RT pV MRT M ρμ )m o l (k g 108.2713--⋅⨯=2. 1.28×10-7K 。

热学专业课复习

热学专业课复习

2019级电子信息工程学院物理学(师范)专业核心课程热学期末复习题解析1.定体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为:pa 3106.7⨯。

(1)用温度计测量300K 得温度时,气体的压强是多少? (2)当气体的压强为:Pa 3109.1⨯,待测温度是多少? 解:(1)K p pp T tr16.273)(⨯=,pa p tr 3107.6⨯=,当K T 300=时带入解得: pa p 32.7358=;(2)当pa p 3101.9⨯=时,带入公式得:K T 371=。

2. 图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

请问哪一条曲线表示氧气分子的速率分布曲线? 解:M RTmkTv p 22==,22H O M M >a 为氧气。

3.麦克斯韦速度分布函数是)(x f ,则s m v /100>的气体分子的平均速率v 为(⎰∞=100)(dv v f vv )。

4.半径为r 密度为ρ的小球在黏度系数为η,密度为σ的液体中自由下沉,求稳定后小球的速度是(g r v )(922σρη-=)。

解析:稳定后受力平衡则:.)(92,346623g r v mg g r vr mg gV vr σρηπσπηρπη-=⇒=+⇒=+排液体 5. 如果理想气体按照C pV =3(C 为正数常量)的规律从1V 膨胀到2V ,则做功为()11(22221V V C A -=)。

解析:).11(2222132121V V C A dV V C pdV A V V V V -=−−−→−==⎰⎰解出方程得:OEA B6. 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是(等压)过程。

解析:ννpVi U RT pV RT i U ⨯=⇒==2,2,从图中得出:aV U =,故为等压。

7. 有23molH (可视为理想气体),由423K 298K 加热到则此过程中U ∆为(7790.625J )。

热学大练习

热学大练习

热学部分大练习一、填空题1. 相同温度下的1摩尔氧和2摩尔二氧化碳,对这两份气体,比较它们下列诸量的大小: (1)分子平均动能之比为_________________;(氧:二氧化碳) (2)分子平均平动动能之比为________________; (3)内能之比为____________________.2. 假设有一种气体,构成它的粒子服从以下速率分布率()()()⎩⎨⎧≥<<-=000 00)(v v v v v v Av v f式中A 为常量。

则用 v 0 定出的A =____________,平均速率=v __________________.3. 假设有N 个电子组成的电子气,其速率分布函数为f (v )与v 的关系如图所示。

则A 的大小为________________,在速率0~900 m /s 间电子的平均速率为_____________。

4. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________;(2) 速率v > 100 m ·s -1的分子数的表达式为__________________.5. 图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中 曲线 (a) 是 气体分子的速率分布曲线; 曲线 (c) 是 气体分子的速率分布曲线.6. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率△N / N =________________.7. 某理想气体,在温度T 1和T 2(T 1>T 2)时的麦克斯韦速率分布曲线如图所示,对应T 2的曲线应是__________,已知v 0是曲线Ⅱ的最可几速率,则曲线Ⅰ的最可几速率为____________。

卡诺循环

卡诺循环

Carnot cycle两个绝热过程和两个等温过程组成的循环。

1824年法国工程师S.卡诺在研究提高热机效率的过程中,设想了一种热机。

假定工作物质只同两个热源(高温热源和低温热源)交换热量,既没有散热也不存在摩擦,这种热机称为卡诺热机。

其循环过程称为卡诺循环。

卡诺循环的工作物质可以是理想气体,气、液二相系统,磁介质等。

循环若是可逆的,就称为可逆卡诺循环;若是不可逆的,就称为不可逆卡诺循环。

通常提到的卡诺循环,是指可逆卡诺循环。

卡诺循环中能量的转换情况可用图1表示。

工作物质从高温热源吸收热量Q1,一部分用于对外作功A,一部分热量Q2放给低温热源。

因为卡诺循环只同两个热源交换热量,所以可逆卡诺循环是由两个准静态等温过程和两个准静态绝热过程组成的。

图2是理想气体可逆卡诺循环的p-V图。

①等温膨胀,工作物质从温度为T1的热源吸收热量Q1,由状态(T1,V A)膨胀到状态(T1,V B);②绝热膨胀,由状态(T1,V B)到状态(T2,V C);③等温压缩,由状态(T2,V C)到状态(T2,V2),工质放出热量Q2;④绝热压缩,由状态(T2,V2)到状态(T1,V A),完成一个循环。

在此循环过程中,卡诺热机所作的功为A=Q1-Q2,循环的效率而理想气体卡诺循环的效率则为,仅同两个热源的温度有关。

卡诺进一步提出:①在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都是,同工作物质无关。

②在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都不可能大于可逆热机的效率。

以上两条统称为卡诺定理。

卡诺对该定理的证明是根据热质说理论和制造永动机不可能原理作出的。

直到开尔文和R.克劳修斯建立了热力学第二定律之后,卡诺定理才得到正确的证明。

卡诺循环和卡诺定理都具有很重要的理论和实践意义,对热力学第二定律的建立起了重要作用。

在卡诺定理的基础上还建立了同测温质以及测温属性无关的热力学温标,使温度测量建立在客观的基础上。

热力学习题答案

热力学习题答案

第1章 《热力学》习题解答1-1若一打足气的自行车内胎在7.0C 时轮胎中空气压强为54.010Pa ⨯,则在温度变为37.0C 时,轮胎内空气压强为多少?(设内胎容积不变)[解]:轮胎内的定质量空气做等容变化状态1 Pa P K T 511100.4,280⨯== 状态2:?,28022==P K T 由查理定律得Pa Pa P T T P T T P P 55112212121043.4100.4280310⨯=⨯⨯==⇒= 1-2 氧气瓶的容积为233.210m -⨯,其中氧气的压强为71.310Pa ⨯,氧气厂规定压强降到61.010Pa ⨯时,就应重新充气,以免经常洗瓶. 某小型吹玻璃车间平均每天用去30.40m 在51.0110Pa ⨯压强下的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)[解]:设氧气瓶的容积为320102.3m V -⨯=,使用过程的温度T 保持不变使用前氧气瓶中,氧气的压强为Pa P 71103.1,⨯= 根据克拉帕龙方程nRT PV =得: 使用前氧气瓶中,氧气的摩尔数为RTV P n 011,=氧气压强降到Pa P 62100.1,⨯=时,氧气瓶中,氧气的摩尔数为RTV P n 022,=所以能用的氧气摩尔数为()21021,P P RTV n n n -=-=∆ 平均每天用去氧气的摩尔数RTV P n 333,=故一瓶氧气能用的天数为()()5.91001.140.010113102.3,562332103=⨯⨯⨯-⨯=-=∆=-P V P P V n n N 1-3在湖面下50.0m 深处(温度为4.0C ),有一个体积为531.010m -⨯的空气泡升到湖面上来. 若湖面的温度为17.0C ,求气泡到达湖面的体积.(取大气压为50 1.01310Pa p =⨯)[解]:空气泡在湖面下50.0m 深处时,3511100.1,277m V K T -⨯==Pa P gh P 5530110013.610013.15010100.1⨯=⨯+⨯⨯⨯=+=ρ气泡到达湖面时,Pa P K T 522100.1,290⨯==由理想气体状态方程222111T V P T V P =得: 35351122121029.6100.12772900.1013.6m m V T T P P V --⨯=⨯⨯⨯=⋅=1-4如图所示,一定量的空气开始时在状态为A ,压力为2atm ,体积为l 2, 沿直线AB 变化到状态B 后,压力变为1 atm ,体积变为l 3. 求在此过程中气体所作的功。

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案习 题 九9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。

(1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少?[解] 由热力学第一定律A E Q +∆= 得AQ E -=∆在a <b 过程中,E E E a b∆=-JA Q 19412632011=-=-= 在adb 过程中 JA E Q 236421942=+=+∆=在ba 过程中 JA E A E E Q b a 27884194333-=--=+∆-=+-=本过程中系统放热。

9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa(1atm)的初态等温地压缩到 510026.2⨯Pa(2atm)。

求气体放出的热量。

[解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J P P RT M m A Q mol T 3211046.321ln 30031.82ln ⨯-=⨯⨯⨯===即气体放热为J 31046.3⨯。

9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。

试证此直线表示等压过程。

[证明] 设此直线斜率为k ,则此直线方程为kvE =又E 随温度的关系变化式为Tk T C M M E v mol'=⋅=所以T k kV '=因此C kk T V ='=(C 为恒量) 又由理想气体的状态方程知,C TpV '= (C '为恒量)所以 p 为恒量 即此过程为等压过程。

9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。

(2)1→2直线。

试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。

热学大练习

热学大练习

热学部分大练习一、填空题1. 相同温度下的1摩尔氧和2摩尔二氧化碳,对这两份气体,比较它们下列诸量的大小: (1)分子平均动能之比为_________________;(氧:二氧化碳) (2)分子平均平动动能之比为________________; (3)内能之比为____________________.2. 假设有一种气体,构成它的粒子服从以下速率分布率()()()⎩⎨⎧≥<<-=000 00)(v v v v v v Av v f式中A 为常量。

则用 v 0 定出的A =____________,平均速率=v __________________.3. 假设有N 个电子组成的电子气,其速率分布函数为f (v )与v 的关系如图所示。

则A 的大小为________________,在速率0~900 m/s 间电子的平均速率为_____________。

4. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则 (1) 速率v > 100 m ·s 1的分子数占总分子数的百分比的表达式为_________;(2) 速率v > 100 m ·s 1的分子数的表达式为__________________.5. 图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中 曲线 (a) 是 气体分子的速率分布曲线; 曲线 (c) 是 气体分子的速率分布曲线.6. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率 △N / N =________________.7. 某理想气体,在温度T 1和T 2(T 1>T 2)时的麦克斯韦速率分布曲线如图所示,对应T 2的曲线应是__________,已知v 0是曲线Ⅱ的最可几速率,则曲线Ⅰ的最可几速率为____________。

大学物理答案第七章

大学物理答案第七章
系统吸热为
(3)若沿过程曲线从a到c状态,内能改变为
应用热力学第一定律,系统所作的功为
7-3 2mol的氮气从标准状态加热到373 K,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?
分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.
分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率 .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.
解等温过程中系统所作的功为
7-92 m3的气体等温地膨胀,压强从 变到 ,求完成的功.
第七章热力学基础
7-1 假设火箭中的气体为单原子理想气体,温度为2000 K,当气体离开喷口时,温度为1000 K,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率 .已知一个原子质量单位=1.6605×10-27kg;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.
p
p22
p0等温线
1
p1
OV2V1V
图7-12
分析对于双原子理想气体,热容比 .不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.

大学物理习题解答 第十六章习题

大学物理习题解答 第十六章习题

第十六章习题16.8 氧气瓶的容积为32L ,其中氧气的压强为1.27⨯107P а,氧气厂规定压强降到9.8⨯105P а时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用400L ,1个工程大气压下的氧气,问一瓶氧气能用多少天?(设使用过程中,温度不变,1个工程大气压=9.8⨯104 P а)。

分析:由于使用条件的限制,瓶中氧气不能完全被使用,因此可通过两条不同的思路进行分析和求解; 解法(一)从氧气质量的角度来分析:设原瓶中氧气的总质量为1m ,需充气时瓶中剩余氧气的质量为2m ,每天使用氧气的质量为3m 。

由理想气体的状态方程MpV RT μ=可得:111p V m RT μ= : 212p V m RT μ= 333p V m RT μ= 则一瓶氧气可用天数321)(m m m n -= 12133()p p V p V =-6.9≈天解法(二)从体积的角度来分析。

利用等温膨胀条件,将原瓶中氧气由初态,pa p 711027.1(⨯=,331323210V L m ==⨯) 膨胀到需充气条件下的终态,5229.810,p pa V =⨯待求),比较可得2p 状态下实际使用掉的氧气的体积为21V V -,同样将每天的氧气由初态41333(9.810,400410)p Pa V L m -=⨯==⨯等温压缩到压强为2p 的终态,并算出此的体积'2V ,由此可得使用天数为:212()n V V V '=-。

对等温膨胀过程利用理想气体的状态方程可得压强为pa p 52108.9⨯=时体积为 2112V p V p =每天使用相同状态的氧气的体积为 2332V p V p '= 可得瓶内氧气的可用天数为212n V V V '=- =12133()p p V p V - 5.9≈天16.9 水银气压计重混进了一个空气泡,因此它的读数比实际的气压要小一些。

大学物理复习习题课

大学物理复习习题课

7. 由绝热材料包围的容器被隔板隔为两半,左边是理想 气体,右边真空.如果把隔板撤去,气体将进行自由膨 胀过程,达到平衡后气体的温度__________(升高、降低 或不变),气体的熵__________(增加、减小或不变).
答案: 不变, 增加
p
8. 一定量理想气体的循 环过程如 p-V 图所示,
V2 V1
c
b
V1
V2
V

V2 V2 RT RT ln RT ln dV a b V1 V1 V
Q2 = n CV,m D T = CV,m
(TaTc) C V,mTa (1
V1 Tc V1 Q2 C V,mTa (1 ) C V,mTa (1 ) C V,mTb (1 ) V2 Tb V2

Wacbda 1000 J
15. 2 mol 氦气初态的温度t1 =27℃,且体积V1 =20l。 先等压 膨胀使体积倍增,之后绝热膨胀至原温度。已知 cp,m=20.79Jmol-1 K-1 求 1)画 出p —V 图. 2)求过程中氦气的吸热. 3) 求过程氦气的内能变化. 4) 求过程气体做的总功.
3 5 C v, mATA C v, mBTB 2 RTA 2 RTB T 362.5 K 3 5 C v, mA C v, mB R R 2 2
设A、B两部分初态的体积为VA、 VB , 末态的体积为V A 、 V B ,则有 A He B N2
VB VA VB VA
等温线 绝热线
或者由准静态绝 热方程判定
V
g 1
T C
10. 图中两卡诺循环 h1 h2 吗 ?
p
W1
W1 W2

热学教程习题参考解(第六节)

热学教程习题参考解(第六节)

《热学教程》习题参考答案第六章 习 题6-1. 有人声称设计出一热机工作于两个温度恒定的热源之间,高温和低温热源分别为400K 和250K ;当此热机从高温热源吸热2.5×107cal 时,对外作功20 kW ﹒h ,而向低温热源放出的热量恰为两者之差,这可能吗?解:此热机的效率应为 ()()%5.374002501112=-=-=T T η,故当热机从高温热源吸热71105.2⨯=Q cal 时,能提供的功为6711038.9375.0105.2⨯=⨯⨯==ηQ W cal ,同时向低温热源放出热量为7671210562.11038.9105.2⨯=⨯-⨯=-=W Q Q cal 。

这样,倘若本题所设计的热机能够实现,它对外的作功值 20kw·h 710728.1⨯=cal 显然超过了此卡诺热机可能的最大输出功 61038.9⨯cal ,所以设计这样的热机是不可能的。

6-2.设有1mol 的某种单原子理想气体,完成如图所示的一个准静态循环过程,试求:(1)经过一个循环气体所作的净功;(2)在态C 和态A 之间的内能差;(3) 从A 经B 到C 过程中气体吸收的热量。

(答:(1)314 J;(2)600 J;(3)1157 J)解:如图所示,1mol 在V p -图上,描述此圆的方程为()[]()[]1222020=-+-V V p p, 其中的33050m 10,Pa 10-==V p 。

(1)经过一个循环过程,气体所做的功等于描述此循环过程的圆面积,即31400=V p πJ ;(2)与A 和C 点的温度为 ()()R V p R V p T A A A 002==和()()R V p R V p T C C C 006==,故两点之间的内能差为 ()600600==-=-=∆V p T T C U U U A C V A C A C J ,其中的定容热容()R C V 23=;(3)依据热力学第一定律,气体在ABC 过程中吸收的热量 W U Q +∆=,其中的内能增量U ∆已由(2)求得;而过程中所做的功可由过程曲线下所包含的面积求得:()5574210000=+=V p V p W πJ ,故1157=Q J ;(4)循环最高和最低温度分别发生在()[]22201+=p p ,()[]22201+=V V习题6-2图和()[]22202-=p p ,()[]22202-=V V所以相应的最高温度值为:()()()[]2.88222200111=+==R V p R V p T K ,最低温度值为 ()()()[]1.20222200222=-==R V p R V p T K ;(5)此循环效率为 ()12Q W =η,式中的循环功已由(1)求得 314=W J ,而循环吸热将发生在气体从最低温度2T 升至最高温度1T 之间,故()()()()%373699.01.202.8831.823232112≅=-⨯⨯=-=T T R Q 。

第十三章课后习题答案

第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W
cV T2 T1
Q放 E W
理想气体做绝热膨胀,由初状态(p0,V0) 至末状态(p,V),试证明在此过程中气体所做的功为
p0V0 pV W 1
绝热膨胀时,对外做功量等于内能的减少:
i W E NR(T0 T ) 2
p0V0 pV i NR( ) 2 NR NR
mg 1中活塞下气体压强为 S nRT0 mg 由 V nRT0 h S mg 3 1中活塞下气体内能为 E 0 n RT0 2
m 5 nM
1
m n M T0
2
m/2
26 T T0 27
在大气压下用电流加热一个绝热金属片,使其在恒 定的功率P下获得电热能,由此而导致的金属片绝对温度T随时间t的 增长关系为 T (t ) T 1 ( t t ) .其中T0、α、t0均为常量.求金属片热 容量Cp(T).(本题讨论内容,自然只在一定的温度范围内适用)
1 0 0 1 0 0
等容升温时,吸收的电热全部用作增加内能:
等压升温时,吸收的电热用作增加内能与对外做功:
CV p1V0 p0V0 Q E CV n(T1 T0 ) CV n(( p1 p0 )V0) R nR nR
V0 p1 p0 则 p0 V1 V0 CV
等容变化
W= 0
等压变化
Q,W,ΔE≠0
ΔE=Q +W
绝热变化
Q=0
ΔE=W
热 一 律 形 式
0 W Q 等温膨胀降压 Q W 时,对外做功 V m ,气体吸热; RT ln 2 M V1 等温压缩升压 p m RT ln 1 时,外界做功 M p2 ,气体放热; 功量等于热量 E 0 ,内能保持不 变
1 3 1 1 4 4 4 T0 1 t t 1 t t t 1 t t 0 4 0 0 t
3 4
T0 4
T0 T
CpLeabharlann p0V1 p0V0 Q E W C p n(T1 T0 ) C p n( ) nR nR Cp p0 V1 V0 R
两个相同的绝热容器用带有活栓的绝热细管相连,开始时活栓 是关闭的,如图,容器1里在质量为m的活塞下方有温度T0、摩尔质量M、摩尔数n 的单原子理想气体;容器2里质量为m/2的活塞位于器底且没有气体.每个容器里 活塞与上顶之间是抽成真空的.当打开活栓时容器1里的气体冲向容器2活塞下方, 于是此活塞开始上升(平衡时未及上顶),不计摩擦,计算当活栓打开且建 立平衡后气体的温度T,取
i2 i
p0V0 pV 1
为了测定气体的γ( C p ),有时用下列方法:一定量 CV 的气体初始的温度、压强和体积分别为 T0、p0、V0.用一根通有电流 的铂丝对它加热.设两次加热的电流和时间都相同.第一次保持气 体体积V0不变,温度和压强各变为T1和p1;第二次保持压强p0不变, ( p p )V 而温度和体积各变为T2和V1.试证明 (V V ) p
0=W+Q
E Q 等容升温升 m 压时,气体 Q cV T2 T1 M 吸热,内能 增加;等容 W 0 降温降压时 ,气体放热 m ,内能减少 E CV T2 T1 M .热量等于 内能增量
ΔE =Q
E W Q E W 等压升温膨胀时 绝热膨胀降压

热一律应用于理想气体等值过程
i m i i E N kT RT ( pV ) 2 M 2 2
单原子分子 i为分子自由度
双原子分子 多原子分子 定容比热 定容比热
i=3 i=5 i=6
C p CV R
cV
cp
i2 CV i Cp
过 程 特 征
等温变化
ΔE=0
m R T2 T1 Q吸 M E W
M 少;绝热压缩 升压升温时, 等压降温压缩时, 外界做功,内 放热并外界做功, 能增加;功量 m m 内能减少 E cV T2 T1 E cV T2 T1 M M 等于内能增量
,吸热并对外做 降温时,对外 Q0 W p V2 V1 功,内能增加 做功,内能减 m
mg 打开活栓重新平衡后 2中活塞下气体压强为 2 S mg 2nRT 由 V nRT H 2S mg 3 E0 n RT 2中活塞下气体内能为 2 h H H 由能量守恒可得: 3 nR T T0 nMg mg h 2 2 2 2 3 nMg nR T T0 nR T0 2T nR T T0 2 2mg
1/ 4 0 0
热容量定义
P t Cp T
1 4 1 4
1 t t t0 T0 1 t t0 T T0 其中 t t
T0 1 t t0 4 3 4P T cp T0 T0
3
由v1摩尔的单原子分子理想气体与v2摩尔双原 子分子理想气体混合组成某种理想气体,已知该混合理想 11 气体在常温下的绝热方程为 PV 7 常量.试求 v1与v2的比值 α.
i 2 11 设混合气体的自由度为i, 由 i 7
7 i 2
混合前后气体总内能守恒:
3 5 7 1 RT 2 RT 1 2 RT 2 2 4
即 3
1 3 2
一个高为152 cm的底部封闭的直玻璃管中下半部充 满双原子分子理想气体,上半部是水银且玻璃管顶部开口,对气体 缓慢加热,到所有的水银被排出管外时,封闭气体的摩尔热容随体 积如何变化?传递给气体的总热量是多少? (大气压强p0=76 cmHg)
相关文档
最新文档